linux/drivers/scsi/mpt3sas/mpt3sas_base.c
<<
>>
Prefs
   1/*
   2 * This is the Fusion MPT base driver providing common API layer interface
   3 * for access to MPT (Message Passing Technology) firmware.
   4 *
   5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
   6 * Copyright (C) 2012-2014  LSI Corporation
   7 * Copyright (C) 2013-2014 Avago Technologies
   8 *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version 2
  13 * of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * NO WARRANTY
  21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  25 * solely responsible for determining the appropriateness of using and
  26 * distributing the Program and assumes all risks associated with its
  27 * exercise of rights under this Agreement, including but not limited to
  28 * the risks and costs of program errors, damage to or loss of data,
  29 * programs or equipment, and unavailability or interruption of operations.
  30
  31 * DISCLAIMER OF LIABILITY
  32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  39
  40 * You should have received a copy of the GNU General Public License
  41 * along with this program; if not, write to the Free Software
  42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  43 * USA.
  44 */
  45
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/errno.h>
  49#include <linux/init.h>
  50#include <linux/slab.h>
  51#include <linux/types.h>
  52#include <linux/pci.h>
  53#include <linux/kdev_t.h>
  54#include <linux/blkdev.h>
  55#include <linux/delay.h>
  56#include <linux/interrupt.h>
  57#include <linux/dma-mapping.h>
  58#include <linux/io.h>
  59#include <linux/time.h>
  60#include <linux/ktime.h>
  61#include <linux/kthread.h>
  62#include <asm/page.h>        /* To get host page size per arch */
  63#include <linux/aer.h>
  64
  65
  66#include "mpt3sas_base.h"
  67
  68static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
  69
  70
  71#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
  72
  73 /* maximum controller queue depth */
  74#define MAX_HBA_QUEUE_DEPTH     30000
  75#define MAX_CHAIN_DEPTH         100000
  76static int max_queue_depth = -1;
  77module_param(max_queue_depth, int, 0);
  78MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
  79
  80static int max_sgl_entries = -1;
  81module_param(max_sgl_entries, int, 0);
  82MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
  83
  84static int msix_disable = -1;
  85module_param(msix_disable, int, 0);
  86MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
  87
  88static int smp_affinity_enable = 1;
  89module_param(smp_affinity_enable, int, S_IRUGO);
  90MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
  91
  92static int max_msix_vectors = -1;
  93module_param(max_msix_vectors, int, 0);
  94MODULE_PARM_DESC(max_msix_vectors,
  95        " max msix vectors");
  96
  97static int mpt3sas_fwfault_debug;
  98MODULE_PARM_DESC(mpt3sas_fwfault_debug,
  99        " enable detection of firmware fault and halt firmware - (default=0)");
 100
 101static int
 102_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
 103
 104/**
 105 * mpt3sas_base_check_cmd_timeout - Function
 106 *              to check timeout and command termination due
 107 *              to Host reset.
 108 *
 109 * @ioc:        per adapter object.
 110 * @status:     Status of issued command.
 111 * @mpi_request:mf request pointer.
 112 * @sz:         size of buffer.
 113 *
 114 * @Returns - 1/0 Reset to be done or Not
 115 */
 116u8
 117mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
 118                u8 status, void *mpi_request, int sz)
 119{
 120        u8 issue_reset = 0;
 121
 122        if (!(status & MPT3_CMD_RESET))
 123                issue_reset = 1;
 124
 125        pr_err(MPT3SAS_FMT "Command %s\n", ioc->name,
 126            ((issue_reset == 0) ? "terminated due to Host Reset" : "Timeout"));
 127        _debug_dump_mf(mpi_request, sz);
 128
 129        return issue_reset;
 130}
 131
 132/**
 133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
 134 * @val: ?
 135 * @kp: ?
 136 *
 137 * Return: ?
 138 */
 139static int
 140_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
 141{
 142        int ret = param_set_int(val, kp);
 143        struct MPT3SAS_ADAPTER *ioc;
 144
 145        if (ret)
 146                return ret;
 147
 148        /* global ioc spinlock to protect controller list on list operations */
 149        pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
 150        spin_lock(&gioc_lock);
 151        list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
 152                ioc->fwfault_debug = mpt3sas_fwfault_debug;
 153        spin_unlock(&gioc_lock);
 154        return 0;
 155}
 156module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
 157        param_get_int, &mpt3sas_fwfault_debug, 0644);
 158
 159/**
 160 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
 161 *                                in BAR0 space.
 162 *
 163 * @ioc: per adapter object
 164 * @reply: reply message frame(lower 32bit addr)
 165 * @index: System request message index.
 166 */
 167static void
 168_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
 169                u32 index)
 170{
 171        /*
 172         * 256 is offset within sys register.
 173         * 256 offset MPI frame starts. Max MPI frame supported is 32.
 174         * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
 175         */
 176        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 177        void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
 178                        MPI_FRAME_START_OFFSET +
 179                        (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
 180
 181        writel(reply, reply_free_iomem);
 182}
 183
 184/**
 185 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
 186 *                              to system/BAR0 region.
 187 *
 188 * @dst_iomem: Pointer to the destination location in BAR0 space.
 189 * @src: Pointer to the Source data.
 190 * @size: Size of data to be copied.
 191 */
 192static void
 193_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
 194{
 195        int i;
 196        u32 *src_virt_mem = (u32 *)src;
 197
 198        for (i = 0; i < size/4; i++)
 199                writel((u32)src_virt_mem[i],
 200                                (void __iomem *)dst_iomem + (i * 4));
 201}
 202
 203/**
 204 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
 205 *
 206 * @dst_iomem: Pointer to the destination location in BAR0 space.
 207 * @src: Pointer to the Source data.
 208 * @size: Size of data to be copied.
 209 */
 210static void
 211_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
 212{
 213        int i;
 214        u32 *src_virt_mem = (u32 *)(src);
 215
 216        for (i = 0; i < size/4; i++)
 217                writel((u32)src_virt_mem[i],
 218                        (void __iomem *)dst_iomem + (i * 4));
 219}
 220
 221/**
 222 * _base_get_chain - Calculates and Returns virtual chain address
 223 *                       for the provided smid in BAR0 space.
 224 *
 225 * @ioc: per adapter object
 226 * @smid: system request message index
 227 * @sge_chain_count: Scatter gather chain count.
 228 *
 229 * Return: the chain address.
 230 */
 231static inline void __iomem*
 232_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 233                u8 sge_chain_count)
 234{
 235        void __iomem *base_chain, *chain_virt;
 236        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 237
 238        base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
 239                (cmd_credit * ioc->request_sz) +
 240                REPLY_FREE_POOL_SIZE;
 241        chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
 242                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 243        return chain_virt;
 244}
 245
 246/**
 247 * _base_get_chain_phys - Calculates and Returns physical address
 248 *                      in BAR0 for scatter gather chains, for
 249 *                      the provided smid.
 250 *
 251 * @ioc: per adapter object
 252 * @smid: system request message index
 253 * @sge_chain_count: Scatter gather chain count.
 254 *
 255 * Return: Physical chain address.
 256 */
 257static inline phys_addr_t
 258_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 259                u8 sge_chain_count)
 260{
 261        phys_addr_t base_chain_phys, chain_phys;
 262        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 263
 264        base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
 265                (cmd_credit * ioc->request_sz) +
 266                REPLY_FREE_POOL_SIZE;
 267        chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
 268                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 269        return chain_phys;
 270}
 271
 272/**
 273 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
 274 *                      buffer address for the provided smid.
 275 *                      (Each smid can have 64K starts from 17024)
 276 *
 277 * @ioc: per adapter object
 278 * @smid: system request message index
 279 *
 280 * Return: Pointer to buffer location in BAR0.
 281 */
 282
 283static void __iomem *
 284_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 285{
 286        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 287        // Added extra 1 to reach end of chain.
 288        void __iomem *chain_end = _base_get_chain(ioc,
 289                        cmd_credit + 1,
 290                        ioc->facts.MaxChainDepth);
 291        return chain_end + (smid * 64 * 1024);
 292}
 293
 294/**
 295 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
 296 *              Host buffer Physical address for the provided smid.
 297 *              (Each smid can have 64K starts from 17024)
 298 *
 299 * @ioc: per adapter object
 300 * @smid: system request message index
 301 *
 302 * Return: Pointer to buffer location in BAR0.
 303 */
 304static phys_addr_t
 305_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 306{
 307        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 308        phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
 309                        cmd_credit + 1,
 310                        ioc->facts.MaxChainDepth);
 311        return chain_end_phys + (smid * 64 * 1024);
 312}
 313
 314/**
 315 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
 316 *                      lookup list and Provides chain_buffer
 317 *                      address for the matching dma address.
 318 *                      (Each smid can have 64K starts from 17024)
 319 *
 320 * @ioc: per adapter object
 321 * @chain_buffer_dma: Chain buffer dma address.
 322 *
 323 * Return: Pointer to chain buffer. Or Null on Failure.
 324 */
 325static void *
 326_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
 327                dma_addr_t chain_buffer_dma)
 328{
 329        u16 index, j;
 330        struct chain_tracker *ct;
 331
 332        for (index = 0; index < ioc->scsiio_depth; index++) {
 333                for (j = 0; j < ioc->chains_needed_per_io; j++) {
 334                        ct = &ioc->chain_lookup[index].chains_per_smid[j];
 335                        if (ct && ct->chain_buffer_dma == chain_buffer_dma)
 336                                return ct->chain_buffer;
 337                }
 338        }
 339        pr_info(MPT3SAS_FMT
 340            "Provided chain_buffer_dma address is not in the lookup list\n",
 341            ioc->name);
 342        return NULL;
 343}
 344
 345/**
 346 * _clone_sg_entries -  MPI EP's scsiio and config requests
 347 *                      are handled here. Base function for
 348 *                      double buffering, before submitting
 349 *                      the requests.
 350 *
 351 * @ioc: per adapter object.
 352 * @mpi_request: mf request pointer.
 353 * @smid: system request message index.
 354 */
 355static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
 356                void *mpi_request, u16 smid)
 357{
 358        Mpi2SGESimple32_t *sgel, *sgel_next;
 359        u32  sgl_flags, sge_chain_count = 0;
 360        bool is_write = 0;
 361        u16 i = 0;
 362        void __iomem *buffer_iomem;
 363        phys_addr_t buffer_iomem_phys;
 364        void __iomem *buff_ptr;
 365        phys_addr_t buff_ptr_phys;
 366        void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 367        void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 368        phys_addr_t dst_addr_phys;
 369        MPI2RequestHeader_t *request_hdr;
 370        struct scsi_cmnd *scmd;
 371        struct scatterlist *sg_scmd = NULL;
 372        int is_scsiio_req = 0;
 373
 374        request_hdr = (MPI2RequestHeader_t *) mpi_request;
 375
 376        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
 377                Mpi25SCSIIORequest_t *scsiio_request =
 378                        (Mpi25SCSIIORequest_t *)mpi_request;
 379                sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
 380                is_scsiio_req = 1;
 381        } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 382                Mpi2ConfigRequest_t  *config_req =
 383                        (Mpi2ConfigRequest_t *)mpi_request;
 384                sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
 385        } else
 386                return;
 387
 388        /* From smid we can get scsi_cmd, once we have sg_scmd,
 389         * we just need to get sg_virt and sg_next to get virual
 390         * address associated with sgel->Address.
 391         */
 392
 393        if (is_scsiio_req) {
 394                /* Get scsi_cmd using smid */
 395                scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
 396                if (scmd == NULL) {
 397                        pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
 398                        return;
 399                }
 400
 401                /* Get sg_scmd from scmd provided */
 402                sg_scmd = scsi_sglist(scmd);
 403        }
 404
 405        /*
 406         * 0 - 255      System register
 407         * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
 408         * 4352 - 4864  Reply_free pool (512 byte is reserved
 409         *              considering maxCredit 32. Reply need extra
 410         *              room, for mCPU case kept four times of
 411         *              maxCredit).
 412         * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
 413         *              128 byte size = 12288)
 414         * 17152 - x    Host buffer mapped with smid.
 415         *              (Each smid can have 64K Max IO.)
 416         * BAR0+Last 1K MSIX Addr and Data
 417         * Total size in use 2113664 bytes of 4MB BAR0
 418         */
 419
 420        buffer_iomem = _base_get_buffer_bar0(ioc, smid);
 421        buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
 422
 423        buff_ptr = buffer_iomem;
 424        buff_ptr_phys = buffer_iomem_phys;
 425        WARN_ON(buff_ptr_phys > U32_MAX);
 426
 427        if (le32_to_cpu(sgel->FlagsLength) &
 428                        (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
 429                is_write = 1;
 430
 431        for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
 432
 433                sgl_flags =
 434                    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
 435
 436                switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
 437                case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 438                        /*
 439                         * Helper function which on passing
 440                         * chain_buffer_dma returns chain_buffer. Get
 441                         * the virtual address for sgel->Address
 442                         */
 443                        sgel_next =
 444                                _base_get_chain_buffer_dma_to_chain_buffer(ioc,
 445                                                le32_to_cpu(sgel->Address));
 446                        if (sgel_next == NULL)
 447                                return;
 448                        /*
 449                         * This is coping 128 byte chain
 450                         * frame (not a host buffer)
 451                         */
 452                        dst_chain_addr[sge_chain_count] =
 453                                _base_get_chain(ioc,
 454                                        smid, sge_chain_count);
 455                        src_chain_addr[sge_chain_count] =
 456                                                (void *) sgel_next;
 457                        dst_addr_phys = _base_get_chain_phys(ioc,
 458                                                smid, sge_chain_count);
 459                        WARN_ON(dst_addr_phys > U32_MAX);
 460                        sgel->Address =
 461                                cpu_to_le32(lower_32_bits(dst_addr_phys));
 462                        sgel = sgel_next;
 463                        sge_chain_count++;
 464                        break;
 465                case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 466                        if (is_write) {
 467                                if (is_scsiio_req) {
 468                                        _base_clone_to_sys_mem(buff_ptr,
 469                                            sg_virt(sg_scmd),
 470                                            (le32_to_cpu(sgel->FlagsLength) &
 471                                            0x00ffffff));
 472                                        /*
 473                                         * FIXME: this relies on a a zero
 474                                         * PCI mem_offset.
 475                                         */
 476                                        sgel->Address =
 477                                            cpu_to_le32((u32)buff_ptr_phys);
 478                                } else {
 479                                        _base_clone_to_sys_mem(buff_ptr,
 480                                            ioc->config_vaddr,
 481                                            (le32_to_cpu(sgel->FlagsLength) &
 482                                            0x00ffffff));
 483                                        sgel->Address =
 484                                            cpu_to_le32((u32)buff_ptr_phys);
 485                                }
 486                        }
 487                        buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
 488                            0x00ffffff);
 489                        buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
 490                            0x00ffffff);
 491                        if ((le32_to_cpu(sgel->FlagsLength) &
 492                            (MPI2_SGE_FLAGS_END_OF_BUFFER
 493                                        << MPI2_SGE_FLAGS_SHIFT)))
 494                                goto eob_clone_chain;
 495                        else {
 496                                /*
 497                                 * Every single element in MPT will have
 498                                 * associated sg_next. Better to sanity that
 499                                 * sg_next is not NULL, but it will be a bug
 500                                 * if it is null.
 501                                 */
 502                                if (is_scsiio_req) {
 503                                        sg_scmd = sg_next(sg_scmd);
 504                                        if (sg_scmd)
 505                                                sgel++;
 506                                        else
 507                                                goto eob_clone_chain;
 508                                }
 509                        }
 510                        break;
 511                }
 512        }
 513
 514eob_clone_chain:
 515        for (i = 0; i < sge_chain_count; i++) {
 516                if (is_scsiio_req)
 517                        _base_clone_to_sys_mem(dst_chain_addr[i],
 518                                src_chain_addr[i], ioc->request_sz);
 519        }
 520}
 521
 522/**
 523 *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
 524 * @arg: input argument, used to derive ioc
 525 *
 526 * Return:
 527 * 0 if controller is removed from pci subsystem.
 528 * -1 for other case.
 529 */
 530static int mpt3sas_remove_dead_ioc_func(void *arg)
 531{
 532        struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
 533        struct pci_dev *pdev;
 534
 535        if ((ioc == NULL))
 536                return -1;
 537
 538        pdev = ioc->pdev;
 539        if ((pdev == NULL))
 540                return -1;
 541        pci_stop_and_remove_bus_device_locked(pdev);
 542        return 0;
 543}
 544
 545/**
 546 * _base_fault_reset_work - workq handling ioc fault conditions
 547 * @work: input argument, used to derive ioc
 548 *
 549 * Context: sleep.
 550 */
 551static void
 552_base_fault_reset_work(struct work_struct *work)
 553{
 554        struct MPT3SAS_ADAPTER *ioc =
 555            container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
 556        unsigned long    flags;
 557        u32 doorbell;
 558        int rc;
 559        struct task_struct *p;
 560
 561
 562        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 563        if (ioc->shost_recovery || ioc->pci_error_recovery)
 564                goto rearm_timer;
 565        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 566
 567        doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 568        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
 569                pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
 570                    ioc->name);
 571
 572                /* It may be possible that EEH recovery can resolve some of
 573                 * pci bus failure issues rather removing the dead ioc function
 574                 * by considering controller is in a non-operational state. So
 575                 * here priority is given to the EEH recovery. If it doesn't
 576                 * not resolve this issue, mpt3sas driver will consider this
 577                 * controller to non-operational state and remove the dead ioc
 578                 * function.
 579                 */
 580                if (ioc->non_operational_loop++ < 5) {
 581                        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
 582                                                         flags);
 583                        goto rearm_timer;
 584                }
 585
 586                /*
 587                 * Call _scsih_flush_pending_cmds callback so that we flush all
 588                 * pending commands back to OS. This call is required to aovid
 589                 * deadlock at block layer. Dead IOC will fail to do diag reset,
 590                 * and this call is safe since dead ioc will never return any
 591                 * command back from HW.
 592                 */
 593                ioc->schedule_dead_ioc_flush_running_cmds(ioc);
 594                /*
 595                 * Set remove_host flag early since kernel thread will
 596                 * take some time to execute.
 597                 */
 598                ioc->remove_host = 1;
 599                /*Remove the Dead Host */
 600                p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
 601                    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
 602                if (IS_ERR(p))
 603                        pr_err(MPT3SAS_FMT
 604                        "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
 605                        ioc->name, __func__);
 606                else
 607                        pr_err(MPT3SAS_FMT
 608                        "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
 609                        ioc->name, __func__);
 610                return; /* don't rearm timer */
 611        }
 612
 613        ioc->non_operational_loop = 0;
 614
 615        if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
 616                rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 617                pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
 618                    __func__, (rc == 0) ? "success" : "failed");
 619                doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 620                if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
 621                        mpt3sas_base_fault_info(ioc, doorbell &
 622                            MPI2_DOORBELL_DATA_MASK);
 623                if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
 624                    MPI2_IOC_STATE_OPERATIONAL)
 625                        return; /* don't rearm timer */
 626        }
 627
 628        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 629 rearm_timer:
 630        if (ioc->fault_reset_work_q)
 631                queue_delayed_work(ioc->fault_reset_work_q,
 632                    &ioc->fault_reset_work,
 633                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 634        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 635}
 636
 637/**
 638 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
 639 * @ioc: per adapter object
 640 *
 641 * Context: sleep.
 642 */
 643void
 644mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
 645{
 646        unsigned long    flags;
 647
 648        if (ioc->fault_reset_work_q)
 649                return;
 650
 651        /* initialize fault polling */
 652
 653        INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
 654        snprintf(ioc->fault_reset_work_q_name,
 655            sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
 656            ioc->driver_name, ioc->id);
 657        ioc->fault_reset_work_q =
 658                create_singlethread_workqueue(ioc->fault_reset_work_q_name);
 659        if (!ioc->fault_reset_work_q) {
 660                pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
 661                    ioc->name, __func__, __LINE__);
 662                return;
 663        }
 664        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 665        if (ioc->fault_reset_work_q)
 666                queue_delayed_work(ioc->fault_reset_work_q,
 667                    &ioc->fault_reset_work,
 668                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 669        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 670}
 671
 672/**
 673 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
 674 * @ioc: per adapter object
 675 *
 676 * Context: sleep.
 677 */
 678void
 679mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
 680{
 681        unsigned long flags;
 682        struct workqueue_struct *wq;
 683
 684        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 685        wq = ioc->fault_reset_work_q;
 686        ioc->fault_reset_work_q = NULL;
 687        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 688        if (wq) {
 689                if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
 690                        flush_workqueue(wq);
 691                destroy_workqueue(wq);
 692        }
 693}
 694
 695/**
 696 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
 697 * @ioc: per adapter object
 698 * @fault_code: fault code
 699 */
 700void
 701mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
 702{
 703        pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
 704            ioc->name, fault_code);
 705}
 706
 707/**
 708 * mpt3sas_halt_firmware - halt's mpt controller firmware
 709 * @ioc: per adapter object
 710 *
 711 * For debugging timeout related issues.  Writing 0xCOFFEE00
 712 * to the doorbell register will halt controller firmware. With
 713 * the purpose to stop both driver and firmware, the enduser can
 714 * obtain a ring buffer from controller UART.
