linux/drivers/of/fdt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)     "OF: fdt: " fmt
  10
  11#include <linux/crc32.h>
  12#include <linux/kernel.h>
  13#include <linux/initrd.h>
  14#include <linux/bootmem.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28
  29#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  30#include <asm/page.h>
  31
  32#include "of_private.h"
  33
  34/*
  35 * of_fdt_limit_memory - limit the number of regions in the /memory node
  36 * @limit: maximum entries
  37 *
  38 * Adjust the flattened device tree to have at most 'limit' number of
  39 * memory entries in the /memory node. This function may be called
  40 * any time after initial_boot_param is set.
  41 */
  42void of_fdt_limit_memory(int limit)
  43{
  44        int memory;
  45        int len;
  46        const void *val;
  47        int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  48        int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  49        const __be32 *addr_prop;
  50        const __be32 *size_prop;
  51        int root_offset;
  52        int cell_size;
  53
  54        root_offset = fdt_path_offset(initial_boot_params, "/");
  55        if (root_offset < 0)
  56                return;
  57
  58        addr_prop = fdt_getprop(initial_boot_params, root_offset,
  59                                "#address-cells", NULL);
  60        if (addr_prop)
  61                nr_address_cells = fdt32_to_cpu(*addr_prop);
  62
  63        size_prop = fdt_getprop(initial_boot_params, root_offset,
  64                                "#size-cells", NULL);
  65        if (size_prop)
  66                nr_size_cells = fdt32_to_cpu(*size_prop);
  67
  68        cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  69
  70        memory = fdt_path_offset(initial_boot_params, "/memory");
  71        if (memory > 0) {
  72                val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  73                if (len > limit*cell_size) {
  74                        len = limit*cell_size;
  75                        pr_debug("Limiting number of entries to %d\n", limit);
  76                        fdt_setprop(initial_boot_params, memory, "reg", val,
  77                                        len);
  78                }
  79        }
  80}
  81
  82/**
  83 * of_fdt_is_compatible - Return true if given node from the given blob has
  84 * compat in its compatible list
  85 * @blob: A device tree blob
  86 * @node: node to test
  87 * @compat: compatible string to compare with compatible list.
  88 *
  89 * On match, returns a non-zero value with smaller values returned for more
  90 * specific compatible values.
  91 */
  92static int of_fdt_is_compatible(const void *blob,
  93                      unsigned long node, const char *compat)
  94{
  95        const char *cp;
  96        int cplen;
  97        unsigned long l, score = 0;
  98
  99        cp = fdt_getprop(blob, node, "compatible", &cplen);
 100        if (cp == NULL)
 101                return 0;
 102        while (cplen > 0) {
 103                score++;
 104                if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 105                        return score;
 106                l = strlen(cp) + 1;
 107                cp += l;
 108                cplen -= l;
 109        }
 110
 111        return 0;
 112}
 113
 114/**
 115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
 116 * @blob: A device tree blob
 117 * @node: node to test
 118 *
 119 * Returns true if the node has a "big-endian" property, or if the kernel
 120 * was compiled for BE *and* the node has a "native-endian" property.
 121 * Returns false otherwise.
 122 */
 123bool of_fdt_is_big_endian(const void *blob, unsigned long node)
 124{
 125        if (fdt_getprop(blob, node, "big-endian", NULL))
 126                return true;
 127        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 128            fdt_getprop(blob, node, "native-endian", NULL))
 129                return true;
 130        return false;
 131}
 132
 133static bool of_fdt_device_is_available(const void *blob, unsigned long node)
 134{
 135        const char *status = fdt_getprop(blob, node, "status", NULL);
 136
 137        if (!status)
 138                return true;
 139
 140        if (!strcmp(status, "ok") || !strcmp(status, "okay"))
 141                return true;
 142
 143        return false;
 144}
 145
 146/**
 147 * of_fdt_match - Return true if node matches a list of compatible values
 148 */
 149int of_fdt_match(const void *blob, unsigned long node,
 150                 const char *const *compat)
 151{
 152        unsigned int tmp, score = 0;
 153
 154        if (!compat)
 155                return 0;
 156
 157        while (*compat) {
 158                tmp = of_fdt_is_compatible(blob, node, *compat);
 159                if (tmp && (score == 0 || (tmp < score)))
 160                        score = tmp;
 161                compat++;
 162        }
 163
 164        return score;
 165}
 166
