linux/drivers/net/ethernet/sfc/nic.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#ifndef EFX_NIC_H
  12#define EFX_NIC_H
  13
  14#include <linux/net_tstamp.h>
  15#include <linux/i2c-algo-bit.h>
  16#include "net_driver.h"
  17#include "efx.h"
  18#include "mcdi.h"
  19
  20enum {
  21        /* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
  22         * They are not supported by this driver but these revision numbers
  23         * form part of the ethtool API for register dumping.
  24         */
  25        EFX_REV_SIENA_A0 = 3,
  26        EFX_REV_HUNT_A0 = 4,
  27};
  28
  29static inline int efx_nic_rev(struct efx_nic *efx)
  30{
  31        return efx->type->revision;
  32}
  33
  34u32 efx_farch_fpga_ver(struct efx_nic *efx);
  35
  36/* Read the current event from the event queue */
  37static inline efx_qword_t *efx_event(struct efx_channel *channel,
  38                                     unsigned int index)
  39{
  40        return ((efx_qword_t *) (channel->eventq.buf.addr)) +
  41                (index & channel->eventq_mask);
  42}
  43
  44/* See if an event is present
  45 *
  46 * We check both the high and low dword of the event for all ones.  We
  47 * wrote all ones when we cleared the event, and no valid event can
  48 * have all ones in either its high or low dwords.  This approach is
  49 * robust against reordering.
  50 *
  51 * Note that using a single 64-bit comparison is incorrect; even
  52 * though the CPU read will be atomic, the DMA write may not be.
  53 */
  54static inline int efx_event_present(efx_qword_t *event)
  55{
  56        return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  57                  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  58}
  59
  60/* Returns a pointer to the specified transmit descriptor in the TX
  61 * descriptor queue belonging to the specified channel.
  62 */
  63static inline efx_qword_t *
  64efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  65{
  66        return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
  67}
  68
  69/* Get partner of a TX queue, seen as part of the same net core queue */
  70static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
  71{
  72        if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  73                return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
  74        else
  75                return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
  76}
  77
  78/* Report whether this TX queue would be empty for the given write_count.
  79 * May return false negative.
  80 */
  81static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
  82                                         unsigned int write_count)
  83{
  84        unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
  85
  86        if (empty_read_count == 0)
  87                return false;
  88
  89        return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  90}
  91
  92/* Report whether the NIC considers this TX queue empty, using
  93 * packet_write_count (the write count recorded for the last completable
  94 * doorbell push).  May return false negative.  EF10 only, which is OK
  95 * because only EF10 supports PIO.
  96 */
  97static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
  98{
  99        EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
 100        return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
 101}
 102
 103/* Decide whether we can use TX PIO, ie. write packet data directly into
 104 * a buffer on the device.  This can reduce latency at the expense of
 105 * throughput, so we only do this if both hardware and software TX rings
 106 * are empty.  This also ensures that only one packet at a time can be
 107 * using the PIO buffer.
 108 */
 109static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
 110{
 111        struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
 112
 113        return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
 114               efx_nic_tx_is_empty(partner);
 115}
 116
 117/* Decide whether to push a TX descriptor to the NIC vs merely writing
 118 * the doorbell.  This can reduce latency when we are adding a single
 119 * descriptor to an empty queue, but is otherwise pointless.  Further,
 120 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
 121 * triggered if we don't check this.
 122 * We use the write_count used for the last doorbell push, to get the
 123 * NIC's view of the tx queue.