 715 */
 716void
 717mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
 718{
 719        u32 doorbell;
 720
 721        if (!ioc->fwfault_debug)
 722                return;
 723
 724        dump_stack();
 725
 726        doorbell = readl(&ioc->chip->Doorbell);
 727        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
 728                mpt3sas_base_fault_info(ioc , doorbell);
 729        else {
 730                writel(0xC0FFEE00, &ioc->chip->Doorbell);
 731                pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
 732                        ioc->name);
 733        }
 734
 735        if (ioc->fwfault_debug == 2)
 736                for (;;)
 737                        ;
 738        else
 739                panic("panic in %s\n", __func__);
 740}
 741
 742/**
 743 * _base_sas_ioc_info - verbose translation of the ioc status
 744 * @ioc: per adapter object
 745 * @mpi_reply: reply mf payload returned from firmware
 746 * @request_hdr: request mf
 747 */
 748static void
 749_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
 750        MPI2RequestHeader_t *request_hdr)
 751{
 752        u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
 753            MPI2_IOCSTATUS_MASK;
 754        char *desc = NULL;
 755        u16 frame_sz;
 756        char *func_str = NULL;
 757
 758        /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
 759        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
 760            request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
 761            request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
 762                return;
 763
 764        if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
 765                return;
 766
 767        switch (ioc_status) {
 768
 769/****************************************************************************
 770*  Common IOCStatus values for all replies
 771****************************************************************************/
 772
 773        case MPI2_IOCSTATUS_INVALID_FUNCTION:
 774                desc = "invalid function";
 775                break;
 776        case MPI2_IOCSTATUS_BUSY:
 777                desc = "busy";
 778                break;
 779        case MPI2_IOCSTATUS_INVALID_SGL:
 780                desc = "invalid sgl";
 781                break;
 782        case MPI2_IOCSTATUS_INTERNAL_ERROR:
 783                desc = "internal error";
 784                break;
 785        case MPI2_IOCSTATUS_INVALID_VPID:
 786                desc = "invalid vpid";
 787                break;
 788        case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
 789                desc = "insufficient resources";
 790                break;
 791        case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
 792                desc = "insufficient power";
 793                break;
 794        case MPI2_IOCSTATUS_INVALID_FIELD:
 795                desc = "invalid field";
 796                break;
 797        case MPI2_IOCSTATUS_INVALID_STATE:
 798                desc = "invalid state";
 799                break;
 800        case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
 801                desc = "op state not supported";
 802                break;
 803
 804/****************************************************************************
 805*  Config IOCStatus values
 806****************************************************************************/
 807
 808        case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
 809                desc = "config invalid action";
 810                break;
 811        case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
 812                desc = "config invalid type";
 813                break;
 814        case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
 815                desc = "config invalid page";
 816                break;
 817        case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
 818                desc = "config invalid data";
 819                break;
 820        case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
 821                desc = "config no defaults";
 822                break;
 823        case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
 824                desc = "config cant commit";
 825                break;
 826
 827/****************************************************************************
 828*  SCSI IO Reply
 829****************************************************************************/
 830
 831        case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
 832        case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
 833        case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
 834        case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
 835        case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
 836        case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
 837        case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
 838        case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
 839        case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
 840        case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
 841        case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
 842        case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
 843                break;
 844
 845/****************************************************************************
 846*  For use by SCSI Initiator and SCSI Target end-to-end data protection
 847****************************************************************************/
 848
 849        case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
 850                desc = "eedp guard error";
 851                break;
 852        case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
 853                desc = "eedp ref tag error";
 854                break;
 855        case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
 856                desc = "eedp app tag error";
 857                break;
 858
 859/****************************************************************************
 860*  SCSI Target values
 861****************************************************************************/
 862
 863        case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
 864                desc = "target invalid io index";
 865                break;
 866        case MPI2_IOCSTATUS_TARGET_ABORTED:
 867                desc = "target aborted";
 868                break;
 869        case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
 870                desc = "target no conn retryable";
 871                break;
 872        case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
 873                desc = "target no connection";
 874                break;
 875        case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
 876                desc = "target xfer count mismatch";
 877                break;
 878        case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
 879                desc = "target data offset error";
 880                break;
 881        case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
 882                desc = "target too much write data";
 883                break;
 884        case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
 885                desc = "target iu too short";
 886                break;
 887        case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
 888                desc = "target ack nak timeout";
 889                break;
 890        case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
 891                desc = "target nak received";
 892                break;
 893
 894/****************************************************************************
 895*  Serial Attached SCSI values
 896****************************************************************************/
 897
 898        case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
 899                desc = "smp request failed";
 900                break;
 901        case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
 902                desc = "smp data overrun";
 903                break;
 904
 905/****************************************************************************
 906*  Diagnostic Buffer Post / Diagnostic Release values
 907****************************************************************************/
 908
 909        case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
 910                desc = "diagnostic released";
 911                break;
 912        default:
 913                break;
 914        }
 915
 916        if (!desc)
 917                return;
 918
 919        switch (request_hdr->Function) {
 920        case MPI2_FUNCTION_CONFIG:
 921                frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
 922                func_str = "config_page";
 923                break;
 924        case MPI2_FUNCTION_SCSI_TASK_MGMT:
 925                frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
 926                func_str = "task_mgmt";
 927                break;
 928        case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
 929                frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
 930                func_str = "sas_iounit_ctl";
 931                break;
 932        case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
 933                frame_sz = sizeof(Mpi2SepRequest_t);
 934                func_str = "enclosure";
 935                break;
 936        case MPI2_FUNCTION_IOC_INIT:
 937                frame_sz = sizeof(Mpi2IOCInitRequest_t);
 938                func_str = "ioc_init";
 939                break;
 940        case MPI2_FUNCTION_PORT_ENABLE:
 941                frame_sz = sizeof(Mpi2PortEnableRequest_t);
 942                func_str = "port_enable";
 943                break;
 944        case MPI2_FUNCTION_SMP_PASSTHROUGH:
 945                frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
 946                func_str = "smp_passthru";
 947                break;
 948        case MPI2_FUNCTION_NVME_ENCAPSULATED:
 949                frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
 950                    ioc->sge_size;
 951                func_str = "nvme_encapsulated";
 952                break;
 953        default:
 954                frame_sz = 32;
 955                func_str = "unknown";
 956                break;
 957        }
 958
 959        pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
 960                ioc->name, desc, ioc_status, request_hdr, func_str);
 961
 962        _debug_dump_mf(request_hdr, frame_sz/4);
 963}
 964
 965/**
 966 * _base_display_event_data - verbose translation of firmware asyn events
 967 * @ioc: per adapter object
 968 * @mpi_reply: reply mf payload returned from firmware
 969 */
 970static void
 971_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
 972        Mpi2EventNotificationReply_t *mpi_reply)
 973{
 974        char *desc = NULL;
 975        u16 event;
 976
 977        if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
 978                return;
 979
 980        event = le16_to_cpu(mpi_reply->Event);
 981
 982        switch (event) {
 983        case MPI2_EVENT_LOG_DATA:
 984                desc = "Log Data";
 985                break;
 986        case MPI2_EVENT_STATE_CHANGE:
 987                desc = "Status Change";
 988                break;
 989        case MPI2_EVENT_HARD_RESET_RECEIVED:
 990                desc = "Hard Reset Received";
 991                break;
 992        case MPI2_EVENT_EVENT_CHANGE:
 993                desc = "Event Change";
 994                break;
 995        case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
 996                desc = "Device Status Change";
 997                break;
 998        case MPI2_EVENT_IR_OPERATION_STATUS:
 999                if (!ioc->hide_ir_msg)
1000                        desc = "IR Operation Status";
1001                break;
1002        case MPI2_EVENT_SAS_DISCOVERY:
1003        {
1004                Mpi2EventDataSasDiscovery_t *event_data =
1005                    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1006                pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
1007                    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
1008                    "start" : "stop");
1009                if (event_data->DiscoveryStatus)
1010                        pr_cont(" discovery_status(0x%08x)",
1011                            le32_to_cpu(event_data->DiscoveryStatus));
1012                pr_cont("\n");
1013                return;
1014        }
1015        case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1016                desc = "SAS Broadcast Primitive";
1017                break;
1018        case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1019                desc = "SAS Init Device Status Change";
1020                break;
1021        case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1022                desc = "SAS Init Table Overflow";
1023                break;
1024        case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1025                desc = "SAS Topology Change List";
1026                break;
1027        case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1028                desc = "SAS Enclosure Device Status Change";
1029                break;
1030        case MPI2_EVENT_IR_VOLUME:
1031                if (!ioc->hide_ir_msg)
1032                        desc = "IR Volume";
1033                break;
1034        case MPI2_EVENT_IR_PHYSICAL_DISK:
1035                if (!ioc->hide_ir_msg)
1036                        desc = "IR Physical Disk";
1037                break;
1038        case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1039                if (!ioc->hide_ir_msg)
1040                        desc = "IR Configuration Change List";
1041                break;
1042        case MPI2_EVENT_LOG_ENTRY_ADDED:
1043                if (!ioc->hide_ir_msg)
1044                        desc = "Log Entry Added";
1045                break;
1046        case MPI2_EVENT_TEMP_THRESHOLD:
1047                desc = "Temperature Threshold";
1048                break;
1049        case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1050                desc = "Cable Event";
1051                break;
1052        case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1053                desc = "SAS Device Discovery Error";
1054                break;
1055        case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1056                desc = "PCIE Device Status Change";
1057                break;
1058        case MPI2_EVENT_PCIE_ENUMERATION:
1059        {
1060                Mpi26EventDataPCIeEnumeration_t *event_data =
1061                        (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1062                pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1063                           (event_data->ReasonCode ==
1064                                MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1065                                "start" : "stop");
1066                if (event_data->EnumerationStatus)
1067                        pr_info("enumeration_status(0x%08x)",
1068                                   le32_to_cpu(event_data->EnumerationStatus));
1069                pr_info("\n");
1070                return;
1071        }
1072        case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1073                desc = "PCIE Topology Change List";
1074                break;
1075        }
1076
1077        if (!desc)
1078                return;
1079
1080        pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1081}
1082
1083/**
1084 * _base_sas_log_info - verbose translation of firmware log info
1085 * @ioc: per adapter object
1086 * @log_info: log info
1087 */
1088static void
1089_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1090{
1091        union loginfo_type {
1092                u32     loginfo;
1093                struct {
1094                        u32     subcode:16;
1095                        u32     code:8;
1096                        u32     originator:4;
1097                        u32     bus_type:4;
1098                } dw;
1099        };
1100        union loginfo_type sas_loginfo;
1101        char *originator_str = NULL;
1102
1103        sas_loginfo.loginfo = log_info;
1104        if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1105                return;
1106
1107        /* each nexus loss loginfo */
1108        if (log_info == 0x31170000)
1109                return;
1110
1111        /* eat the loginfos associated with task aborts */
1112        if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1113            0x31140000 || log_info == 0x31130000))
1114                return;
1115
1116        switch (sas_loginfo.dw.originator) {
1117        case 0:
1118                originator_str = "IOP";
1119                break;
1120        case 1:
1121                originator_str = "PL";
1122                break;
1123        case 2:
1124                if (!ioc->hide_ir_msg)
1125                        originator_str = "IR";
1126                else
1127                        originator_str = "WarpDrive";
1128                break;
1129        }
1130
1131        pr_warn(MPT3SAS_FMT
1132                "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1133                ioc->name, log_info,
1134             originator_str, sas_loginfo.dw.code,
1135             sas_loginfo.dw.subcode);
1136}
1137
1138/**
1139 * _base_display_reply_info -
1140 * @ioc: per adapter object
1141 * @smid: system request message index
1142 * @msix_index: MSIX table index supplied by the OS
1143 * @reply: reply message frame(lower 32bit addr)
1144 */
1145static void
1146_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1147        u32 reply)
1148{
1149        MPI2DefaultReply_t *mpi_reply;
1150        u16 ioc_status;
1151        u32 loginfo = 0;
1152
1153        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1154        if (unlikely(!mpi_reply)) {
1155                pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1156                    ioc->name, __FILE__, __LINE__, __func__);
1157                return;
1158        }
1159        ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1160
1161        if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1162            (ioc->logging_level & MPT_DEBUG_REPLY)) {
1163                _base_sas_ioc_info(ioc , mpi_reply,
1164                   mpt3sas_base_get_msg_frame(ioc, smid));
1165        }
1166
1167        if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1168                loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1169                _base_sas_log_info(ioc, loginfo);
1170        }
1171
1172        if (ioc_status || loginfo) {
1173                ioc_status &= MPI2_IOCSTATUS_MASK;
1174                mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1175        }
1176}
1177
1178/**
1179 * mpt3sas_base_done - base internal command completion routine
1180 * @ioc: per adapter object
1181 * @smid: system request message index
1182 * @msix_index: MSIX table index supplied by the OS
1183 * @reply: reply message frame(lower 32bit addr)
1184 *
1185 * Return:
1186 * 1 meaning mf should be freed from _base_interrupt
1187 * 0 means the mf is freed from this function.
1188 */
1189u8
1190mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1191        u32 reply)
1192{
1193        MPI2DefaultReply_t *mpi_reply;
1194
1195        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1196        if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1197                return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1198
1199        if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1200                return 1;
1201
1202        ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1203        if (mpi_reply) {
1204                ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1205                memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1206        }
1207        ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1208
1209        complete(&ioc->base_cmds.done);
1210        return 1;
1211}
1212
1213/**
1214 * _base_async_event - main callback handler for firmware asyn events
1215 * @ioc: per adapter object
1216 * @msix_index: MSIX table index supplied by the OS
1217 * @reply: reply message frame(lower 32bit addr)
1218 *
1219 * Return:
1220 * 1 meaning mf should be freed from _base_interrupt
1221 * 0 means the mf is freed from this function.
1222 */
1223static u8
1224_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1225{
1226        Mpi2EventNotificationReply_t *mpi_reply;
1227        Mpi2EventAckRequest_t *ack_request;
1228        u16 smid;
1229        struct _event_ack_list *delayed_event_ack;
1230
1231        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1232        if (!mpi_reply)
1233                return 1;
1234        if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1235                return 1;
1236
1237        _base_display_event_data(ioc, mpi_reply);
1238
1239        if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1240                goto out;
1241        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1242        if (!smid) {
1243                delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1244                                        GFP_ATOMIC);
1245                if (!delayed_event_ack)
1246                        goto out;
1247                INIT_LIST_HEAD(&delayed_event_ack->list);
1248                delayed_event_ack->Event = mpi_reply->Event;
1249                delayed_event_ack->EventContext = mpi_reply->EventContext;
1250                list_add_tail(&delayed_event_ack->list,
1251                                &ioc->delayed_event_ack_list);
1252                dewtprintk(ioc, pr_info(MPT3SAS_FMT
1253                                "DELAYED: EVENT ACK: event (0x%04x)\n",
1254                                ioc->name, le16_to_cpu(mpi_reply->Event)));
1255                goto out;
1256        }
1257
1258        ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1259        memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1260        ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1261        ack_request->Event = mpi_reply->Event;
1262        ack_request->EventContext = mpi_reply->EventContext;
1263        ack_request->VF_ID = 0;  /* TODO */
1264        ack_request->VP_ID = 0;
1265        mpt3sas_base_put_smid_default(ioc, smid);
1266
1267 out:
1268
1269        /* scsih callback handler */
1270        mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1271
1272        /* ctl callback handler */
1273        mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1274
1275        return 1;
1276}
1277
1278static struct scsiio_tracker *
1279_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1280{
1281        struct scsi_cmnd *cmd;
1282
1283        if (WARN_ON(!smid) ||
1284            WARN_ON(smid >= ioc->hi_priority_smid))
1285                return NULL;
1286
1287        cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1288        if (cmd)
1289                return scsi_cmd_priv(cmd);
1290
1291        return NULL;
1292}
1293
1294/**
1295 * _base_get_cb_idx - obtain the callback index
1296 * @ioc: per adapter object
1297 * @smid: system request message index
1298 *
1299 * Return: callback index.
1300 */
1301static u8
1302_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1303{
1304        int i;
1305        u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1306        u8 cb_idx = 0xFF;
1307
1308        if (smid < ioc->hi_priority_smid) {
1309                struct scsiio_tracker *st;
1310
1311                if (smid < ctl_smid) {
1312                        st = _get_st_from_smid(ioc, smid);
1313                        if (st)
1314                                cb_idx = st->cb_idx;
1315                } else if (smid == ctl_smid)
1316                        cb_idx = ioc->ctl_cb_idx;
1317        } else if (smid < ioc->internal_smid) {
1318                i = smid - ioc->hi_priority_smid;
1319                cb_idx = ioc->hpr_lookup[i].cb_idx;
1320        } else if (smid <= ioc->hba_queue_depth) {
1321                i = smid - ioc->internal_smid;
1322                cb_idx = ioc->internal_lookup[i].cb_idx;
1323        }
1324        return cb_idx;
1325}
1326
1327/**
1328 * _base_mask_interrupts - disable interrupts
1329 * @ioc: per adapter object
1330 *
1331 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1332 */
1333static void
1334_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1335{
1336        u32 him_register;
1337
1338        ioc->mask_interrupts = 1;
1339        him_register = readl(&ioc->chip->HostInterruptMask);
1340        him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1341        writel(him_register, &ioc->chip->HostInterruptMask);
1342        readl(&ioc->chip->HostInterruptMask);
1343}
1344
1345/**
1346 * _base_unmask_interrupts - enable interrupts
1347 * @ioc: per adapter object
1348 *
1349 * Enabling only Reply Interrupts
1350 */
1351static void
1352_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1353{
1354        u32 him_register;
1355
1356        him_register = readl(&ioc->chip->HostInterruptMask);
1357        him_register &= ~MPI2_HIM_RIM;
1358        writel(him_register, &ioc->chip->HostInterruptMask);
1359        ioc->mask_interrupts = 0;
1360}
1361
1362union reply_descriptor {
1363        u64 word;
1364        struct {
1365                u32 low;
1366                u32 high;
1367        } u;
1368};
1369
1370/**
1371 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1372 * @irq: irq number (not used)
1373 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1374 *
1375 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1376 */
1377static irqreturn_t
1378_base_interrupt(int irq, void *bus_id)
1379{
1380        struct adapter_reply_queue *reply_q = bus_id;
1381        union reply_descriptor rd;
1382        u32 completed_cmds;
1383        u8 request_desript_type;
1384        u16 smid;
1385        u8 cb_idx;
1386        u32 reply;
1387        u8 msix_index = reply_q->msix_index;
1388        struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1389        Mpi2ReplyDescriptorsUnion_t *rpf;
1390        u8 rc;
1391
1392        if (ioc->mask_interrupts)
1393                return IRQ_NONE;
1394
1395        if (!atomic_add_unless(&reply_q->busy, 1, 1))
1396                return IRQ_NONE;
1397
1398        rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1399        request_desript_type = rpf->Default.ReplyFlags
1400             & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1401        if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1402                atomic_dec(&reply_q->busy);
1403                return IRQ_NONE;
1404        }
1405
1406        completed_cmds = 0;
1407        cb_idx = 0xFF;
1408        do {
1409                rd.word = le64_to_cpu(rpf->Words);
1410                if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1411                        goto out;
1412                reply = 0;
1413                smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1414                if (request_desript_type ==
1415                    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1416                    request_desript_type ==
1417                    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1418                    request_desript_type ==
1419                    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1420                        cb_idx = _base_get_cb_idx(ioc, smid);
1421                        if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1422                            (likely(mpt_callbacks[cb_idx] != NULL))) {
1423                                rc = mpt_callbacks[cb_idx](ioc, smid,
1424                                    msix_index, 0);
1425                                if (rc)
1426                                        mpt3sas_base_free_smid(ioc, smid);
1427                        }
1428                } else if (request_desript_type ==
1429                    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1430                        reply = le32_to_cpu(
1431                            rpf->AddressReply.ReplyFrameAddress);
1432                        if (reply > ioc->reply_dma_max_address ||
1433                            reply < ioc->reply_dma_min_address)
1434                                reply = 0;
1435                        if (smid) {
1436                                cb_idx = _base_get_cb_idx(ioc, smid);
1437                                if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1438                                    (likely(mpt_callbacks[cb_idx] != NULL))) {
1439                                        rc = mpt_callbacks[cb_idx](ioc, smid,
1440                                            msix_index, reply);
1441                                        if (reply)
1442                                                _base_display_reply_info(ioc,
1443                                                    smid, msix_index, reply);
1444                                        if (rc)
1445                                                mpt3sas_base_free_smid(ioc,
1446                                                    smid);
1447                                }
1448                        } else {
1449                                _base_async_event(ioc, msix_index, reply);
1450                        }
1451
1452                        /* reply free queue handling */
1453                        if (reply) {
1454                                ioc->reply_free_host_index =
1455                                    (ioc->reply_free_host_index ==
1456                                    (ioc->reply_free_queue_depth - 1)) ?
1457                                    0 : ioc->reply_free_host_index + 1;
1458                                ioc->reply_free[ioc->reply_free_host_index] =
1459                                    cpu_to_le32(reply);
1460                                if (ioc->is_mcpu_endpoint)
1461                                        _base_clone_reply_to_sys_mem(ioc,
1462                                                reply,
1463                                                ioc->reply_free_host_index);
1464                                writel(ioc->reply_free_host_index,
1465                                    &ioc->chip->ReplyFreeHostIndex);
1466                        }
1467                }
1468
1469                rpf->Words = cpu_to_le64(ULLONG_MAX);
1470                reply_q->reply_post_host_index =
1471                    (reply_q->reply_post_host_index ==
1472                    (ioc->reply_post_queue_depth - 1)) ? 0 :
1473                    reply_q->reply_post_host_index + 1;
1474                request_desript_type =
1475                    reply_q->reply_post_free[reply_q->reply_post_host_index].
1476                    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1477                completed_cmds++;
1478                /* Update the reply post host index after continuously
1479                 * processing the threshold number of Reply Descriptors.
1480                 * So that FW can find enough entries to post the Reply
1481                 * Descriptors in the reply descriptor post queue.
1482                 */
1483                if (completed_cmds > ioc->hba_queue_depth/3) {
1484                        if (ioc->combined_reply_queue) {
1485                                writel(reply_q->reply_post_host_index |
1486                                                ((msix_index  & 7) <<
1487                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1488                                    ioc->replyPostRegisterIndex[msix_index/8]);
1489                        } else {
1490                                writel(reply_q->reply_post_host_index |
1491                                                (msix_index <<
1492                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1493                                                &ioc->chip->ReplyPostHostIndex);
1494                        }
1495                        completed_cmds = 1;
1496                }
1497                if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1498                        goto out;
1499                if (!reply_q->reply_post_host_index)
1500                        rpf = reply_q->reply_post_free;
1501                else
1502                        rpf++;
1503        } while (1);
1504
1505 out:
1506
1507        if (!completed_cmds) {
1508                atomic_dec(&reply_q->busy);
1509                return IRQ_NONE;
1510        }
1511
1512        if (ioc->is_warpdrive) {
1513                writel(reply_q->reply_post_host_index,
1514                ioc->reply_post_host_index[msix_index]);
1515                atomic_dec(&reply_q->busy);
1516                return IRQ_HANDLED;
1517        }
1518
1519        /* Update Reply Post Host Index.
1520         * For those HBA's which support combined reply queue feature
1521         * 1. Get the correct Supplemental Reply Post Host Index Register.
1522         *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1523         *    Index Register address bank i.e replyPostRegisterIndex[],
1524         * 2. Then update this register with new reply host index value
1525         *    in ReplyPostIndex field and the MSIxIndex field with
1526         *    msix_index value reduced to a value between 0 and 7,
1527         *    using a modulo 8 operation. Since each Supplemental Reply Post
1528         *    Host Index Register supports 8 MSI-X vectors.
1529         *
1530         * For other HBA's just update the Reply Post Host Index register with
1531         * new reply host index value in ReplyPostIndex Field and msix_index
1532         * value in MSIxIndex field.
1533         */
1534        if (ioc->combined_reply_queue)
1535                writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1536                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1537                        ioc->replyPostRegisterIndex[msix_index/8]);
1538        else
1539                writel(reply_q->reply_post_host_index | (msix_index <<
1540                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1541                        &ioc->chip->ReplyPostHostIndex);
1542        atomic_dec(&reply_q->busy);
1543        return IRQ_HANDLED;
1544}
1545
1546/**
1547 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1548 * @ioc: per adapter object
1549 *
1550 * Return: Whether or not MSI/X is enabled.
1551 */
1552static inline int
1553_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1554{
1555        return (ioc->facts.IOCCapabilities &
1556            MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1557}
1558
1559/**
1560 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1561 * @ioc: per adapter object
1562 * Context: non ISR conext
1563 *
1564 * Called when a Task Management request has completed.
1565 */
1566void
1567mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1568{
1569        struct adapter_reply_queue *reply_q;
1570
1571        /* If MSIX capability is turned off
1572         * then multi-queues are not enabled
1573         */
1574        if (!_base_is_controller_msix_enabled(ioc))
1575                return;
1576
1577        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1578                if (ioc->shost_recovery || ioc->remove_host ||
1579                                ioc->pci_error_recovery)
1580                        return;
1581                /* TMs are on msix_index == 0 */
1582                if (reply_q->msix_index == 0)
1583                        continue;
1584                synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1585        }
1586}
1587
1588/**
1589 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1590 * @cb_idx: callback index
1591 */
1592void
1593mpt3sas_base_release_callback_handler(u8 cb_idx)
1594{
1595        mpt_callbacks[cb_idx] = NULL;
1596}
1597
1598/**
1599 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1600 * @cb_func: callback function
1601 *
1602 * Return: Index of @cb_func.
1603 */
1604u8
1605mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1606{
1607        u8 cb_idx;
1608
1609        for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1610                if (mpt_callbacks[cb_idx] == NULL)
1611                        break;
1612
1613        mpt_callbacks[cb_idx] = cb_func;
1614        return cb_idx;
1615}
1616
1617/**
1618 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1619 */
1620void
1621mpt3sas_base_initialize_callback_handler(void)
1622{
1623        u8 cb_idx;
1624
1625        for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1626                mpt3sas_base_release_callback_handler(cb_idx);
1627}
1628
1629
1630/**
1631 * _base_build_zero_len_sge - build zero length sg entry
1632 * @ioc: per adapter object
1633 * @paddr: virtual address for SGE
1634 *
1635 * Create a zero length scatter gather entry to insure the IOCs hardware has
1636 * something to use if the target device goes brain dead and tries
1637 * to send data even when none is asked for.
1638 */
1639static void
1640_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1641{
1642        u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1643            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1644            MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1645            MPI2_SGE_FLAGS_SHIFT);
1646        ioc->base_add_sg_single(paddr, flags_length, -1);
1647}
1648
1649/**
1650 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1651 * @paddr: virtual address for SGE
1652 * @flags_length: SGE flags and data transfer length
1653 * @dma_addr: Physical address
1654 */
1655static void
1656_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1657{
1658        Mpi2SGESimple32_t *sgel = paddr;
1659
1660        flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1661            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1662        sgel->FlagsLength = cpu_to_le32(flags_length);
1663        sgel->Address = cpu_to_le32(dma_addr);
1664}
1665
1666
1667/**
1668 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1669 * @paddr: virtual address for SGE
1670 * @flags_length: SGE flags and data transfer length
1671 * @dma_addr: Physical address
1672 */
1673static void
1674_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1675{
1676        Mpi2SGESimple64_t *sgel = paddr;
1677
1678        flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1679            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1680        sgel->FlagsLength = cpu_to_le32(flags_length);
1681        sgel->Address = cpu_to_le64(dma_addr);
1682}
1683
1684/**
1685 * _base_get_chain_buffer_tracker - obtain chain tracker
1686 * @ioc: per adapter object
1687 * @scmd: SCSI commands of the IO request
1688 *
1689 * Return: chain tracker from chain_lookup table using key as
1690 * smid and smid's chain_offset.
1691 */
1692static struct chain_tracker *
1693_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1694                               struct scsi_cmnd *scmd)
1695{
1696        struct chain_tracker *chain_req;
1697        struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1698        u16 smid = st->smid;
1699        u8 chain_offset =
1700           atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1701
1702        if (chain_offset == ioc->chains_needed_per_io)
1703                return NULL;
1704
1705        chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1706        atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1707        return chain_req;
1708}
1709
1710
1711/**
1712 * _base_build_sg - build generic sg
1713 * @ioc: per adapter object
1714 * @psge: virtual address for SGE
1715 * @data_out_dma: physical address for WRITES
1716 * @data_out_sz: data xfer size for WRITES
1717 * @data_in_dma: physical address for READS
1718 * @data_in_sz: data xfer size for READS
1719 */
1720static void
1721_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1722        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1723        size_t data_in_sz)
1724{
1725        u32 sgl_flags;
1726
1727        if (!data_out_sz && !data_in_sz) {
1728                _base_build_zero_len_sge(ioc, psge);
1729                return;
1730        }
1731
1732        if (data_out_sz && data_in_sz) {
1733                /* WRITE sgel first */
1734                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1735                    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1736                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1737                ioc->base_add_sg_single(psge, sgl_flags |
1738                    data_out_sz, data_out_dma);
1739
1740                /* incr sgel */
1741                psge += ioc->sge_size;
1742
1743                /* READ sgel last */
1744                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1745                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1746                    MPI2_SGE_FLAGS_END_OF_LIST);
1747                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1748                ioc->base_add_sg_single(psge, sgl_flags |
1749                    data_in_sz, data_in_dma);
1750        } else if (data_out_sz) /* WRITE */ {
1751                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1752                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1753                    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1754                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1755                ioc->base_add_sg_single(psge, sgl_flags |
1756                    data_out_sz, data_out_dma);
1757        } else if (data_in_sz) /* READ */ {
1758                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1759                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1760                    MPI2_SGE_FLAGS_END_OF_LIST);
1761                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1762                ioc->base_add_sg_single(psge, sgl_flags |
1763                    data_in_sz, data_in_dma);
1764        }
1765}
1766
1767/* IEEE format sgls */
1768
1769/**
1770 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1771 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1772 * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1773 * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1774 * used to describe a larger data buffer.  If the data buffer is too large to
1775 * describe using the two PRP entriess inside the NVMe message, then PRP1
1776 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1777 * list located elsewhere in memory to describe the remaining data memory
1778 * segments.  The PRP list will be contiguous.
