linux/drivers/usb/host/fotg210-hcd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Faraday FOTG210 EHCI-like driver
   3 *
   4 * Copyright (c) 2013 Faraday Technology Corporation
   5 *
   6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   7 *         Feng-Hsin Chiang <john453@faraday-tech.com>
   8 *         Po-Yu Chuang <ratbert.chuang@gmail.com>
   9 *
  10 * Most of code borrowed from the Linux-3.7 EHCI driver
  11 */
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/dmapool.h>
  15#include <linux/kernel.h>
  16#include <linux/delay.h>
  17#include <linux/ioport.h>
  18#include <linux/sched.h>
  19#include <linux/vmalloc.h>
  20#include <linux/errno.h>
  21#include <linux/init.h>
  22#include <linux/hrtimer.h>
  23#include <linux/list.h>
  24#include <linux/interrupt.h>
  25#include <linux/usb.h>
  26#include <linux/usb/hcd.h>
  27#include <linux/moduleparam.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/debugfs.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/platform_device.h>
  33#include <linux/io.h>
  34
  35#include <asm/byteorder.h>
  36#include <asm/irq.h>
  37#include <asm/unaligned.h>
  38
  39#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  40#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  41static const char hcd_name[] = "fotg210_hcd";
  42
  43#undef FOTG210_URB_TRACE
  44#define FOTG210_STATS
  45
  46/* magic numbers that can affect system performance */
  47#define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
  48#define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
  49#define FOTG210_TUNE_RL_TT      0
  50#define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
  51#define FOTG210_TUNE_MULT_TT    1
  52
  53/* Some drivers think it's safe to schedule isochronous transfers more than 256
  54 * ms into the future (partly as a result of an old bug in the scheduling
  55 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  56 * length of 512 frames instead of 256.
  57 */
  58#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  59
  60/* Initial IRQ latency:  faster than hw default */
  61static int log2_irq_thresh; /* 0 to 6 */
  62module_param(log2_irq_thresh, int, S_IRUGO);
  63MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  64
  65/* initial park setting:  slower than hw default */
  66static unsigned park;
  67module_param(park, uint, S_IRUGO);
  68MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  69
  70/* for link power management(LPM) feature */
  71static unsigned int hird;
  72module_param(hird, int, S_IRUGO);
  73MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  74
  75#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  76
  77#include "fotg210.h"
  78
  79#define fotg210_dbg(fotg210, fmt, args...) \
  80        dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  81#define fotg210_err(fotg210, fmt, args...) \
  82        dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  83#define fotg210_info(fotg210, fmt, args...) \
  84        dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  85#define fotg210_warn(fotg210, fmt, args...) \
  86        dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  87
  88/* check the values in the HCSPARAMS register (host controller _Structural_
  89 * parameters) see EHCI spec, Table 2-4 for each value
  90 */
  91static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
  92{
  93        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
  94
  95        fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
  96                        HCS_N_PORTS(params));
  97}
  98
  99/* check the values in the HCCPARAMS register (host controller _Capability_
 100 * parameters) see EHCI Spec, Table 2-5 for each value
 101 */
 102static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 103{
 104        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 105
 106        fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 107                        params,
 108                        HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 109                        HCC_CANPARK(params) ? " park" : "");
 110}
 111
 112static void __maybe_unused
 113dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 114{
 115        fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 116                        hc32_to_cpup(fotg210, &qtd->hw_next),
 117                        hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 118                        hc32_to_cpup(fotg210, &qtd->hw_token),
 119                        hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 120        if (qtd->hw_buf[1])
 121                fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 122                                hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 123                                hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 124                                hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 125                                hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 126}
 127
 128static void __maybe_unused
 129dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 130{
 131        struct fotg210_qh_hw *hw = qh->hw;
 132
 133        fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 134                        hw->hw_next, hw->hw_info1, hw->hw_info2,
 135                        hw->hw_current);
 136
 137        dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 138}
 139
 140static void __maybe_unused
 141dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 142{
 143        fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 144                        itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 145                        itd->urb);
 146
 147        fotg210_dbg(fotg210,
 148                        "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 149                        hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 150                        hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 151                        hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 152                        hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 153                        hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 154                        hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 155                        hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 156                        hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 157
 158        fotg210_dbg(fotg210,
 159                        "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 160                        hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 161                        hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 162                        hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 163                        hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 164                        hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 165                        hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 166                        hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 167
 168        fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 169                        itd->index[0], itd->index[1], itd->index[2],
 170                        itd->index[3], itd->index[4], itd->index[5],
 171                        itd->index[6], itd->index[7]);
 172}
 173
 174static int __maybe_unused
 175dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 176{
 177        return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 178                        label, label[0] ? " " : "", status,
 179                        (status & STS_ASS) ? " Async" : "",
 180                        (status & STS_PSS) ? " Periodic" : "",
 181                        (status & STS_RECL) ? " Recl" : "",
 182                        (status & STS_HALT) ? " Halt" : "",
 183                        (status & STS_IAA) ? " IAA" : "",
 184                        (status & STS_FATAL) ? " FATAL" : "",
 185                        (status & STS_FLR) ? " FLR" : "",
 186                        (status & STS_PCD) ? " PCD" : "",
 187                        (status & STS_ERR) ? " ERR" : "",
 188                        (status & STS_INT) ? " INT" : "");
 189}
 190
 191static int __maybe_unused
 192dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 193{
 194        return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 195                        label, label[0] ? " " : "", enable,
 196                        (enable & STS_IAA) ? " IAA" : "",
 197                        (enable & STS_FATAL) ? " FATAL" : "",
 198                        (enable & STS_FLR) ? " FLR" : "",
 199                        (enable & STS_PCD) ? " PCD" : "",
 200                        (enable & STS_ERR) ? " ERR" : "",
 201                        (enable & STS_INT) ? " INT" : "");
 202}
 203
 204static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 205
 206static int dbg_command_buf(char *buf, unsigned len, const char *label,
 207                u32 command)
 208{
 209        return scnprintf(buf, len,
 210                        "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 211                        label, label[0] ? " " : "", command,
 212                        (command & CMD_PARK) ? " park" : "(park)",
 213                        CMD_PARK_CNT(command),
 214                        (command >> 16) & 0x3f,
 215                        (command & CMD_IAAD) ? " IAAD" : "",
 216                        (command & CMD_ASE) ? " Async" : "",
 217                        (command & CMD_PSE) ? " Periodic" : "",
 218                        fls_strings[(command >> 2) & 0x3],
 219                        (command & CMD_RESET) ? " Reset" : "",
 220                        (command & CMD_RUN) ? "RUN" : "HALT");
 221}
 222
 223static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 224                u32 status)
 225{
 226        char *sig;
 227
 228        /* signaling state */
 229        switch (status & (3 << 10)) {
 230        case 0 << 10:
 231                sig = "se0";
 232                break;
 233        case 1 << 10:
 234                sig = "k";
 235                break; /* low speed */
 236        case 2 << 10:
 237                sig = "j";
 238                break;
 239        default:
 240                sig = "?";
 241                break;
 242        }
 243
 244        scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 245                        label, label[0] ? " " : "", port, status,
 246                        status >> 25, /*device address */
 247                        sig,
 248                        (status & PORT_RESET) ? " RESET" : "",
 249                        (status & PORT_SUSPEND) ? " SUSPEND" : "",
 250                        (status & PORT_RESUME) ? " RESUME" : "",
 251                        (status & PORT_PEC) ? " PEC" : "",
 252                        (status & PORT_PE) ? " PE" : "",
 253                        (status & PORT_CSC) ? " CSC" : "",
 254                        (status & PORT_CONNECT) ? " CONNECT" : "");
 255
 256        return buf;
 257}
 258
 259/* functions have the "wrong" filename when they're output... */
 260#define dbg_status(fotg210, label, status) {                    \
 261        char _buf[80];                                          \
 262        dbg_status_buf(_buf, sizeof(_buf), label, status);      \
 263        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 264}
 265
 266#define dbg_cmd(fotg210, label, command) {                      \
 267        char _buf[80];                                          \
 268        dbg_command_buf(_buf, sizeof(_buf), label, command);    \
 269        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 270}
 271
 272#define dbg_port(fotg210, label, port, status) {                               \
 273        char _buf[80];                                                         \
 274        fotg210_dbg(fotg210, "%s\n",                                           \
 275                        dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 276}
 277
 278/* troubleshooting help: expose state in debugfs */
 279static int debug_async_open(struct inode *, struct file *);
 280static int debug_periodic_open(struct inode *, struct file *);
 281static int debug_registers_open(struct inode *, struct file *);
 282static int debug_async_open(struct inode *, struct file *);
 283
 284static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 285static int debug_close(struct inode *, struct file *);
 286
 287static const struct file_operations debug_async_fops = {
 288        .owner          = THIS_MODULE,
 289        .open           = debug_async_open,
 290        .read           = debug_output,
 291        .release        = debug_close,
 292        .llseek         = default_llseek,
 293};
 294static const struct file_operations debug_periodic_fops = {
 295        .owner          = THIS_MODULE,
 296        .open           = debug_periodic_open,
 297        .read           = debug_output,
 298        .release        = debug_close,
 299        .llseek         = default_llseek,
 300};
 301static const struct file_operations debug_registers_fops = {
 302        .owner          = THIS_MODULE,
 303        .open           = debug_registers_open,
 304        .read           = debug_output,
 305        .release        = debug_close,
 306        .llseek         = default_llseek,
 307};
 308
 309static struct dentry *fotg210_debug_root;
 310
 311struct debug_buffer {
 312        ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
 313        struct usb_bus *bus;
 314        struct mutex mutex;     /* protect filling of buffer */
 315        size_t count;           /* number of characters filled into buffer */
 316        char *output_buf;
 317        size_t alloc_size;
 318};
 319
 320static inline char speed_char(u32 scratch)
 321{
 322        switch (scratch & (3 << 12)) {
 323        case QH_FULL_SPEED:
 324                return 'f';
 325
 326        case QH_LOW_SPEED:
 327                return 'l';
 328
 329        case QH_HIGH_SPEED:
 330                return 'h';
 331
 332        default:
 333                return '?';
 334        }
 335}
 336
 337static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 338{
 339        __u32 v = hc32_to_cpu(fotg210, token);
 340
 341        if (v & QTD_STS_ACTIVE)
 342                return '*';
 343        if (v & QTD_STS_HALT)
 344                return '-';
 345        if (!IS_SHORT_READ(v))
 346                return ' ';
 347        /* tries to advance through hw_alt_next */
 348        return '/';
 349}
 350
 351static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 352                char **nextp, unsigned *sizep)
 353{
 354        u32 scratch;
 355        u32 hw_curr;
 356        struct fotg210_qtd *td;
 357        unsigned temp;
 358        unsigned size = *sizep;
 359        char *next = *nextp;
 360        char mark;
 361        __le32 list_end = FOTG210_LIST_END(fotg210);
 362        struct fotg210_qh_hw *hw = qh->hw;
 363
 364        if (hw->hw_qtd_next == list_end) /* NEC does this */
 365                mark = '@';
 366        else
 367                mark = token_mark(fotg210, hw->hw_token);
 368        if (mark == '/') { /* qh_alt_next controls qh advance? */
 369                if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 370                    fotg210->async->hw->hw_alt_next)
 371                        mark = '#'; /* blocked */
 372                else if (hw->hw_alt_next == list_end)
 373                        mark = '.'; /* use hw_qtd_next */
 374                /* else alt_next points to some other qtd */
 375        }
 376        scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 377        hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 378        temp = scnprintf(next, size,
 379                        "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 380                        qh, scratch & 0x007f,
 381                        speed_char(scratch),
 382                        (scratch >> 8) & 0x000f,
 383                        scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 384                        hc32_to_cpup(fotg210, &hw->hw_token), mark,
 385                        (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 386                                ? "data1" : "data0",
 387                        (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 388        size -= temp;
 389        next += temp;
 390
 391        /* hc may be modifying the list as we read it ... */
 392        list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 393                scratch = hc32_to_cpup(fotg210, &td->hw_token);
 394                mark = ' ';
 395                if (hw_curr == td->qtd_dma)
 396                        mark = '*';
 397                else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 398                        mark = '+';
 399                else if (QTD_LENGTH(scratch)) {
 400                        if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 401                                mark = '#';
 402                        else if (td->hw_alt_next != list_end)
 403                                mark = '/';
 404                }
 405                temp = snprintf(next, size,
 406                                "\n\t%p%c%s len=%d %08x urb %p",
 407                                td, mark, ({ char *tmp;
 408                                 switch ((scratch>>8)&0x03) {
 409                                 case 0:
 410                                        tmp = "out";
 411                                        break;
 412                                 case 1:
 413                                        tmp = "in";
 414                                        break;
 415                                 case 2:
 416                                        tmp = "setup";
 417                                        break;
 418                                 default:
 419                                        tmp = "?";
 420                                        break;
 421                                 } tmp; }),
 422                                (scratch >> 16) & 0x7fff,
 423                                scratch,
 424                                td->urb);
 425                if (size < temp)
 426                        temp = size;
 427                size -= temp;
 428                next += temp;
 429                if (temp == size)
 430                        goto done;
 431        }
 432
 433        temp = snprintf(next, size, "\n");
 434        if (size < temp)
 435                temp = size;
 436
 437        size -= temp;
 438        next += temp;
 439
 440done:
 441        *sizep = size;
 442        *nextp = next;
 443}
 444
 445static ssize_t fill_async_buffer(struct debug_buffer *buf)
 446{
 447        struct usb_hcd *hcd;
 448        struct fotg210_hcd *fotg210;
 449        unsigned long flags;
 450        unsigned temp, size;
 451        char *next;
 452        struct fotg210_qh *qh;
 453
 454        hcd = bus_to_hcd(buf->bus);
 455        fotg210 = hcd_to_fotg210(hcd);
 456        next = buf->output_buf;
 457        size = buf->alloc_size;
 458
 459        *next = 0;
 460
 461        /* dumps a snapshot of the async schedule.