 124 */
 125static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
 126                                            unsigned int write_count)
 127{
 128        bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
 129
 130        tx_queue->empty_read_count = 0;
 131        return was_empty && tx_queue->write_count - write_count == 1;
 132}
 133
 134/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 135static inline efx_qword_t *
 136efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 137{
 138        return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 139}
 140
 141enum {
 142        PHY_TYPE_NONE = 0,
 143        PHY_TYPE_TXC43128 = 1,
 144        PHY_TYPE_88E1111 = 2,
 145        PHY_TYPE_SFX7101 = 3,
 146        PHY_TYPE_QT2022C2 = 4,
 147        PHY_TYPE_PM8358 = 6,
 148        PHY_TYPE_SFT9001A = 8,
 149        PHY_TYPE_QT2025C = 9,
 150        PHY_TYPE_SFT9001B = 10,
 151};
 152
 153/* Alignment of PCIe DMA boundaries (4KB) */
 154#define EFX_PAGE_SIZE   4096
 155/* Size and alignment of buffer table entries (same) */
 156#define EFX_BUF_SIZE    EFX_PAGE_SIZE
 157
 158/* NIC-generic software stats */
 159enum {
 160        GENERIC_STAT_rx_noskb_drops,
 161        GENERIC_STAT_rx_nodesc_trunc,
 162        GENERIC_STAT_COUNT
 163};
 164
 165enum {
 166        SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
 167        SIENA_STAT_tx_good_bytes,
 168        SIENA_STAT_tx_bad_bytes,
 169        SIENA_STAT_tx_packets,
 170        SIENA_STAT_tx_bad,
 171        SIENA_STAT_tx_pause,
 172        SIENA_STAT_tx_control,
 173        SIENA_STAT_tx_unicast,
 174        SIENA_STAT_tx_multicast,
 175        SIENA_STAT_tx_broadcast,
 176        SIENA_STAT_tx_lt64,
 177        SIENA_STAT_tx_64,
 178        SIENA_STAT_tx_65_to_127,
 179        SIENA_STAT_tx_128_to_255,
 180        SIENA_STAT_tx_256_to_511,
 181        SIENA_STAT_tx_512_to_1023,
 182        SIENA_STAT_tx_1024_to_15xx,
 183        SIENA_STAT_tx_15xx_to_jumbo,
 184        SIENA_STAT_tx_gtjumbo,
 185        SIENA_STAT_tx_collision,
 186        SIENA_STAT_tx_single_collision,
 187        SIENA_STAT_tx_multiple_collision,
 188        SIENA_STAT_tx_excessive_collision,
 189        SIENA_STAT_tx_deferred,
 190        SIENA_STAT_tx_late_collision,
 191        SIENA_STAT_tx_excessive_deferred,
 192        SIENA_STAT_tx_non_tcpudp,
 193        SIENA_STAT_tx_mac_src_error,
 194        SIENA_STAT_tx_ip_src_error,
 195        SIENA_STAT_rx_bytes,
 196        SIENA_STAT_rx_good_bytes,
 197        SIENA_STAT_rx_bad_bytes,
 198        SIENA_STAT_rx_packets,
 199        SIENA_STAT_rx_good,
 200        SIENA_STAT_rx_bad,
 201        SIENA_STAT_rx_pause,
 202        SIENA_STAT_rx_control,
 203        SIENA_STAT_rx_unicast,
 204        SIENA_STAT_rx_multicast,
 205        SIENA_STAT_rx_broadcast,
 206        SIENA_STAT_rx_lt64,
 207        SIENA_STAT_rx_64,
 208        SIENA_STAT_rx_65_to_127,
 209        SIENA_STAT_rx_128_to_255,
 210        SIENA_STAT_rx_256_to_511,
 211        SIENA_STAT_rx_512_to_1023,
 212        SIENA_STAT_rx_1024_to_15xx,
 213        SIENA_STAT_rx_15xx_to_jumbo,
 214        SIENA_STAT_rx_gtjumbo,
 215        SIENA_STAT_rx_bad_gtjumbo,
 216        SIENA_STAT_rx_overflow,
 217        SIENA_STAT_rx_false_carrier,
 218        SIENA_STAT_rx_symbol_error,
 219        SIENA_STAT_rx_align_error,
 220        SIENA_STAT_rx_length_error,
 221        SIENA_STAT_rx_internal_error,
 222        SIENA_STAT_rx_nodesc_drop_cnt,
 223        SIENA_STAT_COUNT
 224};
 225
 226/**
 227 * struct siena_nic_data - Siena NIC state
 228 * @efx: Pointer back to main interface structure
 229 * @wol_filter_id: Wake-on-LAN packet filter id
 230 * @stats: Hardware statistics
 231 * @vf: Array of &struct siena_vf objects
 232 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
 233 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
 234 * @local_addr_list: List of local addresses. Protected by %local_lock.
 235 * @local_page_list: List of DMA addressable pages used to broadcast
 236 *      %local_addr_list. Protected by %local_lock.
 237 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
 238 * @peer_work: Work item to broadcast peer addresses to VMs.