 167static void *unflatten_dt_alloc(void **mem, unsigned long size,
 168                                       unsigned long align)
 169{
 170        void *res;
 171
 172        *mem = PTR_ALIGN(*mem, align);
 173        res = *mem;
 174        *mem += size;
 175
 176        return res;
 177}
 178
 179static void populate_properties(const void *blob,
 180                                int offset,
 181                                void **mem,
 182                                struct device_node *np,
 183                                const char *nodename,
 184                                bool dryrun)
 185{
 186        struct property *pp, **pprev = NULL;
 187        int cur;
 188        bool has_name = false;
 189
 190        pprev = &np->properties;
 191        for (cur = fdt_first_property_offset(blob, offset);
 192             cur >= 0;
 193             cur = fdt_next_property_offset(blob, cur)) {
 194                const __be32 *val;
 195                const char *pname;
 196                u32 sz;
 197
 198                val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 199                if (!val) {
 200                        pr_warn("Cannot locate property at 0x%x\n", cur);
 201                        continue;
 202                }
 203
 204                if (!pname) {
 205                        pr_warn("Cannot find property name at 0x%x\n", cur);
 206                        continue;
 207                }
 208
 209                if (!strcmp(pname, "name"))
 210                        has_name = true;
 211
 212                pp = unflatten_dt_alloc(mem, sizeof(struct property),
 213                                        __alignof__(struct property));
 214                if (dryrun)
 215                        continue;
 216
 217                /* We accept flattened tree phandles either in
 218                 * ePAPR-style "phandle" properties, or the
 219                 * legacy "linux,phandle" properties.  If both
 220                 * appear and have different values, things
 221                 * will get weird. Don't do that.
 222                 */
 223                if (!strcmp(pname, "phandle") ||
 224                    !strcmp(pname, "linux,phandle")) {
 225                        if (!np->phandle)
 226                                np->phandle = be32_to_cpup(val);
 227                }
 228
 229                /* And we process the "ibm,phandle" property
 230                 * used in pSeries dynamic device tree
 231                 * stuff
 232                 */
 233                if (!strcmp(pname, "ibm,phandle"))
 234                        np->phandle = be32_to_cpup(val);
 235
 236                pp->name   = (char *)pname;
 237                pp->length = sz;
 238                pp->value  = (__be32 *)val;
 239                *pprev     = pp;
 240                pprev      = &pp->next;
 241        }
 242
 243        /* With version 0x10 we may not have the name property,
 244         * recreate it here from the unit name if absent
 245         */
 246        if (!has_name) {
 247                const char *p = nodename, *ps = p, *pa = NULL;
 248                int len;
 249
 250                while (*p) {
 251                        if ((*p) == '@')
 252                                pa = p;
 253                        else if ((*p) == '/')
 254                                ps = p + 1;
 255                        p++;
 256                }
 257
 258                if (pa < ps)
 259                        pa = p;
 260                len = (pa - ps) + 1;
 261                pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 262                                        __alignof__(struct property));
 263                if (!dryrun) {
 264                        pp->name   = "name";
 265                        pp->length = len;
 266                        pp->value  = pp + 1;
 267                        *pprev     = pp;
 268                        pprev      = &pp->next;
 269                        memcpy(pp->value, ps, len - 1);
 270                        ((char *)pp->value)[len - 1] = 0;
 271                        pr_debug("fixed up name for %s -> %s\n",
 272                                 nodename, (char *)pp->value);
 273                }
 274        }
 275
 276        if (!dryrun)
 277                *pprev = NULL;
 278}
 279
 280static bool populate_node(const void *blob,
 281                          int offset,
 282                          void **mem,
 283                          struct device_node *dad,
 284                          struct device_node **pnp,
 285                          bool dryrun)
 286{
 287        struct device_node *np;
 288        const char *pathp;
 289        unsigned int l, allocl;
 290
 291        pathp = fdt_get_name(blob, offset, &l);
 292        if (!pathp) {
 293                *pnp = NULL;
 294                return false;
 295        }
 296
 297        allocl = ++l;
 298
 299        np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 300                                __alignof__(struct device_node));