1779 *
1780 * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1781 * consists of a list of PRP entries to describe a number of noncontigous
1782 * physical memory segments as a single memory buffer, just as a SGL does.  Note
1783 * however, that this function is only used by the IOCTL call, so the memory
1784 * given will be guaranteed to be contiguous.  There is no need to translate
1785 * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1786 * contiguous space that is one page size each.
1787 *
1788 * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1789 * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1790 * contains the second PRP element if the memory being described fits within 2
1791 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1792 *
1793 * A PRP list pointer contains the address of a PRP list, structured as a linear
1794 * array of PRP entries.  Each PRP entry in this list describes a segment of
1795 * physical memory.
1796 *
1797 * Each 64-bit PRP entry comprises an address and an offset field.  The address
1798 * always points at the beginning of a 4KB physical memory page, and the offset
1799 * describes where within that 4KB page the memory segment begins.  Only the
1800 * first element in a PRP list may contain a non-zero offest, implying that all
1801 * memory segments following the first begin at the start of a 4KB page.
1802 *
1803 * Each PRP element normally describes 4KB of physical memory, with exceptions
1804 * for the first and last elements in the list.  If the memory being described
1805 * by the list begins at a non-zero offset within the first 4KB page, then the
1806 * first PRP element will contain a non-zero offset indicating where the region
1807 * begins within the 4KB page.  The last memory segment may end before the end
1808 * of the 4KB segment, depending upon the overall size of the memory being
1809 * described by the PRP list.
1810 *
1811 * Since PRP entries lack any indication of size, the overall data buffer length
1812 * is used to determine where the end of the data memory buffer is located, and
1813 * how many PRP entries are required to describe it.
1814 *
1815 * @ioc: per adapter object
1816 * @smid: system request message index for getting asscociated SGL
1817 * @nvme_encap_request: the NVMe request msg frame pointer
1818 * @data_out_dma: physical address for WRITES
1819 * @data_out_sz: data xfer size for WRITES
1820 * @data_in_dma: physical address for READS
1821 * @data_in_sz: data xfer size for READS
1822 */
1823static void
1824_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1825        Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1826        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1827        size_t data_in_sz)
1828{
1829        int             prp_size = NVME_PRP_SIZE;
1830        __le64          *prp_entry, *prp1_entry, *prp2_entry;
1831        __le64          *prp_page;
1832        dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1833        u32             offset, entry_len;
1834        u32             page_mask_result, page_mask;
1835        size_t          length;
1836        struct mpt3sas_nvme_cmd *nvme_cmd =
1837                (void *)nvme_encap_request->NVMe_Command;
1838
1839        /*
1840         * Not all commands require a data transfer. If no data, just return
1841         * without constructing any PRP.
1842         */
1843        if (!data_in_sz && !data_out_sz)
1844                return;
1845        prp1_entry = &nvme_cmd->prp1;
1846        prp2_entry = &nvme_cmd->prp2;
1847        prp_entry = prp1_entry;
1848        /*
1849         * For the PRP entries, use the specially allocated buffer of
1850         * contiguous memory.
1851         */
1852        prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1853        prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1854
1855        /*
1856         * Check if we are within 1 entry of a page boundary we don't
1857         * want our first entry to be a PRP List entry.
1858         */
1859        page_mask = ioc->page_size - 1;
1860        page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1861        if (!page_mask_result) {
1862                /* Bump up to next page boundary. */
1863                prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1864                prp_page_dma = prp_page_dma + prp_size;
1865        }
1866
1867        /*
1868         * Set PRP physical pointer, which initially points to the current PRP
1869         * DMA memory page.
1870         */
1871        prp_entry_dma = prp_page_dma;
1872
1873        /* Get physical address and length of the data buffer. */
1874        if (data_in_sz) {
1875                dma_addr = data_in_dma;
1876                length = data_in_sz;
1877        } else {
1878                dma_addr = data_out_dma;
1879                length = data_out_sz;
1880        }
1881
1882        /* Loop while the length is not zero. */
1883        while (length) {
1884                /*
1885                 * Check if we need to put a list pointer here if we are at
1886                 * page boundary - prp_size (8 bytes).
1887                 */
1888                page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1889                if (!page_mask_result) {
1890                        /*
1891                         * This is the last entry in a PRP List, so we need to
1892                         * put a PRP list pointer here.  What this does is:
1893                         *   - bump the current memory pointer to the next
1894                         *     address, which will be the next full page.
1895                         *   - set the PRP Entry to point to that page.  This
1896                         *     is now the PRP List pointer.
1897                         *   - bump the PRP Entry pointer the start of the
1898                         *     next page.  Since all of this PRP memory is
1899                         *     contiguous, no need to get a new page - it's
1900                         *     just the next address.
1901                         */
1902                        prp_entry_dma++;
1903                        *prp_entry = cpu_to_le64(prp_entry_dma);
1904                        prp_entry++;
1905                }
1906
1907                /* Need to handle if entry will be part of a page. */
1908                offset = dma_addr & page_mask;
1909                entry_len = ioc->page_size - offset;
1910
1911                if (prp_entry == prp1_entry) {
1912                        /*
1913                         * Must fill in the first PRP pointer (PRP1) before
1914                         * moving on.
1915                         */
1916                        *prp1_entry = cpu_to_le64(dma_addr);
1917
1918                        /*
1919                         * Now point to the second PRP entry within the
1920                         * command (PRP2).
1921                         */
1922                        prp_entry = prp2_entry;
1923                } else if (prp_entry == prp2_entry) {
1924                        /*
1925                         * Should the PRP2 entry be a PRP List pointer or just
1926                         * a regular PRP pointer?  If there is more than one
1927                         * more page of data, must use a PRP List pointer.
1928                         */
1929                        if (length > ioc->page_size) {
1930                                /*
1931                                 * PRP2 will contain a PRP List pointer because
1932                                 * more PRP's are needed with this command. The
1933                                 * list will start at the beginning of the
1934                                 * contiguous buffer.
1935                                 */
1936                                *prp2_entry = cpu_to_le64(prp_entry_dma);
1937
1938                                /*
1939                                 * The next PRP Entry will be the start of the
1940                                 * first PRP List.
1941                                 */
1942                                prp_entry = prp_page;
1943                        } else {
1944                                /*
1945                                 * After this, the PRP Entries are complete.
1946                                 * This command uses 2 PRP's and no PRP list.
1947                                 */
1948                                *prp2_entry = cpu_to_le64(dma_addr);
1949                        }
1950                } else {
1951                        /*
1952                         * Put entry in list and bump the addresses.
1953                         *
1954                         * After PRP1 and PRP2 are filled in, this will fill in
1955                         * all remaining PRP entries in a PRP List, one per
1956                         * each time through the loop.
1957                         */
1958                        *prp_entry = cpu_to_le64(dma_addr);
1959                        prp_entry++;
1960                        prp_entry_dma++;
1961                }
1962
1963                /*
1964                 * Bump the phys address of the command's data buffer by the
1965                 * entry_len.
1966                 */
1967                dma_addr += entry_len;
1968
1969                /* Decrement length accounting for last partial page. */
1970                if (entry_len > length)
1971                        length = 0;
1972                else
1973                        length -= entry_len;
1974        }
1975}
1976
1977/**
1978 * base_make_prp_nvme -
1979 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1980 *
1981 * @ioc:                per adapter object
1982 * @scmd:               SCSI command from the mid-layer
1983 * @mpi_request:        mpi request
1984 * @smid:               msg Index
1985 * @sge_count:          scatter gather element count.
1986 *
1987 * Return:              true: PRPs are built
1988 *                      false: IEEE SGLs needs to be built
1989 */
1990static void
1991base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
1992                struct scsi_cmnd *scmd,
1993                Mpi25SCSIIORequest_t *mpi_request,
1994                u16 smid, int sge_count)
1995{
1996        int sge_len, num_prp_in_chain = 0;
1997        Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
1998        __le64 *curr_buff;
1999        dma_addr_t msg_dma, sge_addr, offset;
2000        u32 page_mask, page_mask_result;
2001        struct scatterlist *sg_scmd;
2002        u32 first_prp_len;
2003        int data_len = scsi_bufflen(scmd);
2004        u32 nvme_pg_size;
2005
2006        nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2007        /*
2008         * Nvme has a very convoluted prp format.  One prp is required
2009         * for each page or partial page. Driver need to split up OS sg_list
2010         * entries if it is longer than one page or cross a page
2011         * boundary.  Driver also have to insert a PRP list pointer entry as
2012         * the last entry in each physical page of the PRP list.
2013         *
2014         * NOTE: The first PRP "entry" is actually placed in the first
2015         * SGL entry in the main message as IEEE 64 format.  The 2nd
2016         * entry in the main message is the chain element, and the rest
2017         * of the PRP entries are built in the contiguous pcie buffer.
2018         */
2019        page_mask = nvme_pg_size - 1;
2020
2021        /*
2022         * Native SGL is needed.
2023         * Put a chain element in main message frame that points to the first
2024         * chain buffer.
2025         *
2026         * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2027         *        a native SGL.
2028         */
2029
2030        /* Set main message chain element pointer */
2031        main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2032        /*
2033         * For NVMe the chain element needs to be the 2nd SG entry in the main
2034         * message.
2035         */
2036        main_chain_element = (Mpi25IeeeSgeChain64_t *)
2037                ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2038
2039        /*
2040         * For the PRP entries, use the specially allocated buffer of
2041         * contiguous memory.  Normal chain buffers can't be used
2042         * because each chain buffer would need to be the size of an OS
2043         * page (4k).
2044         */
2045        curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2046        msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2047
2048        main_chain_element->Address = cpu_to_le64(msg_dma);
2049        main_chain_element->NextChainOffset = 0;
2050        main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2051                        MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2052                        MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2053
2054        /* Build first prp, sge need not to be page aligned*/
2055        ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2056        sg_scmd = scsi_sglist(scmd);
2057        sge_addr = sg_dma_address(sg_scmd);
2058        sge_len = sg_dma_len(sg_scmd);
2059
2060        offset = sge_addr & page_mask;
2061        first_prp_len = nvme_pg_size - offset;
2062
2063        ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2064        ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2065
2066        data_len -= first_prp_len;
2067
2068        if (sge_len > first_prp_len) {
2069                sge_addr += first_prp_len;
2070                sge_len -= first_prp_len;
2071        } else if (data_len && (sge_len == first_prp_len)) {
2072                sg_scmd = sg_next(sg_scmd);
2073                sge_addr = sg_dma_address(sg_scmd);
2074                sge_len = sg_dma_len(sg_scmd);
2075        }
2076
2077        for (;;) {
2078                offset = sge_addr & page_mask;
2079
2080                /* Put PRP pointer due to page boundary*/
2081                page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2082                if (unlikely(!page_mask_result)) {
2083                        scmd_printk(KERN_NOTICE,
2084                                scmd, "page boundary curr_buff: 0x%p\n",
2085                                curr_buff);
2086                        msg_dma += 8;
2087                        *curr_buff = cpu_to_le64(msg_dma);
2088                        curr_buff++;
2089                        num_prp_in_chain++;
2090                }
2091
2092                *curr_buff = cpu_to_le64(sge_addr);
2093                curr_buff++;
2094                msg_dma += 8;
2095                num_prp_in_chain++;
2096
2097                sge_addr += nvme_pg_size;
2098                sge_len -= nvme_pg_size;
2099                data_len -= nvme_pg_size;
2100
2101                if (data_len <= 0)
2102                        break;
2103
2104                if (sge_len > 0)
2105                        continue;
2106
2107                sg_scmd = sg_next(sg_scmd);
2108                sge_addr = sg_dma_address(sg_scmd);
2109                sge_len = sg_dma_len(sg_scmd);
2110        }
2111
2112        main_chain_element->Length =
2113                cpu_to_le32(num_prp_in_chain * sizeof(u64));
2114        return;
2115}
2116
2117static bool
2118base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2119        struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2120{
2121        u32 data_length = 0;
2122        bool build_prp = true;
2123
2124        data_length = scsi_bufflen(scmd);
2125
2126        /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2127         * we built IEEE SGL
2128         */
2129        if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2130                build_prp = false;
2131
2132        return build_prp;
2133}
2134
2135/**
2136 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2137 * determine if the driver needs to build a native SGL.  If so, that native
2138 * SGL is built in the special contiguous buffers allocated especially for
2139 * PCIe SGL creation.  If the driver will not build a native SGL, return
2140 * TRUE and a normal IEEE SGL will be built.  Currently this routine
2141 * supports NVMe.
2142 * @ioc: per adapter object
2143 * @mpi_request: mf request pointer
2144 * @smid: system request message index
2145 * @scmd: scsi command
2146 * @pcie_device: points to the PCIe device's info
2147 *
2148 * Return: 0 if native SGL was built, 1 if no SGL was built
2149 */
2150static int
2151_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2152        Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2153        struct _pcie_device *pcie_device)
2154{
2155        int sges_left;
2156
2157        /* Get the SG list pointer and info. */
2158        sges_left = scsi_dma_map(scmd);
2159        if (sges_left < 0) {
2160                sdev_printk(KERN_ERR, scmd->device,
2161                        "scsi_dma_map failed: request for %d bytes!\n",
2162                        scsi_bufflen(scmd));
2163                return 1;
2164        }
2165
2166        /* Check if we need to build a native SG list. */
2167        if (base_is_prp_possible(ioc, pcie_device,
2168                                scmd, sges_left) == 0) {
2169                /* We built a native SG list, just return. */
2170                goto out;
2171        }
2172
2173        /*
2174         * Build native NVMe PRP.
2175         */
2176        base_make_prp_nvme(ioc, scmd, mpi_request,
2177                        smid, sges_left);
2178
2179        return 0;
2180out:
2181        scsi_dma_unmap(scmd);
2182        return 1;
2183}
2184
2185/**
2186 * _base_add_sg_single_ieee - add sg element for IEEE format
2187 * @paddr: virtual address for SGE
2188 * @flags: SGE flags
2189 * @chain_offset: number of 128 byte elements from start of segment
2190 * @length: data transfer length
2191 * @dma_addr: Physical address
2192 */
2193static void
2194_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2195        dma_addr_t dma_addr)
2196{
2197        Mpi25IeeeSgeChain64_t *sgel = paddr;
2198
2199        sgel->Flags = flags;
2200        sgel->NextChainOffset = chain_offset;
2201        sgel->Length = cpu_to_le32(length);
2202        sgel->Address = cpu_to_le64(dma_addr);
2203}
2204
2205/**
2206 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2207 * @ioc: per adapter object
2208 * @paddr: virtual address for SGE
2209 *
2210 * Create a zero length scatter gather entry to insure the IOCs hardware has
2211 * something to use if the target device goes brain dead and tries
2212 * to send data even when none is asked for.
2213 */
2214static void
2215_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2216{
2217        u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2218                MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2219                MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2220
2221        _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2222}
2223
2224/**
2225 * _base_build_sg_scmd - main sg creation routine
2226 *              pcie_device is unused here!
2227 * @ioc: per adapter object
2228 * @scmd: scsi command
2229 * @smid: system request message index
2230 * @unused: unused pcie_device pointer
2231 * Context: none.
2232 *
2233 * The main routine that builds scatter gather table from a given
2234 * scsi request sent via the .queuecommand main handler.
2235 *
2236 * Return: 0 success, anything else error
2237 */
2238static int
2239_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2240        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2241{
2242        Mpi2SCSIIORequest_t *mpi_request;
2243        dma_addr_t chain_dma;
2244        struct scatterlist *sg_scmd;
2245        void *sg_local, *chain;
2246        u32 chain_offset;
2247        u32 chain_length;
2248        u32 chain_flags;
2249        int sges_left;
2250        u32 sges_in_segment;
2251        u32 sgl_flags;
2252        u32 sgl_flags_last_element;
2253        u32 sgl_flags_end_buffer;
2254        struct chain_tracker *chain_req;
2255
2256        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2257
2258        /* init scatter gather flags */
2259        sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2260        if (scmd->sc_data_direction == DMA_TO_DEVICE)
2261                sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2262        sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2263            << MPI2_SGE_FLAGS_SHIFT;
2264        sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2265            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2266            << MPI2_SGE_FLAGS_SHIFT;
2267        sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2268
2269        sg_scmd = scsi_sglist(scmd);
2270        sges_left = scsi_dma_map(scmd);
2271        if (sges_left < 0) {
2272                sdev_printk(KERN_ERR, scmd->device,
2273                 "pci_map_sg failed: request for %d bytes!\n",
2274                 scsi_bufflen(scmd));
2275                return -ENOMEM;
2276        }
2277
2278        sg_local = &mpi_request->SGL;
2279        sges_in_segment = ioc->max_sges_in_main_message;
2280        if (sges_left <= sges_in_segment)
2281                goto fill_in_last_segment;
2282
2283        mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2284            (sges_in_segment * ioc->sge_size))/4;
2285
2286        /* fill in main message segment when there is a chain following */
2287        while (sges_in_segment) {
2288                if (sges_in_segment == 1)
2289                        ioc->base_add_sg_single(sg_local,
2290                            sgl_flags_last_element | sg_dma_len(sg_scmd),
2291                            sg_dma_address(sg_scmd));
2292                else
2293                        ioc->base_add_sg_single(sg_local, sgl_flags |
2294                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2295                sg_scmd = sg_next(sg_scmd);
2296                sg_local += ioc->sge_size;
2297                sges_left--;
2298                sges_in_segment--;
2299        }
2300
2301        /* initializing the chain flags and pointers */
2302        chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2303        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2304        if (!chain_req)
2305                return -1;
2306        chain = chain_req->chain_buffer;
2307        chain_dma = chain_req->chain_buffer_dma;
2308        do {
2309                sges_in_segment = (sges_left <=
2310                    ioc->max_sges_in_chain_message) ? sges_left :
2311                    ioc->max_sges_in_chain_message;
2312                chain_offset = (sges_left == sges_in_segment) ?
2313                    0 : (sges_in_segment * ioc->sge_size)/4;
2314                chain_length = sges_in_segment * ioc->sge_size;
2315                if (chain_offset) {
2316                        chain_offset = chain_offset <<
2317                            MPI2_SGE_CHAIN_OFFSET_SHIFT;
2318                        chain_length += ioc->sge_size;
2319                }
2320                ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2321                    chain_length, chain_dma);
2322                sg_local = chain;
2323                if (!chain_offset)
2324                        goto fill_in_last_segment;
2325
2326                /* fill in chain segments */
2327                while (sges_in_segment) {
2328                        if (sges_in_segment == 1)
2329                                ioc->base_add_sg_single(sg_local,
2330                                    sgl_flags_last_element |
2331                                    sg_dma_len(sg_scmd),
2332                                    sg_dma_address(sg_scmd));
2333                        else
2334                                ioc->base_add_sg_single(sg_local, sgl_flags |
2335                                    sg_dma_len(sg_scmd),
2336                                    sg_dma_address(sg_scmd));
2337                        sg_scmd = sg_next(sg_scmd);
2338                        sg_local += ioc->sge_size;
2339                        sges_left--;
2340                        sges_in_segment--;
2341                }
2342
2343                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2344                if (!chain_req)
2345                        return -1;
2346                chain = chain_req->chain_buffer;
2347                chain_dma = chain_req->chain_buffer_dma;
2348        } while (1);
2349
2350
2351 fill_in_last_segment:
2352
2353        /* fill the last segment */
2354        while (sges_left) {
2355                if (sges_left == 1)
2356                        ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2357                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2358                else
2359                        ioc->base_add_sg_single(sg_local, sgl_flags |
2360                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2361                sg_scmd = sg_next(sg_scmd);
2362                sg_local += ioc->sge_size;
2363                sges_left--;
2364        }
2365
2366        return 0;
2367}
2368
2369/**
2370 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2371 * @ioc: per adapter object
2372 * @scmd: scsi command
2373 * @smid: system request message index
2374 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2375 * constructed on need.
2376 * Context: none.
2377 *
2378 * The main routine that builds scatter gather table from a given
2379 * scsi request sent via the .queuecommand main handler.
2380 *
2381 * Return: 0 success, anything else error
2382 */
2383static int
2384_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2385        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2386{
2387        Mpi25SCSIIORequest_t *mpi_request;
2388        dma_addr_t chain_dma;
2389        struct scatterlist *sg_scmd;
2390        void *sg_local, *chain;
2391        u32 chain_offset;
2392        u32 chain_length;
2393        int sges_left;
2394        u32 sges_in_segment;
2395        u8 simple_sgl_flags;
2396        u8 simple_sgl_flags_last;
2397        u8 chain_sgl_flags;
2398        struct chain_tracker *chain_req;
2399
2400        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2401
2402        /* init scatter gather flags */
2403        simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2404            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2405        simple_sgl_flags_last = simple_sgl_flags |
2406            MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2407        chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2408            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2409
2410        /* Check if we need to build a native SG list. */
2411        if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2412                        smid, scmd, pcie_device) == 0)) {
2413                /* We built a native SG list, just return. */
2414                return 0;
2415        }
2416
2417        sg_scmd = scsi_sglist(scmd);
2418        sges_left = scsi_dma_map(scmd);
2419        if (sges_left < 0) {
2420                sdev_printk(KERN_ERR, scmd->device,
2421                        "pci_map_sg failed: request for %d bytes!\n",
2422                        scsi_bufflen(scmd));
2423                return -ENOMEM;
2424        }
2425
2426        sg_local = &mpi_request->SGL;
2427        sges_in_segment = (ioc->request_sz -
2428                   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2429        if (sges_left <= sges_in_segment)
2430                goto fill_in_last_segment;
2431
2432        mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2433            (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2434
2435        /* fill in main message segment when there is a chain following */
2436        while (sges_in_segment > 1) {
2437                _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2438                    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2439                sg_scmd = sg_next(sg_scmd);
2440                sg_local += ioc->sge_size_ieee;
2441                sges_left--;
2442                sges_in_segment--;
2443        }
2444
2445        /* initializing the pointers */
2446        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2447        if (!chain_req)
2448                return -1;
2449        chain = chain_req->chain_buffer;
2450        chain_dma = chain_req->chain_buffer_dma;
2451        do {
2452                sges_in_segment = (sges_left <=
2453                    ioc->max_sges_in_chain_message) ? sges_left :
2454                    ioc->max_sges_in_chain_message;
2455                chain_offset = (sges_left == sges_in_segment) ?
2456                    0 : sges_in_segment;
2457                chain_length = sges_in_segment * ioc->sge_size_ieee;
2458                if (chain_offset)
2459                        chain_length += ioc->sge_size_ieee;
2460                _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2461                    chain_offset, chain_length, chain_dma);
2462
2463                sg_local = chain;
2464                if (!chain_offset)
2465                        goto fill_in_last_segment;
2466
2467                /* fill in chain segments */
2468                while (sges_in_segment) {
2469                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2470                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2471                        sg_scmd = sg_next(sg_scmd);
2472                        sg_local += ioc->sge_size_ieee;
2473                        sges_left--;
2474                        sges_in_segment--;
2475                }
2476
2477                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2478                if (!chain_req)
2479                        return -1;
2480                chain = chain_req->chain_buffer;
2481                chain_dma = chain_req->chain_buffer_dma;
2482        } while (1);
2483
2484
2485 fill_in_last_segment:
2486
2487        /* fill the last segment */
2488        while (sges_left > 0) {
2489                if (sges_left == 1)
2490                        _base_add_sg_single_ieee(sg_local,
2491                            simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2492                            sg_dma_address(sg_scmd));
2493                else
2494                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2495                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2496                sg_scmd = sg_next(sg_scmd);
2497                sg_local += ioc->sge_size_ieee;
2498                sges_left--;
2499        }
2500
2501        return 0;
2502}
2503
2504/**
2505 * _base_build_sg_ieee - build generic sg for IEEE format
2506 * @ioc: per adapter object
2507 * @psge: virtual address for SGE
2508 * @data_out_dma: physical address for WRITES
2509 * @data_out_sz: data xfer size for WRITES
2510 * @data_in_dma: physical address for READS
2511 * @data_in_sz: data xfer size for READS
2512 */
2513static void
2514_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2515        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2516        size_t data_in_sz)
2517{
2518        u8 sgl_flags;
2519
2520        if (!data_out_sz && !data_in_sz) {
2521                _base_build_zero_len_sge_ieee(ioc, psge);
2522                return;
2523        }
2524
2525        if (data_out_sz && data_in_sz) {
2526                /* WRITE sgel first */
2527                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2528                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2529                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2530                    data_out_dma);
2531
2532                /* incr sgel */
2533                psge += ioc->sge_size_ieee;
2534
2535                /* READ sgel last */
2536                sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2537                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2538                    data_in_dma);
2539        } else if (data_out_sz) /* WRITE */ {
2540                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2541                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2542                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2543                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2544                    data_out_dma);
2545        } else if (data_in_sz) /* READ */ {
2546                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2547                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2548                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2549                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2550                    data_in_dma);
2551        }
2552}
2553
2554#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2555
2556/**
2557 * _base_config_dma_addressing - set dma addressing
2558 * @ioc: per adapter object
2559 * @pdev: PCI device struct
2560 *
2561 * Return: 0 for success, non-zero for failure.