 462         * usually empty except for long-term bulk reads, or head.
 463         * one QH per line, and TDs we know about
 464         */
 465        spin_lock_irqsave(&fotg210->lock, flags);
 466        for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 467                        qh = qh->qh_next.qh)
 468                qh_lines(fotg210, qh, &next, &size);
 469        if (fotg210->async_unlink && size > 0) {
 470                temp = scnprintf(next, size, "\nunlink =\n");
 471                size -= temp;
 472                next += temp;
 473
 474                for (qh = fotg210->async_unlink; size > 0 && qh;
 475                                qh = qh->unlink_next)
 476                        qh_lines(fotg210, qh, &next, &size);
 477        }
 478        spin_unlock_irqrestore(&fotg210->lock, flags);
 479
 480        return strlen(buf->output_buf);
 481}
 482
 483/* count tds, get ep direction */
 484static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 485                struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 486{
 487        u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 488        struct fotg210_qtd *qtd;
 489        char *type = "";
 490        unsigned temp = 0;
 491
 492        /* count tds, get ep direction */
 493        list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 494                temp++;
 495                switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 496                case 0:
 497                        type = "out";
 498                        continue;
 499                case 1:
 500                        type = "in";
 501                        continue;
 502                }
 503        }
 504
 505        return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 506                        speed_char(scratch), scratch & 0x007f,
 507                        (scratch >> 8) & 0x000f, type, qh->usecs,
 508                        qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 509}
 510
 511#define DBG_SCHED_LIMIT 64
 512static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 513{
 514        struct usb_hcd *hcd;
 515        struct fotg210_hcd *fotg210;
 516        unsigned long flags;
 517        union fotg210_shadow p, *seen;
 518        unsigned temp, size, seen_count;
 519        char *next;
 520        unsigned i;
 521        __hc32 tag;
 522
 523        seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 524        if (!seen)
 525                return 0;
 526
 527        seen_count = 0;
 528
 529        hcd = bus_to_hcd(buf->bus);
 530        fotg210 = hcd_to_fotg210(hcd);
 531        next = buf->output_buf;
 532        size = buf->alloc_size;
 533
 534        temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 535        size -= temp;
 536        next += temp;
 537
 538        /* dump a snapshot of the periodic schedule.
 539         * iso changes, interrupt usually doesn't.
 540         */
 541        spin_lock_irqsave(&fotg210->lock, flags);
 542        for (i = 0; i < fotg210->periodic_size; i++) {
 543                p = fotg210->pshadow[i];
 544                if (likely(!p.ptr))
 545                        continue;
 546
 547                tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 548
 549                temp = scnprintf(next, size, "%4d: ", i);
 550                size -= temp;
 551                next += temp;
 552
 553                do {
 554                        struct fotg210_qh_hw *hw;
 555
 556                        switch (hc32_to_cpu(fotg210, tag)) {
 557                        case Q_TYPE_QH:
 558                                hw = p.qh->hw;
 559                                temp = scnprintf(next, size, " qh%d-%04x/%p",
 560                                                p.qh->period,
 561                                                hc32_to_cpup(fotg210,
 562                                                        &hw->hw_info2)
 563                                                        /* uframe masks */
 564                                                        & (QH_CMASK | QH_SMASK),
 565                                                p.qh);
 566                                size -= temp;
 567                                next += temp;
 568                                /* don't repeat what follows this qh */
 569                                for (temp = 0; temp < seen_count; temp++) {
 570                                        if (seen[temp].ptr != p.ptr)
 571                                                continue;
 572                                        if (p.qh->qh_next.ptr) {
 573                                                temp = scnprintf(next, size,
 574                                                                " ...");
 575                                                size -= temp;
 576                                                next += temp;
 577                                        }
 578                                        break;
 579                                }
 580                                /* show more info the first time around */
 581                                if (temp == seen_count) {
 582                                        temp = output_buf_tds_dir(next,
 583                                                        fotg210, hw,
 584                                                        p.qh, size);
 585
 586                                        if (seen_count < DBG_SCHED_LIMIT)
 587                                                seen[seen_count++].qh = p.qh;
 588                                } else
 589                                        temp = 0;
 590                                tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 591                                p = p.qh->qh_next;
 592                                break;
 593                        case Q_TYPE_FSTN:
 594                                temp = scnprintf(next, size,
 595                                                " fstn-%8x/%p",
 596                                                p.fstn->hw_prev, p.fstn);
 597                                tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 598                                p = p.fstn->fstn_next;
 599                                break;
 600                        case Q_TYPE_ITD:
 601                                temp = scnprintf(next, size,
 602                                                " itd/%p", p.itd);
 603                                tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 604                                p = p.itd->itd_next;
 605                                break;
 606                        }
 607                        size -= temp;
 608                        next += temp;
 609                } while (p.ptr);
 610
 611                temp = scnprintf(next, size, "\n");
 612                size -= temp;
 613                next += temp;
 614        }
 615        spin_unlock_irqrestore(&fotg210->lock, flags);
 616        kfree(seen);
 617
 618        return buf->alloc_size - size;
 619}
 620#undef DBG_SCHED_LIMIT
 621
 622static const char *rh_state_string(struct fotg210_hcd *fotg210)
 623{
 624        switch (fotg210->rh_state) {
 625        case FOTG210_RH_HALTED:
 626                return "halted";
 627        case FOTG210_RH_SUSPENDED:
 628                return "suspended";
 629        case FOTG210_RH_RUNNING:
 630                return "running";
 631        case FOTG210_RH_STOPPING:
 632                return "stopping";
 633        }
 634        return "?";
 635}
 636
 637static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 638{
 639        struct usb_hcd *hcd;
 640        struct fotg210_hcd *fotg210;
 641        unsigned long flags;
 642        unsigned temp, size, i;
 643        char *next, scratch[80];
 644        static const char fmt[] = "%*s\n";
 645        static const char label[] = "";
 646
 647        hcd = bus_to_hcd(buf->bus);
 648        fotg210 = hcd_to_fotg210(hcd);
 649        next = buf->output_buf;
 650        size = buf->alloc_size;
 651
 652        spin_lock_irqsave(&fotg210->lock, flags);
 653
 654        if (!HCD_HW_ACCESSIBLE(hcd)) {
 655                size = scnprintf(next, size,
 656                                "bus %s, device %s\n"
 657                                "%s\n"
 658                                "SUSPENDED(no register access)\n",
 659                                hcd->self.controller->bus->name,
 660                                dev_name(hcd->self.controller),
 661                                hcd->product_desc);
 662                goto done;
 663        }
 664
 665        /* Capability Registers */
 666        i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 667                        &fotg210->caps->hc_capbase));
 668        temp = scnprintf(next, size,
 669                        "bus %s, device %s\n"
 670                        "%s\n"
 671                        "EHCI %x.%02x, rh state %s\n",
 672                        hcd->self.controller->bus->name,
 673                        dev_name(hcd->self.controller),
 674                        hcd->product_desc,
 675                        i >> 8, i & 0x0ff, rh_state_string(fotg210));
 676        size -= temp;
 677        next += temp;
 678
 679        /* FIXME interpret both types of params */
 680        i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 681        temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 682        size -= temp;
 683        next += temp;
 684
 685        i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 686        temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 687        size -= temp;
 688        next += temp;
 689
 690        /* Operational Registers */
 691        temp = dbg_status_buf(scratch, sizeof(scratch), label,
 692                        fotg210_readl(fotg210, &fotg210->regs->status));
 693        temp = scnprintf(next, size, fmt, temp, scratch);
 694        size -= temp;
 695        next += temp;
 696
 697        temp = dbg_command_buf(scratch, sizeof(scratch), label,
 698                        fotg210_readl(fotg210, &fotg210->regs->command));
 699        temp = scnprintf(next, size, fmt, temp, scratch);
 700        size -= temp;
 701        next += temp;
 702
 703        temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 704                        fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 705        temp = scnprintf(next, size, fmt, temp, scratch);
 706        size -= temp;
 707        next += temp;
 708
 709        temp = scnprintf(next, size, "uframe %04x\n",
 710                        fotg210_read_frame_index(fotg210));
 711        size -= temp;
 712        next += temp;
 713
 714        if (fotg210->async_unlink) {
 715                temp = scnprintf(next, size, "async unlink qh %p\n",
 716                                fotg210->async_unlink);
 717                size -= temp;
 718                next += temp;
 719        }
 720
 721#ifdef FOTG210_STATS
 722        temp = scnprintf(next, size,
 723                        "irq normal %ld err %ld iaa %ld(lost %ld)\n",
 724                        fotg210->stats.normal, fotg210->stats.error,
 725                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
 726        size -= temp;
 727        next += temp;
 728
 729        temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 730                        fotg210->stats.complete, fotg210->stats.unlink);
 731        size -= temp;
 732        next += temp;
 733#endif
 734
 735done:
 736        spin_unlock_irqrestore(&fotg210->lock, flags);
 737
 738        return buf->alloc_size - size;
 739}
 740
 741static struct debug_buffer
 742*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 743{
 744        struct debug_buffer *buf;
 745
 746        buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 747
 748        if (buf) {
 749                buf->bus = bus;
 750                buf->fill_func = fill_func;
 751                mutex_init(&buf->mutex);
 752                buf->alloc_size = PAGE_SIZE;
 753        }
 754
 755        return buf;
 756}
 757
 758static int fill_buffer(struct debug_buffer *buf)
 759{
 760        int ret = 0;
 761
 762        if (!buf->output_buf)
 763                buf->output_buf = vmalloc(buf->alloc_size);
 764
 765        if (!buf->output_buf) {
 766                ret = -ENOMEM;
 767                goto out;
 768        }
 769
 770        ret = buf->fill_func(buf);
 771
 772        if (ret >= 0) {
 773                buf->count = ret;
 774                ret = 0;
 775        }
 776
 777out:
 778        return ret;
 779}
 780
 781static ssize_t debug_output(struct file *file, char __user *user_buf,
 782                size_t len, loff_t *offset)
 783{
 784        struct debug_buffer *buf = file->private_data;
 785        int ret = 0;
 786
 787        mutex_lock(&buf->mutex);
 788        if (buf->count == 0) {
 789                ret = fill_buffer(buf);
 790                if (ret != 0) {
 791                        mutex_unlock(&buf->mutex);
 792                        goto out;
 793                }
 794        }
 795        mutex_unlock(&buf->mutex);
 796
 797        ret = simple_read_from_buffer(user_buf, len, offset,
 798                        buf->output_buf, buf->count);
 799
 800out:
 801        return ret;
 802
 803}
 804
 805static int debug_close(struct inode *inode, struct file *file)
 806{
 807        struct debug_buffer *buf = file->private_data;
 808
 809        if (buf) {
 810                vfree(buf->output_buf);
 811                kfree(buf);
 812        }
 813
 814        return 0;
 815}
 816static int debug_async_open(struct inode *inode, struct file *file)
 817{
 818        file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 819
 820        return file->private_data ? 0 : -ENOMEM;
 821}
 822
 823static int debug_periodic_open(struct inode *inode, struct file *file)
 824{
 825        struct debug_buffer *buf;
 826
 827        buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 828        if (!buf)
 829                return -ENOMEM;
 830
 831        buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 832        file->private_data = buf;
 833        return 0;
 834}
 835
 836static int debug_registers_open(struct inode *inode, struct file *file)
 837{
 838        file->private_data = alloc_buffer(inode->i_private,
 839                        fill_registers_buffer);
 840
 841        return file->private_data ? 0 : -ENOMEM;
 842}
 843
 844static inline void create_debug_files(struct fotg210_hcd *fotg210)
 845{
 846        struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 847        struct dentry *root;
 848
 849        root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
 850        fotg210->debug_dir = root;
 851
 852        debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
 853        debugfs_create_file("periodic", S_IRUGO, root, bus,
 854                            &debug_periodic_fops);
 855        debugfs_create_file("registers", S_IRUGO, root, bus,
 856                            &debug_registers_fops);
 857}
 858
 859static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 860{
 861        debugfs_remove_recursive(fotg210->debug_dir);
 862}
 863
 864/* handshake - spin reading hc until handshake completes or fails
 865 * @ptr: address of hc register to be read
 866 * @mask: bits to look at in result of read
 867 * @done: value of those bits when handshake succeeds
 868 * @usec: timeout in microseconds
 869 *
 870 * Returns negative errno, or zero on success
 871 *
 872 * Success happens when the "mask" bits have the specified value (hardware
 873 * handshake done).  There are two failure modes:  "usec" have passed (major
 874 * hardware flakeout), or the register reads as all-ones (hardware removed).