 239 */
 240struct siena_nic_data {
 241        struct efx_nic *efx;
 242        int wol_filter_id;
 243        u64 stats[SIENA_STAT_COUNT];
 244#ifdef CONFIG_SFC_SRIOV
 245        struct siena_vf *vf;
 246        struct efx_channel *vfdi_channel;
 247        unsigned vf_buftbl_base;
 248        struct efx_buffer vfdi_status;
 249        struct list_head local_addr_list;
 250        struct list_head local_page_list;
 251        struct mutex local_lock;
 252        struct work_struct peer_work;
 253#endif
 254};
 255
 256enum {
 257        EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
 258        EF10_STAT_port_tx_packets,
 259        EF10_STAT_port_tx_pause,
 260        EF10_STAT_port_tx_control,
 261        EF10_STAT_port_tx_unicast,
 262        EF10_STAT_port_tx_multicast,
 263        EF10_STAT_port_tx_broadcast,
 264        EF10_STAT_port_tx_lt64,
 265        EF10_STAT_port_tx_64,
 266        EF10_STAT_port_tx_65_to_127,
 267        EF10_STAT_port_tx_128_to_255,
 268        EF10_STAT_port_tx_256_to_511,
 269        EF10_STAT_port_tx_512_to_1023,
 270        EF10_STAT_port_tx_1024_to_15xx,
 271        EF10_STAT_port_tx_15xx_to_jumbo,
 272        EF10_STAT_port_rx_bytes,
 273        EF10_STAT_port_rx_bytes_minus_good_bytes,
 274        EF10_STAT_port_rx_good_bytes,
 275        EF10_STAT_port_rx_bad_bytes,
 276        EF10_STAT_port_rx_packets,
 277        EF10_STAT_port_rx_good,
 278        EF10_STAT_port_rx_bad,
 279        EF10_STAT_port_rx_pause,
 280        EF10_STAT_port_rx_control,
 281        EF10_STAT_port_rx_unicast,
 282        EF10_STAT_port_rx_multicast,
 283        EF10_STAT_port_rx_broadcast,
 284        EF10_STAT_port_rx_lt64,
 285        EF10_STAT_port_rx_64,
 286        EF10_STAT_port_rx_65_to_127,
 287        EF10_STAT_port_rx_128_to_255,
 288        EF10_STAT_port_rx_256_to_511,
 289        EF10_STAT_port_rx_512_to_1023,
 290        EF10_STAT_port_rx_1024_to_15xx,
 291        EF10_STAT_port_rx_15xx_to_jumbo,
 292        EF10_STAT_port_rx_gtjumbo,
 293        EF10_STAT_port_rx_bad_gtjumbo,
 294        EF10_STAT_port_rx_overflow,
 295        EF10_STAT_port_rx_align_error,
 296        EF10_STAT_port_rx_length_error,
 297        EF10_STAT_port_rx_nodesc_drops,
 298        EF10_STAT_port_rx_pm_trunc_bb_overflow,
 299        EF10_STAT_port_rx_pm_discard_bb_overflow,
 300        EF10_STAT_port_rx_pm_trunc_vfifo_full,
 301        EF10_STAT_port_rx_pm_discard_vfifo_full,
 302        EF10_STAT_port_rx_pm_trunc_qbb,
 303        EF10_STAT_port_rx_pm_discard_qbb,
 304        EF10_STAT_port_rx_pm_discard_mapping,
 305        EF10_STAT_port_rx_dp_q_disabled_packets,
 306        EF10_STAT_port_rx_dp_di_dropped_packets,
 307        EF10_STAT_port_rx_dp_streaming_packets,
 308        EF10_STAT_port_rx_dp_hlb_fetch,
 309        EF10_STAT_port_rx_dp_hlb_wait,
 310        EF10_STAT_rx_unicast,
 311        EF10_STAT_rx_unicast_bytes,
 312        EF10_STAT_rx_multicast,
 313        EF10_STAT_rx_multicast_bytes,
 314        EF10_STAT_rx_broadcast,
 315        EF10_STAT_rx_broadcast_bytes,
 316        EF10_STAT_rx_bad,
 317        EF10_STAT_rx_bad_bytes,
 318        EF10_STAT_rx_overflow,
 319        EF10_STAT_tx_unicast,
 320        EF10_STAT_tx_unicast_bytes,
 321        EF10_STAT_tx_multicast,
 322        EF10_STAT_tx_multicast_bytes,
 323        EF10_STAT_tx_broadcast,
 324        EF10_STAT_tx_broadcast_bytes,
 325        EF10_STAT_tx_bad,
 326        EF10_STAT_tx_bad_bytes,
 327        EF10_STAT_tx_overflow,
 328        EF10_STAT_V1_COUNT,
 329        EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT,
 330        EF10_STAT_fec_corrected_errors,
 331        EF10_STAT_fec_corrected_symbols_lane0,
 332        EF10_STAT_fec_corrected_symbols_lane1,
 333        EF10_STAT_fec_corrected_symbols_lane2,
 334        EF10_STAT_fec_corrected_symbols_lane3,
 335        EF10_STAT_ctpio_vi_busy_fallback,
 336        EF10_STAT_ctpio_long_write_success,
 337        EF10_STAT_ctpio_missing_dbell_fail,
 338        EF10_STAT_ctpio_overflow_fail,
 339        EF10_STAT_ctpio_underflow_fail,
 340        EF10_STAT_ctpio_timeout_fail,
 341        EF10_STAT_ctpio_noncontig_wr_fail,
 342        EF10_STAT_ctpio_frm_clobber_fail,
 343        EF10_STAT_ctpio_invalid_wr_fail,
 344        EF10_STAT_ctpio_vi_clobber_fallback,
 345        EF10_STAT_ctpio_unqualified_fallback,
 346        EF10_STAT_ctpio_runt_fallback,
 347        EF10_STAT_ctpio_success,
 348        EF10_STAT_ctpio_fallback,
 349        EF10_STAT_ctpio_poison,
 350        EF10_STAT_ctpio_erase,
 351        EF10_STAT_COUNT
 352};
 353
 354/* Maximum number of TX PIO buffers we may allocate to a function.