 301        if (!dryrun) {
 302                char *fn;
 303                of_node_init(np);
 304                np->full_name = fn = ((char *)np) + sizeof(*np);
 305
 306                memcpy(fn, pathp, l);
 307
 308                if (dad != NULL) {
 309                        np->parent = dad;
 310                        np->sibling = dad->child;
 311                        dad->child = np;
 312                }
 313        }
 314
 315        populate_properties(blob, offset, mem, np, pathp, dryrun);
 316        if (!dryrun) {
 317                np->name = of_get_property(np, "name", NULL);
 318                np->type = of_get_property(np, "device_type", NULL);
 319
 320                if (!np->name)
 321                        np->name = "<NULL>";
 322                if (!np->type)
 323                        np->type = "<NULL>";
 324        }
 325
 326        *pnp = np;
 327        return true;
 328}
 329
 330static void reverse_nodes(struct device_node *parent)
 331{
 332        struct device_node *child, *next;
 333
 334        /* In-depth first */
 335        child = parent->child;
 336        while (child) {
 337                reverse_nodes(child);
 338
 339                child = child->sibling;
 340        }
 341
 342        /* Reverse the nodes in the child list */
 343        child = parent->child;
 344        parent->child = NULL;
 345        while (child) {
 346                next = child->sibling;
 347
 348                child->sibling = parent->child;
 349                parent->child = child;
 350                child = next;
 351        }
 352}
 353
 354/**
 355 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 356 * @blob: The parent device tree blob
 357 * @mem: Memory chunk to use for allocating device nodes and properties
 358 * @dad: Parent struct device_node
 359 * @nodepp: The device_node tree created by the call
 360 *
 361 * It returns the size of unflattened device tree or error code
 362 */
 363static int unflatten_dt_nodes(const void *blob,
 364                              void *mem,
 365                              struct device_node *dad,
 366                              struct device_node **nodepp)
 367{
 368        struct device_node *root;
 369        int offset = 0, depth = 0, initial_depth = 0;
 370#define FDT_MAX_DEPTH   64
 371        struct device_node *nps[FDT_MAX_DEPTH];
 372        void *base = mem;
 373        bool dryrun = !base;
 374
 375        if (nodepp)
 376                *nodepp = NULL;
 377
 378        /*
 379         * We're unflattening device sub-tree if @dad is valid. There are
 380         * possibly multiple nodes in the first level of depth. We need
 381         * set @depth to 1 to make fdt_next_node() happy as it bails
 382         * immediately when negative @depth is found. Otherwise, the device
 383         * nodes except the first one won't be unflattened successfully.
 384         */
 385        if (dad)
 386                depth = initial_depth = 1;
 387
 388        root = dad;
 389        nps[depth] = dad;
 390
 391        for (offset = 0;
 392             offset >= 0 && depth >= initial_depth;
 393             offset = fdt_next_node(blob, offset, &depth)) {
 394                if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 395                        continue;
 396
 397                if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 398                    !of_fdt_device_is_available(blob, offset))
 399                        continue;
 400
 401                if (!populate_node(blob, offset, &mem, nps[depth],
 402                                   &nps[depth+1], dryrun))
 403                        return mem - base;
 404
 405                if (!dryrun && nodepp && !*nodepp)
 406                        *nodepp = nps[depth+1];
 407                if (!dryrun && !root)
 408                        root = nps[depth+1];
 409        }
 410
 411        if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 412                pr_err("Error %d processing FDT\n", offset);
 413                return -EINVAL;
 414        }
 415
 416        /*
 417         * Reverse the child list. Some drivers assumes node order matches .dts
 418         * node order
 419         */
 420        if (!dryrun)
 421                reverse_nodes(root);
 422
 423        return mem - base;
 424}
 425
 426/**
 427 * __unflatten_device_tree - create tree of device_nodes from flat blob
 428 *
 429 * unflattens a device-tree, creating the
 430 * tree of struct device_node. It also fills the "name" and "type"
 431 * pointers of the nodes so the normal device-tree walking functions
 432 * can be used.
 433 * @blob: The blob to expand
 434 * @dad: Parent device node
 435 * @mynodes: The device_node tree created by the call
 436 * @dt_alloc: An allocator that provides a virtual address to memory
 437 * for the resulting tree
 438 * @detached: if true set OF_DETACHED on @mynodes
 439 *
 440 * Returns NULL on failure or the memory chunk containing the unflattened
 441 * device tree on success.