 875 *
 876 * That last failure should_only happen in cases like physical cardbus eject
 877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 878 * bridge shutdown:  shutting down the bridge before the devices using it.
 879 */
 880static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 881                u32 mask, u32 done, int usec)
 882{
 883        u32 result;
 884
 885        do {
 886                result = fotg210_readl(fotg210, ptr);
 887                if (result == ~(u32)0)          /* card removed */
 888                        return -ENODEV;
 889                result &= mask;
 890                if (result == done)
 891                        return 0;
 892                udelay(1);
 893                usec--;
 894        } while (usec > 0);
 895        return -ETIMEDOUT;
 896}
 897
 898/* Force HC to halt state from unknown (EHCI spec section 2.3).
 899 * Must be called with interrupts enabled and the lock not held.
 900 */
 901static int fotg210_halt(struct fotg210_hcd *fotg210)
 902{
 903        u32 temp;
 904
 905        spin_lock_irq(&fotg210->lock);
 906
 907        /* disable any irqs left enabled by previous code */
 908        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 909
 910        /*
 911         * This routine gets called during probe before fotg210->command
 912         * has been initialized, so we can't rely on its value.
 913         */
 914        fotg210->command &= ~CMD_RUN;
 915        temp = fotg210_readl(fotg210, &fotg210->regs->command);
 916        temp &= ~(CMD_RUN | CMD_IAAD);
 917        fotg210_writel(fotg210, temp, &fotg210->regs->command);
 918
 919        spin_unlock_irq(&fotg210->lock);
 920        synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 921
 922        return handshake(fotg210, &fotg210->regs->status,
 923                        STS_HALT, STS_HALT, 16 * 125);
 924}
 925
 926/* Reset a non-running (STS_HALT == 1) controller.
 927 * Must be called with interrupts enabled and the lock not held.
 928 */
 929static int fotg210_reset(struct fotg210_hcd *fotg210)
 930{
 931        int retval;
 932        u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 933
 934        /* If the EHCI debug controller is active, special care must be
 935         * taken before and after a host controller reset
 936         */
 937        if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 938                fotg210->debug = NULL;
 939
 940        command |= CMD_RESET;
 941        dbg_cmd(fotg210, "reset", command);
 942        fotg210_writel(fotg210, command, &fotg210->regs->command);
 943        fotg210->rh_state = FOTG210_RH_HALTED;
 944        fotg210->next_statechange = jiffies;
 945        retval = handshake(fotg210, &fotg210->regs->command,
 946                        CMD_RESET, 0, 250 * 1000);
 947
 948        if (retval)
 949                return retval;
 950
 951        if (fotg210->debug)
 952                dbgp_external_startup(fotg210_to_hcd(fotg210));
 953
 954        fotg210->port_c_suspend = fotg210->suspended_ports =
 955                        fotg210->resuming_ports = 0;
 956        return retval;
 957}
 958
 959/* Idle the controller (turn off the schedules).
 960 * Must be called with interrupts enabled and the lock not held.
 961 */
 962static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 963{
 964        u32 temp;
 965
 966        if (fotg210->rh_state != FOTG210_RH_RUNNING)
 967                return;
 968
 969        /* wait for any schedule enables/disables to take effect */
 970        temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 971        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 972                        16 * 125);
 973
 974        /* then disable anything that's still active */
 975        spin_lock_irq(&fotg210->lock);
 976        fotg210->command &= ~(CMD_ASE | CMD_PSE);
 977        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 978        spin_unlock_irq(&fotg210->lock);
 979
 980        /* hardware can take 16 microframes to turn off ... */
 981        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
 982                        16 * 125);
 983}
 984
 985static void end_unlink_async(struct fotg210_hcd *fotg210);
 986static void unlink_empty_async(struct fotg210_hcd *fotg210);
 987static void fotg210_work(struct fotg210_hcd *fotg210);
 988static void start_unlink_intr(struct fotg210_hcd *fotg210,
 989                              struct fotg210_qh *qh);
 990static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
 991
 992/* Set a bit in the USBCMD register */
 993static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
 994{
 995        fotg210->command |= bit;
 996        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 997
 998        /* unblock posted write */
 999        fotg210_readl(fotg210, &fotg210->regs->command);
1000}
1001
1002/* Clear a bit in the USBCMD register */
1003static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1004{
1005        fotg210->command &= ~bit;
1006        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1007
1008        /* unblock posted write */
1009        fotg210_readl(fotg210, &fotg210->regs->command);
1010}
1011
1012/* EHCI timer support...  Now using hrtimers.
1013 *
1014 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1015 * the timer routine runs, it checks each possible event; events that are
1016 * currently enabled and whose expiration time has passed get handled.
1017 * The set of enabled events is stored as a collection of bitflags in
1018 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019 * increasing delay values (ranging between 1 ms and 100 ms).
1020 *
1021 * Rather than implementing a sorted list or tree of all pending events,
1022 * we keep track only of the lowest-numbered pending event, in
1023 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1024 * expiration time is set to the timeout value for this event.
1025 *
1026 * As a result, events might not get handled right away; the actual delay
1027 * could be anywhere up to twice the requested delay.  This doesn't
1028 * matter, because none of the events are especially time-critical.  The
1029 * ones that matter most all have a delay of 1 ms, so they will be
1030 * handled after 2 ms at most, which is okay.  In addition to this, we
1031 * allow for an expiration range of 1 ms.
1032 */
1033
1034/* Delay lengths for the hrtimer event types.
1035 * Keep this list sorted by delay length, in the same order as
1036 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1037 */
1038static unsigned event_delays_ns[] = {
1039        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1040        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1041        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1042        1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1043        2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1044        6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1046        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047        15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1048        100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1049};
1050
1051/* Enable a pending hrtimer event */
1052static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053                bool resched)
1054{
1055        ktime_t *timeout = &fotg210->hr_timeouts[event];
1056
1057        if (resched)
1058                *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059        fotg210->enabled_hrtimer_events |= (1 << event);
1060
1061        /* Track only the lowest-numbered pending event */
1062        if (event < fotg210->next_hrtimer_event) {
1063                fotg210->next_hrtimer_event = event;
1064                hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065                                NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1066        }
1067}
1068
1069
1070/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1071static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1072{
1073        unsigned actual, want;
1074
1075        /* Don't enable anything if the controller isn't running (e.g., died) */
1076        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077                return;
1078
1079        want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1081
1082        if (want != actual) {
1083
1084                /* Poll again later, but give up after about 20 ms */
1085                if (fotg210->ASS_poll_count++ < 20) {
1086                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087                                        true);
1088                        return;
1089                }
1090                fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091                                want, actual);
1092        }
1093        fotg210->ASS_poll_count = 0;
1094
1095        /* The status is up-to-date; restart or stop the schedule as needed */
1096        if (want == 0) {        /* Stopped */
1097                if (fotg210->async_count > 0)
1098                        fotg210_set_command_bit(fotg210, CMD_ASE);
1099
1100        } else {                /* Running */
1101                if (fotg210->async_count == 0) {
1102
1103                        /* Turn off the schedule after a while */
1104                        fotg210_enable_event(fotg210,
1105                                        FOTG210_HRTIMER_DISABLE_ASYNC,
1106                                        true);
1107                }
1108        }
1109}
1110
1111/* Turn off the async schedule after a brief delay */
1112static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1113{
1114        fotg210_clear_command_bit(fotg210, CMD_ASE);
1115}
1116
1117
1118/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1119static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1120{
1121        unsigned actual, want;
1122
1123        /* Don't do anything if the controller isn't running (e.g., died) */
1124        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125                return;
1126
1127        want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1129
1130        if (want != actual) {
1131
1132                /* Poll again later, but give up after about 20 ms */
1133                if (fotg210->PSS_poll_count++ < 20) {
1134                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135                                        true);
1136                        return;
1137                }
1138                fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139                                want, actual);
1140        }
1141        fotg210->PSS_poll_count = 0;
1142
1143        /* The status is up-to-date; restart or stop the schedule as needed */
1144        if (want == 0) {        /* Stopped */
1145                if (fotg210->periodic_count > 0)
1146                        fotg210_set_command_bit(fotg210, CMD_PSE);
1147
1148        } else {                /* Running */
1149                if (fotg210->periodic_count == 0) {
1150
1151                        /* Turn off the schedule after a while */
1152                        fotg210_enable_event(fotg210,
1153                                        FOTG210_HRTIMER_DISABLE_PERIODIC,
1154                                        true);
1155                }
1156        }
1157}
1158
1159/* Turn off the periodic schedule after a brief delay */
1160static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1161{
1162        fotg210_clear_command_bit(fotg210, CMD_PSE);
1163}
1164
1165
1166/* Poll the STS_HALT status bit; see when a dead controller stops */
1167static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1168{
1169        if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1170
1171                /* Give up after a few milliseconds */
1172                if (fotg210->died_poll_count++ < 5) {
1173                        /* Try again later */
1174                        fotg210_enable_event(fotg210,
1175                                        FOTG210_HRTIMER_POLL_DEAD, true);
1176                        return;
1177                }
1178                fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1179        }
1180
1181        /* Clean up the mess */
1182        fotg210->rh_state = FOTG210_RH_HALTED;
1183        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184        fotg210_work(fotg210);
1185        end_unlink_async(fotg210);
1186
1187        /* Not in process context, so don't try to reset the controller */
1188}
1189
1190
1191/* Handle unlinked interrupt QHs once they are gone from the hardware */
1192static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1193{
1194        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1195
1196        /*
1197         * Process all the QHs on the intr_unlink list that were added
1198         * before the current unlink cycle began.  The list is in
1199         * temporal order, so stop when we reach the first entry in the
1200         * current cycle.  But if the root hub isn't running then
1201         * process all the QHs on the list.