2562 */
2563static int
2564_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2565{
2566        struct sysinfo s;
2567        u64 consistent_dma_mask;
2568
2569        if (ioc->is_mcpu_endpoint)
2570                goto try_32bit;
2571
2572        if (ioc->dma_mask)
2573                consistent_dma_mask = DMA_BIT_MASK(64);
2574        else
2575                consistent_dma_mask = DMA_BIT_MASK(32);
2576
2577        if (sizeof(dma_addr_t) > 4) {
2578                const uint64_t required_mask =
2579                    dma_get_required_mask(&pdev->dev);
2580                if ((required_mask > DMA_BIT_MASK(32)) &&
2581                    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2582                    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2583                        ioc->base_add_sg_single = &_base_add_sg_single_64;
2584                        ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2585                        ioc->dma_mask = 64;
2586                        goto out;
2587                }
2588        }
2589
2590 try_32bit:
2591        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2592            && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2593                ioc->base_add_sg_single = &_base_add_sg_single_32;
2594                ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2595                ioc->dma_mask = 32;
2596        } else
2597                return -ENODEV;
2598
2599 out:
2600        si_meminfo(&s);
2601        pr_info(MPT3SAS_FMT
2602                "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2603                ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2604
2605        return 0;
2606}
2607
2608static int
2609_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2610                                      struct pci_dev *pdev)
2611{
2612        if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2613                if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2614                        return -ENODEV;
2615        }
2616        return 0;
2617}
2618
2619/**
2620 * _base_check_enable_msix - checks MSIX capabable.
2621 * @ioc: per adapter object
2622 *
2623 * Check to see if card is capable of MSIX, and set number
2624 * of available msix vectors
2625 */
2626static int
2627_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2628{
2629        int base;
2630        u16 message_control;
2631
2632        /* Check whether controller SAS2008 B0 controller,
2633         * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2634         */
2635        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2636            ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2637                return -EINVAL;
2638        }
2639
2640        base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2641        if (!base) {
2642                dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2643                        ioc->name));
2644                return -EINVAL;
2645        }
2646
2647        /* get msix vector count */
2648        /* NUMA_IO not supported for older controllers */
2649        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2650            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2651            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2652            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2653            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2654            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2655            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2656                ioc->msix_vector_count = 1;
2657        else {
2658                pci_read_config_word(ioc->pdev, base + 2, &message_control);
2659                ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2660        }
2661        dinitprintk(ioc, pr_info(MPT3SAS_FMT
2662                "msix is supported, vector_count(%d)\n",
2663                ioc->name, ioc->msix_vector_count));
2664        return 0;
2665}
2666
2667/**
2668 * _base_free_irq - free irq
2669 * @ioc: per adapter object
2670 *
2671 * Freeing respective reply_queue from the list.
2672 */
2673static void
2674_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2675{
2676        struct adapter_reply_queue *reply_q, *next;
2677
2678        if (list_empty(&ioc->reply_queue_list))
2679                return;
2680
2681        list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2682                list_del(&reply_q->list);
2683                free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2684                         reply_q);
2685                kfree(reply_q);
2686        }
2687}
2688
2689/**
2690 * _base_request_irq - request irq
2691 * @ioc: per adapter object
2692 * @index: msix index into vector table
2693 *
2694 * Inserting respective reply_queue into the list.
2695 */
2696static int
2697_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2698{
2699        struct pci_dev *pdev = ioc->pdev;
2700        struct adapter_reply_queue *reply_q;
2701        int r;
2702
2703        reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2704        if (!reply_q) {
2705                pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2706                    ioc->name, (int)sizeof(struct adapter_reply_queue));
2707                return -ENOMEM;
2708        }
2709        reply_q->ioc = ioc;
2710        reply_q->msix_index = index;
2711
2712        atomic_set(&reply_q->busy, 0);
2713        if (ioc->msix_enable)
2714                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2715                    ioc->driver_name, ioc->id, index);
2716        else
2717                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2718                    ioc->driver_name, ioc->id);
2719        r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2720                        IRQF_SHARED, reply_q->name, reply_q);
2721        if (r) {
2722                pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2723                       reply_q->name, pci_irq_vector(pdev, index));
2724                kfree(reply_q);
2725                return -EBUSY;
2726        }
2727
2728        INIT_LIST_HEAD(&reply_q->list);
2729        list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2730        return 0;
2731}
2732
2733/**
2734 * _base_assign_reply_queues - assigning msix index for each cpu
2735 * @ioc: per adapter object
2736 *
2737 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2738 *
2739 * It would nice if we could call irq_set_affinity, however it is not
2740 * an exported symbol
2741 */
2742static void
2743_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2744{
2745        unsigned int cpu, nr_cpus, nr_msix, index = 0;
2746        struct adapter_reply_queue *reply_q;
2747
2748        if (!_base_is_controller_msix_enabled(ioc))
2749                return;
2750
2751        memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2752
2753        nr_cpus = num_online_cpus();
2754        nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2755                                               ioc->facts.MaxMSIxVectors);
2756        if (!nr_msix)
2757                return;
2758
2759        if (smp_affinity_enable) {
2760                list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2761                        const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2762                                                        reply_q->msix_index);
2763                        if (!mask) {
2764                                pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2765                                        ioc->name, reply_q->msix_index);
2766                                continue;
2767                        }
2768
2769                        for_each_cpu_and(cpu, mask, cpu_online_mask) {
2770                                if (cpu >= ioc->cpu_msix_table_sz)
2771                                        break;
2772                                ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2773                        }
2774                }
2775                return;
2776        }
2777        cpu = cpumask_first(cpu_online_mask);
2778
2779        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2780
2781                unsigned int i, group = nr_cpus / nr_msix;
2782
2783                if (cpu >= nr_cpus)
2784                        break;
2785
2786                if (index < nr_cpus % nr_msix)
2787                        group++;
2788
2789                for (i = 0 ; i < group ; i++) {
2790                        ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2791                        cpu = cpumask_next(cpu, cpu_online_mask);
2792                }
2793                index++;
2794        }
2795}
2796
2797/**
2798 * _base_disable_msix - disables msix
2799 * @ioc: per adapter object
2800 *
2801 */
2802static void
2803_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2804{
2805        if (!ioc->msix_enable)
2806                return;
2807        pci_disable_msix(ioc->pdev);
2808        ioc->msix_enable = 0;
2809}
2810
2811/**
2812 * _base_enable_msix - enables msix, failback to io_apic
2813 * @ioc: per adapter object
2814 *
2815 */
2816static int
2817_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2818{
2819        int r;
2820        int i, local_max_msix_vectors;
2821        u8 try_msix = 0;
2822        unsigned int irq_flags = PCI_IRQ_MSIX;
2823
2824        if (msix_disable == -1 || msix_disable == 0)
2825                try_msix = 1;
2826
2827        if (!try_msix)
2828                goto try_ioapic;
2829
2830        if (_base_check_enable_msix(ioc) != 0)
2831                goto try_ioapic;
2832
2833        ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2834                ioc->msix_vector_count);
2835
2836        printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2837          ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2838          ioc->cpu_count, max_msix_vectors);
2839
2840        if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2841                local_max_msix_vectors = (reset_devices) ? 1 : 8;
2842        else
2843                local_max_msix_vectors = max_msix_vectors;
2844
2845        if (local_max_msix_vectors > 0)
2846                ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2847                        ioc->reply_queue_count);
2848        else if (local_max_msix_vectors == 0)
2849                goto try_ioapic;
2850
2851        if (ioc->msix_vector_count < ioc->cpu_count)
2852                smp_affinity_enable = 0;
2853
2854        if (smp_affinity_enable)
2855                irq_flags |= PCI_IRQ_AFFINITY;
2856
2857        r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2858                                  irq_flags);
2859        if (r < 0) {
2860                dfailprintk(ioc, pr_info(MPT3SAS_FMT
2861                        "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2862                        ioc->name, r));
2863                goto try_ioapic;
2864        }
2865
2866        ioc->msix_enable = 1;
2867        ioc->reply_queue_count = r;
2868        for (i = 0; i < ioc->reply_queue_count; i++) {
2869                r = _base_request_irq(ioc, i);
2870                if (r) {
2871                        _base_free_irq(ioc);
2872                        _base_disable_msix(ioc);
2873                        goto try_ioapic;
2874                }
2875        }
2876
2877        return 0;
2878
2879/* failback to io_apic interrupt routing */
2880 try_ioapic:
2881
2882        ioc->reply_queue_count = 1;
2883        r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2884        if (r < 0) {
2885                dfailprintk(ioc, pr_info(MPT3SAS_FMT
2886                        "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2887                        ioc->name, r));
2888        } else
2889                r = _base_request_irq(ioc, 0);
2890
2891        return r;
2892}
2893
2894/**
2895 * mpt3sas_base_unmap_resources - free controller resources
2896 * @ioc: per adapter object
2897 */
2898static void
2899mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2900{
2901        struct pci_dev *pdev = ioc->pdev;
2902
2903        dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2904                ioc->name, __func__));
2905
2906        _base_free_irq(ioc);
2907        _base_disable_msix(ioc);
2908
2909        kfree(ioc->replyPostRegisterIndex);
2910        ioc->replyPostRegisterIndex = NULL;
2911
2912
2913        if (ioc->chip_phys) {
2914                iounmap(ioc->chip);
2915                ioc->chip_phys = 0;
2916        }
2917
2918        if (pci_is_enabled(pdev)) {
2919                pci_release_selected_regions(ioc->pdev, ioc->bars);
2920                pci_disable_pcie_error_reporting(pdev);
2921                pci_disable_device(pdev);
2922        }
2923}
2924
2925/**
2926 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2927 * @ioc: per adapter object
2928 *
2929 * Return: 0 for success, non-zero for failure.
2930 */
2931int
2932mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2933{
2934        struct pci_dev *pdev = ioc->pdev;
2935        u32 memap_sz;
2936        u32 pio_sz;
2937        int i, r = 0;
2938        u64 pio_chip = 0;
2939        phys_addr_t chip_phys = 0;
2940        struct adapter_reply_queue *reply_q;
2941
2942        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2943            ioc->name, __func__));
2944
2945        ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2946        if (pci_enable_device_mem(pdev)) {
2947                pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2948                        ioc->name);
2949                ioc->bars = 0;
2950                return -ENODEV;
2951        }
2952
2953
2954        if (pci_request_selected_regions(pdev, ioc->bars,
2955            ioc->driver_name)) {
2956                pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2957                        ioc->name);
2958                ioc->bars = 0;
2959                r = -ENODEV;
2960                goto out_fail;
2961        }
2962
2963/* AER (Advanced Error Reporting) hooks */
2964        pci_enable_pcie_error_reporting(pdev);
2965
2966        pci_set_master(pdev);
2967
2968
2969        if (_base_config_dma_addressing(ioc, pdev) != 0) {
2970                pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2971                    ioc->name, pci_name(pdev));
2972                r = -ENODEV;
2973                goto out_fail;
2974        }
2975
2976        for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2977             (!memap_sz || !pio_sz); i++) {
2978                if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2979                        if (pio_sz)
2980                                continue;
2981                        pio_chip = (u64)pci_resource_start(pdev, i);
2982                        pio_sz = pci_resource_len(pdev, i);
2983                } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2984                        if (memap_sz)
2985                                continue;
2986                        ioc->chip_phys = pci_resource_start(pdev, i);
2987                        chip_phys = ioc->chip_phys;
2988                        memap_sz = pci_resource_len(pdev, i);
2989                        ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2990                }
2991        }
2992
2993        if (ioc->chip == NULL) {
2994                pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2995                        " or resource not found\n", ioc->name);
2996                r = -EINVAL;
2997                goto out_fail;
2998        }
2999
3000        _base_mask_interrupts(ioc);
3001
3002        r = _base_get_ioc_facts(ioc);
3003        if (r)
3004                goto out_fail;
3005
3006        if (!ioc->rdpq_array_enable_assigned) {
3007                ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3008                ioc->rdpq_array_enable_assigned = 1;
3009        }
3010
3011        r = _base_enable_msix(ioc);
3012        if (r)
3013                goto out_fail;
3014
3015        /* Use the Combined reply queue feature only for SAS3 C0 & higher
3016         * revision HBAs and also only when reply queue count is greater than 8
3017         */
3018        if (ioc->combined_reply_queue) {
3019                /* Determine the Supplemental Reply Post Host Index Registers
3020                 * Addresse. Supplemental Reply Post Host Index Registers
3021                 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3022                 * each register is at offset bytes of
3023                 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3024                 */
3025                ioc->replyPostRegisterIndex = kcalloc(
3026                     ioc->combined_reply_index_count,
3027                     sizeof(resource_size_t *), GFP_KERNEL);
3028                if (!ioc->replyPostRegisterIndex) {
3029                        dfailprintk(ioc, printk(MPT3SAS_FMT
3030                        "allocation for reply Post Register Index failed!!!\n",
3031                                                                   ioc->name));
3032                        r = -ENOMEM;
3033                        goto out_fail;
3034                }
3035
3036                for (i = 0; i < ioc->combined_reply_index_count; i++) {
3037                        ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3038                             ((u8 __force *)&ioc->chip->Doorbell +
3039                             MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3040                             (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3041                }
3042        }
3043
3044        if (ioc->is_warpdrive) {
3045                ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3046                    &ioc->chip->ReplyPostHostIndex;
3047
3048                for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3049                        ioc->reply_post_host_index[i] =
3050                        (resource_size_t __iomem *)
3051                        ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3052                        * 4)));
3053        }
3054
3055        list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3056                pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3057                    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3058                    "IO-APIC enabled"),
3059                    pci_irq_vector(ioc->pdev, reply_q->msix_index));
3060
3061        pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3062            ioc->name, &chip_phys, ioc->chip, memap_sz);
3063        pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3064            ioc->name, (unsigned long long)pio_chip, pio_sz);
3065
3066        /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3067        pci_save_state(pdev);
3068        return 0;
3069
3070 out_fail:
3071        mpt3sas_base_unmap_resources(ioc);
3072        return r;
3073}
3074
3075/**
3076 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3077 * @ioc: per adapter object
3078 * @smid: system request message index(smid zero is invalid)
3079 *
3080 * Return: virt pointer to message frame.
3081 */
3082void *
3083mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3084{
3085        return (void *)(ioc->request + (smid * ioc->request_sz));
3086}
3087
3088/**
3089 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3090 * @ioc: per adapter object
3091 * @smid: system request message index
3092 *
3093 * Return: virt pointer to sense buffer.
3094 */
3095void *
3096mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3097{
3098        return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3099}
3100
3101/**
3102 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3103 * @ioc: per adapter object
3104 * @smid: system request message index
3105 *
3106 * Return: phys pointer to the low 32bit address of the sense buffer.
3107 */
3108__le32
3109mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3110{
3111        return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3112            SCSI_SENSE_BUFFERSIZE));
3113}
3114
3115/**
3116 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3117 * @ioc: per adapter object
3118 * @smid: system request message index
3119 *
3120 * Return: virt pointer to a PCIe SGL.
3121 */
3122void *
3123mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3124{
3125        return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3126}
3127
3128/**
3129 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3130 * @ioc: per adapter object
3131 * @smid: system request message index
3132 *
3133 * Return: phys pointer to the address of the PCIe buffer.
3134 */
3135dma_addr_t
3136mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3137{
3138        return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3139}
3140
3141/**
3142 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3143 * @ioc: per adapter object
3144 * @phys_addr: lower 32 physical addr of the reply
3145 *
3146 * Converts 32bit lower physical addr into a virt address.
3147 */
3148void *
3149mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3150{
3151        if (!phys_addr)
3152                return NULL;
3153        return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3154}
3155
3156static inline u8
3157_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3158{
3159        return ioc->cpu_msix_table[raw_smp_processor_id()];
3160}
3161
3162/**
3163 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3164 * @ioc: per adapter object
3165 * @cb_idx: callback index
3166 *
3167 * Return: smid (zero is invalid)
3168 */
3169u16
3170mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3171{
3172        unsigned long flags;
3173        struct request_tracker *request;
3174        u16 smid;
3175
3176        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3177        if (list_empty(&ioc->internal_free_list)) {
3178                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3179                pr_err(MPT3SAS_FMT "%s: smid not available\n",
3180                    ioc->name, __func__);
3181                return 0;
3182        }
3183
3184        request = list_entry(ioc->internal_free_list.next,
3185            struct request_tracker, tracker_list);
3186        request->cb_idx = cb_idx;
3187        smid = request->smid;
3188        list_del(&request->tracker_list);
3189        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3190        return smid;
3191}
3192
3193/**
3194 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3195 * @ioc: per adapter object
3196 * @cb_idx: callback index
3197 * @scmd: pointer to scsi command object
3198 *
3199 * Return: smid (zero is invalid)
3200 */
3201u16
3202mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3203        struct scsi_cmnd *scmd)
3204{
3205        struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3206        unsigned int tag = scmd->request->tag;
3207        u16 smid;
3208
3209        smid = tag + 1;
3210        request->cb_idx = cb_idx;
3211        request->msix_io = _base_get_msix_index(ioc);
3212        request->smid = smid;
3213        INIT_LIST_HEAD(&request->chain_list);
3214        return smid;
3215}
3216
3217/**
3218 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3219 * @ioc: per adapter object
3220 * @cb_idx: callback index
3221 *
3222 * Return: smid (zero is invalid)
3223 */
3224u16
3225mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3226{
3227        unsigned long flags;
3228        struct request_tracker *request;
3229        u16 smid;
3230
3231        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3232        if (list_empty(&ioc->hpr_free_list)) {
3233                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3234                return 0;
3235        }
3236
3237        request = list_entry(ioc->hpr_free_list.next,
3238            struct request_tracker, tracker_list);
3239        request->cb_idx = cb_idx;
3240        smid = request->smid;
3241        list_del(&request->tracker_list);
3242        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3243        return smid;
3244}
3245
3246static void
3247_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3248{
3249        /*
3250         * See _wait_for_commands_to_complete() call with regards to this code.
3251         */
3252        if (ioc->shost_recovery && ioc->pending_io_count) {
3253                ioc->pending_io_count = scsi_host_busy(ioc->shost);
3254                if (ioc->pending_io_count == 0)
3255                        wake_up(&ioc->reset_wq);
3256        }
3257}
3258
3259void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3260                           struct scsiio_tracker *st)
3261{
3262        if (WARN_ON(st->smid == 0))
3263                return;
3264        st->cb_idx = 0xFF;
3265        st->direct_io = 0;
3266        atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3267        st->smid = 0;
3268}
3269
3270/**
3271 * mpt3sas_base_free_smid - put smid back on free_list
3272 * @ioc: per adapter object
3273 * @smid: system request message index
3274 */
3275void
3276mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3277{
3278        unsigned long flags;
3279        int i;
3280
3281        if (smid < ioc->hi_priority_smid) {
3282                struct scsiio_tracker *st;
3283
3284                st = _get_st_from_smid(ioc, smid);
3285                if (!st) {
3286                        _base_recovery_check(ioc);
3287                        return;
3288                }
3289                mpt3sas_base_clear_st(ioc, st);
3290                _base_recovery_check(ioc);
3291                return;
3292        }
3293
3294        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3295        if (smid < ioc->internal_smid) {
3296                /* hi-priority */
3297                i = smid - ioc->hi_priority_smid;
3298                ioc->hpr_lookup[i].cb_idx = 0xFF;
3299                list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3300        } else if (smid <= ioc->hba_queue_depth) {
3301                /* internal queue */
3302                i = smid - ioc->internal_smid;
3303                ioc->internal_lookup[i].cb_idx = 0xFF;
3304                list_add(&ioc->internal_lookup[i].tracker_list,
3305                    &ioc->internal_free_list);
3306        }
3307        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3308}
3309
3310/**
3311 * _base_mpi_ep_writeq - 32 bit write to MMIO
3312 * @b: data payload
3313 * @addr: address in MMIO space
3314 * @writeq_lock: spin lock
3315 *
3316 * This special handling for MPI EP to take care of 32 bit
3317 * environment where its not quarenteed to send the entire word
3318 * in one transfer.
3319 */
3320static inline void
3321_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3322                                        spinlock_t *writeq_lock)
3323{
3324        unsigned long flags;
3325
3326        spin_lock_irqsave(writeq_lock, flags);
3327        __raw_writel((u32)(b), addr);
3328        __raw_writel((u32)(b >> 32), (addr + 4));
3329        mmiowb();
3330        spin_unlock_irqrestore(writeq_lock, flags);
3331}
3332
3333/**
3334 * _base_writeq - 64 bit write to MMIO
3335 * @b: data payload
3336 * @addr: address in MMIO space
3337 * @writeq_lock: spin lock
3338 *
3339 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3340 * care of 32 bit environment where its not quarenteed to send the entire word
3341 * in one transfer.