 442 */
 443void *__unflatten_device_tree(const void *blob,
 444                              struct device_node *dad,
 445                              struct device_node **mynodes,
 446                              void *(*dt_alloc)(u64 size, u64 align),
 447                              bool detached)
 448{
 449        int size;
 450        void *mem;
 451
 452        pr_debug(" -> unflatten_device_tree()\n");
 453
 454        if (!blob) {
 455                pr_debug("No device tree pointer\n");
 456                return NULL;
 457        }
 458
 459        pr_debug("Unflattening device tree:\n");
 460        pr_debug("magic: %08x\n", fdt_magic(blob));
 461        pr_debug("size: %08x\n", fdt_totalsize(blob));
 462        pr_debug("version: %08x\n", fdt_version(blob));
 463
 464        if (fdt_check_header(blob)) {
 465                pr_err("Invalid device tree blob header\n");
 466                return NULL;
 467        }
 468
 469        /* First pass, scan for size */
 470        size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 471        if (size < 0)
 472                return NULL;
 473
 474        size = ALIGN(size, 4);
 475        pr_debug("  size is %d, allocating...\n", size);
 476
 477        /* Allocate memory for the expanded device tree */
 478        mem = dt_alloc(size + 4, __alignof__(struct device_node));
 479        if (!mem)
 480                return NULL;
 481
 482        memset(mem, 0, size);
 483
 484        *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 485
 486        pr_debug("  unflattening %p...\n", mem);
 487
 488        /* Second pass, do actual unflattening */
 489        unflatten_dt_nodes(blob, mem, dad, mynodes);
 490        if (be32_to_cpup(mem + size) != 0xdeadbeef)
 491                pr_warning("End of tree marker overwritten: %08x\n",
 492                           be32_to_cpup(mem + size));
 493
 494        if (detached && mynodes) {
 495                of_node_set_flag(*mynodes, OF_DETACHED);
 496                pr_debug("unflattened tree is detached\n");
 497        }
 498
 499        pr_debug(" <- unflatten_device_tree()\n");
 500        return mem;
 501}
 502
 503static void *kernel_tree_alloc(u64 size, u64 align)
 504{
 505        return kzalloc(size, GFP_KERNEL);
 506}
 507
 508static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 509
 510/**
 511 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 512 * @blob: Flat device tree blob
 513 * @dad: Parent device node
 514 * @mynodes: The device tree created by the call
 515 *
 516 * unflattens the device-tree passed by the firmware, creating the
 517 * tree of struct device_node. It also fills the "name" and "type"
 518 * pointers of the nodes so the normal device-tree walking functions
 519 * can be used.
 520 *
 521 * Returns NULL on failure or the memory chunk containing the unflattened
 522 * device tree on success.
 523 */
 524void *of_fdt_unflatten_tree(const unsigned long *blob,
 525                            struct device_node *dad,
 526                            struct device_node **mynodes)
 527{
 528        void *mem;
 529
 530        mutex_lock(&of_fdt_unflatten_mutex);
 531        mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 532                                      true);
 533        mutex_unlock(&of_fdt_unflatten_mutex);
 534
 535        return mem;
 536}
 537EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 538
 539/* Everything below here references initial_boot_params directly. */
 540int __initdata dt_root_addr_cells;
 541int __initdata dt_root_size_cells;
 542
 543void *initial_boot_params;
 544
 545#ifdef CONFIG_OF_EARLY_FLATTREE
 546
 547static u32 of_fdt_crc32;
 548
 549/**
 550 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 551 */
 552static int __init __reserved_mem_reserve_reg(unsigned long node,
 553                                             const char *uname)
 554{
 555        int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 556        phys_addr_t base, size;
 557        int len;
 558        const __be32 *prop;
 559        int nomap, first = 1;
 560
 561        prop = of_get_flat_dt_prop(node, "reg", &len);
 562        if (!prop)
 563                return -ENOENT;
 564
 565        if (len && len % t_len != 0) {
 566                pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 567                       uname);
 568                return -EINVAL;
 569        }
 570
 571        nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 572
 573        while (len >= t_len) {
 574                base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 575                size = dt_mem_next_cell(dt_root_size_cells, &prop);
 576
 577                if (size &&
 578                    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 579                        pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 580                                uname, &base, (unsigned long)size / SZ_1M);
 581                else
 582                        pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 583                                uname, &base, (unsigned long)size / SZ_1M);
 584
 585                len -= t_len;
 586                if (first) {
 587                        fdt_reserved_mem_save_node(node, uname, base, size);
 588                        first = 0;
 589                }
 590        }
 591        return 0;
 592}
 593
 594/**
 595 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 596 * in /reserved-memory matches the values supported by the current implementation,
 597 * also check if ranges property has been provided
 598 */
 599static int __init __reserved_mem_check_root(unsigned long node)
 600{
 601        const __be32 *prop;
 602
 603        prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 604        if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 605                return -EINVAL;
 606
 607        prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 608        if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 609                return -EINVAL;
 610
 611        prop = of_get_flat_dt_prop(node, "ranges", NULL);
 612        if (!prop)
 613                return -EINVAL;
 614        return 0;
 615}
 616
 617/**
 618 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 619 */
 620static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 621                                          int depth, void *data)
 622{
 623        static int found;
 624        int err;
 625
 626        if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 627                if (__reserved_mem_check_root(node) != 0) {
 628                        pr_err("Reserved memory: unsupported node format, ignoring\n");
 629                        /* break scan */
 630                        return 1;
 631                }
 632                found = 1;
 633                /* scan next node */
 634                return 0;
 635        } else if (!found) {
 636                /* scan next node */
 637                return 0;
 638        } else if (found && depth < 2) {
 639                /* scanning of /reserved-memory has been finished */
 640                return 1;
 641        }
 642
 643        if (!of_fdt_device_is_available(initial_boot_params, node))
 644                return 0;
 645
 646        err = __reserved_mem_reserve_reg(node, uname);
 647        if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 648                fdt_reserved_mem_save_node(node, uname, 0, 0);
 649
 650        /* scan next node */
 651        return 0;
 652}
 653
 654/**
 655 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 656 *
 657 * This function grabs memory from early allocator for device exclusive use
 658 * defined in device tree structures. It should be called by arch specific code
 659 * once the early allocator (i.e. memblock) has been fully activated.