1202         */
1203        fotg210->intr_unlinking = true;
1204        while (fotg210->intr_unlink) {
1205                struct fotg210_qh *qh = fotg210->intr_unlink;
1206
1207                if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208                        break;
1209                fotg210->intr_unlink = qh->unlink_next;
1210                qh->unlink_next = NULL;
1211                end_unlink_intr(fotg210, qh);
1212        }
1213
1214        /* Handle remaining entries later */
1215        if (fotg210->intr_unlink) {
1216                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217                                true);
1218                ++fotg210->intr_unlink_cycle;
1219        }
1220        fotg210->intr_unlinking = false;
1221}
1222
1223
1224/* Start another free-iTDs/siTDs cycle */
1225static void start_free_itds(struct fotg210_hcd *fotg210)
1226{
1227        if (!(fotg210->enabled_hrtimer_events &
1228                        BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229                fotg210->last_itd_to_free = list_entry(
1230                                fotg210->cached_itd_list.prev,
1231                                struct fotg210_itd, itd_list);
1232                fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1233        }
1234}
1235
1236/* Wait for controller to stop using old iTDs and siTDs */
1237static void end_free_itds(struct fotg210_hcd *fotg210)
1238{
1239        struct fotg210_itd *itd, *n;
1240
1241        if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242                fotg210->last_itd_to_free = NULL;
1243
1244        list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245                list_del(&itd->itd_list);
1246                dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247                if (itd == fotg210->last_itd_to_free)
1248                        break;
1249        }
1250
1251        if (!list_empty(&fotg210->cached_itd_list))
1252                start_free_itds(fotg210);
1253}
1254
1255
1256/* Handle lost (or very late) IAA interrupts */
1257static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1258{
1259        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260                return;
1261
1262        /*
1263         * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264         * So we need this watchdog, but must protect it against both
1265         * (a) SMP races against real IAA firing and retriggering, and
1266         * (b) clean HC shutdown, when IAA watchdog was pending.
1267         */
1268        if (fotg210->async_iaa) {
1269                u32 cmd, status;
1270
1271                /* If we get here, IAA is *REALLY* late.  It's barely
1272                 * conceivable that the system is so busy that CMD_IAAD
1273                 * is still legitimately set, so let's be sure it's
1274                 * clear before we read STS_IAA.  (The HC should clear
1275                 * CMD_IAAD when it sets STS_IAA.)
1276                 */
1277                cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1278
1279                /*
1280                 * If IAA is set here it either legitimately triggered
1281                 * after the watchdog timer expired (_way_ late, so we'll
1282                 * still count it as lost) ... or a silicon erratum:
1283                 * - VIA seems to set IAA without triggering the IRQ;
1284                 * - IAAD potentially cleared without setting IAA.
1285                 */
1286                status = fotg210_readl(fotg210, &fotg210->regs->status);
1287                if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288                        COUNT(fotg210->stats.lost_iaa);
1289                        fotg210_writel(fotg210, STS_IAA,
1290                                        &fotg210->regs->status);
1291                }
1292
1293                fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294                                status, cmd);
1295                end_unlink_async(fotg210);
1296        }
1297}
1298
1299
1300/* Enable the I/O watchdog, if appropriate */
1301static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1302{
1303        /* Not needed if the controller isn't running or it's already enabled */
1304        if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305                        (fotg210->enabled_hrtimer_events &
1306                        BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307                return;
1308
1309        /*
1310         * Isochronous transfers always need the watchdog.
1311         * For other sorts we use it only if the flag is set.
1312         */
1313        if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314                        fotg210->async_count + fotg210->intr_count > 0))
1315                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316                                true);
1317}
1318
1319
1320/* Handler functions for the hrtimer event types.
1321 * Keep this array in the same order as the event types indexed by
1322 * enum fotg210_hrtimer_event in fotg210.h.
1323 */
1324static void (*event_handlers[])(struct fotg210_hcd *) = {
1325        fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1326        fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1327        fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1328        fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1329        end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1330        unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331        fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1332        fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333        fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1334        fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1335};
1336
1337static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1338{
1339        struct fotg210_hcd *fotg210 =
1340                        container_of(t, struct fotg210_hcd, hrtimer);
1341        ktime_t now;
1342        unsigned long events;
1343        unsigned long flags;
1344        unsigned e;
1345
1346        spin_lock_irqsave(&fotg210->lock, flags);
1347
1348        events = fotg210->enabled_hrtimer_events;
1349        fotg210->enabled_hrtimer_events = 0;
1350        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1351
1352        /*
1353         * Check each pending event.  If its time has expired, handle
1354         * the event; otherwise re-enable it.
1355         */
1356        now = ktime_get();
1357        for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358                if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359                        event_handlers[e](fotg210);
1360                else
1361                        fotg210_enable_event(fotg210, e, false);
1362        }
1363
1364        spin_unlock_irqrestore(&fotg210->lock, flags);
1365        return HRTIMER_NORESTART;
1366}
1367
1368#define fotg210_bus_suspend NULL
1369#define fotg210_bus_resume NULL
1370
1371static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372                u32 __iomem *status_reg, int port_status)
1373{
1374        if (!(port_status & PORT_CONNECT))
1375                return port_status;
1376
1377        /* if reset finished and it's still not enabled -- handoff */
1378        if (!(port_status & PORT_PE))
1379                /* with integrated TT, there's nobody to hand it to! */
1380                fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381                                index + 1);
1382        else
1383                fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384                                index + 1);
1385
1386        return port_status;
1387}
1388
1389
1390/* build "status change" packet (one or two bytes) from HC registers */
1391
1392static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1393{
1394        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395        u32 temp, status;
1396        u32 mask;
1397        int retval = 1;
1398        unsigned long flags;
1399
1400        /* init status to no-changes */
1401        buf[0] = 0;
1402
1403        /* Inform the core about resumes-in-progress by returning
1404         * a non-zero value even if there are no status changes.
1405         */
1406        status = fotg210->resuming_ports;
1407
1408        mask = PORT_CSC | PORT_PEC;
1409        /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1410
1411        /* no hub change reports (bit 0) for now (power, ...) */
1412
1413        /* port N changes (bit N)? */
1414        spin_lock_irqsave(&fotg210->lock, flags);
1415
1416        temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1417
1418        /*
1419         * Return status information even for ports with OWNER set.
1420         * Otherwise hub_wq wouldn't see the disconnect event when a
1421         * high-speed device is switched over to the companion
1422         * controller by the user.
1423         */
1424
1425        if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426                        (fotg210->reset_done[0] &&
1427                        time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428                buf[0] |= 1 << 1;
1429                status = STS_PCD;
1430        }
1431        /* FIXME autosuspend idle root hubs */
1432        spin_unlock_irqrestore(&fotg210->lock, flags);
1433        return status ? retval : 0;
1434}
1435
1436static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437                struct usb_hub_descriptor *desc)
1438{
1439        int ports = HCS_N_PORTS(fotg210->hcs_params);
1440        u16 temp;
1441
1442        desc->bDescriptorType = USB_DT_HUB;
1443        desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1444        desc->bHubContrCurrent = 0;
1445
1446        desc->bNbrPorts = ports;
1447        temp = 1 + (ports / 8);
1448        desc->bDescLength = 7 + 2 * temp;
1449
1450        /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451        memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452        memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1453
1454        temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1455        temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1456        desc->wHubCharacteristics = cpu_to_le16(temp);
1457}
1458
1459static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460                u16 wIndex, char *buf, u16 wLength)
1461{
1462        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463        int ports = HCS_N_PORTS(fotg210->hcs_params);
1464        u32 __iomem *status_reg = &fotg210->regs->port_status;
1465        u32 temp, temp1, status;
1466        unsigned long flags;
1467        int retval = 0;
1468        unsigned selector;
1469
1470        /*
1471         * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472         * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473         * (track current state ourselves) ... blink for diagnostics,
1474         * power, "this is the one", etc.  EHCI spec supports this.
1475         */
1476
1477        spin_lock_irqsave(&fotg210->lock, flags);
1478        switch (typeReq) {
1479        case ClearHubFeature:
1480                switch (wValue) {
1481                case C_HUB_LOCAL_POWER:
1482                case C_HUB_OVER_CURRENT:
1483                        /* no hub-wide feature/status flags */
1484                        break;
1485                default:
1486                        goto error;
1487                }
1488                break;
1489        case ClearPortFeature:
1490                if (!wIndex || wIndex > ports)
1491                        goto error;
1492                wIndex--;
1493                temp = fotg210_readl(fotg210, status_reg);
1494                temp &= ~PORT_RWC_BITS;
1495
1496                /*
1497                 * Even if OWNER is set, so the port is owned by the
1498                 * companion controller, hub_wq needs to be able to clear
1499                 * the port-change status bits (especially
1500                 * USB_PORT_STAT_C_CONNECTION).