3342 */
3343#if defined(writeq) && defined(CONFIG_64BIT)
3344static inline void
3345_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3346{
3347        __raw_writeq(b, addr);
3348        mmiowb();
3349}
3350#else
3351static inline void
3352_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3353{
3354        _base_mpi_ep_writeq(b, addr, writeq_lock);
3355}
3356#endif
3357
3358/**
3359 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3360 * @ioc: per adapter object
3361 * @smid: system request message index
3362 * @handle: device handle
3363 */
3364static void
3365_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3366{
3367        Mpi2RequestDescriptorUnion_t descriptor;
3368        u64 *request = (u64 *)&descriptor;
3369        void *mpi_req_iomem;
3370        __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3371
3372        _clone_sg_entries(ioc, (void *) mfp, smid);
3373        mpi_req_iomem = (void __force *)ioc->chip +
3374                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3375        _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3376                                        ioc->request_sz);
3377        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3378        descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3379        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3380        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3381        descriptor.SCSIIO.LMID = 0;
3382        _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3383            &ioc->scsi_lookup_lock);
3384}
3385
3386/**
3387 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3388 * @ioc: per adapter object
3389 * @smid: system request message index
3390 * @handle: device handle
3391 */
3392static void
3393_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3394{
3395        Mpi2RequestDescriptorUnion_t descriptor;
3396        u64 *request = (u64 *)&descriptor;
3397
3398
3399        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3400        descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3401        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3402        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3403        descriptor.SCSIIO.LMID = 0;
3404        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3405            &ioc->scsi_lookup_lock);
3406}
3407
3408/**
3409 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3410 * @ioc: per adapter object
3411 * @smid: system request message index
3412 * @handle: device handle
3413 */
3414void
3415mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3416        u16 handle)
3417{
3418        Mpi2RequestDescriptorUnion_t descriptor;
3419        u64 *request = (u64 *)&descriptor;
3420
3421        descriptor.SCSIIO.RequestFlags =
3422            MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3423        descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3424        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3425        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3426        descriptor.SCSIIO.LMID = 0;
3427        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3428            &ioc->scsi_lookup_lock);
3429}
3430
3431/**
3432 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3433 * @ioc: per adapter object
3434 * @smid: system request message index
3435 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3436 */
3437void
3438mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3439        u16 msix_task)
3440{
3441        Mpi2RequestDescriptorUnion_t descriptor;
3442        void *mpi_req_iomem;
3443        u64 *request;
3444
3445        if (ioc->is_mcpu_endpoint) {
3446                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3447
3448                /* TBD 256 is offset within sys register. */
3449                mpi_req_iomem = (void __force *)ioc->chip
3450                                        + MPI_FRAME_START_OFFSET
3451                                        + (smid * ioc->request_sz);
3452                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3453                                                        ioc->request_sz);
3454        }
3455
3456        request = (u64 *)&descriptor;
3457
3458        descriptor.HighPriority.RequestFlags =
3459            MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3460        descriptor.HighPriority.MSIxIndex =  msix_task;
3461        descriptor.HighPriority.SMID = cpu_to_le16(smid);
3462        descriptor.HighPriority.LMID = 0;
3463        descriptor.HighPriority.Reserved1 = 0;
3464        if (ioc->is_mcpu_endpoint)
3465                _base_mpi_ep_writeq(*request,
3466                                &ioc->chip->RequestDescriptorPostLow,
3467                                &ioc->scsi_lookup_lock);
3468        else
3469                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3470                    &ioc->scsi_lookup_lock);
3471}
3472
3473/**
3474 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3475 *  firmware
3476 * @ioc: per adapter object
3477 * @smid: system request message index
3478 */
3479void
3480mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3481{
3482        Mpi2RequestDescriptorUnion_t descriptor;
3483        u64 *request = (u64 *)&descriptor;
3484
3485        descriptor.Default.RequestFlags =
3486                MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3487        descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3488        descriptor.Default.SMID = cpu_to_le16(smid);
3489        descriptor.Default.LMID = 0;
3490        descriptor.Default.DescriptorTypeDependent = 0;
3491        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3492            &ioc->scsi_lookup_lock);
3493}
3494
3495/**
3496 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3497 * @ioc: per adapter object
3498 * @smid: system request message index
3499 */
3500void
3501mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502{
3503        Mpi2RequestDescriptorUnion_t descriptor;
3504        void *mpi_req_iomem;
3505        u64 *request;
3506
3507        if (ioc->is_mcpu_endpoint) {
3508                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3509
3510                _clone_sg_entries(ioc, (void *) mfp, smid);
3511                /* TBD 256 is offset within sys register */
3512                mpi_req_iomem = (void __force *)ioc->chip +
3513                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3514                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3515                                                        ioc->request_sz);
3516        }
3517        request = (u64 *)&descriptor;
3518        descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3519        descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3520        descriptor.Default.SMID = cpu_to_le16(smid);
3521        descriptor.Default.LMID = 0;
3522        descriptor.Default.DescriptorTypeDependent = 0;
3523        if (ioc->is_mcpu_endpoint)
3524                _base_mpi_ep_writeq(*request,
3525                                &ioc->chip->RequestDescriptorPostLow,
3526                                &ioc->scsi_lookup_lock);
3527        else
3528                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3529                                &ioc->scsi_lookup_lock);
3530}
3531
3532/**
3533 * _base_display_OEMs_branding - Display branding string
3534 * @ioc: per adapter object
3535 */
3536static void
3537_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3538{
3539        if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3540                return;
3541
3542        switch (ioc->pdev->subsystem_vendor) {
3543        case PCI_VENDOR_ID_INTEL:
3544                switch (ioc->pdev->device) {
3545                case MPI2_MFGPAGE_DEVID_SAS2008:
3546                        switch (ioc->pdev->subsystem_device) {
3547                        case MPT2SAS_INTEL_RMS2LL080_SSDID:
3548                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3549                                    MPT2SAS_INTEL_RMS2LL080_BRANDING);
3550                                break;
3551                        case MPT2SAS_INTEL_RMS2LL040_SSDID:
3552                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3553                                    MPT2SAS_INTEL_RMS2LL040_BRANDING);
3554                                break;
3555                        case MPT2SAS_INTEL_SSD910_SSDID:
3556                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3557                                    MPT2SAS_INTEL_SSD910_BRANDING);
3558                                break;
3559                        default:
3560                                pr_info(MPT3SAS_FMT
3561                                 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3562                                 ioc->name, ioc->pdev->subsystem_device);
3563                                break;
3564                        }
3565                case MPI2_MFGPAGE_DEVID_SAS2308_2:
3566                        switch (ioc->pdev->subsystem_device) {
3567                        case MPT2SAS_INTEL_RS25GB008_SSDID:
3568                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3569                                    MPT2SAS_INTEL_RS25GB008_BRANDING);
3570                                break;
3571                        case MPT2SAS_INTEL_RMS25JB080_SSDID:
3572                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3573                                    MPT2SAS_INTEL_RMS25JB080_BRANDING);
3574                                break;
3575                        case MPT2SAS_INTEL_RMS25JB040_SSDID:
3576                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3577                                    MPT2SAS_INTEL_RMS25JB040_BRANDING);
3578                                break;
3579                        case MPT2SAS_INTEL_RMS25KB080_SSDID:
3580                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3581                                    MPT2SAS_INTEL_RMS25KB080_BRANDING);
3582                                break;
3583                        case MPT2SAS_INTEL_RMS25KB040_SSDID:
3584                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3585                                    MPT2SAS_INTEL_RMS25KB040_BRANDING);
3586                                break;
3587                        case MPT2SAS_INTEL_RMS25LB040_SSDID:
3588                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3589                                    MPT2SAS_INTEL_RMS25LB040_BRANDING);
3590                                break;
3591                        case MPT2SAS_INTEL_RMS25LB080_SSDID:
3592                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3593                                    MPT2SAS_INTEL_RMS25LB080_BRANDING);
3594                                break;
3595                        default:
3596                                pr_info(MPT3SAS_FMT
3597                                 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3598                                 ioc->name, ioc->pdev->subsystem_device);
3599                                break;
3600                        }
3601                case MPI25_MFGPAGE_DEVID_SAS3008:
3602                        switch (ioc->pdev->subsystem_device) {
3603                        case MPT3SAS_INTEL_RMS3JC080_SSDID:
3604                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3605                                        MPT3SAS_INTEL_RMS3JC080_BRANDING);
3606                                break;
3607
3608                        case MPT3SAS_INTEL_RS3GC008_SSDID:
3609                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3610                                        MPT3SAS_INTEL_RS3GC008_BRANDING);
3611                                break;
3612                        case MPT3SAS_INTEL_RS3FC044_SSDID:
3613                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3614                                        MPT3SAS_INTEL_RS3FC044_BRANDING);
3615                                break;
3616                        case MPT3SAS_INTEL_RS3UC080_SSDID:
3617                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3618                                        MPT3SAS_INTEL_RS3UC080_BRANDING);
3619                                break;
3620                        default:
3621                                pr_info(MPT3SAS_FMT
3622                                 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3623                                 ioc->name, ioc->pdev->subsystem_device);
3624                                break;
3625                        }
3626                        break;
3627                default:
3628                        pr_info(MPT3SAS_FMT
3629                         "Intel(R) Controller: Subsystem ID: 0x%X\n",
3630                         ioc->name, ioc->pdev->subsystem_device);
3631                        break;
3632                }
3633                break;
3634        case PCI_VENDOR_ID_DELL:
3635                switch (ioc->pdev->device) {
3636                case MPI2_MFGPAGE_DEVID_SAS2008:
3637                        switch (ioc->pdev->subsystem_device) {
3638                        case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3639                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3640                                 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3641                                break;
3642                        case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3643                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3644                                 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3645                                break;
3646                        case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3647                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3648                                 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3649                                break;
3650                        case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3651                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3652                                 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3653                                break;
3654                        case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3655                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3656                                 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3657                                break;
3658                        case MPT2SAS_DELL_PERC_H200_SSDID:
3659                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3660                                 MPT2SAS_DELL_PERC_H200_BRANDING);
3661                                break;
3662                        case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3663                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3664                                 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3665                                break;
3666                        default:
3667                                pr_info(MPT3SAS_FMT
3668                                   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3669                                   ioc->name, ioc->pdev->subsystem_device);
3670                                break;
3671                        }
3672                        break;
3673                case MPI25_MFGPAGE_DEVID_SAS3008:
3674                        switch (ioc->pdev->subsystem_device) {
3675                        case MPT3SAS_DELL_12G_HBA_SSDID:
3676                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3677                                        MPT3SAS_DELL_12G_HBA_BRANDING);
3678                                break;
3679                        default:
3680                                pr_info(MPT3SAS_FMT
3681                                   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3682                                   ioc->name, ioc->pdev->subsystem_device);
3683                                break;
3684                        }
3685                        break;
3686                default:
3687                        pr_info(MPT3SAS_FMT
3688                           "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3689                           ioc->pdev->subsystem_device);
3690                        break;
3691                }
3692                break;
3693        case PCI_VENDOR_ID_CISCO:
3694                switch (ioc->pdev->device) {
3695                case MPI25_MFGPAGE_DEVID_SAS3008:
3696                        switch (ioc->pdev->subsystem_device) {
3697                        case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3698                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3699                                        MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3700                                break;
3701                        case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3702                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3703                                        MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3704                                break;
3705                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3706                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3707                                        MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3708                                break;
3709                        default:
3710                                pr_info(MPT3SAS_FMT
3711                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3712                                  ioc->name, ioc->pdev->subsystem_device);
3713                                break;
3714                        }
3715                        break;
3716                case MPI25_MFGPAGE_DEVID_SAS3108_1:
3717                        switch (ioc->pdev->subsystem_device) {
3718                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3719                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3720                                MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3721                                break;
3722                        case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3723                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3724                                MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3725                                );
3726                                break;
3727                        default:
3728                                pr_info(MPT3SAS_FMT
3729                                 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3730                                 ioc->name, ioc->pdev->subsystem_device);
3731                                break;
3732                        }
3733                        break;
3734                default:
3735                        pr_info(MPT3SAS_FMT
3736                           "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3737                           ioc->name, ioc->pdev->subsystem_device);
3738                        break;
3739                }
3740                break;
3741        case MPT2SAS_HP_3PAR_SSVID:
3742                switch (ioc->pdev->device) {
3743                case MPI2_MFGPAGE_DEVID_SAS2004:
3744                        switch (ioc->pdev->subsystem_device) {
3745                        case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3746                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3747                                    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3748                                break;
3749                        default:
3750                                pr_info(MPT3SAS_FMT
3751                                   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3752                                   ioc->name, ioc->pdev->subsystem_device);
3753                                break;
3754                        }
3755                case MPI2_MFGPAGE_DEVID_SAS2308_2:
3756                        switch (ioc->pdev->subsystem_device) {
3757                        case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3758                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3759                                    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3760                                break;
3761                        case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3762                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3763                                    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3764                                break;
3765                        case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3766                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3767                                 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3768                                break;
3769                        case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3770                                pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3771                                    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3772                                break;
3773                        default:
3774                                pr_info(MPT3SAS_FMT
3775                                   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3776                                   ioc->name, ioc->pdev->subsystem_device);
3777                                break;
3778                        }
3779                default:
3780                        pr_info(MPT3SAS_FMT
3781                           "HP SAS HBA: Subsystem ID: 0x%X\n",
3782                           ioc->name, ioc->pdev->subsystem_device);
3783                        break;
3784                }
3785        default:
3786                break;
3787        }
3788}
3789
3790/**
3791 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3792 *                              version from FW Image Header.
3793 * @ioc: per adapter object
3794 *
3795 * Return: 0 for success, non-zero for failure.
3796 */
3797        static int
3798_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3799{
3800        Mpi2FWImageHeader_t *FWImgHdr;
3801        Mpi25FWUploadRequest_t *mpi_request;
3802        Mpi2FWUploadReply_t mpi_reply;
3803        int r = 0;
3804        void *fwpkg_data = NULL;
3805        dma_addr_t fwpkg_data_dma;
3806        u16 smid, ioc_status;
3807        size_t data_length;
3808
3809        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3810                                __func__));
3811
3812        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3813                pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3814                                ioc->name, __func__);
3815                return -EAGAIN;
3816        }
3817
3818        data_length = sizeof(Mpi2FWImageHeader_t);
3819        fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3820                        &fwpkg_data_dma);
3821        if (!fwpkg_data) {
3822                pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3823                                ioc->name, __FILE__, __LINE__, __func__);
3824                return -ENOMEM;
3825        }
3826
3827        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3828        if (!smid) {
3829                pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3830                                ioc->name, __func__);
3831                r = -EAGAIN;
3832                goto out;
3833        }
3834
3835        ioc->base_cmds.status = MPT3_CMD_PENDING;
3836        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3837        ioc->base_cmds.smid = smid;
3838        memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3839        mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3840        mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3841        mpi_request->ImageSize = cpu_to_le32(data_length);
3842        ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3843                        data_length);
3844        init_completion(&ioc->base_cmds.done);
3845        mpt3sas_base_put_smid_default(ioc, smid);
3846        /* Wait for 15 seconds */
3847        wait_for_completion_timeout(&ioc->base_cmds.done,
3848                        FW_IMG_HDR_READ_TIMEOUT*HZ);
3849        pr_info(MPT3SAS_FMT "%s: complete\n",
3850                        ioc->name, __func__);
3851        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3852                pr_err(MPT3SAS_FMT "%s: timeout\n",
3853                                ioc->name, __func__);
3854                _debug_dump_mf(mpi_request,
3855                                sizeof(Mpi25FWUploadRequest_t)/4);
3856                r = -ETIME;
3857        } else {
3858                memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3859                if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3860                        memcpy(&mpi_reply, ioc->base_cmds.reply,
3861                                        sizeof(Mpi2FWUploadReply_t));
3862                        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3863                                                MPI2_IOCSTATUS_MASK;
3864                        if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3865                                FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3866                                if (FWImgHdr->PackageVersion.Word) {
3867                                        pr_info(MPT3SAS_FMT "FW Package Version"
3868                                        "(%02d.%02d.%02d.%02d)\n",
3869                                        ioc->name,
3870                                        FWImgHdr->PackageVersion.Struct.Major,
3871                                        FWImgHdr->PackageVersion.Struct.Minor,
3872                                        FWImgHdr->PackageVersion.Struct.Unit,
3873                                        FWImgHdr->PackageVersion.Struct.Dev);
3874                                }
3875                        } else {
3876                                _debug_dump_mf(&mpi_reply,
3877                                                sizeof(Mpi2FWUploadReply_t)/4);
3878                        }
3879                }
3880        }
3881        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3882out:
3883        if (fwpkg_data)
3884                pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3885                                fwpkg_data_dma);
3886        return r;
3887}
3888
3889/**
3890 * _base_display_ioc_capabilities - Disply IOC's capabilities.
3891 * @ioc: per adapter object
3892 */
3893static void
3894_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3895{
3896        int i = 0;
3897        char desc[16];
3898        u32 iounit_pg1_flags;
3899        u32 bios_version;
3900
3901        bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3902        strncpy(desc, ioc->manu_pg0.ChipName, 16);
3903        pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3904           "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3905            ioc->name, desc,
3906           (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3907           (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3908           (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3909           ioc->facts.FWVersion.Word & 0x000000FF,
3910           ioc->pdev->revision,
3911           (bios_version & 0xFF000000) >> 24,
3912           (bios_version & 0x00FF0000) >> 16,
3913           (bios_version & 0x0000FF00) >> 8,
3914            bios_version & 0x000000FF);
3915
3916        _base_display_OEMs_branding(ioc);
3917
3918        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3919                pr_info("%sNVMe", i ? "," : "");
3920                i++;
3921        }
3922
3923        pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3924
3925        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3926                pr_info("Initiator");
3927                i++;
3928        }
3929
3930        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3931                pr_info("%sTarget", i ? "," : "");
3932                i++;
3933        }
3934
3935        i = 0;
3936        pr_info("), ");
3937        pr_info("Capabilities=(");
3938
3939        if (!ioc->hide_ir_msg) {
3940                if (ioc->facts.IOCCapabilities &
3941                    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3942                        pr_info("Raid");
3943                        i++;
3944                }
3945        }
3946
3947        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3948                pr_info("%sTLR", i ? "," : "");
3949                i++;
3950        }
3951
3952        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3953                pr_info("%sMulticast", i ? "," : "");
3954                i++;
3955        }
3956
3957        if (ioc->facts.IOCCapabilities &
3958            MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3959                pr_info("%sBIDI Target", i ? "," : "");
3960                i++;
3961        }
3962
3963        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3964                pr_info("%sEEDP", i ? "," : "");
3965                i++;
3966        }
3967
3968        if (ioc->facts.IOCCapabilities &
3969            MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3970                pr_info("%sSnapshot Buffer", i ? "," : "");
3971                i++;
3972        }
3973
3974        if (ioc->facts.IOCCapabilities &
3975            MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3976                pr_info("%sDiag Trace Buffer", i ? "," : "");
3977                i++;
3978        }
3979
3980        if (ioc->facts.IOCCapabilities &
3981            MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3982                pr_info("%sDiag Extended Buffer", i ? "," : "");
3983                i++;
3984        }
3985
3986        if (ioc->facts.IOCCapabilities &
3987            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3988                pr_info("%sTask Set Full", i ? "," : "");
3989                i++;
3990        }
3991
3992        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3993        if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3994                pr_info("%sNCQ", i ? "," : "");
3995                i++;
3996        }
3997
3998        pr_info(")\n");
3999}
4000
4001/**
4002 * mpt3sas_base_update_missing_delay - change the missing delay timers
4003 * @ioc: per adapter object
4004 * @device_missing_delay: amount of time till device is reported missing
4005 * @io_missing_delay: interval IO is returned when there is a missing device
4006 *
4007 * Passed on the command line, this function will modify the device missing
4008 * delay, as well as the io missing delay. This should be called at driver
4009 * load time.
4010 */
4011void
4012mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4013        u16 device_missing_delay, u8 io_missing_delay)
4014{
4015        u16 dmd, dmd_new, dmd_orignal;
4016        u8 io_missing_delay_original;
4017        u16 sz;
4018        Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4019        Mpi2ConfigReply_t mpi_reply;
4020        u8 num_phys = 0;
4021        u16 ioc_status;
4022
4023        mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4024        if (!num_phys)
4025                return;
4026
4027        sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4028            sizeof(Mpi2SasIOUnit1PhyData_t));
4029        sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4030        if (!sas_iounit_pg1) {
4031                pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4032                    ioc->name, __FILE__, __LINE__, __func__);
4033                goto out;
4034        }
4035        if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4036            sas_iounit_pg1, sz))) {
4037                pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4038                    ioc->name, __FILE__, __LINE__, __func__);
4039                goto out;
4040        }
4041        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4042            MPI2_IOCSTATUS_MASK;
4043        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4044                pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4045                    ioc->name, __FILE__, __LINE__, __func__);
4046                goto out;
4047        }
4048
4049        /* device missing delay */
4050        dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4051        if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4052                dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4053        else
4054                dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4055        dmd_orignal = dmd;
4056        if (device_missing_delay > 0x7F) {
4057                dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4058                    device_missing_delay;
4059                dmd = dmd / 16;
4060                dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4061        } else
4062                dmd = device_missing_delay;
4063        sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4064
4065        /* io missing delay */
4066        io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4067        sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4068
4069        if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4070            sz)) {
4071                if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4072                        dmd_new = (dmd &
4073                            MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4074                else
4075                        dmd_new =
4076                    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4077                pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4078                        ioc->name, dmd_orignal, dmd_new);
4079                pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4080                        ioc->name, io_missing_delay_original,
4081                    io_missing_delay);
4082                ioc->device_missing_delay = dmd_new;
4083                ioc->io_missing_delay = io_missing_delay;
4084        }
4085
4086out:
4087        kfree(sas_iounit_pg1);
4088}
4089
4090/**
4091 * _base_static_config_pages - static start of day config pages
4092 * @ioc: per adapter object
4093 */
4094static void
4095_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4096{
4097        Mpi2ConfigReply_t mpi_reply;
4098        u32 iounit_pg1_flags;
4099
4100        ioc->nvme_abort_timeout = 30;
4101        mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4102        if (ioc->ir_firmware)
4103                mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4104                    &ioc->manu_pg10);
4105
4106        /*
4107         * Ensure correct T10 PI operation if vendor left EEDPTagMode
4108         * flag unset in NVDATA.
4109         */
4110        mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4111        if (ioc->manu_pg11.EEDPTagMode == 0) {
4112                pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4113                    ioc->name);
4114                ioc->manu_pg11.EEDPTagMode &= ~0x3;
4115                ioc->manu_pg11.EEDPTagMode |= 0x1;
4116                mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4117                    &ioc->manu_pg11);
4118        }
4119        if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4120                ioc->tm_custom_handling = 1;
4121        else {
4122                ioc->tm_custom_handling = 0;
4123                if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4124                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4125                else if (ioc->manu_pg11.NVMeAbortTO >
4126                                        NVME_TASK_ABORT_MAX_TIMEOUT)
4127                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4128                else
4129                        ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4130        }
4131
4132        mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4133        mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4134        mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4135        mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4136        mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4137        mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4138        _base_display_ioc_capabilities(ioc);
4139
4140        /*
4141         * Enable task_set_full handling in iounit_pg1 when the
4142         * facts capabilities indicate that its supported.
4143         */
4144        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4145        if ((ioc->facts.IOCCapabilities &
4146            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4147                iounit_pg1_flags &=
4148                    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4149        else
4150                iounit_pg1_flags |=
4151                    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4152        ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4153        mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4154
4155        if (ioc->iounit_pg8.NumSensors)
4156                ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4157}
4158
4159/**
4160 * mpt3sas_free_enclosure_list - release memory
4161 * @ioc: per adapter object
4162 *
4163 * Free memory allocated during encloure add.
4164 */
4165void
4166mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4167{
4168        struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4169
4170        /* Free enclosure list */
4171        list_for_each_entry_safe(enclosure_dev,
4172                        enclosure_dev_next, &ioc->enclosure_list, list) {
4173                list_del(&enclosure_dev->list);
4174                kfree(enclosure_dev);
4175        }
4176}
4177
4178/**
4179 * _base_release_memory_pools - release memory
4180 * @ioc: per adapter object
4181 *
4182 * Free memory allocated from _base_allocate_memory_pools.
4183 */
4184static void
4185_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4186{
4187        int i = 0;
4188        int j = 0;
4189        struct chain_tracker *ct;
4190        struct reply_post_struct *rps;
4191
4192        dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4193            __func__));
4194
4195        if (ioc->request) {
4196                pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4197                    ioc->request,  ioc->request_dma);
4198                dexitprintk(ioc, pr_info(MPT3SAS_FMT
4199                        "request_pool(0x%p): free\n",
4200                        ioc->name, ioc->request));
4201                ioc->request = NULL;
4202        }
4203
4204        if (ioc->sense) {
4205                dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4206                dma_pool_destroy(ioc->sense_dma_pool);
4207                dexitprintk(ioc, pr_info(MPT3SAS_FMT
4208                        "sense_pool(0x%p): free\n",
4209                        ioc->name, ioc->sense));
4210                ioc->sense = NULL;
4211        }
4212
4213        if (ioc->reply) {
4214                dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4215                dma_pool_destroy(ioc->reply_dma_pool);
4216                dexitprintk(ioc, pr_info(MPT3SAS_FMT
4217                        "reply_pool(0x%p): free\n",
4218                        ioc->name, ioc->reply));
4219                ioc->reply = NULL;
4220        }
4221
4222        if (ioc->reply_free) {
4223                dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4224                    ioc->reply_free_dma);
4225                dma_pool_destroy(ioc->reply_free_dma_pool);
4226                dexitprintk(ioc, pr_info(MPT3SAS_FMT
4227                        "reply_free_pool(0x%p): free\n",
4228                        ioc->name, ioc->reply_free));
4229                ioc->reply_free = NULL;
4230        }
4231
4232        if (ioc->reply_post) {
4233                do {
4234                        rps = &ioc->reply_post[i];
4235                        if (rps->reply_post_free) {
4236                                dma_pool_free(
4237                                    ioc->reply_post_free_dma_pool,
4238                                    rps->reply_post_free,
4239                                    rps->reply_post_free_dma);
4240                                dexitprintk(ioc, pr_info(MPT3SAS_FMT
4241                                    "reply_post_free_pool(0x%p): free\n",
4242                                    ioc->name, rps->reply_post_free));
4243                                rps->reply_post_free = NULL;
4244                        }
4245                } while (ioc->rdpq_array_enable &&
4246                           (++i < ioc->reply_queue_count));
4247                if (ioc->reply_post_free_array &&
4248                        ioc->rdpq_array_enable) {
4249                        dma_pool_free(ioc->reply_post_free_array_dma_pool,
4250                                ioc->reply_post_free_array,
4251                                ioc->reply_post_free_array_dma);
4252                        ioc->reply_post_free_array = NULL;
4253                }
4254                dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4255                dma_pool_destroy(ioc->reply_post_free_dma_pool);
4256                kfree(ioc->reply_post);
4257        }
4258
4259        if (ioc->pcie_sgl_dma_pool) {
4260                for (i = 0; i < ioc->scsiio_depth; i++) {
4261                        dma_pool_free(ioc->pcie_sgl_dma_pool,
4262                                        ioc->pcie_sg_lookup[i].pcie_sgl,
4263                                        ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4264                }
4265                if (ioc->pcie_sgl_dma_pool)
4266                        dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4267        }
4268
4269        if (ioc->config_page) {
4270                dexitprintk(ioc, pr_info(MPT3SAS_FMT
4271                    "config_page(0x%p): free\n", ioc->name,
4272                    ioc->config_page));
4273                pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4274                    ioc->config_page, ioc->config_page_dma);
4275        }
4276
4277        kfree(ioc->hpr_lookup);
4278        kfree(ioc->internal_lookup);
4279        if (ioc->chain_lookup) {
4280                for (i = 0; i < ioc->scsiio_depth; i++) {
4281                        for (j = ioc->chains_per_prp_buffer;
4282                            j < ioc->chains_needed_per_io; j++) {
4283                                ct = &ioc->chain_lookup[i].chains_per_smid[j];
4284                                if (ct && ct->chain_buffer)
4285                                        dma_pool_free(ioc->chain_dma_pool,
4286                                                ct->chain_buffer,
4287                                                ct->chain_buffer_dma);
4288                        }
4289                        kfree(ioc->chain_lookup[i].chains_per_smid);
4290                }
4291                dma_pool_destroy(ioc->chain_dma_pool);
4292                kfree(ioc->chain_lookup);
4293                ioc->chain_lookup = NULL;
4294        }
4295}
4296
4297/**
4298 * is_MSB_are_same - checks whether all reply queues in a set are
4299 *      having same upper 32bits in their base memory address.
4300 * @reply_pool_start_address: Base address of a reply queue set
4301 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4302 *
4303 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4304 * memory address, else 0.
4305 */
4306
4307static int
4308is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4309{
4310        long reply_pool_end_address;
4311
4312        reply_pool_end_address = reply_pool_start_address + pool_sz;
4313
4314        if (upper_32_bits(reply_pool_start_address) ==
4315                upper_32_bits(reply_pool_end_address))
4316                return 1;
4317        else
4318                return 0;
4319}
4320
4321/**
4322 * _base_allocate_memory_pools - allocate start of day memory pools
4323 * @ioc: per adapter object
4324 *
4325 * Return: 0 success, anything else error.
4326 */
4327static int
4328_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4329{
4330        struct mpt3sas_facts *facts;
4331        u16 max_sge_elements;
4332        u16 chains_needed_per_io;
4333        u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4334        u32 retry_sz;
4335        u16 max_request_credit, nvme_blocks_needed;
4336        unsigned short sg_tablesize;
4337        u16 sge_size;
4338        int i, j;
4339        struct chain_tracker *ct;
4340
4341        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4342            __func__));
4343
4344
4345        retry_sz = 0;
4346        facts = &ioc->facts;
4347
4348        /* command line tunables for max sgl entries */
4349        if (max_sgl_entries != -1)
4350                sg_tablesize = max_sgl_entries;
4351        else {
4352                if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4353                        sg_tablesize = MPT2SAS_SG_DEPTH;
4354                else
4355                        sg_tablesize = MPT3SAS_SG_DEPTH;
4356        }
4357
4358        /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4359        if (reset_devices)
4360                sg_tablesize = min_t(unsigned short, sg_tablesize,
4361                   MPT_KDUMP_MIN_PHYS_SEGMENTS);
4362
4363        if (ioc->is_mcpu_endpoint)
4364                ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4365        else {
4366                if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4367                        sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4368                else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4369                        sg_tablesize = min_t(unsigned short, sg_tablesize,
4370                                        SG_MAX_SEGMENTS);
4371                        pr_warn(MPT3SAS_FMT
4372                                "sg_tablesize(%u) is bigger than kernel "
4373                                "defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4374                                sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4375                }
4376                ioc->shost->sg_tablesize = sg_tablesize;
4377        }
4378
4379        ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4380                (facts->RequestCredit / 4));
4381        if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4382                if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4383                                INTERNAL_SCSIIO_CMDS_COUNT)) {
4384                        pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4385                            Credits, it has just %d number of credits\n",
4386                            ioc->name, facts->RequestCredit);
4387                        return -ENOMEM;
4388                }
4389                ioc->internal_depth = 10;
4390        }
4391
4392        ioc->hi_priority_depth = ioc->internal_depth - (5);
4393        /* command line tunables  for max controller queue depth */
4394        if (max_queue_depth != -1 && max_queue_depth != 0) {
4395                max_request_credit = min_t(u16, max_queue_depth +
4396                        ioc->internal_depth, facts->RequestCredit);
4397                if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4398                        max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4399        } else if (reset_devices)
4400                max_request_credit = min_t(u16, facts->RequestCredit,
4401                    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4402        else
4403                max_request_credit = min_t(u16, facts->RequestCredit,
4404                    MAX_HBA_QUEUE_DEPTH);
4405
4406        /* Firmware maintains additional facts->HighPriorityCredit number of
4407         * credits for HiPriprity Request messages, so hba queue depth will be
4408         * sum of max_request_credit and high priority queue depth.