 660 */
 661void __init early_init_fdt_scan_reserved_mem(void)
 662{
 663        int n;
 664        u64 base, size;
 665
 666        if (!initial_boot_params)
 667                return;
 668
 669        /* Process header /memreserve/ fields */
 670        for (n = 0; ; n++) {
 671                fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 672                if (!size)
 673                        break;
 674                early_init_dt_reserve_memory_arch(base, size, 0);
 675        }
 676
 677        of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 678        fdt_init_reserved_mem();
 679}
 680
 681/**
 682 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 683 */
 684void __init early_init_fdt_reserve_self(void)
 685{
 686        if (!initial_boot_params)
 687                return;
 688
 689        /* Reserve the dtb region */
 690        early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 691                                          fdt_totalsize(initial_boot_params),
 692                                          0);
 693}
 694
 695/**
 696 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 697 * @it: callback function
 698 * @data: context data pointer
 699 *
 700 * This function is used to scan the flattened device-tree, it is
 701 * used to extract the memory information at boot before we can
 702 * unflatten the tree
 703 */
 704int __init of_scan_flat_dt(int (*it)(unsigned long node,
 705                                     const char *uname, int depth,
 706                                     void *data),
 707                           void *data)
 708{
 709        const void *blob = initial_boot_params;
 710        const char *pathp;
 711        int offset, rc = 0, depth = -1;
 712
 713        if (!blob)
 714                return 0;
 715
 716        for (offset = fdt_next_node(blob, -1, &depth);
 717             offset >= 0 && depth >= 0 && !rc;
 718             offset = fdt_next_node(blob, offset, &depth)) {
 719
 720                pathp = fdt_get_name(blob, offset, NULL);
 721                if (*pathp == '/')
 722                        pathp = kbasename(pathp);
 723                rc = it(offset, pathp, depth, data);
 724        }
 725        return rc;
 726}
 727
 728/**
 729 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 730 * @it: callback function
 731 * @data: context data pointer
 732 *
 733 * This function is used to scan sub-nodes of a node.
 734 */
 735int __init of_scan_flat_dt_subnodes(unsigned long parent,
 736                                    int (*it)(unsigned long node,
 737                                              const char *uname,
 738                                              void *data),
 739                                    void *data)
 740{
 741        const void *blob = initial_boot_params;
 742        int node;
 743
 744        fdt_for_each_subnode(node, blob, parent) {
 745                const char *pathp;
 746                int rc;
 747
 748                pathp = fdt_get_name(blob, node, NULL);
 749                if (*pathp == '/')
 750                        pathp = kbasename(pathp);
 751                rc = it(node, pathp, data);
 752                if (rc)
 753                        return rc;
 754        }
 755        return 0;
 756}
 757
 758/**
 759 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 760 *
 761 * @node: the parent node
 762 * @uname: the name of subnode
 763 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 764 */
 765
 766int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 767{
 768        return fdt_subnode_offset(initial_boot_params, node, uname);
 769}
 770
 771/**
 772 * of_get_flat_dt_root - find the root node in the flat blob
 773 */
 774unsigned long __init of_get_flat_dt_root(void)
 775{
 776        return 0;
 777}
 778
 779/**
 780 * of_get_flat_dt_size - Return the total size of the FDT
 781 */
 782int __init of_get_flat_dt_size(void)
 783{
 784        return fdt_totalsize(initial_boot_params);
 785}
 786
 787/**
 788 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 789 *
 790 * This function can be used within scan_flattened_dt callback to get
 791 * access to properties
 792 */
 793const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 794                                       int *size)
 795{
 796        return fdt_getprop(initial_boot_params, node, name, size);
 797}
 798
 799/**
 800 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 801 * @node: node to test
 802 * @compat: compatible string to compare with compatible list.