1501                 */
1502
1503                switch (wValue) {
1504                case USB_PORT_FEAT_ENABLE:
1505                        fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506                        break;
1507                case USB_PORT_FEAT_C_ENABLE:
1508                        fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509                        break;
1510                case USB_PORT_FEAT_SUSPEND:
1511                        if (temp & PORT_RESET)
1512                                goto error;
1513                        if (!(temp & PORT_SUSPEND))
1514                                break;
1515                        if ((temp & PORT_PE) == 0)
1516                                goto error;
1517
1518                        /* resume signaling for 20 msec */
1519                        fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520                        fotg210->reset_done[wIndex] = jiffies
1521                                        + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522                        break;
1523                case USB_PORT_FEAT_C_SUSPEND:
1524                        clear_bit(wIndex, &fotg210->port_c_suspend);
1525                        break;
1526                case USB_PORT_FEAT_C_CONNECTION:
1527                        fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528                        break;
1529                case USB_PORT_FEAT_C_OVER_CURRENT:
1530                        fotg210_writel(fotg210, temp | OTGISR_OVC,
1531                                        &fotg210->regs->otgisr);
1532                        break;
1533                case USB_PORT_FEAT_C_RESET:
1534                        /* GetPortStatus clears reset */
1535                        break;
1536                default:
1537                        goto error;
1538                }
1539                fotg210_readl(fotg210, &fotg210->regs->command);
1540                break;
1541        case GetHubDescriptor:
1542                fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543                                buf);
1544                break;
1545        case GetHubStatus:
1546                /* no hub-wide feature/status flags */
1547                memset(buf, 0, 4);
1548                /*cpu_to_le32s ((u32 *) buf); */
1549                break;
1550        case GetPortStatus:
1551                if (!wIndex || wIndex > ports)
1552                        goto error;
1553                wIndex--;
1554                status = 0;
1555                temp = fotg210_readl(fotg210, status_reg);
1556
1557                /* wPortChange bits */
1558                if (temp & PORT_CSC)
1559                        status |= USB_PORT_STAT_C_CONNECTION << 16;
1560                if (temp & PORT_PEC)
1561                        status |= USB_PORT_STAT_C_ENABLE << 16;
1562
1563                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564                if (temp1 & OTGISR_OVC)
1565                        status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1566
1567                /* whoever resumes must GetPortStatus to complete it!! */
1568                if (temp & PORT_RESUME) {
1569
1570                        /* Remote Wakeup received? */
1571                        if (!fotg210->reset_done[wIndex]) {
1572                                /* resume signaling for 20 msec */
1573                                fotg210->reset_done[wIndex] = jiffies
1574                                                + msecs_to_jiffies(20);
1575                                /* check the port again */
1576                                mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577                                                fotg210->reset_done[wIndex]);
1578                        }
1579
1580                        /* resume completed? */
1581                        else if (time_after_eq(jiffies,
1582                                        fotg210->reset_done[wIndex])) {
1583                                clear_bit(wIndex, &fotg210->suspended_ports);
1584                                set_bit(wIndex, &fotg210->port_c_suspend);
1585                                fotg210->reset_done[wIndex] = 0;
1586
1587                                /* stop resume signaling */
1588                                temp = fotg210_readl(fotg210, status_reg);
1589                                fotg210_writel(fotg210, temp &
1590                                                ~(PORT_RWC_BITS | PORT_RESUME),
1591                                                status_reg);
1592                                clear_bit(wIndex, &fotg210->resuming_ports);
1593                                retval = handshake(fotg210, status_reg,
1594                                                PORT_RESUME, 0, 2000);/* 2ms */
1595                                if (retval != 0) {
1596                                        fotg210_err(fotg210,
1597                                                        "port %d resume error %d\n",
1598                                                        wIndex + 1, retval);
1599                                        goto error;
1600                                }
1601                                temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1602                        }
1603                }
1604
1605                /* whoever resets must GetPortStatus to complete it!! */
1606                if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607                                fotg210->reset_done[wIndex])) {
1608                        status |= USB_PORT_STAT_C_RESET << 16;
1609                        fotg210->reset_done[wIndex] = 0;
1610                        clear_bit(wIndex, &fotg210->resuming_ports);
1611
1612                        /* force reset to complete */
1613                        fotg210_writel(fotg210,
1614                                        temp & ~(PORT_RWC_BITS | PORT_RESET),
1615                                        status_reg);
1616                        /* REVISIT:  some hardware needs 550+ usec to clear
1617                         * this bit; seems too long to spin routinely...
1618                         */
1619                        retval = handshake(fotg210, status_reg,
1620                                        PORT_RESET, 0, 1000);
1621                        if (retval != 0) {
1622                                fotg210_err(fotg210, "port %d reset error %d\n",
1623                                                wIndex + 1, retval);
1624                                goto error;
1625                        }
1626
1627                        /* see what we found out */
1628                        temp = check_reset_complete(fotg210, wIndex, status_reg,
1629                                        fotg210_readl(fotg210, status_reg));
1630                }
1631
1632                if (!(temp & (PORT_RESUME|PORT_RESET))) {
1633                        fotg210->reset_done[wIndex] = 0;
1634                        clear_bit(wIndex, &fotg210->resuming_ports);
1635                }
1636
1637                /* transfer dedicated ports to the companion hc */
1638                if ((temp & PORT_CONNECT) &&
1639                                test_bit(wIndex, &fotg210->companion_ports)) {
1640                        temp &= ~PORT_RWC_BITS;
1641                        fotg210_writel(fotg210, temp, status_reg);
1642                        fotg210_dbg(fotg210, "port %d --> companion\n",
1643                                        wIndex + 1);
1644                        temp = fotg210_readl(fotg210, status_reg);
1645                }
1646
1647                /*
1648                 * Even if OWNER is set, there's no harm letting hub_wq
1649                 * see the wPortStatus values (they should all be 0 except
1650                 * for PORT_POWER anyway).
1651                 */
1652
1653                if (temp & PORT_CONNECT) {
1654                        status |= USB_PORT_STAT_CONNECTION;
1655                        status |= fotg210_port_speed(fotg210, temp);
1656                }
1657                if (temp & PORT_PE)
1658                        status |= USB_PORT_STAT_ENABLE;
1659
1660                /* maybe the port was unsuspended without our knowledge */
1661                if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1662                        status |= USB_PORT_STAT_SUSPEND;
1663                } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1664                        clear_bit(wIndex, &fotg210->suspended_ports);
1665                        clear_bit(wIndex, &fotg210->resuming_ports);
1666                        fotg210->reset_done[wIndex] = 0;
1667                        if (temp & PORT_PE)
1668                                set_bit(wIndex, &fotg210->port_c_suspend);
1669                }
1670
1671                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1672                if (temp1 & OTGISR_OVC)
1673                        status |= USB_PORT_STAT_OVERCURRENT;
1674                if (temp & PORT_RESET)
1675                        status |= USB_PORT_STAT_RESET;
1676                if (test_bit(wIndex, &fotg210->port_c_suspend))
1677                        status |= USB_PORT_STAT_C_SUSPEND << 16;
1678
1679                if (status & ~0xffff)   /* only if wPortChange is interesting */
1680                        dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1681                put_unaligned_le32(status, buf);
1682                break;
1683        case SetHubFeature:
1684                switch (wValue) {
1685                case C_HUB_LOCAL_POWER:
1686                case C_HUB_OVER_CURRENT:
1687                        /* no hub-wide feature/status flags */
1688                        break;
1689                default:
1690                        goto error;
1691                }
1692                break;
1693        case SetPortFeature:
1694                selector = wIndex >> 8;
1695                wIndex &= 0xff;
1696
1697                if (!wIndex || wIndex > ports)
1698                        goto error;
1699                wIndex--;
1700                temp = fotg210_readl(fotg210, status_reg);
1701                temp &= ~PORT_RWC_BITS;
1702                switch (wValue) {
1703                case USB_PORT_FEAT_SUSPEND:
1704                        if ((temp & PORT_PE) == 0
1705                                        || (temp & PORT_RESET) != 0)
1706                                goto error;
1707
1708                        /* After above check the port must be connected.
1709                         * Set appropriate bit thus could put phy into low power
1710                         * mode if we have hostpc feature
1711                         */
1712                        fotg210_writel(fotg210, temp | PORT_SUSPEND,
1713                                        status_reg);
1714                        set_bit(wIndex, &fotg210->suspended_ports);
1715                        break;
1716                case USB_PORT_FEAT_RESET:
1717                        if (temp & PORT_RESUME)
1718                                goto error;
1719                        /* line status bits may report this as low speed,
1720                         * which can be fine if this root hub has a
1721                         * transaction translator built in.
1722                         */
1723                        fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1724                        temp |= PORT_RESET;
1725                        temp &= ~PORT_PE;
1726
1727                        /*
1728                         * caller must wait, then call GetPortStatus
1729                         * usb 2.0 spec says 50 ms resets on root
1730                         */
1731                        fotg210->reset_done[wIndex] = jiffies
1732                                        + msecs_to_jiffies(50);
1733                        fotg210_writel(fotg210, temp, status_reg);
1734                        break;
1735
1736                /* For downstream facing ports (these):  one hub port is put
1737                 * into test mode according to USB2 11.24.2.13, then the hub
1738                 * must be reset (which for root hub now means rmmod+modprobe,
1739                 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1740                 * about the EHCI-specific stuff.
1741                 */
1742                case USB_PORT_FEAT_TEST:
1743                        if (!selector || selector > 5)
1744                                goto error;
1745                        spin_unlock_irqrestore(&fotg210->lock, flags);
1746                        fotg210_quiesce(fotg210);
1747                        spin_lock_irqsave(&fotg210->lock, flags);
1748
1749                        /* Put all enabled ports into suspend */
1750                        temp = fotg210_readl(fotg210, status_reg) &
1751                                ~PORT_RWC_BITS;
1752                        if (temp & PORT_PE)
1753                                fotg210_writel(fotg210, temp | PORT_SUSPEND,
1754                                                status_reg);
1755
1756                        spin_unlock_irqrestore(&fotg210->lock, flags);
1757                        fotg210_halt(fotg210);
1758                        spin_lock_irqsave(&fotg210->lock, flags);
1759
1760                        temp = fotg210_readl(fotg210, status_reg);
1761                        temp |= selector << 16;
1762                        fotg210_writel(fotg210, temp, status_reg);
1763                        break;
1764
1765                default:
1766                        goto error;
1767                }
1768                fotg210_readl(fotg210, &fotg210->regs->command);
1769                break;
1770
1771        default:
1772error:
1773                /* "stall" on error */
1774                retval = -EPIPE;
1775        }
1776        spin_unlock_irqrestore(&fotg210->lock, flags);
1777        return retval;
1778}
1779
1780static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1781                int portnum)
1782{
1783        return;
1784}
1785
1786static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1787                int portnum)
1788{
1789        return 0;
1790}
1791
1792/* There's basically three types of memory:
1793 *      - data used only by the HCD ... kmalloc is fine
1794 *      - async and periodic schedules, shared by HC and HCD ... these
1795 *        need to use dma_pool or dma_alloc_coherent
1796 *      - driver buffers, read/written by HC ... single shot DMA mapped
1797 *
1798 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1799 * No memory seen by this driver is pageable.
1800 */
1801
1802/* Allocate the key transfer structures from the previously allocated pool */
1803static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1804                struct fotg210_qtd *qtd, dma_addr_t dma)
1805{
1806        memset(qtd, 0, sizeof(*qtd));
1807        qtd->qtd_dma = dma;
1808        qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1809        qtd->hw_next = FOTG210_LIST_END(fotg210);
1810        qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1811        INIT_LIST_HEAD(&qtd->qtd_list);
1812}
1813
1814static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1815                gfp_t flags)
1816{
1817        struct fotg210_qtd *qtd;
1818        dma_addr_t dma;
1819
1820        qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1821        if (qtd != NULL)
1822                fotg210_qtd_init(fotg210, qtd, dma);
1823
1824        return qtd;
1825}
1826
1827static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1828                struct fotg210_qtd *qtd)
1829{
1830        dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1831}
1832
1833
1834static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1835{
1836        /* clean qtds first, and know this is not linked */
1837        if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1838                fotg210_dbg(fotg210, "unused qh not empty!\n");
1839                BUG();
1840        }
1841        if (qh->dummy)
1842                fotg210_qtd_free(fotg210, qh->dummy);
1843        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1844        kfree(qh);
1845}
1846
1847static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1848                gfp_t flags)
1849{
1850        struct fotg210_qh *qh;
1851        dma_addr_t dma;
1852
1853        qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1854        if (!qh)
1855                goto done;
1856        qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1857        if (!qh->hw)
1858                goto fail;
1859        qh->qh_dma = dma;
1860        INIT_LIST_HEAD(&qh->qtd_list);
1861
1862        /* dummy td enables safe urb queuing */
1863        qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1864        if (qh->dummy == NULL) {
1865                fotg210_dbg(fotg210, "no dummy td\n");
1866                goto fail1;
1867        }
1868done:
1869        return qh;
1870fail1:
1871        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1872fail:
1873        kfree(qh);
1874        return NULL;
1875}
1876
1877/* The queue heads and transfer descriptors are managed from pools tied
1878 * to each of the "per device" structures.
1879 * This is the initialisation and cleanup code.