4409         */
4410        ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4411
4412        /* request frame size */
4413        ioc->request_sz = facts->IOCRequestFrameSize * 4;
4414
4415        /* reply frame size */
4416        ioc->reply_sz = facts->ReplyFrameSize * 4;
4417
4418        /* chain segment size */
4419        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4420                if (facts->IOCMaxChainSegmentSize)
4421                        ioc->chain_segment_sz =
4422                                        facts->IOCMaxChainSegmentSize *
4423                                        MAX_CHAIN_ELEMT_SZ;
4424                else
4425                /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4426                        ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4427                                                    MAX_CHAIN_ELEMT_SZ;
4428        } else
4429                ioc->chain_segment_sz = ioc->request_sz;
4430
4431        /* calculate the max scatter element size */
4432        sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4433
4434 retry_allocation:
4435        total_sz = 0;
4436        /* calculate number of sg elements left over in the 1st frame */
4437        max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4438            sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4439        ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4440
4441        /* now do the same for a chain buffer */
4442        max_sge_elements = ioc->chain_segment_sz - sge_size;
4443        ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4444
4445        /*
4446         *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4447         */
4448        chains_needed_per_io = ((ioc->shost->sg_tablesize -
4449           ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4450            + 1;
4451        if (chains_needed_per_io > facts->MaxChainDepth) {
4452                chains_needed_per_io = facts->MaxChainDepth;
4453                ioc->shost->sg_tablesize = min_t(u16,
4454                ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4455                * chains_needed_per_io), ioc->shost->sg_tablesize);
4456        }
4457        ioc->chains_needed_per_io = chains_needed_per_io;
4458
4459        /* reply free queue sizing - taking into account for 64 FW events */
4460        ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4461
4462        /* mCPU manage single counters for simplicity */
4463        if (ioc->is_mcpu_endpoint)
4464                ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4465        else {
4466                /* calculate reply descriptor post queue depth */
4467                ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4468                        ioc->reply_free_queue_depth +  1;
4469                /* align the reply post queue on the next 16 count boundary */
4470                if (ioc->reply_post_queue_depth % 16)
4471                        ioc->reply_post_queue_depth += 16 -
4472                                (ioc->reply_post_queue_depth % 16);
4473        }
4474
4475        if (ioc->reply_post_queue_depth >
4476            facts->MaxReplyDescriptorPostQueueDepth) {
4477                ioc->reply_post_queue_depth =
4478                                facts->MaxReplyDescriptorPostQueueDepth -
4479                    (facts->MaxReplyDescriptorPostQueueDepth % 16);
4480                ioc->hba_queue_depth =
4481                                ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4482                ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4483        }
4484
4485        dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4486            "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4487            "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4488            ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4489            ioc->chains_needed_per_io));
4490
4491        /* reply post queue, 16 byte align */
4492        reply_post_free_sz = ioc->reply_post_queue_depth *
4493            sizeof(Mpi2DefaultReplyDescriptor_t);
4494
4495        sz = reply_post_free_sz;
4496        if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4497                sz *= ioc->reply_queue_count;
4498
4499        ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4500            (ioc->reply_queue_count):1,
4501            sizeof(struct reply_post_struct), GFP_KERNEL);
4502
4503        if (!ioc->reply_post) {
4504                pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4505                        ioc->name);
4506                goto out;
4507        }
4508        ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4509            &ioc->pdev->dev, sz, 16, 0);
4510        if (!ioc->reply_post_free_dma_pool) {
4511                pr_err(MPT3SAS_FMT
4512                 "reply_post_free pool: dma_pool_create failed\n",
4513                 ioc->name);
4514                goto out;
4515        }
4516        i = 0;
4517        do {
4518                ioc->reply_post[i].reply_post_free =
4519                    dma_pool_alloc(ioc->reply_post_free_dma_pool,
4520                    GFP_KERNEL,
4521                    &ioc->reply_post[i].reply_post_free_dma);
4522                if (!ioc->reply_post[i].reply_post_free) {
4523                        pr_err(MPT3SAS_FMT
4524                        "reply_post_free pool: dma_pool_alloc failed\n",
4525                        ioc->name);
4526                        goto out;
4527                }
4528                memset(ioc->reply_post[i].reply_post_free, 0, sz);
4529                dinitprintk(ioc, pr_info(MPT3SAS_FMT
4530                    "reply post free pool (0x%p): depth(%d),"
4531                    "element_size(%d), pool_size(%d kB)\n", ioc->name,
4532                    ioc->reply_post[i].reply_post_free,
4533                    ioc->reply_post_queue_depth, 8, sz/1024));
4534                dinitprintk(ioc, pr_info(MPT3SAS_FMT
4535                    "reply_post_free_dma = (0x%llx)\n", ioc->name,
4536                    (unsigned long long)
4537                    ioc->reply_post[i].reply_post_free_dma));
4538                total_sz += sz;
4539        } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4540
4541        if (ioc->dma_mask == 64) {
4542                if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4543                        pr_warn(MPT3SAS_FMT
4544                            "no suitable consistent DMA mask for %s\n",
4545                            ioc->name, pci_name(ioc->pdev));
4546                        goto out;
4547                }
4548        }
4549
4550        ioc->scsiio_depth = ioc->hba_queue_depth -
4551            ioc->hi_priority_depth - ioc->internal_depth;
4552
4553        /* set the scsi host can_queue depth
4554         * with some internal commands that could be outstanding
4555         */
4556        ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4557        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4558                "scsi host: can_queue depth (%d)\n",
4559                ioc->name, ioc->shost->can_queue));
4560
4561
4562        /* contiguous pool for request and chains, 16 byte align, one extra "
4563         * "frame for smid=0
4564         */
4565        ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4566        sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4567
4568        /* hi-priority queue */
4569        sz += (ioc->hi_priority_depth * ioc->request_sz);
4570
4571        /* internal queue */
4572        sz += (ioc->internal_depth * ioc->request_sz);
4573
4574        ioc->request_dma_sz = sz;
4575        ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4576        if (!ioc->request) {
4577                pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4578                    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4579                    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4580                    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4581                if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4582                        goto out;
4583                retry_sz = 64;
4584                ioc->hba_queue_depth -= retry_sz;
4585                _base_release_memory_pools(ioc);
4586                goto retry_allocation;
4587        }
4588
4589        if (retry_sz)
4590                pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4591                    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4592                    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4593                    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4594
4595        /* hi-priority queue */
4596        ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4597            ioc->request_sz);
4598        ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4599            ioc->request_sz);
4600
4601        /* internal queue */
4602        ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4603            ioc->request_sz);
4604        ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4605            ioc->request_sz);
4606
4607        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4608                "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4609                ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4610            (ioc->hba_queue_depth * ioc->request_sz)/1024));
4611
4612        dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4613            ioc->name, (unsigned long long) ioc->request_dma));
4614        total_sz += sz;
4615
4616        dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4617                ioc->name, ioc->request, ioc->scsiio_depth));
4618
4619        ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4620        sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4621        ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4622        if (!ioc->chain_lookup) {
4623                pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages "
4624                                "failed\n", ioc->name);
4625                goto out;
4626        }
4627
4628        sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4629        for (i = 0; i < ioc->scsiio_depth; i++) {
4630                ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4631                if (!ioc->chain_lookup[i].chains_per_smid) {
4632                        pr_err(MPT3SAS_FMT "chain_lookup: "
4633                                        " kzalloc failed\n", ioc->name);
4634                        goto out;
4635                }
4636        }
4637
4638        /* initialize hi-priority queue smid's */
4639        ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4640            sizeof(struct request_tracker), GFP_KERNEL);
4641        if (!ioc->hpr_lookup) {
4642                pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4643                    ioc->name);
4644                goto out;
4645        }
4646        ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4647        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4648                "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4649                ioc->name, ioc->hi_priority,
4650            ioc->hi_priority_depth, ioc->hi_priority_smid));
4651
4652        /* initialize internal queue smid's */
4653        ioc->internal_lookup = kcalloc(ioc->internal_depth,
4654            sizeof(struct request_tracker), GFP_KERNEL);
4655        if (!ioc->internal_lookup) {
4656                pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4657                    ioc->name);
4658                goto out;
4659        }
4660        ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4661        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4662                "internal(0x%p): depth(%d), start smid(%d)\n",
4663                ioc->name, ioc->internal,
4664            ioc->internal_depth, ioc->internal_smid));
4665        /*
4666         * The number of NVMe page sized blocks needed is:
4667         *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4668         * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4669         * that is placed in the main message frame.  8 is the size of each PRP
4670         * entry or PRP list pointer entry.  8 is subtracted from page_size
4671         * because of the PRP list pointer entry at the end of a page, so this
4672         * is not counted as a PRP entry.  The 1 added page is a round up.
4673         *
4674         * To avoid allocation failures due to the amount of memory that could
4675         * be required for NVMe PRP's, only each set of NVMe blocks will be
4676         * contiguous, so a new set is allocated for each possible I/O.
4677         */
4678        ioc->chains_per_prp_buffer = 0;
4679        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4680                nvme_blocks_needed =
4681                        (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4682                nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4683                nvme_blocks_needed++;
4684
4685                sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4686                ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4687                if (!ioc->pcie_sg_lookup) {
4688                        pr_info(MPT3SAS_FMT
4689                            "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4690                        goto out;
4691                }
4692                sz = nvme_blocks_needed * ioc->page_size;
4693                ioc->pcie_sgl_dma_pool =
4694                        dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4695                if (!ioc->pcie_sgl_dma_pool) {
4696                        pr_info(MPT3SAS_FMT
4697                            "PCIe SGL pool: dma_pool_create failed\n",
4698                            ioc->name);
4699                        goto out;
4700                }
4701
4702                ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4703                ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4704                                                ioc->chains_needed_per_io);
4705
4706                for (i = 0; i < ioc->scsiio_depth; i++) {
4707                        ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4708                                ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4709                                &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4710                        if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4711                                pr_info(MPT3SAS_FMT
4712                                    "PCIe SGL pool: dma_pool_alloc failed\n",
4713                                    ioc->name);
4714                                goto out;
4715                        }
4716                        for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4717                                ct = &ioc->chain_lookup[i].chains_per_smid[j];
4718                                ct->chain_buffer =
4719                                    ioc->pcie_sg_lookup[i].pcie_sgl +
4720                                    (j * ioc->chain_segment_sz);
4721                                ct->chain_buffer_dma =
4722                                    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4723                                    (j * ioc->chain_segment_sz);
4724                        }
4725                }
4726
4727                dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4728                        "element_size(%d), pool_size(%d kB)\n", ioc->name,
4729                        ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4730                dinitprintk(ioc, pr_info(MPT3SAS_FMT "Number of chains can "
4731                    "fit in a PRP page(%d)\n", ioc->name,
4732                    ioc->chains_per_prp_buffer));
4733                total_sz += sz * ioc->scsiio_depth;
4734        }
4735
4736        ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4737            ioc->chain_segment_sz, 16, 0);
4738        if (!ioc->chain_dma_pool) {
4739                pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4740                        ioc->name);
4741                goto out;
4742        }
4743        for (i = 0; i < ioc->scsiio_depth; i++) {
4744                for (j = ioc->chains_per_prp_buffer;
4745                                j < ioc->chains_needed_per_io; j++) {
4746                        ct = &ioc->chain_lookup[i].chains_per_smid[j];
4747                        ct->chain_buffer = dma_pool_alloc(
4748                                        ioc->chain_dma_pool, GFP_KERNEL,
4749                                        &ct->chain_buffer_dma);
4750                        if (!ct->chain_buffer) {
4751                                pr_err(MPT3SAS_FMT "chain_lookup: "
4752                                " pci_pool_alloc failed\n", ioc->name);
4753                                _base_release_memory_pools(ioc);
4754                                goto out;
4755                        }
4756                }
4757                total_sz += ioc->chain_segment_sz;
4758        }
4759
4760        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4761                "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4762                ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4763                ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4764
4765        /* sense buffers, 4 byte align */
4766        sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4767        ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4768                                              4, 0);
4769        if (!ioc->sense_dma_pool) {
4770                pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4771                    ioc->name);
4772                goto out;
4773        }
4774        ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4775            &ioc->sense_dma);
4776        if (!ioc->sense) {
4777                pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4778                    ioc->name);
4779                goto out;
4780        }
4781        /* sense buffer requires to be in same 4 gb region.
4782         * Below function will check the same.
4783         * In case of failure, new pci pool will be created with updated
4784         * alignment. Older allocation and pool will be destroyed.
4785         * Alignment will be used such a way that next allocation if
4786         * success, will always meet same 4gb region requirement.
4787         * Actual requirement is not alignment, but we need start and end of
4788         * DMA address must have same upper 32 bit address.
4789         */
4790        if (!is_MSB_are_same((long)ioc->sense, sz)) {
4791                //Release Sense pool & Reallocate
4792                dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4793                dma_pool_destroy(ioc->sense_dma_pool);
4794                ioc->sense = NULL;
4795
4796                ioc->sense_dma_pool =
4797                        dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4798                                                roundup_pow_of_two(sz), 0);
4799                if (!ioc->sense_dma_pool) {
4800                        pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
4801                                        ioc->name);
4802                        goto out;
4803                }
4804                ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4805                                &ioc->sense_dma);
4806                if (!ioc->sense) {
4807                        pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
4808                                        ioc->name);
4809                        goto out;
4810                }
4811        }
4812        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4813            "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4814            "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4815            SCSI_SENSE_BUFFERSIZE, sz/1024));
4816        dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4817            ioc->name, (unsigned long long)ioc->sense_dma));
4818        total_sz += sz;
4819
4820        /* reply pool, 4 byte align */
4821        sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4822        ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4823                                              4, 0);
4824        if (!ioc->reply_dma_pool) {
4825                pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4826                    ioc->name);
4827                goto out;
4828        }
4829        ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4830            &ioc->reply_dma);
4831        if (!ioc->reply) {
4832                pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4833                    ioc->name);
4834                goto out;
4835        }
4836        ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4837        ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4838        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4839                "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4840                ioc->name, ioc->reply,
4841            ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4842        dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4843            ioc->name, (unsigned long long)ioc->reply_dma));
4844        total_sz += sz;
4845
4846        /* reply free queue, 16 byte align */
4847        sz = ioc->reply_free_queue_depth * 4;
4848        ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4849            &ioc->pdev->dev, sz, 16, 0);
4850        if (!ioc->reply_free_dma_pool) {
4851                pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4852                        ioc->name);
4853                goto out;
4854        }
4855        ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4856            &ioc->reply_free_dma);
4857        if (!ioc->reply_free) {
4858                pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4859                        ioc->name);
4860                goto out;
4861        }
4862        memset(ioc->reply_free, 0, sz);
4863        dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4864            "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4865            ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4866        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4867                "reply_free_dma (0x%llx)\n",
4868                ioc->name, (unsigned long long)ioc->reply_free_dma));
4869        total_sz += sz;
4870
4871        if (ioc->rdpq_array_enable) {
4872                reply_post_free_array_sz = ioc->reply_queue_count *
4873                    sizeof(Mpi2IOCInitRDPQArrayEntry);
4874                ioc->reply_post_free_array_dma_pool =
4875                    dma_pool_create("reply_post_free_array pool",
4876                    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4877                if (!ioc->reply_post_free_array_dma_pool) {
4878                        dinitprintk(ioc,
4879                            pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4880                            "dma_pool_create failed\n", ioc->name));
4881                        goto out;
4882                }
4883                ioc->reply_post_free_array =
4884                    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4885                    GFP_KERNEL, &ioc->reply_post_free_array_dma);
4886                if (!ioc->reply_post_free_array) {
4887                        dinitprintk(ioc,
4888                            pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4889                            "dma_pool_alloc failed\n", ioc->name));
4890                        goto out;
4891                }
4892        }
4893        ioc->config_page_sz = 512;
4894        ioc->config_page = pci_alloc_consistent(ioc->pdev,
4895            ioc->config_page_sz, &ioc->config_page_dma);
4896        if (!ioc->config_page) {
4897                pr_err(MPT3SAS_FMT
4898                        "config page: dma_pool_alloc failed\n",
4899                        ioc->name);
4900                goto out;
4901        }
4902        dinitprintk(ioc, pr_info(MPT3SAS_FMT
4903                "config page(0x%p): size(%d)\n",
4904                ioc->name, ioc->config_page, ioc->config_page_sz));
4905        dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4906                ioc->name, (unsigned long long)ioc->config_page_dma));
4907        total_sz += ioc->config_page_sz;
4908
4909        pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4910            ioc->name, total_sz/1024);
4911        pr_info(MPT3SAS_FMT
4912                "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4913            ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4914        pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4915            ioc->name, ioc->shost->sg_tablesize);
4916        return 0;
4917
4918 out:
4919        return -ENOMEM;
4920}
4921
4922/**
4923 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4924 * @ioc: Pointer to MPT_ADAPTER structure
4925 * @cooked: Request raw or cooked IOC state
4926 *
4927 * Return: all IOC Doorbell register bits if cooked==0, else just the
4928 * Doorbell bits in MPI_IOC_STATE_MASK.
4929 */
4930u32
4931mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4932{
4933        u32 s, sc;
4934
4935        s = readl(&ioc->chip->Doorbell);
4936        sc = s & MPI2_IOC_STATE_MASK;
4937        return cooked ? sc : s;
4938}
4939
4940/**
4941 * _base_wait_on_iocstate - waiting on a particular ioc state
4942 * @ioc: ?
4943 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4944 * @timeout: timeout in second
4945 *
4946 * Return: 0 for success, non-zero for failure.
4947 */
4948static int
4949_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4950{
4951        u32 count, cntdn;
4952        u32 current_state;
4953
4954        count = 0;
4955        cntdn = 1000 * timeout;
4956        do {
4957                current_state = mpt3sas_base_get_iocstate(ioc, 1);
4958                if (current_state == ioc_state)
4959                        return 0;
4960                if (count && current_state == MPI2_IOC_STATE_FAULT)
4961                        break;
4962
4963                usleep_range(1000, 1500);
4964                count++;
4965        } while (--cntdn);
4966
4967        return current_state;
4968}
4969
4970/**
4971 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4972 * a write to the doorbell)
4973 * @ioc: per adapter object
4974 *
4975 * Return: 0 for success, non-zero for failure.
4976 *
4977 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4978 */
4979static int
4980_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4981
4982static int
4983_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4984{
4985        u32 cntdn, count;
4986        u32 int_status;
4987
4988        count = 0;
4989        cntdn = 1000 * timeout;
4990        do {
4991                int_status = readl(&ioc->chip->HostInterruptStatus);
4992                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4993                        dhsprintk(ioc, pr_info(MPT3SAS_FMT
4994                                "%s: successful count(%d), timeout(%d)\n",
4995                                ioc->name, __func__, count, timeout));
4996                        return 0;
4997                }
4998
4999                usleep_range(1000, 1500);
5000                count++;
5001        } while (--cntdn);
5002
5003        pr_err(MPT3SAS_FMT
5004                "%s: failed due to timeout count(%d), int_status(%x)!\n",
5005                ioc->name, __func__, count, int_status);
5006        return -EFAULT;
5007}
5008
5009static int
5010_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5011{
5012        u32 cntdn, count;
5013        u32 int_status;
5014
5015        count = 0;
5016        cntdn = 2000 * timeout;
5017        do {
5018                int_status = readl(&ioc->chip->HostInterruptStatus);
5019                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5020                        dhsprintk(ioc, pr_info(MPT3SAS_FMT
5021                                "%s: successful count(%d), timeout(%d)\n",
5022                                ioc->name, __func__, count, timeout));
5023                        return 0;
5024                }
5025
5026                udelay(500);
5027                count++;
5028        } while (--cntdn);
5029
5030        pr_err(MPT3SAS_FMT
5031                "%s: failed due to timeout count(%d), int_status(%x)!\n",
5032                ioc->name, __func__, count, int_status);
5033        return -EFAULT;
5034
5035}
5036
5037/**
5038 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5039 * @ioc: per adapter object
5040 * @timeout: timeout in second
5041 *
5042 * Return: 0 for success, non-zero for failure.
5043 *
5044 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5045 * doorbell.
5046 */
5047static int
5048_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5049{
5050        u32 cntdn, count;
5051        u32 int_status;
5052        u32 doorbell;
5053
5054        count = 0;
5055        cntdn = 1000 * timeout;
5056        do {
5057                int_status = readl(&ioc->chip->HostInterruptStatus);
5058                if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5059                        dhsprintk(ioc, pr_info(MPT3SAS_FMT
5060                                "%s: successful count(%d), timeout(%d)\n",
5061                                ioc->name, __func__, count, timeout));
5062                        return 0;
5063                } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5064                        doorbell = readl(&ioc->chip->Doorbell);
5065                        if ((doorbell & MPI2_IOC_STATE_MASK) ==
5066                            MPI2_IOC_STATE_FAULT) {
5067                                mpt3sas_base_fault_info(ioc , doorbell);
5068                                return -EFAULT;
5069                        }
5070                } else if (int_status == 0xFFFFFFFF)
5071                        goto out;
5072
5073                usleep_range(1000, 1500);
5074                count++;
5075        } while (--cntdn);
5076
5077 out:
5078        pr_err(MPT3SAS_FMT
5079         "%s: failed due to timeout count(%d), int_status(%x)!\n",
5080         ioc->name, __func__, count, int_status);
5081        return -EFAULT;
5082}
5083
5084/**
5085 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5086 * @ioc: per adapter object
5087 * @timeout: timeout in second
5088 *
5089 * Return: 0 for success, non-zero for failure.
5090 */
5091static int
5092_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5093{
5094        u32 cntdn, count;
5095        u32 doorbell_reg;
5096
5097        count = 0;
5098        cntdn = 1000 * timeout;
5099        do {
5100                doorbell_reg = readl(&ioc->chip->Doorbell);
5101                if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5102                        dhsprintk(ioc, pr_info(MPT3SAS_FMT
5103                                "%s: successful count(%d), timeout(%d)\n",
5104                                ioc->name, __func__, count, timeout));
5105                        return 0;
5106                }
5107
5108                usleep_range(1000, 1500);
5109                count++;
5110        } while (--cntdn);
5111
5112        pr_err(MPT3SAS_FMT
5113                "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5114                ioc->name, __func__, count, doorbell_reg);
5115        return -EFAULT;
5116}
5117
5118/**
5119 * _base_send_ioc_reset - send doorbell reset
5120 * @ioc: per adapter object
5121 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5122 * @timeout: timeout in second
5123 *
5124 * Return: 0 for success, non-zero for failure.
5125 */
5126static int
5127_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5128{
5129        u32 ioc_state;
5130        int r = 0;
5131
5132        if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5133                pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
5134                    ioc->name, __func__);
5135                return -EFAULT;
5136        }
5137
5138        if (!(ioc->facts.IOCCapabilities &
5139           MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5140                return -EFAULT;
5141
5142        pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
5143
5144        writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5145            &ioc->chip->Doorbell);
5146        if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5147                r = -EFAULT;
5148                goto out;
5149        }
5150        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5151        if (ioc_state) {
5152                pr_err(MPT3SAS_FMT
5153                        "%s: failed going to ready state (ioc_state=0x%x)\n",
5154                        ioc->name, __func__, ioc_state);
5155                r = -EFAULT;
5156                goto out;
5157        }
5158 out:
5159        pr_info(MPT3SAS_FMT "message unit reset: %s\n",
5160            ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
5161        return r;
5162}
5163
5164/**
5165 * _base_handshake_req_reply_wait - send request thru doorbell interface
5166 * @ioc: per adapter object
5167 * @request_bytes: request length
5168 * @request: pointer having request payload
5169 * @reply_bytes: reply length
5170 * @reply: pointer to reply payload
5171 * @timeout: timeout in second
5172 *
5173 * Return: 0 for success, non-zero for failure.