 355 * This matches the total number of buffers on each SFC9100-family
 356 * controller.
 357 */
 358#define EF10_TX_PIOBUF_COUNT 16
 359
 360/**
 361 * struct efx_ef10_nic_data - EF10 architecture NIC state
 362 * @mcdi_buf: DMA buffer for MCDI
 363 * @warm_boot_count: Last seen MC warm boot count
 364 * @vi_base: Absolute index of first VI in this function
 365 * @n_allocated_vis: Number of VIs allocated to this function
 366 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 367 * @must_restore_rss_contexts: Flag: RSS contexts have yet to be restored after
 368 *      MC reboot
 369 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
 370 * @n_piobufs: Number of PIO buffers allocated to this function
 371 * @wc_membase: Base address of write-combining mapping of the memory BAR
 372 * @pio_write_base: Base address for writing PIO buffers
 373 * @pio_write_vi_base: Relative VI number for @pio_write_base
 374 * @piobuf_handle: Handle of each PIO buffer allocated
 375 * @piobuf_size: size of a single PIO buffer
 376 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
 377 *      reboot
 378 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
 379 * @stats: Hardware statistics
 380 * @workaround_35388: Flag: firmware supports workaround for bug 35388
 381 * @workaround_26807: Flag: firmware supports workaround for bug 26807
 382 * @workaround_61265: Flag: firmware supports workaround for bug 61265
 383 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
 384 *      after MC reboot
 385 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
 386 *      %MC_CMD_GET_CAPABILITIES response)
 387 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
 388 * %MC_CMD_GET_CAPABILITIES response)
 389 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
 390 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
 391 * @vport_id: The function's vport ID, only relevant for PFs
 392 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
 393 * @pf_index: The number for this PF, or the parent PF if this is a VF
 394#ifdef CONFIG_SFC_SRIOV
 395 * @vf: Pointer to VF data structure
 396#endif
 397 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
 398 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
 399 * @vlan_lock: Lock to serialize access to vlan_list.
 400 * @udp_tunnels: UDP tunnel port numbers and types.
 401 * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
 402 *      @udp_tunnels to hardware and thus the push must be re-done.