1880 */
1881
1882static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1883{
1884        if (fotg210->async)
1885                qh_destroy(fotg210, fotg210->async);
1886        fotg210->async = NULL;
1887
1888        if (fotg210->dummy)
1889                qh_destroy(fotg210, fotg210->dummy);
1890        fotg210->dummy = NULL;
1891
1892        /* DMA consistent memory and pools */
1893        dma_pool_destroy(fotg210->qtd_pool);
1894        fotg210->qtd_pool = NULL;
1895
1896        dma_pool_destroy(fotg210->qh_pool);
1897        fotg210->qh_pool = NULL;
1898
1899        dma_pool_destroy(fotg210->itd_pool);
1900        fotg210->itd_pool = NULL;
1901
1902        if (fotg210->periodic)
1903                dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1904                                fotg210->periodic_size * sizeof(u32),
1905                                fotg210->periodic, fotg210->periodic_dma);
1906        fotg210->periodic = NULL;
1907
1908        /* shadow periodic table */
1909        kfree(fotg210->pshadow);
1910        fotg210->pshadow = NULL;
1911}
1912
1913/* remember to add cleanup code (above) if you add anything here */
1914static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1915{
1916        int i;
1917
1918        /* QTDs for control/bulk/intr transfers */
1919        fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1920                        fotg210_to_hcd(fotg210)->self.controller,
1921                        sizeof(struct fotg210_qtd),
1922                        32 /* byte alignment (for hw parts) */,
1923                        4096 /* can't cross 4K */);
1924        if (!fotg210->qtd_pool)
1925                goto fail;
1926
1927        /* QHs for control/bulk/intr transfers */
1928        fotg210->qh_pool = dma_pool_create("fotg210_qh",
1929                        fotg210_to_hcd(fotg210)->self.controller,
1930                        sizeof(struct fotg210_qh_hw),
1931                        32 /* byte alignment (for hw parts) */,
1932                        4096 /* can't cross 4K */);
1933        if (!fotg210->qh_pool)
1934                goto fail;
1935
1936        fotg210->async = fotg210_qh_alloc(fotg210, flags);
1937        if (!fotg210->async)
1938                goto fail;
1939
1940        /* ITD for high speed ISO transfers */
1941        fotg210->itd_pool = dma_pool_create("fotg210_itd",
1942                        fotg210_to_hcd(fotg210)->self.controller,
1943                        sizeof(struct fotg210_itd),
1944                        64 /* byte alignment (for hw parts) */,
1945                        4096 /* can't cross 4K */);
1946        if (!fotg210->itd_pool)
1947                goto fail;
1948
1949        /* Hardware periodic table */
1950        fotg210->periodic = (__le32 *)
1951                dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1952                                fotg210->periodic_size * sizeof(__le32),
1953                                &fotg210->periodic_dma, 0);
1954        if (fotg210->periodic == NULL)
1955                goto fail;
1956
1957        for (i = 0; i < fotg210->periodic_size; i++)
1958                fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1959
1960        /* software shadow of hardware table */
1961        fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1962                        flags);
1963        if (fotg210->pshadow != NULL)
1964                return 0;
1965
1966fail:
1967        fotg210_dbg(fotg210, "couldn't init memory\n");
1968        fotg210_mem_cleanup(fotg210);
1969        return -ENOMEM;
1970}
1971/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1972 *
1973 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1974 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1975 * buffers needed for the larger number).  We use one QH per endpoint, queue
1976 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1977 *
1978 * ISO traffic uses "ISO TD" (itd) records, and (along with
1979 * interrupts) needs careful scheduling.  Performance improvements can be
1980 * an ongoing challenge.  That's in "ehci-sched.c".
1981 *
1982 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1983 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1984 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1985 * buffer low/full speed data so the host collects it at high speed.
1986 */
1987
1988/* fill a qtd, returning how much of the buffer we were able to queue up */
1989static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1990                dma_addr_t buf, size_t len, int token, int maxpacket)
1991{
1992        int i, count;
1993        u64 addr = buf;
1994
1995        /* one buffer entry per 4K ... first might be short or unaligned */
1996        qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1997        qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1998        count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
1999        if (likely(len < count))                /* ... iff needed */
2000                count = len;
2001        else {
2002                buf +=  0x1000;
2003                buf &= ~0x0fff;
2004
2005                /* per-qtd limit: from 16K to 20K (best alignment) */
2006                for (i = 1; count < len && i < 5; i++) {
2007                        addr = buf;
2008                        qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2009                        qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2010                                        (u32)(addr >> 32));
2011                        buf += 0x1000;
2012                        if ((count + 0x1000) < len)
2013                                count += 0x1000;
2014                        else
2015                                count = len;
2016                }
2017
2018                /* short packets may only terminate transfers */
2019                if (count != len)
2020                        count -= (count % maxpacket);
2021        }
2022        qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2023        qtd->length = count;
2024
2025        return count;
2026}
2027
2028static inline void qh_update(struct fotg210_hcd *fotg210,
2029                struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2030{
2031        struct fotg210_qh_hw *hw = qh->hw;
2032
2033        /* writes to an active overlay are unsafe */
2034        BUG_ON(qh->qh_state != QH_STATE_IDLE);
2035
2036        hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2037        hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2038
2039        /* Except for control endpoints, we make hardware maintain data
2040         * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2041         * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2042         * ever clear it.
2043         */
2044        if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2045                unsigned is_out, epnum;
2046
2047                is_out = qh->is_out;
2048                epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2049                if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2050                        hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2051                        usb_settoggle(qh->dev, epnum, is_out, 1);
2052                }
2053        }
2054
2055        hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2056}
2057
2058/* if it weren't for a common silicon quirk (writing the dummy into the qh
2059 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2060 * recovery (including urb dequeue) would need software changes to a QH...
2061 */
2062static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2063{
2064        struct fotg210_qtd *qtd;
2065
2066        if (list_empty(&qh->qtd_list))
2067                qtd = qh->dummy;
2068        else {
2069                qtd = list_entry(qh->qtd_list.next,
2070                                struct fotg210_qtd, qtd_list);
2071                /*
2072                 * first qtd may already be partially processed.
2073                 * If we come here during unlink, the QH overlay region
2074                 * might have reference to the just unlinked qtd. The
2075                 * qtd is updated in qh_completions(). Update the QH
2076                 * overlay here.
2077                 */
2078                if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2079                        qh->hw->hw_qtd_next = qtd->hw_next;
2080                        qtd = NULL;
2081                }
2082        }
2083
2084        if (qtd)
2085                qh_update(fotg210, qh, qtd);
2086}
2087
2088static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2089
2090static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2091                struct usb_host_endpoint *ep)
2092{
2093        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2094        struct fotg210_qh *qh = ep->hcpriv;
2095        unsigned long flags;
2096
2097        spin_lock_irqsave(&fotg210->lock, flags);
2098        qh->clearing_tt = 0;
2099        if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2100                        && fotg210->rh_state == FOTG210_RH_RUNNING)
2101                qh_link_async(fotg210, qh);
2102        spin_unlock_irqrestore(&fotg210->lock, flags);
2103}
2104
2105static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2106                struct fotg210_qh *qh, struct urb *urb, u32 token)
2107{
2108
2109        /* If an async split transaction gets an error or is unlinked,
2110         * the TT buffer may be left in an indeterminate state.  We
2111         * have to clear the TT buffer.
2112         *
2113         * Note: this routine is never called for Isochronous transfers.
2114         */
2115        if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2116                struct usb_device *tt = urb->dev->tt->hub;
2117
2118                dev_dbg(&tt->dev,
2119                                "clear tt buffer port %d, a%d ep%d t%08x\n",
2120                                urb->dev->ttport, urb->dev->devnum,
2121                                usb_pipeendpoint(urb->pipe), token);
2122
2123                if (urb->dev->tt->hub !=
2124                                fotg210_to_hcd(fotg210)->self.root_hub) {
2125                        if (usb_hub_clear_tt_buffer(urb) == 0)
2126                                qh->clearing_tt = 1;
2127                }
2128        }
2129}
2130
2131static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2132                size_t length, u32 token)
2133{
2134        int status = -EINPROGRESS;
2135
2136        /* count IN/OUT bytes, not SETUP (even short packets) */
2137        if (likely(QTD_PID(token) != 2))
2138                urb->actual_length += length - QTD_LENGTH(token);
2139
2140        /* don't modify error codes */
2141        if (unlikely(urb->unlinked))
2142                return status;
2143
2144        /* force cleanup after short read; not always an error */
2145        if (unlikely(IS_SHORT_READ(token)))
2146                status = -EREMOTEIO;
2147
2148        /* serious "can't proceed" faults reported by the hardware */
2149        if (token & QTD_STS_HALT) {
2150                if (token & QTD_STS_BABBLE) {
2151                        /* FIXME "must" disable babbling device's port too */
2152                        status = -EOVERFLOW;
2153                /* CERR nonzero + halt --> stall */
2154                } else if (QTD_CERR(token)) {
2155                        status = -EPIPE;
2156
2157                /* In theory, more than one of the following bits can be set
2158                 * since they are sticky and the transaction is retried.
2159                 * Which to test first is rather arbitrary.
2160                 */
2161                } else if (token & QTD_STS_MMF) {
2162                        /* fs/ls interrupt xfer missed the complete-split */
2163                        status = -EPROTO;
2164                } else if (token & QTD_STS_DBE) {
2165                        status = (QTD_PID(token) == 1) /* IN ? */
2166                                ? -ENOSR  /* hc couldn't read data */
2167                                : -ECOMM; /* hc couldn't write data */
2168                } else if (token & QTD_STS_XACT) {
2169                        /* timeout, bad CRC, wrong PID, etc */
2170                        fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2171                                        urb->dev->devpath,
2172                                        usb_pipeendpoint(urb->pipe),
2173                                        usb_pipein(urb->pipe) ? "in" : "out");
2174                        status = -EPROTO;
2175                } else {        /* unknown */
2176                        status = -EPROTO;
2177                }
2178
2179                fotg210_dbg(fotg210,
2180                                "dev%d ep%d%s qtd token %08x --> status %d\n",
2181                                usb_pipedevice(urb->pipe),
2182                                usb_pipeendpoint(urb->pipe),
2183                                usb_pipein(urb->pipe) ? "in" : "out",
2184                                token, status);
2185        }
2186
2187        return status;
2188}
2189
2190static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2191                int status)
2192__releases(fotg210->lock)
2193__acquires(fotg210->lock)
2194{
2195        if (likely(urb->hcpriv != NULL)) {
2196                struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2197
2198                /* S-mask in a QH means it's an interrupt urb */
2199                if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2200
2201                        /* ... update hc-wide periodic stats (for usbfs) */
2202                        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2203                }
2204        }
2205
2206        if (unlikely(urb->unlinked)) {
2207                COUNT(fotg210->stats.unlink);
2208        } else {
2209                /* report non-error and short read status as zero */
2210                if (status == -EINPROGRESS || status == -EREMOTEIO)
2211                        status = 0;
2212                COUNT(fotg210->stats.complete);
2213        }
2214
2215#ifdef FOTG210_URB_TRACE
2216        fotg210_dbg(fotg210,
2217                        "%s %s urb %p ep%d%s status %d len %d/%d\n",
2218                        __func__, urb->dev->devpath, urb,
2219                        usb_pipeendpoint(urb->pipe),
2220                        usb_pipein(urb->pipe) ? "in" : "out",
2221                        status,
2222                        urb->actual_length, urb->transfer_buffer_length);
2223#endif
2224
2225        /* complete() can reenter this HCD */
2226        usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2227        spin_unlock(&fotg210->lock);
2228        usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2229        spin_lock(&fotg210->lock);
2230}
2231
2232static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2233
2234/* Process and free completed qtds for a qh, returning URBs to drivers.
2235 * Chases up to qh->hw_current.  Returns number of completions called,
2236 * indicating how much "real" work we did.
2237 */
2238static unsigned qh_completions(struct fotg210_hcd *fotg210,
2239                struct fotg210_qh *qh)
2240{
2241        struct fotg210_qtd *last, *end = qh->dummy;
2242        struct fotg210_qtd *qtd, *tmp;
2243        int last_status;
2244        int stopped;
2245        unsigned count = 0;
2246        u8 state;
2247        struct fotg210_qh_hw *hw = qh->hw;
2248
2249        if (unlikely(list_empty(&qh->qtd_list)))
2250                return count;
2251
2252        /* completions (or tasks on other cpus) must never clobber HALT
2253         * till we've gone through and cleaned everything up, even when
2254         * they add urbs to this qh's queue or mark them for unlinking.