 803 */
 804int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 805{
 806        return of_fdt_is_compatible(initial_boot_params, node, compat);
 807}
 808
 809/**
 810 * of_flat_dt_match - Return true if node matches a list of compatible values
 811 */
 812int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 813{
 814        return of_fdt_match(initial_boot_params, node, compat);
 815}
 816
 817/**
 818 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
 819 */
 820uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 821{
 822        return fdt_get_phandle(initial_boot_params, node);
 823}
 824
 825struct fdt_scan_status {
 826        const char *name;
 827        int namelen;
 828        int depth;
 829        int found;
 830        int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 831        void *data;
 832};
 833
 834const char * __init of_flat_dt_get_machine_name(void)
 835{
 836        const char *name;
 837        unsigned long dt_root = of_get_flat_dt_root();
 838
 839        name = of_get_flat_dt_prop(dt_root, "model", NULL);
 840        if (!name)
 841                name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 842        return name;
 843}
 844
 845/**
 846 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 847 *
 848 * @default_match: A machine specific ptr to return in case of no match.
 849 * @get_next_compat: callback function to return next compatible match table.
 850 *
 851 * Iterate through machine match tables to find the best match for the machine
 852 * compatible string in the FDT.
 853 */
 854const void * __init of_flat_dt_match_machine(const void *default_match,
 855                const void * (*get_next_compat)(const char * const**))
 856{
 857        const void *data = NULL;
 858        const void *best_data = default_match;
 859        const char *const *compat;
 860        unsigned long dt_root;
 861        unsigned int best_score = ~1, score = 0;
 862
 863        dt_root = of_get_flat_dt_root();
 864        while ((data = get_next_compat(&compat))) {
 865                score = of_flat_dt_match(dt_root, compat);
 866                if (score > 0 && score < best_score) {
 867                        best_data = data;
 868                        best_score = score;
 869                }
 870        }
 871        if (!best_data) {
 872                const char *prop;
 873                int size;
 874
 875                pr_err("\n unrecognized device tree list:\n[ ");
 876
 877                prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 878                if (prop) {
 879                        while (size > 0) {
 880                                printk("'%s' ", prop);
 881                                size -= strlen(prop) + 1;
 882                                prop += strlen(prop) + 1;
 883                        }
 884                }
 885                printk("]\n\n");
 886                return NULL;
 887        }
 888
 889        pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 890
 891        return best_data;
 892}
 893
 894#ifdef CONFIG_BLK_DEV_INITRD
 895#ifndef __early_init_dt_declare_initrd
 896static void __early_init_dt_declare_initrd(unsigned long start,
 897                                           unsigned long end)
 898{
 899        initrd_start = (unsigned long)__va(start);
 900        initrd_end = (unsigned long)__va(end);
 901        initrd_below_start_ok = 1;
 902}
 903#endif
 904
 905/**
 906 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 907 * @node: reference to node containing initrd location ('chosen')
 908 */
 909static void __init early_init_dt_check_for_initrd(unsigned long node)
 910{
 911        u64 start, end;
 912        int len;
 913        const __be32 *prop;
 914
 915        pr_debug("Looking for initrd properties... ");
 916
 917        prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 918        if (!prop)
 919                return;
 920        start = of_read_number(prop, len/4);
 921
 922        prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 923        if (!prop)
 924                return;
 925        end = of_read_number(prop, len/4);
 926
 927        __early_init_dt_declare_initrd(start, end);
 928
 929        pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 930                 (unsigned long long)start, (unsigned long long)end);
 931}
 932#else
 933static inline void early_init_dt_check_for_initrd(unsigned long node)
 934{
 935}
 936#endif /* CONFIG_BLK_DEV_INITRD */
 937
 938#ifdef CONFIG_SERIAL_EARLYCON
 939
 940int __init early_init_dt_scan_chosen_stdout(void)
 941{
 942        int offset;
 943        const char *p, *q, *options = NULL;
 944        int l;
 945        const struct earlycon_id **p_match;
 946        const void *fdt = initial_boot_params;
 947
 948        offset = fdt_path_offset(fdt, "/chosen");
 949        if (offset < 0)
 950                offset = fdt_path_offset(fdt, "/chosen@0");
 951        if (offset < 0)
 952                return -ENOENT;
 953
 954        p = fdt_getprop(fdt, offset, "stdout-path", &l);
 955        if (!p)
 956                p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 957        if (!p || !l)
 958                return -ENOENT;
 959
 960        q = strchrnul(p, ':');
 961        if (*q != '\0')
 962                options = q + 1;
 963        l = q - p;
 964
 965        /* Get the node specified by stdout-path */
 966        offset = fdt_path_offset_namelen(fdt, p, l);
 967        if (offset < 0) {
 968                pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 969                return 0;
 970        }
 971
 972        for (p_match = __earlycon_table; p_match < __earlycon_table_end;
 973             p_match++) {
 974                const struct earlycon_id *match = *p_match;
 975
 976                if (!match->compatible[0])
 977                        continue;
 978
 979                if (fdt_node_check_compatible(fdt, offset, match->compatible))