 403 * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
 404 */
 405struct efx_ef10_nic_data {
 406        struct efx_buffer mcdi_buf;
 407        u16 warm_boot_count;
 408        unsigned int vi_base;
 409        unsigned int n_allocated_vis;
 410        bool must_realloc_vis;
 411        bool must_restore_rss_contexts;
 412        bool must_restore_filters;
 413        unsigned int n_piobufs;
 414        void __iomem *wc_membase, *pio_write_base;
 415        unsigned int pio_write_vi_base;
 416        unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
 417        u16 piobuf_size;
 418        bool must_restore_piobufs;
 419        bool rx_rss_context_exclusive;
 420        u64 stats[EF10_STAT_COUNT];
 421        bool workaround_35388;
 422        bool workaround_26807;
 423        bool workaround_61265;
 424        bool must_check_datapath_caps;
 425        u32 datapath_caps;
 426        u32 datapath_caps2;
 427        unsigned int rx_dpcpu_fw_id;
 428        unsigned int tx_dpcpu_fw_id;
 429        unsigned int vport_id;
 430        bool must_probe_vswitching;
 431        unsigned int pf_index;
 432        u8 port_id[ETH_ALEN];
 433#ifdef CONFIG_SFC_SRIOV
 434        unsigned int vf_index;
 435        struct ef10_vf *vf;
 436#endif
 437        u8 vport_mac[ETH_ALEN];
 438        struct list_head vlan_list;
 439        struct mutex vlan_lock;
 440        struct efx_udp_tunnel udp_tunnels[16];
 441        bool udp_tunnels_dirty;
 442        struct mutex udp_tunnels_lock;
 443        u64 licensed_features;
 444};
 445
 446int efx_init_sriov(void);
 447void efx_fini_sriov(void);
 448
 449struct ethtool_ts_info;
 450int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
 451void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
 452struct efx_channel *efx_ptp_channel(struct efx_nic *efx);
 453void efx_ptp_remove(struct efx_nic *efx);
 454int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
 455int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
 456void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
 457bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
 458int efx_ptp_get_mode(struct efx_nic *efx);
 459int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
 460                        unsigned int new_mode);
 461int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
 462void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
 463size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
 464size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
 465void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
 466void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 467                                   struct sk_buff *skb);
 468static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 469                                               struct sk_buff *skb)
 470{
 471        if (channel->sync_events_state == SYNC_EVENTS_VALID)
 472                __efx_rx_skb_attach_timestamp(channel, skb);
 473}
 474void efx_ptp_start_datapath(struct efx_nic *efx);
 475void efx_ptp_stop_datapath(struct efx_nic *efx);
 476bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx);
 477ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
 478
 479extern const struct efx_nic_type falcon_a1_nic_type;
 480extern const struct efx_nic_type falcon_b0_nic_type;
 481extern const struct efx_nic_type siena_a0_nic_type;
 482extern const struct efx_nic_type efx_hunt_a0_nic_type;
 483extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
 484
 485/**************************************************************************
 486 *
 487 * Externs
 488 *
 489 **************************************************************************
 490 */
 491
 492int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
 493
 494/* TX data path */
 495static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 496{
 497        return tx_queue->efx->type->tx_probe(tx_queue);
 498}
 499static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 500{
 501        tx_queue->efx->type->tx_init(tx_queue);
 502}
 503static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 504{
 505        tx_queue->efx->type->tx_remove(tx_queue);
 506}
 507static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 508{
 509        tx_queue->efx->type->tx_write(tx_queue);
 510}
 511
 512/* RX data path */
 513static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 514{
 515        return rx_queue->efx->type->rx_probe(rx_queue);
 516}
 517static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 518{
 519        rx_queue->efx->type->rx_init(rx_queue);
 520}
 521static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 522{
 523        rx_queue->efx->type->rx_remove(rx_queue);
 524}
 525static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 526{
 527        rx_queue->efx->type->rx_write(rx_queue);
 528}
 529static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
 530{
 531        rx_queue->efx->type->rx_defer_refill(rx_queue);
 532}
 533
 534/* Event data path */
 535static inline int efx_nic_probe_eventq(struct efx_channel *channel)
 536{
 537        return channel->efx->type->ev_probe(channel);
 538}
 539static inline int efx_nic_init_eventq(struct efx_channel *channel)
 540{
 541        return channel->efx->type->ev_init(channel);
 542}
 543static inline void efx_nic_fini_eventq(struct efx_channel *channel)
 544{
 545        channel->efx->type->ev_fini(channel);
 546}
 547static inline void efx_nic_remove_eventq(struct efx_channel *channel)
 548{
 549        channel->efx->type->ev_remove(channel);
 550}
 551static inline int
 552efx_nic_process_eventq(struct efx_channel *channel, int quota)
 553{
 554        return channel->efx->type->ev_process(channel, quota);
 555}
 556static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
 557{
 558        channel->efx->type->ev_read_ack(channel);
 559}
 560void efx_nic_event_test_start(struct efx_channel *channel);
 561
 562/* Falcon/Siena queue operations */
 563int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
 564void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
 565void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