2255         *
2256         * NOTE:  unlinking expects to be done in queue order.
2257         *
2258         * It's a bug for qh->qh_state to be anything other than
2259         * QH_STATE_IDLE, unless our caller is scan_async() or
2260         * scan_intr().
2261         */
2262        state = qh->qh_state;
2263        qh->qh_state = QH_STATE_COMPLETING;
2264        stopped = (state == QH_STATE_IDLE);
2265
2266rescan:
2267        last = NULL;
2268        last_status = -EINPROGRESS;
2269        qh->needs_rescan = 0;
2270
2271        /* remove de-activated QTDs from front of queue.
2272         * after faults (including short reads), cleanup this urb
2273         * then let the queue advance.
2274         * if queue is stopped, handles unlinks.
2275         */
2276        list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2277                struct urb *urb;
2278                u32 token = 0;
2279
2280                urb = qtd->urb;
2281
2282                /* clean up any state from previous QTD ...*/
2283                if (last) {
2284                        if (likely(last->urb != urb)) {
2285                                fotg210_urb_done(fotg210, last->urb,
2286                                                last_status);
2287                                count++;
2288                                last_status = -EINPROGRESS;
2289                        }
2290                        fotg210_qtd_free(fotg210, last);
2291                        last = NULL;
2292                }
2293
2294                /* ignore urbs submitted during completions we reported */
2295                if (qtd == end)
2296                        break;
2297
2298                /* hardware copies qtd out of qh overlay */
2299                rmb();
2300                token = hc32_to_cpu(fotg210, qtd->hw_token);
2301
2302                /* always clean up qtds the hc de-activated */
2303retry_xacterr:
2304                if ((token & QTD_STS_ACTIVE) == 0) {
2305
2306                        /* Report Data Buffer Error: non-fatal but useful */
2307                        if (token & QTD_STS_DBE)
2308                                fotg210_dbg(fotg210,
2309                                        "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2310                                        urb, usb_endpoint_num(&urb->ep->desc),
2311                                        usb_endpoint_dir_in(&urb->ep->desc)
2312                                                ? "in" : "out",
2313                                        urb->transfer_buffer_length, qtd, qh);
2314
2315                        /* on STALL, error, and short reads this urb must
2316                         * complete and all its qtds must be recycled.
2317                         */
2318                        if ((token & QTD_STS_HALT) != 0) {
2319
2320                                /* retry transaction errors until we
2321                                 * reach the software xacterr limit
2322                                 */
2323                                if ((token & QTD_STS_XACT) &&
2324                                                QTD_CERR(token) == 0 &&
2325                                                ++qh->xacterrs < QH_XACTERR_MAX &&
2326                                                !urb->unlinked) {
2327                                        fotg210_dbg(fotg210,
2328                                                "detected XactErr len %zu/%zu retry %d\n",
2329                                                qtd->length - QTD_LENGTH(token),
2330                                                qtd->length,
2331                                                qh->xacterrs);
2332
2333                                        /* reset the token in the qtd and the
2334                                         * qh overlay (which still contains
2335                                         * the qtd) so that we pick up from
2336                                         * where we left off
2337                                         */
2338                                        token &= ~QTD_STS_HALT;
2339                                        token |= QTD_STS_ACTIVE |
2340                                                 (FOTG210_TUNE_CERR << 10);
2341                                        qtd->hw_token = cpu_to_hc32(fotg210,
2342                                                        token);
2343                                        wmb();
2344                                        hw->hw_token = cpu_to_hc32(fotg210,
2345                                                        token);
2346                                        goto retry_xacterr;
2347                                }
2348                                stopped = 1;
2349
2350                        /* magic dummy for some short reads; qh won't advance.
2351                         * that silicon quirk can kick in with this dummy too.
2352                         *
2353                         * other short reads won't stop the queue, including
2354                         * control transfers (status stage handles that) or
2355                         * most other single-qtd reads ... the queue stops if
2356                         * URB_SHORT_NOT_OK was set so the driver submitting
2357                         * the urbs could clean it up.
2358                         */
2359                        } else if (IS_SHORT_READ(token) &&
2360                                        !(qtd->hw_alt_next &
2361                                        FOTG210_LIST_END(fotg210))) {
2362                                stopped = 1;
2363                        }
2364
2365                /* stop scanning when we reach qtds the hc is using */
2366                } else if (likely(!stopped
2367                                && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2368                        break;
2369
2370                /* scan the whole queue for unlinks whenever it stops */
2371                } else {
2372                        stopped = 1;
2373
2374                        /* cancel everything if we halt, suspend, etc */
2375                        if (fotg210->rh_state < FOTG210_RH_RUNNING)
2376                                last_status = -ESHUTDOWN;
2377
2378                        /* this qtd is active; skip it unless a previous qtd
2379                         * for its urb faulted, or its urb was canceled.
2380                         */
2381                        else if (last_status == -EINPROGRESS && !urb->unlinked)
2382                                continue;
2383
2384                        /* qh unlinked; token in overlay may be most current */
2385                        if (state == QH_STATE_IDLE &&
2386                                        cpu_to_hc32(fotg210, qtd->qtd_dma)
2387                                        == hw->hw_current) {
2388                                token = hc32_to_cpu(fotg210, hw->hw_token);
2389
2390                                /* An unlink may leave an incomplete
2391                                 * async transaction in the TT buffer.
2392                                 * We have to clear it.
2393                                 */
2394                                fotg210_clear_tt_buffer(fotg210, qh, urb,
2395                                                token);
2396                        }
2397                }
2398
2399                /* unless we already know the urb's status, collect qtd status
2400                 * and update count of bytes transferred.  in common short read
2401                 * cases with only one data qtd (including control transfers),
2402                 * queue processing won't halt.  but with two or more qtds (for
2403                 * example, with a 32 KB transfer), when the first qtd gets a
2404                 * short read the second must be removed by hand.
2405                 */
2406                if (last_status == -EINPROGRESS) {
2407                        last_status = qtd_copy_status(fotg210, urb,
2408                                        qtd->length, token);
2409                        if (last_status == -EREMOTEIO &&
2410                                        (qtd->hw_alt_next &
2411                                        FOTG210_LIST_END(fotg210)))
2412                                last_status = -EINPROGRESS;
2413
2414                        /* As part of low/full-speed endpoint-halt processing
2415                         * we must clear the TT buffer (11.17.5).
2416                         */
2417                        if (unlikely(last_status != -EINPROGRESS &&
2418                                        last_status != -EREMOTEIO)) {
2419                                /* The TT's in some hubs malfunction when they
2420                                 * receive this request following a STALL (they
2421                                 * stop sending isochronous packets).  Since a
2422                                 * STALL can't leave the TT buffer in a busy
2423                                 * state (if you believe Figures 11-48 - 11-51
2424                                 * in the USB 2.0 spec), we won't clear the TT
2425                                 * buffer in this case.  Strictly speaking this
2426                                 * is a violation of the spec.
2427                                 */
2428                                if (last_status != -EPIPE)
2429                                        fotg210_clear_tt_buffer(fotg210, qh,
2430                                                        urb, token);
2431                        }
2432                }
2433
2434                /* if we're removing something not at the queue head,
2435                 * patch the hardware queue pointer.
2436                 */
2437                if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2438                        last = list_entry(qtd->qtd_list.prev,
2439                                        struct fotg210_qtd, qtd_list);
2440                        last->hw_next = qtd->hw_next;
2441                }
2442
2443                /* remove qtd; it's recycled after possible urb completion */
2444                list_del(&qtd->qtd_list);
2445                last = qtd;
2446
2447                /* reinit the xacterr counter for the next qtd */
2448                qh->xacterrs = 0;
2449        }
2450
2451        /* last urb's completion might still need calling */
2452        if (likely(last != NULL)) {
2453                fotg210_urb_done(fotg210, last->urb, last_status);
2454                count++;
2455                fotg210_qtd_free(fotg210, last);
2456        }
2457
2458        /* Do we need to rescan for URBs dequeued during a giveback? */
2459        if (unlikely(qh->needs_rescan)) {
2460                /* If the QH is already unlinked, do the rescan now. */
2461                if (state == QH_STATE_IDLE)
2462                        goto rescan;
2463
2464                /* Otherwise we have to wait until the QH is fully unlinked.
2465                 * Our caller will start an unlink if qh->needs_rescan is
2466                 * set.  But if an unlink has already started, nothing needs
2467                 * to be done.
2468                 */
2469                if (state != QH_STATE_LINKED)
2470                        qh->needs_rescan = 0;
2471        }
2472
2473        /* restore original state; caller must unlink or relink */
2474        qh->qh_state = state;
2475
2476        /* be sure the hardware's done with the qh before refreshing
2477         * it after fault cleanup, or recovering from silicon wrongly
2478         * overlaying the dummy qtd (which reduces DMA chatter).
2479         */
2480        if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2481                switch (state) {
2482                case QH_STATE_IDLE:
2483                        qh_refresh(fotg210, qh);
2484                        break;
2485                case QH_STATE_LINKED:
2486                        /* We won't refresh a QH that's linked (after the HC
2487                         * stopped the queue).  That avoids a race:
2488                         *  - HC reads first part of QH;
2489                         *  - CPU updates that first part and the token;
2490                         *  - HC reads rest of that QH, including token
2491                         * Result:  HC gets an inconsistent image, and then
2492                         * DMAs to/from the wrong memory (corrupting it).
2493                         *
2494                         * That should be rare for interrupt transfers,
2495                         * except maybe high bandwidth ...
2496                         */
2497
2498                        /* Tell the caller to start an unlink */
2499                        qh->needs_rescan = 1;
2500                        break;
2501                /* otherwise, unlink already started */
2502                }
2503        }
2504
2505        return count;
2506}
2507
2508/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2509#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2510/* ... and packet size, for any kind of endpoint descriptor */
2511#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2512
2513/* reverse of qh_urb_transaction:  free a list of TDs.
2514 * used for cleanup after errors, before HC sees an URB's TDs.
2515 */
2516static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2517                struct list_head *head)
2518{
2519        struct fotg210_qtd *qtd, *temp;
2520
2521        list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2522                list_del(&qtd->qtd_list);
2523                fotg210_qtd_free(fotg210, qtd);
2524        }
2525}
2526
2527/* create a list of filled qtds for this URB; won't link into qh.