 980                        continue;
 981
 982                of_setup_earlycon(match, offset, options);
 983                return 0;
 984        }
 985        return -ENODEV;
 986}
 987#endif
 988
 989/**
 990 * early_init_dt_scan_root - fetch the top level address and size cells
 991 */
 992int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 993                                   int depth, void *data)
 994{
 995        const __be32 *prop;
 996
 997        if (depth != 0)
 998                return 0;
 999
1000        dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1001        dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1002
1003        prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1004        if (prop)
1005                dt_root_size_cells = be32_to_cpup(prop);
1006        pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1007
1008        prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1009        if (prop)
1010                dt_root_addr_cells = be32_to_cpup(prop);
1011        pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1012
1013        /* break now */
1014        return 1;
1015}
1016
1017u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1018{
1019        const __be32 *p = *cellp;
1020
1021        *cellp = p + s;
1022        return of_read_number(p, s);
1023}
1024
1025/**
1026 * early_init_dt_scan_memory - Look for and parse memory nodes
1027 */
1028int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1029                                     int depth, void *data)
1030{
1031        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1032        const __be32 *reg, *endp;
1033        int l;
1034        bool hotpluggable;
1035
1036        /* We are scanning "memory" nodes only */
1037        if (type == NULL || strcmp(type, "memory") != 0)
1038                return 0;
1039
1040        reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1041        if (reg == NULL)
1042                reg = of_get_flat_dt_prop(node, "reg", &l);
1043        if (reg == NULL)
1044                return 0;
1045
1046        endp = reg + (l / sizeof(__be32));
1047        hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1048
1049        pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1050
1051        while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1052                u64 base, size;
1053
1054                base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1055                size = dt_mem_next_cell(dt_root_size_cells, &reg);
1056
1057                if (size == 0)
1058                        continue;
1059                pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1060                    (unsigned long long)size);
1061
1062                early_init_dt_add_memory_arch(base, size);
1063
1064                if (!hotpluggable)
1065                        continue;
1066
1067                if (early_init_dt_mark_hotplug_memory_arch(base, size))
1068                        pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1069                                base, base + size);
1070        }
1071
1072        return 0;
1073}
1074
1075int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1076                                     int depth, void *data)
1077{
1078        int l;
1079        const char *p;
1080
1081        pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1082
1083        if (depth != 1 || !data ||
1084            (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1085                return 0;
1086
1087        early_init_dt_check_for_initrd(node);
1088
1089        /* Retrieve command line */
1090        p = of_get_flat_dt_prop(node, "bootargs", &l);
1091        if (p != NULL && l > 0)
1092                strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1093
1094        /*
1095         * CONFIG_CMDLINE is meant to be a default in case nothing else
1096         * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1097         * is set in which case we override whatever was found earlier.
1098         */
1099#ifdef CONFIG_CMDLINE
1100#if defined(CONFIG_CMDLINE_EXTEND)
1101        strlcat(data, " ", COMMAND_LINE_SIZE);
1102        strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1103#elif defined(CONFIG_CMDLINE_FORCE)
1104        strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1105#else
1106        /* No arguments from boot loader, use kernel's  cmdl*/
1107        if (!((char *)data)[0])
1108                strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1109#endif
1110#endif /* CONFIG_CMDLINE */
1111
1112        pr_debug("Command line is: %s\n", (char*)data);
1113
1114        /* break now */
1115        return 1;
1116}
1117
1118#ifdef CONFIG_HAVE_MEMBLOCK
1119#ifndef MIN_MEMBLOCK_ADDR
1120#define MIN_MEMBLOCK_ADDR       __pa(PAGE_OFFSET)
1121#endif
1122#ifndef MAX_MEMBLOCK_ADDR
1123#define MAX_MEMBLOCK_ADDR       ((phys_addr_t)~0)
1124#endif
1125
1126void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1127{
1128        const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1129
1130        if (!PAGE_ALIGNED(base)) {
1131                if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1132                        pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1133                                base, base + size);
1134                        return;
1135                }
1136                size -= PAGE_SIZE - (base & ~PAGE_MASK);
1137                base = PAGE_ALIGN(base);
1138        }
1139        size &= PAGE_MASK;
1140
1141        if (base > MAX_MEMBLOCK_ADDR) {
1142                pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1143                                base, base + size);
1144                return;
1145        }
1146
1147        if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1148                pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1149                                ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1150                size = MAX_MEMBLOCK_ADDR - base + 1;