5174 */
5175static int
5176_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5177        u32 *request, int reply_bytes, u16 *reply, int timeout)
5178{
5179        MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5180        int i;
5181        u8 failed;
5182        __le32 *mfp;
5183
5184        /* make sure doorbell is not in use */
5185        if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5186                pr_err(MPT3SAS_FMT
5187                        "doorbell is in use (line=%d)\n",
5188                        ioc->name, __LINE__);
5189                return -EFAULT;
5190        }
5191
5192        /* clear pending doorbell interrupts from previous state changes */
5193        if (readl(&ioc->chip->HostInterruptStatus) &
5194            MPI2_HIS_IOC2SYS_DB_STATUS)
5195                writel(0, &ioc->chip->HostInterruptStatus);
5196
5197        /* send message to ioc */
5198        writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5199            ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5200            &ioc->chip->Doorbell);
5201
5202        if ((_base_spin_on_doorbell_int(ioc, 5))) {
5203                pr_err(MPT3SAS_FMT
5204                        "doorbell handshake int failed (line=%d)\n",
5205                        ioc->name, __LINE__);
5206                return -EFAULT;
5207        }
5208        writel(0, &ioc->chip->HostInterruptStatus);
5209
5210        if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5211                pr_err(MPT3SAS_FMT
5212                        "doorbell handshake ack failed (line=%d)\n",
5213                        ioc->name, __LINE__);
5214                return -EFAULT;
5215        }
5216
5217        /* send message 32-bits at a time */
5218        for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5219                writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5220                if ((_base_wait_for_doorbell_ack(ioc, 5)))
5221                        failed = 1;
5222        }
5223
5224        if (failed) {
5225                pr_err(MPT3SAS_FMT
5226                        "doorbell handshake sending request failed (line=%d)\n",
5227                        ioc->name, __LINE__);
5228                return -EFAULT;
5229        }
5230
5231        /* now wait for the reply */
5232        if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5233                pr_err(MPT3SAS_FMT
5234                        "doorbell handshake int failed (line=%d)\n",
5235                        ioc->name, __LINE__);
5236                return -EFAULT;
5237        }
5238
5239        /* read the first two 16-bits, it gives the total length of the reply */
5240        reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5241            & MPI2_DOORBELL_DATA_MASK);
5242        writel(0, &ioc->chip->HostInterruptStatus);
5243        if ((_base_wait_for_doorbell_int(ioc, 5))) {
5244                pr_err(MPT3SAS_FMT
5245                        "doorbell handshake int failed (line=%d)\n",
5246                        ioc->name, __LINE__);
5247                return -EFAULT;
5248        }
5249        reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5250            & MPI2_DOORBELL_DATA_MASK);
5251        writel(0, &ioc->chip->HostInterruptStatus);
5252
5253        for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5254                if ((_base_wait_for_doorbell_int(ioc, 5))) {
5255                        pr_err(MPT3SAS_FMT
5256                                "doorbell handshake int failed (line=%d)\n",
5257                                ioc->name, __LINE__);
5258                        return -EFAULT;
5259                }
5260                if (i >=  reply_bytes/2) /* overflow case */
5261                        readl(&ioc->chip->Doorbell);
5262                else
5263                        reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5264                            & MPI2_DOORBELL_DATA_MASK);
5265                writel(0, &ioc->chip->HostInterruptStatus);
5266        }
5267
5268        _base_wait_for_doorbell_int(ioc, 5);
5269        if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5270                dhsprintk(ioc, pr_info(MPT3SAS_FMT
5271                        "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5272        }
5273        writel(0, &ioc->chip->HostInterruptStatus);
5274
5275        if (ioc->logging_level & MPT_DEBUG_INIT) {
5276                mfp = (__le32 *)reply;
5277                pr_info("\toffset:data\n");
5278                for (i = 0; i < reply_bytes/4; i++)
5279                        pr_info("\t[0x%02x]:%08x\n", i*4,
5280                            le32_to_cpu(mfp[i]));
5281        }
5282        return 0;
5283}
5284
5285/**
5286 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5287 * @ioc: per adapter object
5288 * @mpi_reply: the reply payload from FW
5289 * @mpi_request: the request payload sent to FW
5290 *
5291 * The SAS IO Unit Control Request message allows the host to perform low-level
5292 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5293 * to obtain the IOC assigned device handles for a device if it has other
5294 * identifying information about the device, in addition allows the host to
5295 * remove IOC resources associated with the device.
5296 *
5297 * Return: 0 for success, non-zero for failure.
5298 */
5299int
5300mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5301        Mpi2SasIoUnitControlReply_t *mpi_reply,
5302        Mpi2SasIoUnitControlRequest_t *mpi_request)
5303{
5304        u16 smid;
5305        u32 ioc_state;
5306        u8 issue_reset = 0;
5307        int rc;
5308        void *request;
5309        u16 wait_state_count;
5310
5311        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5312            __func__));
5313
5314        mutex_lock(&ioc->base_cmds.mutex);
5315
5316        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5317                pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5318                    ioc->name, __func__);
5319                rc = -EAGAIN;
5320                goto out;
5321        }
5322
5323        wait_state_count = 0;
5324        ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5325        while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5326                if (wait_state_count++ == 10) {
5327                        pr_err(MPT3SAS_FMT
5328                            "%s: failed due to ioc not operational\n",
5329                            ioc->name, __func__);
5330                        rc = -EFAULT;
5331                        goto out;
5332                }
5333                ssleep(1);
5334                ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5335                pr_info(MPT3SAS_FMT
5336                        "%s: waiting for operational state(count=%d)\n",
5337                        ioc->name, __func__, wait_state_count);
5338        }
5339
5340        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5341        if (!smid) {
5342                pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5343                    ioc->name, __func__);
5344                rc = -EAGAIN;
5345                goto out;
5346        }
5347
5348        rc = 0;
5349        ioc->base_cmds.status = MPT3_CMD_PENDING;
5350        request = mpt3sas_base_get_msg_frame(ioc, smid);
5351        ioc->base_cmds.smid = smid;
5352        memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5353        if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5354            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5355                ioc->ioc_link_reset_in_progress = 1;
5356        init_completion(&ioc->base_cmds.done);
5357        mpt3sas_base_put_smid_default(ioc, smid);
5358        wait_for_completion_timeout(&ioc->base_cmds.done,
5359            msecs_to_jiffies(10000));
5360        if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5361            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5362            ioc->ioc_link_reset_in_progress)
5363                ioc->ioc_link_reset_in_progress = 0;
5364        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5365                issue_reset =
5366                        mpt3sas_base_check_cmd_timeout(ioc,
5367                                ioc->base_cmds.status, mpi_request,
5368                                sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5369                goto issue_host_reset;
5370        }
5371        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5372                memcpy(mpi_reply, ioc->base_cmds.reply,
5373                    sizeof(Mpi2SasIoUnitControlReply_t));
5374        else
5375                memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5376        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5377        goto out;
5378
5379 issue_host_reset:
5380        if (issue_reset)
5381                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5382        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5383        rc = -EFAULT;
5384 out:
5385        mutex_unlock(&ioc->base_cmds.mutex);
5386        return rc;
5387}
5388
5389/**
5390 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5391 * @ioc: per adapter object
5392 * @mpi_reply: the reply payload from FW
5393 * @mpi_request: the request payload sent to FW
5394 *
5395 * The SCSI Enclosure Processor request message causes the IOC to
5396 * communicate with SES devices to control LED status signals.
5397 *
5398 * Return: 0 for success, non-zero for failure.
5399 */
5400int
5401mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5402        Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5403{
5404        u16 smid;
5405        u32 ioc_state;
5406        u8 issue_reset = 0;
5407        int rc;
5408        void *request;
5409        u16 wait_state_count;
5410
5411        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5412            __func__));
5413
5414        mutex_lock(&ioc->base_cmds.mutex);
5415
5416        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5417                pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5418                    ioc->name, __func__);
5419                rc = -EAGAIN;
5420                goto out;
5421        }
5422
5423        wait_state_count = 0;
5424        ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5425        while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5426                if (wait_state_count++ == 10) {
5427                        pr_err(MPT3SAS_FMT
5428                            "%s: failed due to ioc not operational\n",
5429                            ioc->name, __func__);
5430                        rc = -EFAULT;
5431                        goto out;
5432                }
5433                ssleep(1);
5434                ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5435                pr_info(MPT3SAS_FMT
5436                        "%s: waiting for operational state(count=%d)\n",
5437                        ioc->name,
5438                    __func__, wait_state_count);
5439        }
5440
5441        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5442        if (!smid) {
5443                pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5444                    ioc->name, __func__);
5445                rc = -EAGAIN;
5446                goto out;
5447        }
5448
5449        rc = 0;
5450        ioc->base_cmds.status = MPT3_CMD_PENDING;
5451        request = mpt3sas_base_get_msg_frame(ioc, smid);
5452        ioc->base_cmds.smid = smid;
5453        memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5454        init_completion(&ioc->base_cmds.done);
5455        mpt3sas_base_put_smid_default(ioc, smid);
5456        wait_for_completion_timeout(&ioc->base_cmds.done,
5457            msecs_to_jiffies(10000));
5458        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5459                issue_reset =
5460                        mpt3sas_base_check_cmd_timeout(ioc,
5461                                ioc->base_cmds.status, mpi_request,
5462                                sizeof(Mpi2SepRequest_t)/4);
5463                goto issue_host_reset;
5464        }
5465        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5466                memcpy(mpi_reply, ioc->base_cmds.reply,
5467                    sizeof(Mpi2SepReply_t));
5468        else
5469                memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5470        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5471        goto out;
5472
5473 issue_host_reset:
5474        if (issue_reset)
5475                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5476        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5477        rc = -EFAULT;
5478 out:
5479        mutex_unlock(&ioc->base_cmds.mutex);
5480        return rc;
5481}
5482
5483/**
5484 * _base_get_port_facts - obtain port facts reply and save in ioc
5485 * @ioc: per adapter object
5486 * @port: ?
5487 *
5488 * Return: 0 for success, non-zero for failure.
5489 */
5490static int
5491_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5492{
5493        Mpi2PortFactsRequest_t mpi_request;
5494        Mpi2PortFactsReply_t mpi_reply;
5495        struct mpt3sas_port_facts *pfacts;
5496        int mpi_reply_sz, mpi_request_sz, r;
5497
5498        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5499            __func__));
5500
5501        mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5502        mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5503        memset(&mpi_request, 0, mpi_request_sz);
5504        mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5505        mpi_request.PortNumber = port;
5506        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5507            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5508
5509        if (r != 0) {
5510                pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5511                    ioc->name, __func__, r);
5512                return r;
5513        }
5514
5515        pfacts = &ioc->pfacts[port];
5516        memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5517        pfacts->PortNumber = mpi_reply.PortNumber;
5518        pfacts->VP_ID = mpi_reply.VP_ID;
5519        pfacts->VF_ID = mpi_reply.VF_ID;
5520        pfacts->MaxPostedCmdBuffers =
5521            le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5522
5523        return 0;
5524}
5525
5526/**
5527 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5528 * @ioc: per adapter object
5529 * @timeout:
5530 *
5531 * Return: 0 for success, non-zero for failure.
5532 */
5533static int
5534_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5535{
5536        u32 ioc_state;
5537        int rc;
5538
5539        dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5540            __func__));
5541
5542        if (ioc->pci_error_recovery) {
5543                dfailprintk(ioc, printk(MPT3SAS_FMT
5544                    "%s: host in pci error recovery\n", ioc->name, __func__));
5545                return -EFAULT;
5546        }
5547
5548        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5549        dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5550            ioc->name, __func__, ioc_state));
5551
5552        if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5553            (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5554                return 0;
5555
5556        if (ioc_state & MPI2_DOORBELL_USED) {
5557                dhsprintk(ioc, printk(MPT3SAS_FMT
5558                    "unexpected doorbell active!\n", ioc->name));
5559                goto issue_diag_reset;
5560        }
5561
5562        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5563                mpt3sas_base_fault_info(ioc, ioc_state &
5564                    MPI2_DOORBELL_DATA_MASK);
5565                goto issue_diag_reset;
5566        }
5567
5568        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5569        if (ioc_state) {
5570                dfailprintk(ioc, printk(MPT3SAS_FMT
5571                    "%s: failed going to ready state (ioc_state=0x%x)\n",
5572                    ioc->name, __func__, ioc_state));
5573                return -EFAULT;
5574        }
5575
5576 issue_diag_reset:
5577        rc = _base_diag_reset(ioc);
5578        return rc;
5579}
5580
5581/**
5582 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5583 * @ioc: per adapter object
5584 *
5585 * Return: 0 for success, non-zero for failure.
5586 */
5587static int
5588_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5589{
5590        Mpi2IOCFactsRequest_t mpi_request;
5591        Mpi2IOCFactsReply_t mpi_reply;
5592        struct mpt3sas_facts *facts;
5593        int mpi_reply_sz, mpi_request_sz, r;
5594
5595        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5596            __func__));
5597
5598        r = _base_wait_for_iocstate(ioc, 10);
5599        if (r) {
5600                dfailprintk(ioc, printk(MPT3SAS_FMT
5601                    "%s: failed getting to correct state\n",
5602                    ioc->name, __func__));
5603                return r;
5604        }
5605        mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5606        mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5607        memset(&mpi_request, 0, mpi_request_sz);
5608        mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5609        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5610            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5611
5612        if (r != 0) {
5613                pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5614                    ioc->name, __func__, r);
5615                return r;
5616        }
5617
5618        facts = &ioc->facts;
5619        memset(facts, 0, sizeof(struct mpt3sas_facts));
5620        facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5621        facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5622        facts->VP_ID = mpi_reply.VP_ID;
5623        facts->VF_ID = mpi_reply.VF_ID;
5624        facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5625        facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5626        facts->WhoInit = mpi_reply.WhoInit;
5627        facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5628        facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5629        if (ioc->msix_enable && (facts->MaxMSIxVectors <=
5630            MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
5631                ioc->combined_reply_queue = 0;
5632        facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5633        facts->MaxReplyDescriptorPostQueueDepth =
5634            le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5635        facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5636        facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5637        if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5638                ioc->ir_firmware = 1;
5639        if ((facts->IOCCapabilities &
5640              MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5641                ioc->rdpq_array_capable = 1;
5642        facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5643        facts->IOCRequestFrameSize =
5644            le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5645        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5646                facts->IOCMaxChainSegmentSize =
5647                        le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5648        }
5649        facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5650        facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5651        ioc->shost->max_id = -1;
5652        facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5653        facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5654        facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5655        facts->HighPriorityCredit =
5656            le16_to_cpu(mpi_reply.HighPriorityCredit);
5657        facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5658        facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5659        facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5660
5661        /*
5662         * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5663         */
5664        ioc->page_size = 1 << facts->CurrentHostPageSize;
5665        if (ioc->page_size == 1) {
5666                pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5667                        "default host page size to 4k\n", ioc->name);
5668                ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5669        }
5670        dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5671                ioc->name, facts->CurrentHostPageSize));
5672
5673        dinitprintk(ioc, pr_info(MPT3SAS_FMT
5674                "hba queue depth(%d), max chains per io(%d)\n",
5675                ioc->name, facts->RequestCredit,
5676            facts->MaxChainDepth));
5677        dinitprintk(ioc, pr_info(MPT3SAS_FMT
5678                "request frame size(%d), reply frame size(%d)\n", ioc->name,
5679            facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5680        return 0;
5681}
5682
5683/**
5684 * _base_send_ioc_init - send ioc_init to firmware
5685 * @ioc: per adapter object
5686 *
5687 * Return: 0 for success, non-zero for failure.
5688 */
5689static int
5690_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5691{
5692        Mpi2IOCInitRequest_t mpi_request;
5693        Mpi2IOCInitReply_t mpi_reply;
5694        int i, r = 0;
5695        ktime_t current_time;
5696        u16 ioc_status;
5697        u32 reply_post_free_array_sz = 0;
5698
5699        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5700            __func__));
5701
5702        memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5703        mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5704        mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5705        mpi_request.VF_ID = 0; /* TODO */
5706        mpi_request.VP_ID = 0;
5707        mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5708        mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5709        mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5710
5711        if (_base_is_controller_msix_enabled(ioc))
5712                mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5713        mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5714        mpi_request.ReplyDescriptorPostQueueDepth =
5715            cpu_to_le16(ioc->reply_post_queue_depth);
5716        mpi_request.ReplyFreeQueueDepth =
5717            cpu_to_le16(ioc->reply_free_queue_depth);
5718
5719        mpi_request.SenseBufferAddressHigh =
5720            cpu_to_le32((u64)ioc->sense_dma >> 32);
5721        mpi_request.SystemReplyAddressHigh =
5722            cpu_to_le32((u64)ioc->reply_dma >> 32);
5723        mpi_request.SystemRequestFrameBaseAddress =
5724            cpu_to_le64((u64)ioc->request_dma);
5725        mpi_request.ReplyFreeQueueAddress =
5726            cpu_to_le64((u64)ioc->reply_free_dma);
5727
5728        if (ioc->rdpq_array_enable) {
5729                reply_post_free_array_sz = ioc->reply_queue_count *
5730                    sizeof(Mpi2IOCInitRDPQArrayEntry);
5731                memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5732                for (i = 0; i < ioc->reply_queue_count; i++)
5733                        ioc->reply_post_free_array[i].RDPQBaseAddress =
5734                            cpu_to_le64(
5735                                (u64)ioc->reply_post[i].reply_post_free_dma);
5736                mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5737                mpi_request.ReplyDescriptorPostQueueAddress =
5738                    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5739        } else {
5740                mpi_request.ReplyDescriptorPostQueueAddress =
5741                    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5742        }
5743
5744        /* This time stamp specifies number of milliseconds
5745         * since epoch ~ midnight January 1, 1970.
5746         */
5747        current_time = ktime_get_real();
5748        mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5749
5750        if (ioc->logging_level & MPT_DEBUG_INIT) {
5751                __le32 *mfp;
5752                int i;
5753
5754                mfp = (__le32 *)&mpi_request;
5755                pr_info("\toffset:data\n");
5756                for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5757                        pr_info("\t[0x%02x]:%08x\n", i*4,
5758                            le32_to_cpu(mfp[i]));
5759        }
5760
5761        r = _base_handshake_req_reply_wait(ioc,
5762            sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5763            sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5764
5765        if (r != 0) {
5766                pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5767                    ioc->name, __func__, r);
5768                return r;
5769        }
5770
5771        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5772        if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5773            mpi_reply.IOCLogInfo) {
5774                pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5775                r = -EIO;
5776        }
5777
5778        return r;
5779}
5780
5781/**
5782 * mpt3sas_port_enable_done - command completion routine for port enable
5783 * @ioc: per adapter object
5784 * @smid: system request message index
5785 * @msix_index: MSIX table index supplied by the OS
5786 * @reply: reply message frame(lower 32bit addr)
5787 *
5788 * Return: 1 meaning mf should be freed from _base_interrupt
5789 *          0 means the mf is freed from this function.
5790 */
5791u8
5792mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5793        u32 reply)
5794{
5795        MPI2DefaultReply_t *mpi_reply;
5796        u16 ioc_status;
5797
5798        if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5799                return 1;
5800
5801        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5802        if (!mpi_reply)
5803                return 1;
5804
5805        if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5806                return 1;
5807
5808        ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5809        ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5810        ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5811        memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5812        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5813        if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5814                ioc->port_enable_failed = 1;
5815
5816        if (ioc->is_driver_loading) {
5817                if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5818                        mpt3sas_port_enable_complete(ioc);
5819                        return 1;
5820                } else {
5821                        ioc->start_scan_failed = ioc_status;
5822                        ioc->start_scan = 0;
5823                        return 1;
5824                }
5825        }
5826        complete(&ioc->port_enable_cmds.done);
5827        return 1;
5828}
5829
5830/**
5831 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5832 * @ioc: per adapter object
5833 *
5834 * Return: 0 for success, non-zero for failure.
5835 */
5836static int
5837_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5838{
5839        Mpi2PortEnableRequest_t *mpi_request;
5840        Mpi2PortEnableReply_t *mpi_reply;
5841        int r = 0;
5842        u16 smid;
5843        u16 ioc_status;
5844
5845        pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5846
5847        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5848                pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5849                    ioc->name, __func__);
5850                return -EAGAIN;
5851        }
5852
5853        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5854        if (!smid) {
5855                pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5856                    ioc->name, __func__);
5857                return -EAGAIN;
5858        }
5859
5860        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5861        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5862        ioc->port_enable_cmds.smid = smid;
5863        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5864        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5865
5866        init_completion(&ioc->port_enable_cmds.done);
5867        mpt3sas_base_put_smid_default(ioc, smid);
5868        wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5869        if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5870                pr_err(MPT3SAS_FMT "%s: timeout\n",
5871                    ioc->name, __func__);
5872                _debug_dump_mf(mpi_request,
5873                    sizeof(Mpi2PortEnableRequest_t)/4);
5874                if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5875                        r = -EFAULT;
5876                else
5877                        r = -ETIME;
5878                goto out;
5879        }
5880
5881        mpi_reply = ioc->port_enable_cmds.reply;
5882        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5883        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5884                pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5885                    ioc->name, __func__, ioc_status);
5886                r = -EFAULT;
5887                goto out;
5888        }
5889
5890 out:
5891        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5892        pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5893            "SUCCESS" : "FAILED"));
5894        return r;
5895}
5896
5897/**
5898 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5899 * @ioc: per adapter object
5900 *
5901 * Return: 0 for success, non-zero for failure.
5902 */
5903int
5904mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5905{
5906        Mpi2PortEnableRequest_t *mpi_request;
5907        u16 smid;
5908
5909        pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5910
5911        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5912                pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5913                    ioc->name, __func__);
5914                return -EAGAIN;
5915        }
5916
5917        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5918        if (!smid) {
5919                pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5920                    ioc->name, __func__);
5921                return -EAGAIN;
5922        }
5923
5924        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5925        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5926        ioc->port_enable_cmds.smid = smid;
5927        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5928        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5929
5930        mpt3sas_base_put_smid_default(ioc, smid);
5931        return 0;
5932}
5933
5934/**
5935 * _base_determine_wait_on_discovery - desposition
5936 * @ioc: per adapter object
5937 *
5938 * Decide whether to wait on discovery to complete. Used to either
5939 * locate boot device, or report volumes ahead of physical devices.
5940 *
5941 * Return: 1 for wait, 0 for don't wait.
5942 */
5943static int
5944_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5945{
5946        /* We wait for discovery to complete if IR firmware is loaded.
5947         * The sas topology events arrive before PD events, so we need time to
5948         * turn on the bit in ioc->pd_handles to indicate PD
5949         * Also, it maybe required to report Volumes ahead of physical
5950         * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5951         */
5952        if (ioc->ir_firmware)
5953                return 1;
5954
5955        /* if no Bios, then we don't need to wait */
5956        if (!ioc->bios_pg3.BiosVersion)
5957                return 0;
5958
5959        /* Bios is present, then we drop down here.
5960         *
5961         * If there any entries in the Bios Page 2, then we wait
5962         * for discovery to complete.
5963         */
5964
5965        /* Current Boot Device */
5966        if ((ioc->bios_pg2.CurrentBootDeviceForm &
5967            MPI2_BIOSPAGE2_FORM_MASK) ==
5968            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5969        /* Request Boot Device */
5970           (ioc->bios_pg2.ReqBootDeviceForm &
5971            MPI2_BIOSPAGE2_FORM_MASK) ==
5972            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5973        /* Alternate Request Boot Device */
5974           (ioc->bios_pg2.ReqAltBootDeviceForm &
5975            MPI2_BIOSPAGE2_FORM_MASK) ==
5976            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5977                return 0;
5978
5979        return 1;
5980}
5981
5982/**
5983 * _base_unmask_events - turn on notification for this event
5984 * @ioc: per adapter object
5985 * @event: firmware event
5986 *
5987 * The mask is stored in ioc->event_masks.
5988 */
5989static void
5990_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5991{
5992        u32 desired_event;
5993
5994        if (event >= 128)
5995                return;
5996
5997        desired_event = (1 << (event % 32));
5998
5999        if (event < 32)
6000                ioc->event_masks[0] &= ~desired_event;
6001        else if (event < 64)
6002                ioc->event_masks[1] &= ~desired_event;
6003        else if (event < 96)
6004                ioc->event_masks[2] &= ~desired_event;
6005        else if (event < 128)
6006                ioc->event_masks[3] &= ~desired_event;
6007}
6008
6009/**
6010 * _base_event_notification - send event notification
6011 * @ioc: per adapter object
6012 *
6013 * Return: 0 for success, non-zero for failure.
6014 */
6015static int
6016_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6017{
6018        Mpi2EventNotificationRequest_t *mpi_request;
6019        u16 smid;
6020        int r = 0;
6021        int i;
6022
6023        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6024            __func__));
6025
6026        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6027                pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
6028                    ioc->name, __func__);
6029                return -EAGAIN;
6030        }
6031
6032        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6033        if (!smid) {
6034                pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
6035                    ioc->name, __func__);
6036                return -EAGAIN;
6037        }
6038        ioc->base_cmds.status = MPT3_CMD_PENDING;
6039        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6040        ioc->base_cmds.smid = smid;
6041        memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6042        mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6043        mpi_request->VF_ID = 0; /* TODO */
6044        mpi_request->VP_ID = 0;
6045        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6046                mpi_request->EventMasks[i] =
6047                    cpu_to_le32(ioc->event_masks[i]);
6048        init_completion(&ioc->base_cmds.done);
6049        mpt3sas_base_put_smid_default(ioc, smid);
6050        wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6051        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6052                pr_err(MPT3SAS_FMT "%s: timeout\n",
6053                    ioc->name, __func__);
6054                _debug_dump_mf(mpi_request,
6055                    sizeof(Mpi2EventNotificationRequest_t)/4);
6056                if (ioc->base_cmds.status & MPT3_CMD_RESET)
6057                        r = -EFAULT;
6058                else
6059                        r = -ETIME;
6060        } else
6061                dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
6062                    ioc->name, __func__));
6063        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6064        return r;
6065}
6066
6067/**
6068 * mpt3sas_base_validate_event_type - validating event types
6069 * @ioc: per adapter object
6070 * @event_type: firmware event
6071 *
6072 * This will turn on firmware event notification when application
6073 * ask for that event. We don't mask events that are already enabled.