 566void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
 567void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
 568unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 569                                    dma_addr_t dma_addr, unsigned int len);
 570int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
 571void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
 572void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
 573void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
 574void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
 575void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
 576int efx_farch_ev_probe(struct efx_channel *channel);
 577int efx_farch_ev_init(struct efx_channel *channel);
 578void efx_farch_ev_fini(struct efx_channel *channel);
 579void efx_farch_ev_remove(struct efx_channel *channel);
 580int efx_farch_ev_process(struct efx_channel *channel, int quota);
 581void efx_farch_ev_read_ack(struct efx_channel *channel);
 582void efx_farch_ev_test_generate(struct efx_channel *channel);
 583
 584/* Falcon/Siena filter operations */
 585int efx_farch_filter_table_probe(struct efx_nic *efx);
 586void efx_farch_filter_table_restore(struct efx_nic *efx);
 587void efx_farch_filter_table_remove(struct efx_nic *efx);
 588void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
 589s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
 590                            bool replace);
 591int efx_farch_filter_remove_safe(struct efx_nic *efx,
 592                                 enum efx_filter_priority priority,
 593                                 u32 filter_id);
 594int efx_farch_filter_get_safe(struct efx_nic *efx,
 595                              enum efx_filter_priority priority, u32 filter_id,
 596                              struct efx_filter_spec *);
 597int efx_farch_filter_clear_rx(struct efx_nic *efx,
 598                              enum efx_filter_priority priority);
 599u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
 600                                   enum efx_filter_priority priority);
 601u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
 602s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
 603                                enum efx_filter_priority priority, u32 *buf,
 604                                u32 size);
 605#ifdef CONFIG_RFS_ACCEL
 606bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
 607                                     unsigned int index);
 608#endif
 609void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
 610
 611bool efx_nic_event_present(struct efx_channel *channel);
 612
 613/* Some statistics are computed as A - B where A and B each increase
 614 * linearly with some hardware counter(s) and the counters are read
 615 * asynchronously.  If the counters contributing to B are always read
 616 * after those contributing to A, the computed value may be lower than
 617 * the true value by some variable amount, and may decrease between
 618 * subsequent computations.
 619 *
 620 * We should never allow statistics to decrease or to exceed the true
 621 * value.  Since the computed value will never be greater than the
 622 * true value, we can achieve this by only storing the computed value
 623 * when it increases.
 624 */
 625static inline void efx_update_diff_stat(u64 *stat, u64 diff)
 626{
 627        if ((s64)(diff - *stat) > 0)
 628                *stat = diff;
 629}
 630
 631/* Interrupts */
 632int efx_nic_init_interrupt(struct efx_nic *efx);
 633int efx_nic_irq_test_start(struct efx_nic *efx);
 634void efx_nic_fini_interrupt(struct efx_nic *efx);
 635
 636/* Falcon/Siena interrupts */
 637void efx_farch_irq_enable_master(struct efx_nic *efx);
 638int efx_farch_irq_test_generate(struct efx_nic *efx);
 639void efx_farch_irq_disable_master(struct efx_nic *efx);
 640irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
 641irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
 642irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
 643
 644static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
 645{
 646        return READ_ONCE(channel->event_test_cpu);
 647}
 648static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
 649{
 650        return READ_ONCE(efx->last_irq_cpu);
 651}
 652
 653/* Global Resources */
 654int efx_nic_flush_queues(struct efx_nic *efx);
 655void siena_prepare_flush(struct efx_nic *efx);
 656int efx_farch_fini_dmaq(struct efx_nic *efx);
 657void efx_farch_finish_flr(struct efx_nic *efx);
 658void siena_finish_flush(struct efx_nic *efx);
 659void falcon_start_nic_stats(struct efx_nic *efx);
 660void falcon_stop_nic_stats(struct efx_nic *efx);
 661int falcon_reset_xaui(struct efx_nic *efx);
 662void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
 663void efx_farch_init_common(struct efx_nic *efx);
 664void efx_ef10_handle_drain_event(struct efx_nic *efx);
 665void efx_farch_rx_push_indir_table(struct efx_nic *efx);
 666void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
 667
 668int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 669                         unsigned int len, gfp_t gfp_flags);
 670void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
 671
 672/* Tests */
 673struct efx_farch_register_test {
 674        unsigned address;
 675        efx_oword_t mask;
 676};
 677int efx_farch_test_registers(struct efx_nic *efx,
 678                             const struct efx_farch_register_test *regs,
 679                             size_t n_regs);
 680
 681size_t efx_nic_get_regs_len(struct efx_nic *efx);
 682void efx_nic_get_regs(struct efx_nic *efx, void *buf);
 683
 684size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
 685                              const unsigned long *mask, u8 *names);
 686void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
 687                          const unsigned long *mask, u64 *stats,
 688                          const void *dma_buf, bool accumulate);
 689void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
 690
 691#define EFX_MAX_FLUSH_TIME 5000
 692
 693void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 694                              efx_qword_t *event);
 695
 696#endif /* EFX_NIC_H */
 697