1151        }
1152
1153        if (base + size < phys_offset) {
1154                pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1155                           base, base + size);
1156                return;
1157        }
1158        if (base < phys_offset) {
1159                pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1160                           base, phys_offset);
1161                size -= phys_offset - base;
1162                base = phys_offset;
1163        }
1164        memblock_add(base, size);
1165}
1166
1167int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1168{
1169        return memblock_mark_hotplug(base, size);
1170}
1171
1172int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1173                                        phys_addr_t size, bool nomap)
1174{
1175        if (nomap)
1176                return memblock_remove(base, size);
1177        return memblock_reserve(base, size);
1178}
1179
1180#else
1181void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1182{
1183        WARN_ON(1);
1184}
1185
1186int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1187{
1188        return -ENOSYS;
1189}
1190
1191int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1192                                        phys_addr_t size, bool nomap)
1193{
1194        pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1195                  &base, &size, nomap ? " (nomap)" : "");
1196        return -ENOSYS;
1197}
1198#endif
1199
1200static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1201{
1202        return memblock_virt_alloc(size, align);
1203}
1204
1205bool __init early_init_dt_verify(void *params)
1206{
1207        if (!params)
1208                return false;
1209
1210        /* check device tree validity */
1211        if (fdt_check_header(params))
1212                return false;
1213
1214        /* Setup flat device-tree pointer */
1215        initial_boot_params = params;
1216        of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1217                                fdt_totalsize(initial_boot_params));
1218        return true;
1219}
1220
1221
1222void __init early_init_dt_scan_nodes(void)
1223{
1224        /* Retrieve various information from the /chosen node */
1225        of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1226
1227        /* Initialize {size,address}-cells info */
1228        of_scan_flat_dt(early_init_dt_scan_root, NULL);
1229
1230        /* Setup memory, calling early_init_dt_add_memory_arch */
1231        of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1232}
1233
1234bool __init early_init_dt_scan(void *params)
1235{
1236        bool status;
1237
1238        status = early_init_dt_verify(params);
1239        if (!status)
1240                return false;
1241
1242        early_init_dt_scan_nodes();
1243        return true;
1244}
1245
1246/**
1247 * unflatten_device_tree - create tree of device_nodes from flat blob
1248 *
1249 * unflattens the device-tree passed by the firmware, creating the
1250 * tree of struct device_node. It also fills the "name" and "type"
1251 * pointers of the nodes so the normal device-tree walking functions
1252 * can be used.
1253 */
1254void __init unflatten_device_tree(void)
1255{
1256        __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1257                                early_init_dt_alloc_memory_arch, false);
1258
1259        /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1260        of_alias_scan(early_init_dt_alloc_memory_arch);
1261
1262        unittest_unflatten_overlay_base();
1263}
1264
1265/**
1266 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1267 *
1268 * Copies and unflattens the device-tree passed by the firmware, creating the
1269 * tree of struct device_node. It also fills the "name" and "type"
1270 * pointers of the nodes so the normal device-tree walking functions
1271 * can be used. This should only be used when the FDT memory has not been
1272 * reserved such is the case when the FDT is built-in to the kernel init
1273 * section. If the FDT memory is reserved already then unflatten_device_tree
1274 * should be used instead.
1275 */
1276void __init unflatten_and_copy_device_tree(void)
1277{
1278        int size;
1279        void *dt;
1280
1281        if (!initial_boot_params) {
1282                pr_warn("No valid device tree found, continuing without\n");
1283                return;
1284        }
1285
1286        size = fdt_totalsize(initial_boot_params);
1287        dt = early_init_dt_alloc_memory_arch(size,
1288                                             roundup_pow_of_two(FDT_V17_SIZE));
1289
1290        if (dt) {
1291                memcpy(dt, initial_boot_params, size);
1292                initial_boot_params = dt;
1293        }
1294        unflatten_device_tree();
1295}
1296
1297#ifdef CONFIG_SYSFS
1298static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1299                               struct bin_attribute *bin_attr,
1300                               char *buf, loff_t off, size_t count)
1301{
1302        memcpy(buf, initial_boot_params + off, count);
1303        return count;
1304}
1305
1306static int __init of_fdt_raw_init(void)
1307{
1308        static struct bin_attribute of_fdt_raw_attr =
1309                __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1310
1311        if (!initial_boot_params)
1312                return 0;
1313
1314        if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1315                                     fdt_totalsize(initial_boot_params))) {
1316                pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1317                return 0;
1318        }
1319        of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1320        return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1321}
1322late_initcall(of_fdt_raw_init);
1323#endif
1324
1325#endif /* CONFIG_OF_EARLY_FLATTREE */
1326