6074 */
6075void
6076mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6077{
6078        int i, j;
6079        u32 event_mask, desired_event;
6080        u8 send_update_to_fw;
6081
6082        for (i = 0, send_update_to_fw = 0; i <
6083            MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6084                event_mask = ~event_type[i];
6085                desired_event = 1;
6086                for (j = 0; j < 32; j++) {
6087                        if (!(event_mask & desired_event) &&
6088                            (ioc->event_masks[i] & desired_event)) {
6089                                ioc->event_masks[i] &= ~desired_event;
6090                                send_update_to_fw = 1;
6091                        }
6092                        desired_event = (desired_event << 1);
6093                }
6094        }
6095
6096        if (!send_update_to_fw)
6097                return;
6098
6099        mutex_lock(&ioc->base_cmds.mutex);
6100        _base_event_notification(ioc);
6101        mutex_unlock(&ioc->base_cmds.mutex);
6102}
6103
6104/**
6105 * _base_diag_reset - the "big hammer" start of day reset
6106 * @ioc: per adapter object
6107 *
6108 * Return: 0 for success, non-zero for failure.
6109 */
6110static int
6111_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6112{
6113        u32 host_diagnostic;
6114        u32 ioc_state;
6115        u32 count;
6116        u32 hcb_size;
6117
6118        pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
6119
6120        drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
6121            ioc->name));
6122
6123        count = 0;
6124        do {
6125                /* Write magic sequence to WriteSequence register
6126                 * Loop until in diagnostic mode
6127                 */
6128                drsprintk(ioc, pr_info(MPT3SAS_FMT
6129                        "write magic sequence\n", ioc->name));
6130                writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6131                writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6132                writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6133                writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6134                writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6135                writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6136                writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6137
6138                /* wait 100 msec */
6139                msleep(100);
6140
6141                if (count++ > 20)
6142                        goto out;
6143
6144                host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6145                drsprintk(ioc, pr_info(MPT3SAS_FMT
6146                        "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6147                    ioc->name, count, host_diagnostic));
6148
6149        } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6150
6151        hcb_size = readl(&ioc->chip->HCBSize);
6152
6153        drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
6154            ioc->name));
6155        writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6156             &ioc->chip->HostDiagnostic);
6157
6158        /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6159        msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6160
6161        /* Approximately 300 second max wait */
6162        for (count = 0; count < (300000000 /
6163                MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6164
6165                host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6166
6167                if (host_diagnostic == 0xFFFFFFFF)
6168                        goto out;
6169                if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6170                        break;
6171
6172                msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6173        }
6174
6175        if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6176
6177                drsprintk(ioc, pr_info(MPT3SAS_FMT
6178                "restart the adapter assuming the HCB Address points to good F/W\n",
6179                    ioc->name));
6180                host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6181                host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6182                writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6183
6184                drsprintk(ioc, pr_info(MPT3SAS_FMT
6185                    "re-enable the HCDW\n", ioc->name));
6186                writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6187                    &ioc->chip->HCBSize);
6188        }
6189
6190        drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
6191            ioc->name));
6192        writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6193            &ioc->chip->HostDiagnostic);
6194
6195        drsprintk(ioc, pr_info(MPT3SAS_FMT
6196                "disable writes to the diagnostic register\n", ioc->name));
6197        writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6198
6199        drsprintk(ioc, pr_info(MPT3SAS_FMT
6200                "Wait for FW to go to the READY state\n", ioc->name));
6201        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6202        if (ioc_state) {
6203                pr_err(MPT3SAS_FMT
6204                        "%s: failed going to ready state (ioc_state=0x%x)\n",
6205                        ioc->name, __func__, ioc_state);
6206                goto out;
6207        }
6208
6209        pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6210        return 0;
6211
6212 out:
6213        pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6214        return -EFAULT;
6215}
6216
6217/**
6218 * _base_make_ioc_ready - put controller in READY state
6219 * @ioc: per adapter object
6220 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6221 *
6222 * Return: 0 for success, non-zero for failure.
6223 */
6224static int
6225_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6226{
6227        u32 ioc_state;
6228        int rc;
6229        int count;
6230
6231        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6232            __func__));
6233
6234        if (ioc->pci_error_recovery)
6235                return 0;
6236
6237        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6238        dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6239            ioc->name, __func__, ioc_state));
6240
6241        /* if in RESET state, it should move to READY state shortly */
6242        count = 0;
6243        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6244                while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6245                    MPI2_IOC_STATE_READY) {
6246                        if (count++ == 10) {
6247                                pr_err(MPT3SAS_FMT
6248                                        "%s: failed going to ready state (ioc_state=0x%x)\n",
6249                                    ioc->name, __func__, ioc_state);
6250                                return -EFAULT;
6251                        }
6252                        ssleep(1);
6253                        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6254                }
6255        }
6256
6257        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6258                return 0;
6259
6260        if (ioc_state & MPI2_DOORBELL_USED) {
6261                dhsprintk(ioc, pr_info(MPT3SAS_FMT
6262                        "unexpected doorbell active!\n",
6263                        ioc->name));
6264                goto issue_diag_reset;
6265        }
6266
6267        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6268                mpt3sas_base_fault_info(ioc, ioc_state &
6269                    MPI2_DOORBELL_DATA_MASK);
6270                goto issue_diag_reset;
6271        }
6272
6273        if (type == FORCE_BIG_HAMMER)
6274                goto issue_diag_reset;
6275
6276        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6277                if (!(_base_send_ioc_reset(ioc,
6278                    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6279                        return 0;
6280        }
6281
6282 issue_diag_reset:
6283        rc = _base_diag_reset(ioc);
6284        return rc;
6285}
6286
6287/**
6288 * _base_make_ioc_operational - put controller in OPERATIONAL state
6289 * @ioc: per adapter object
6290 *
6291 * Return: 0 for success, non-zero for failure.
6292 */
6293static int
6294_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6295{
6296        int r, i, index;
6297        unsigned long   flags;
6298        u32 reply_address;
6299        u16 smid;
6300        struct _tr_list *delayed_tr, *delayed_tr_next;
6301        struct _sc_list *delayed_sc, *delayed_sc_next;
6302        struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6303        u8 hide_flag;
6304        struct adapter_reply_queue *reply_q;
6305        Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6306
6307        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6308            __func__));
6309
6310        /* clean the delayed target reset list */
6311        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6312            &ioc->delayed_tr_list, list) {
6313                list_del(&delayed_tr->list);
6314                kfree(delayed_tr);
6315        }
6316
6317
6318        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6319            &ioc->delayed_tr_volume_list, list) {
6320                list_del(&delayed_tr->list);
6321                kfree(delayed_tr);
6322        }
6323
6324        list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6325            &ioc->delayed_sc_list, list) {
6326                list_del(&delayed_sc->list);
6327                kfree(delayed_sc);
6328        }
6329
6330        list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6331            &ioc->delayed_event_ack_list, list) {
6332                list_del(&delayed_event_ack->list);
6333                kfree(delayed_event_ack);
6334        }
6335
6336        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6337
6338        /* hi-priority queue */
6339        INIT_LIST_HEAD(&ioc->hpr_free_list);
6340        smid = ioc->hi_priority_smid;
6341        for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6342                ioc->hpr_lookup[i].cb_idx = 0xFF;
6343                ioc->hpr_lookup[i].smid = smid;
6344                list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6345                    &ioc->hpr_free_list);
6346        }
6347
6348        /* internal queue */
6349        INIT_LIST_HEAD(&ioc->internal_free_list);
6350        smid = ioc->internal_smid;
6351        for (i = 0; i < ioc->internal_depth; i++, smid++) {
6352                ioc->internal_lookup[i].cb_idx = 0xFF;
6353                ioc->internal_lookup[i].smid = smid;
6354                list_add_tail(&ioc->internal_lookup[i].tracker_list,
6355                    &ioc->internal_free_list);
6356        }
6357
6358        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6359
6360        /* initialize Reply Free Queue */
6361        for (i = 0, reply_address = (u32)ioc->reply_dma ;
6362            i < ioc->reply_free_queue_depth ; i++, reply_address +=
6363            ioc->reply_sz) {
6364                ioc->reply_free[i] = cpu_to_le32(reply_address);
6365                if (ioc->is_mcpu_endpoint)
6366                        _base_clone_reply_to_sys_mem(ioc,
6367                                        reply_address, i);
6368        }
6369
6370        /* initialize reply queues */
6371        if (ioc->is_driver_loading)
6372                _base_assign_reply_queues(ioc);
6373
6374        /* initialize Reply Post Free Queue */
6375        index = 0;
6376        reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6377        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6378                /*
6379                 * If RDPQ is enabled, switch to the next allocation.
6380                 * Otherwise advance within the contiguous region.
6381                 */
6382                if (ioc->rdpq_array_enable) {
6383                        reply_q->reply_post_free =
6384                                ioc->reply_post[index++].reply_post_free;
6385                } else {
6386                        reply_q->reply_post_free = reply_post_free_contig;
6387                        reply_post_free_contig += ioc->reply_post_queue_depth;
6388                }
6389
6390                reply_q->reply_post_host_index = 0;
6391                for (i = 0; i < ioc->reply_post_queue_depth; i++)
6392                        reply_q->reply_post_free[i].Words =
6393                            cpu_to_le64(ULLONG_MAX);
6394                if (!_base_is_controller_msix_enabled(ioc))
6395                        goto skip_init_reply_post_free_queue;
6396        }
6397 skip_init_reply_post_free_queue:
6398
6399        r = _base_send_ioc_init(ioc);
6400        if (r)
6401                return r;
6402
6403        /* initialize reply free host index */
6404        ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6405        writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6406
6407        /* initialize reply post host index */
6408        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6409                if (ioc->combined_reply_queue)
6410                        writel((reply_q->msix_index & 7)<<
6411                           MPI2_RPHI_MSIX_INDEX_SHIFT,
6412                           ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6413                else
6414                        writel(reply_q->msix_index <<
6415                                MPI2_RPHI_MSIX_INDEX_SHIFT,
6416                                &ioc->chip->ReplyPostHostIndex);
6417
6418                if (!_base_is_controller_msix_enabled(ioc))
6419                        goto skip_init_reply_post_host_index;
6420        }
6421
6422 skip_init_reply_post_host_index:
6423
6424        _base_unmask_interrupts(ioc);
6425
6426        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6427                r = _base_display_fwpkg_version(ioc);
6428                if (r)
6429                        return r;
6430        }
6431
6432        _base_static_config_pages(ioc);
6433        r = _base_event_notification(ioc);
6434        if (r)
6435                return r;
6436
6437        if (ioc->is_driver_loading) {
6438
6439                if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6440                    == 0x80) {
6441                        hide_flag = (u8) (
6442                            le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6443                            MFG_PAGE10_HIDE_SSDS_MASK);
6444                        if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6445                                ioc->mfg_pg10_hide_flag = hide_flag;
6446                }
6447
6448                ioc->wait_for_discovery_to_complete =
6449                    _base_determine_wait_on_discovery(ioc);
6450
6451                return r; /* scan_start and scan_finished support */
6452        }
6453
6454        r = _base_send_port_enable(ioc);
6455        if (r)
6456                return r;
6457
6458        return r;
6459}
6460
6461/**
6462 * mpt3sas_base_free_resources - free resources controller resources
6463 * @ioc: per adapter object
6464 */
6465void
6466mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6467{
6468        dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6469            __func__));
6470
6471        /* synchronizing freeing resource with pci_access_mutex lock */
6472        mutex_lock(&ioc->pci_access_mutex);
6473        if (ioc->chip_phys && ioc->chip) {
6474                _base_mask_interrupts(ioc);
6475                ioc->shost_recovery = 1;
6476                _base_make_ioc_ready(ioc, SOFT_RESET);
6477                ioc->shost_recovery = 0;
6478        }
6479
6480        mpt3sas_base_unmap_resources(ioc);
6481        mutex_unlock(&ioc->pci_access_mutex);
6482        return;
6483}
6484
6485/**
6486 * mpt3sas_base_attach - attach controller instance
6487 * @ioc: per adapter object
6488 *
6489 * Return: 0 for success, non-zero for failure.
6490 */
6491int
6492mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6493{
6494        int r, i;
6495        int cpu_id, last_cpu_id = 0;
6496
6497        dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6498            __func__));
6499
6500        /* setup cpu_msix_table */
6501        ioc->cpu_count = num_online_cpus();
6502        for_each_online_cpu(cpu_id)
6503                last_cpu_id = cpu_id;
6504        ioc->cpu_msix_table_sz = last_cpu_id + 1;
6505        ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6506        ioc->reply_queue_count = 1;
6507        if (!ioc->cpu_msix_table) {
6508                dfailprintk(ioc, pr_info(MPT3SAS_FMT
6509                        "allocation for cpu_msix_table failed!!!\n",
6510                        ioc->name));
6511                r = -ENOMEM;
6512                goto out_free_resources;
6513        }
6514
6515        if (ioc->is_warpdrive) {
6516                ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6517                    sizeof(resource_size_t *), GFP_KERNEL);
6518                if (!ioc->reply_post_host_index) {
6519                        dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6520                                "for reply_post_host_index failed!!!\n",
6521                                ioc->name));
6522                        r = -ENOMEM;
6523                        goto out_free_resources;
6524                }
6525        }
6526
6527        ioc->rdpq_array_enable_assigned = 0;
6528        ioc->dma_mask = 0;
6529        r = mpt3sas_base_map_resources(ioc);
6530        if (r)
6531                goto out_free_resources;
6532
6533        pci_set_drvdata(ioc->pdev, ioc->shost);
6534        r = _base_get_ioc_facts(ioc);
6535        if (r)
6536                goto out_free_resources;
6537
6538        switch (ioc->hba_mpi_version_belonged) {
6539        case MPI2_VERSION:
6540                ioc->build_sg_scmd = &_base_build_sg_scmd;
6541                ioc->build_sg = &_base_build_sg;
6542                ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6543                break;
6544        case MPI25_VERSION:
6545        case MPI26_VERSION:
6546                /*
6547                 * In SAS3.0,
6548                 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6549                 * Target Status - all require the IEEE formated scatter gather
6550                 * elements.
6551                 */
6552                ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6553                ioc->build_sg = &_base_build_sg_ieee;
6554                ioc->build_nvme_prp = &_base_build_nvme_prp;
6555                ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6556                ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6557
6558                break;
6559        }
6560
6561        if (ioc->is_mcpu_endpoint)
6562                ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6563        else
6564                ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6565
6566        /*
6567         * These function pointers for other requests that don't
6568         * the require IEEE scatter gather elements.
6569         *
6570         * For example Configuration Pages and SAS IOUNIT Control don't.
6571         */
6572        ioc->build_sg_mpi = &_base_build_sg;
6573        ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6574
6575        r = _base_make_ioc_ready(ioc, SOFT_RESET);
6576        if (r)
6577                goto out_free_resources;
6578
6579        ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6580            sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6581        if (!ioc->pfacts) {
6582                r = -ENOMEM;
6583                goto out_free_resources;
6584        }
6585
6586        for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6587                r = _base_get_port_facts(ioc, i);
6588                if (r)
6589                        goto out_free_resources;
6590        }
6591
6592        r = _base_allocate_memory_pools(ioc);
6593        if (r)
6594                goto out_free_resources;
6595
6596        init_waitqueue_head(&ioc->reset_wq);
6597
6598        /* allocate memory pd handle bitmask list */
6599        ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6600        if (ioc->facts.MaxDevHandle % 8)
6601                ioc->pd_handles_sz++;
6602        ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6603            GFP_KERNEL);
6604        if (!ioc->pd_handles) {
6605                r = -ENOMEM;
6606                goto out_free_resources;
6607        }
6608        ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6609            GFP_KERNEL);
6610        if (!ioc->blocking_handles) {
6611                r = -ENOMEM;
6612                goto out_free_resources;
6613        }
6614
6615        /* allocate memory for pending OS device add list */
6616        ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6617        if (ioc->facts.MaxDevHandle % 8)
6618                ioc->pend_os_device_add_sz++;
6619        ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6620            GFP_KERNEL);
6621        if (!ioc->pend_os_device_add)
6622                goto out_free_resources;
6623
6624        ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6625        ioc->device_remove_in_progress =
6626                kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6627        if (!ioc->device_remove_in_progress)
6628                goto out_free_resources;
6629
6630        ioc->fwfault_debug = mpt3sas_fwfault_debug;
6631
6632        /* base internal command bits */
6633        mutex_init(&ioc->base_cmds.mutex);
6634        ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6635        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6636
6637        /* port_enable command bits */
6638        ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6639        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6640
6641        /* transport internal command bits */
6642        ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6643        ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6644        mutex_init(&ioc->transport_cmds.mutex);
6645
6646        /* scsih internal command bits */
6647        ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6648        ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6649        mutex_init(&ioc->scsih_cmds.mutex);
6650
6651        /* task management internal command bits */
6652        ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6653        ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6654        mutex_init(&ioc->tm_cmds.mutex);
6655
6656        /* config page internal command bits */
6657        ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6658        ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6659        mutex_init(&ioc->config_cmds.mutex);
6660
6661        /* ctl module internal command bits */
6662        ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6663        ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6664        ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6665        mutex_init(&ioc->ctl_cmds.mutex);
6666
6667        if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6668            !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6669            !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6670            !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6671                r = -ENOMEM;
6672                goto out_free_resources;
6673        }
6674
6675        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6676                ioc->event_masks[i] = -1;
6677
6678        /* here we enable the events we care about */
6679        _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6680        _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6681        _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6682        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6683        _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6684        _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6685        _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6686        _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6687        _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6688        _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6689        _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6690        _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6691        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6692        if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6693                if (ioc->is_gen35_ioc) {
6694                        _base_unmask_events(ioc,
6695                                MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6696                        _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6697                        _base_unmask_events(ioc,
6698                                MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6699                }
6700        }
6701        r = _base_make_ioc_operational(ioc);
6702        if (r)
6703                goto out_free_resources;
6704
6705        ioc->non_operational_loop = 0;
6706        ioc->got_task_abort_from_ioctl = 0;
6707        return 0;
6708
6709 out_free_resources:
6710
6711        ioc->remove_host = 1;
6712
6713        mpt3sas_base_free_resources(ioc);
6714        _base_release_memory_pools(ioc);
6715        pci_set_drvdata(ioc->pdev, NULL);
6716        kfree(ioc->cpu_msix_table);
6717        if (ioc->is_warpdrive)
6718                kfree(ioc->reply_post_host_index);
6719        kfree(ioc->pd_handles);
6720        kfree(ioc->blocking_handles);
6721        kfree(ioc->device_remove_in_progress);
6722        kfree(ioc->pend_os_device_add);
6723        kfree(ioc->tm_cmds.reply);
6724        kfree(ioc->transport_cmds.reply);
6725        kfree(ioc->scsih_cmds.reply);
6726        kfree(ioc->config_cmds.reply);
6727        kfree(ioc->base_cmds.reply);
6728        kfree(ioc->port_enable_cmds.reply);
6729        kfree(ioc->ctl_cmds.reply);
6730        kfree(ioc->ctl_cmds.sense);
6731        kfree(ioc->pfacts);
6732        ioc->ctl_cmds.reply = NULL;
6733        ioc->base_cmds.reply = NULL;
6734        ioc->tm_cmds.reply = NULL;
6735        ioc->scsih_cmds.reply = NULL;
6736        ioc->transport_cmds.reply = NULL;
6737        ioc->config_cmds.reply = NULL;
6738        ioc->pfacts = NULL;
6739        return r;
6740}
6741
6742
6743/**
6744 * mpt3sas_base_detach - remove controller instance
6745 * @ioc: per adapter object
6746 */
6747void
6748mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6749{
6750        dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6751            __func__));
6752
6753        mpt3sas_base_stop_watchdog(ioc);
6754        mpt3sas_base_free_resources(ioc);
6755        _base_release_memory_pools(ioc);
6756        mpt3sas_free_enclosure_list(ioc);
6757        pci_set_drvdata(ioc->pdev, NULL);
6758        kfree(ioc->cpu_msix_table);
6759        if (ioc->is_warpdrive)
6760                kfree(ioc->reply_post_host_index);
6761        kfree(ioc->pd_handles);
6762        kfree(ioc->blocking_handles);
6763        kfree(ioc->device_remove_in_progress);
6764        kfree(ioc->pend_os_device_add);
6765        kfree(ioc->pfacts);
6766        kfree(ioc->ctl_cmds.reply);
6767        kfree(ioc->ctl_cmds.sense);
6768        kfree(ioc->base_cmds.reply);
6769        kfree(ioc->port_enable_cmds.reply);
6770        kfree(ioc->tm_cmds.reply);
6771        kfree(ioc->transport_cmds.reply);
6772        kfree(ioc->scsih_cmds.reply);
6773        kfree(ioc->config_cmds.reply);
6774}
6775
6776/**
6777 * _base_pre_reset_handler - pre reset handler
6778 * @ioc: per adapter object
6779 */
6780static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6781{
6782        mpt3sas_scsih_pre_reset_handler(ioc);
6783        mpt3sas_ctl_pre_reset_handler(ioc);
6784        dtmprintk(ioc, pr_info(MPT3SAS_FMT
6785                        "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6786}
6787
6788/**
6789 * _base_after_reset_handler - after reset handler
6790 * @ioc: per adapter object
6791 */
6792static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6793{
6794        mpt3sas_scsih_after_reset_handler(ioc);
6795        mpt3sas_ctl_after_reset_handler(ioc);
6796        dtmprintk(ioc, pr_info(MPT3SAS_FMT
6797                        "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6798        if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6799                ioc->transport_cmds.status |= MPT3_CMD_RESET;
6800                mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6801                complete(&ioc->transport_cmds.done);
6802        }
6803        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6804                ioc->base_cmds.status |= MPT3_CMD_RESET;
6805                mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6806                complete(&ioc->base_cmds.done);
6807        }
6808        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6809                ioc->port_enable_failed = 1;
6810                ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6811                mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6812                if (ioc->is_driver_loading) {
6813                        ioc->start_scan_failed =
6814                                MPI2_IOCSTATUS_INTERNAL_ERROR;
6815                        ioc->start_scan = 0;
6816                        ioc->port_enable_cmds.status =
6817                                MPT3_CMD_NOT_USED;
6818                } else {
6819                        complete(&ioc->port_enable_cmds.done);
6820                }
6821        }
6822        if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6823                ioc->config_cmds.status |= MPT3_CMD_RESET;
6824                mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6825                ioc->config_cmds.smid = USHRT_MAX;
6826                complete(&ioc->config_cmds.done);
6827        }
6828}
6829
6830/**
6831 * _base_reset_done_handler - reset done handler
6832 * @ioc: per adapter object
6833 */
6834static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
6835{
6836        mpt3sas_scsih_reset_done_handler(ioc);
6837        mpt3sas_ctl_reset_done_handler(ioc);
6838        dtmprintk(ioc, pr_info(MPT3SAS_FMT
6839                        "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6840}
6841
6842/**
6843 * mpt3sas_wait_for_commands_to_complete - reset controller
6844 * @ioc: Pointer to MPT_ADAPTER structure
6845 *
6846 * This function is waiting 10s for all pending commands to complete
6847 * prior to putting controller in reset.
6848 */
6849void
6850mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6851{
6852        u32 ioc_state;
6853
6854        ioc->pending_io_count = 0;
6855
6856        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6857        if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6858                return;
6859
6860        /* pending command count */
6861        ioc->pending_io_count = scsi_host_busy(ioc->shost);
6862
6863        if (!ioc->pending_io_count)
6864                return;
6865
6866        /* wait for pending commands to complete */
6867        wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6868}
6869
6870/**
6871 * mpt3sas_base_hard_reset_handler - reset controller
6872 * @ioc: Pointer to MPT_ADAPTER structure
6873 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6874 *
6875 * Return: 0 for success, non-zero for failure.
6876 */
6877int
6878mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6879        enum reset_type type)
6880{
6881        int r;
6882        unsigned long flags;
6883        u32 ioc_state;
6884        u8 is_fault = 0, is_trigger = 0;
6885
6886        dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6887            __func__));
6888
6889        if (ioc->pci_error_recovery) {
6890                pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6891                    ioc->name, __func__);
6892                r = 0;
6893                goto out_unlocked;
6894        }
6895
6896        if (mpt3sas_fwfault_debug)
6897                mpt3sas_halt_firmware(ioc);
6898
6899        /* wait for an active reset in progress to complete */
6900        mutex_lock(&ioc->reset_in_progress_mutex);
6901
6902        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6903        ioc->shost_recovery = 1;
6904        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6905
6906        if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6907            MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6908            (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6909            MPT3_DIAG_BUFFER_IS_RELEASED))) {
6910                is_trigger = 1;
6911                ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6912                if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6913                        is_fault = 1;
6914        }
6915        _base_pre_reset_handler(ioc);
6916        mpt3sas_wait_for_commands_to_complete(ioc);
6917        _base_mask_interrupts(ioc);
6918        r = _base_make_ioc_ready(ioc, type);
6919        if (r)
6920                goto out;
6921        _base_after_reset_handler(ioc);
6922
6923        /* If this hard reset is called while port enable is active, then
6924         * there is no reason to call make_ioc_operational
6925         */
6926        if (ioc->is_driver_loading && ioc->port_enable_failed) {
6927                ioc->remove_host = 1;
6928                r = -EFAULT;
6929                goto out;
6930        }
6931        r = _base_get_ioc_facts(ioc);
6932        if (r)
6933                goto out;
6934
6935        if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6936                panic("%s: Issue occurred with flashing controller firmware."
6937                      "Please reboot the system and ensure that the correct"
6938                      " firmware version is running\n", ioc->name);
6939
6940        r = _base_make_ioc_operational(ioc);
6941        if (!r)
6942                _base_reset_done_handler(ioc);
6943
6944 out:
6945        dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
6946            ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
6947
6948        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6949        ioc->shost_recovery = 0;
6950        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6951        ioc->ioc_reset_count++;
6952        mutex_unlock(&ioc->reset_in_progress_mutex);
6953
6954 out_unlocked:
6955        if ((r == 0) && is_trigger) {
6956                if (is_fault)
6957                        mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6958                else
6959                        mpt3sas_trigger_master(ioc,
6960                            MASTER_TRIGGER_ADAPTER_RESET);
6961        }
6962        dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6963            __func__));
6964        return r;
6965}
6966