2528 */
2529static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2530                struct urb *urb, struct list_head *head, gfp_t flags)
2531{
2532        struct fotg210_qtd *qtd, *qtd_prev;
2533        dma_addr_t buf;
2534        int len, this_sg_len, maxpacket;
2535        int is_input;
2536        u32 token;
2537        int i;
2538        struct scatterlist *sg;
2539
2540        /*
2541         * URBs map to sequences of QTDs:  one logical transaction
2542         */
2543        qtd = fotg210_qtd_alloc(fotg210, flags);
2544        if (unlikely(!qtd))
2545                return NULL;
2546        list_add_tail(&qtd->qtd_list, head);
2547        qtd->urb = urb;
2548
2549        token = QTD_STS_ACTIVE;
2550        token |= (FOTG210_TUNE_CERR << 10);
2551        /* for split transactions, SplitXState initialized to zero */
2552
2553        len = urb->transfer_buffer_length;
2554        is_input = usb_pipein(urb->pipe);
2555        if (usb_pipecontrol(urb->pipe)) {
2556                /* SETUP pid */
2557                qtd_fill(fotg210, qtd, urb->setup_dma,
2558                                sizeof(struct usb_ctrlrequest),
2559                                token | (2 /* "setup" */ << 8), 8);
2560
2561                /* ... and always at least one more pid */
2562                token ^= QTD_TOGGLE;
2563                qtd_prev = qtd;
2564                qtd = fotg210_qtd_alloc(fotg210, flags);
2565                if (unlikely(!qtd))
2566                        goto cleanup;
2567                qtd->urb = urb;
2568                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2569                list_add_tail(&qtd->qtd_list, head);
2570
2571                /* for zero length DATA stages, STATUS is always IN */
2572                if (len == 0)
2573                        token |= (1 /* "in" */ << 8);
2574        }
2575
2576        /*
2577         * data transfer stage:  buffer setup
2578         */
2579        i = urb->num_mapped_sgs;
2580        if (len > 0 && i > 0) {
2581                sg = urb->sg;
2582                buf = sg_dma_address(sg);
2583
2584                /* urb->transfer_buffer_length may be smaller than the
2585                 * size of the scatterlist (or vice versa)
2586                 */
2587                this_sg_len = min_t(int, sg_dma_len(sg), len);
2588        } else {
2589                sg = NULL;
2590                buf = urb->transfer_dma;
2591                this_sg_len = len;
2592        }
2593
2594        if (is_input)
2595                token |= (1 /* "in" */ << 8);
2596        /* else it's already initted to "out" pid (0 << 8) */
2597
2598        maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2599
2600        /*
2601         * buffer gets wrapped in one or more qtds;
2602         * last one may be "short" (including zero len)
2603         * and may serve as a control status ack
2604         */
2605        for (;;) {
2606                int this_qtd_len;
2607
2608                this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2609                                maxpacket);
2610                this_sg_len -= this_qtd_len;
2611                len -= this_qtd_len;
2612                buf += this_qtd_len;
2613
2614                /*
2615                 * short reads advance to a "magic" dummy instead of the next
2616                 * qtd ... that forces the queue to stop, for manual cleanup.
2617                 * (this will usually be overridden later.)
2618                 */
2619                if (is_input)
2620                        qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2621
2622                /* qh makes control packets use qtd toggle; maybe switch it */
2623                if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2624                        token ^= QTD_TOGGLE;
2625
2626                if (likely(this_sg_len <= 0)) {
2627                        if (--i <= 0 || len <= 0)
2628                                break;
2629                        sg = sg_next(sg);
2630                        buf = sg_dma_address(sg);
2631                        this_sg_len = min_t(int, sg_dma_len(sg), len);
2632                }
2633
2634                qtd_prev = qtd;
2635                qtd = fotg210_qtd_alloc(fotg210, flags);
2636                if (unlikely(!qtd))
2637                        goto cleanup;
2638                qtd->urb = urb;
2639                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2640                list_add_tail(&qtd->qtd_list, head);
2641        }
2642
2643        /*
2644         * unless the caller requires manual cleanup after short reads,
2645         * have the alt_next mechanism keep the queue running after the
2646         * last data qtd (the only one, for control and most other cases).
2647         */
2648        if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2649                        usb_pipecontrol(urb->pipe)))
2650                qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2651
2652        /*
2653         * control requests may need a terminating data "status" ack;
2654         * other OUT ones may need a terminating short packet
2655         * (zero length).
2656         */
2657        if (likely(urb->transfer_buffer_length != 0)) {
2658                int one_more = 0;
2659
2660                if (usb_pipecontrol(urb->pipe)) {
2661                        one_more = 1;
2662                        token ^= 0x0100;        /* "in" <--> "out"  */
2663                        token |= QTD_TOGGLE;    /* force DATA1 */
2664                } else if (usb_pipeout(urb->pipe)
2665                                && (urb->transfer_flags & URB_ZERO_PACKET)
2666                                && !(urb->transfer_buffer_length % maxpacket)) {
2667                        one_more = 1;
2668                }
2669                if (one_more) {
2670                        qtd_prev = qtd;
2671                        qtd = fotg210_qtd_alloc(fotg210, flags);
2672                        if (unlikely(!qtd))
2673                                goto cleanup;
2674                        qtd->urb = urb;
2675                        qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2676                        list_add_tail(&qtd->qtd_list, head);
2677
2678                        /* never any data in such packets */
2679                        qtd_fill(fotg210, qtd, 0, 0, token, 0);
2680                }
2681        }
2682
2683        /* by default, enable interrupt on urb completion */
2684        if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2685                qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2686        return head;
2687
2688cleanup:
2689        qtd_list_free(fotg210, urb, head);
2690        return NULL;
2691}
2692
2693/* Would be best to create all qh's from config descriptors,
2694 * when each interface/altsetting is established.  Unlink
2695 * any previous qh and cancel its urbs first; endpoints are
2696 * implicitly reset then (data toggle too).
2697 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2698*/
2699
2700
2701/* Each QH holds a qtd list; a QH is used for everything except iso.
2702 *
2703 * For interrupt urbs, the scheduler must set the microframe scheduling
2704 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2705 * just one microframe in the s-mask.  For split interrupt transactions
2706 * there are additional complications: c-mask, maybe FSTNs.
2707 */
2708static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2709                gfp_t flags)
2710{
2711        struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2712        u32 info1 = 0, info2 = 0;
2713        int is_input, type;
2714        int maxp = 0;
2715        struct usb_tt *tt = urb->dev->tt;
2716        struct fotg210_qh_hw *hw;
2717
2718        if (!qh)
2719                return qh;
2720
2721        /*
2722         * init endpoint/device data for this QH
2723         */
2724        info1 |= usb_pipeendpoint(urb->pipe) << 8;
2725        info1 |= usb_pipedevice(urb->pipe) << 0;
2726
2727        is_input = usb_pipein(urb->pipe);
2728        type = usb_pipetype(urb->pipe);
2729        maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2730
2731        /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2732         * acts like up to 3KB, but is built from smaller packets.
2733         */
2734        if (max_packet(maxp) > 1024) {
2735                fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2736                                max_packet(maxp));
2737                goto done;
2738        }
2739
2740        /* Compute interrupt scheduling parameters just once, and save.
2741         * - allowing for high bandwidth, how many nsec/uframe are used?
2742         * - split transactions need a second CSPLIT uframe; same question
2743         * - splits also need a schedule gap (for full/low speed I/O)
2744         * - qh has a polling interval
2745         *
2746         * For control/bulk requests, the HC or TT handles these.
2747         */
2748        if (type == PIPE_INTERRUPT) {
2749                qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2750                                is_input, 0,
2751                                hb_mult(maxp) * max_packet(maxp)));
2752                qh->start = NO_FRAME;
2753
2754                if (urb->dev->speed == USB_SPEED_HIGH) {
2755                        qh->c_usecs = 0;
2756                        qh->gap_uf = 0;
2757
2758                        qh->period = urb->interval >> 3;
2759                        if (qh->period == 0 && urb->interval != 1) {
2760                                /* NOTE interval 2 or 4 uframes could work.
2761                                 * But interval 1 scheduling is simpler, and
2762                                 * includes high bandwidth.
2763                                 */
2764                                urb->interval = 1;
2765                        } else if (qh->period > fotg210->periodic_size) {
2766                                qh->period = fotg210->periodic_size;
2767                                urb->interval = qh->period << 3;
2768                        }
2769                } else {
2770                        int think_time;
2771
2772                        /* gap is f(FS/LS transfer times) */
2773                        qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2774                                        is_input, 0, maxp) / (125 * 1000);
2775
2776                        /* FIXME this just approximates SPLIT/CSPLIT times */
2777                        if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2778                                qh->c_usecs = qh->usecs + HS_USECS(0);
2779                                qh->usecs = HS_USECS(1);
2780                        } else {                /* SPLIT+DATA, gap, CSPLIT */
2781                                qh->usecs += HS_USECS(1);
2782                                qh->c_usecs = HS_USECS(0);
2783                        }
2784
2785                        think_time = tt ? tt->think_time : 0;
2786                        qh->tt_usecs = NS_TO_US(think_time +
2787                                        usb_calc_bus_time(urb->dev->speed,
2788                                        is_input, 0, max_packet(maxp)));
2789                        qh->period = urb->interval;
2790                        if (qh->period > fotg210->periodic_size) {
2791                                qh->period = fotg210->periodic_size;
2792                                urb->interval = qh->period;
2793                        }
2794                }
2795        }
2796
2797        /* support for tt scheduling, and access to toggles */
2798        qh->dev = urb->dev;
2799
2800        /* using TT? */
2801        switch (urb->dev->speed) {
2802        case USB_SPEED_LOW:
2803                info1 |= QH_LOW_SPEED;
2804                /* FALL THROUGH */
2805
2806        case USB_SPEED_FULL:
2807                /* EPS 0 means "full" */
2808                if (type != PIPE_INTERRUPT)
2809                        info1 |= (FOTG210_TUNE_RL_TT << 28);
2810                if (type == PIPE_CONTROL) {
2811                        info1 |= QH_CONTROL_EP;         /* for TT */
2812                        info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2813                }
2814                info1 |= maxp << 16;
2815
2816                info2 |= (FOTG210_TUNE_MULT_TT << 30);
2817
2818                /* Some Freescale processors have an erratum in which the
2819                 * port number in the queue head was 0..N-1 instead of 1..N.
2820                 */
2821                if (fotg210_has_fsl_portno_bug(fotg210))
2822                        info2 |= (urb->dev->ttport-1) << 23;
2823                else
2824                        info2 |= urb->dev->ttport << 23;
2825
2826                /* set the address of the TT; for TDI's integrated
2827                 * root hub tt, leave it zeroed.
2828                 */
2829                if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2830                        info2 |= tt->hub->devnum << 16;
2831
2832                /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2833
2834                break;
2835
2836        case USB_SPEED_HIGH:            /* no TT involved */
2837                info1 |= QH_HIGH_SPEED;
2838                if (type == PIPE_CONTROL) {
2839                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2840                        info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2841                        info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2842                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2843                } else if (type == PIPE_BULK) {
2844                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2845                        /* The USB spec says that high speed bulk endpoints
2846                         * always use 512 byte maxpacket.  But some device
2847                         * vendors decided to ignore that, and MSFT is happy
2848                         * to help them do so.  So now people expect to use
2849                         * such nonconformant devices with Linux too; sigh.
2850                         */
2851                        info1 |= max_packet(maxp) << 16;
2852                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2853                } else {                /* PIPE_INTERRUPT */
2854                        info1 |= max_packet(maxp) << 16;
2855                        info2 |= hb_mult(maxp) << 30;
2856                }
2857                break;
2858        default:
2859                fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2860                                urb->dev->speed);
2861done:
2862                qh_destroy(fotg210, qh);
2863                return NULL;
2864        }
2865
2866        /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2867
2868        /* init as live, toggle clear, advance to dummy */
2869        qh->qh_state = QH_STATE_IDLE;
2870        hw = qh->hw;
2871        hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2872        hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2873        qh->is_out = !is_input;
2874        usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2875        qh_refresh(fotg210, qh);
2876        return qh;
2877}
2878
2879static void enable_async(struct fotg210_hcd *fotg210)
2880{
2881        if (fotg210->async_count++)
2882                return;
2883
2884        /* Stop waiting to turn off the async schedule */
2885        fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2886
2887        /* Don't start the schedule until ASS is 0 */
2888        fotg210_poll_ASS(fotg210);
2889        turn_on_io_watchdog(fotg210);
2890}
2891
2892static void disable_async(struct fotg210_hcd *fotg210)
2893{
2894        if (--fotg210->async_count)
2895                return;
2896
2897        /* The async schedule and async_unlink list are supposed to be empty */
2898        WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2899
2900        /* Don't turn off the schedule until ASS is 1 */
2901        fotg210_poll_ASS(fotg210);
2902}
2903
2904/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2905
2906static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2907{
2908        __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2909        struct fotg210_qh *head;
2910
2911        /* Don't link a QH if there's a Clear-TT-Buffer pending */
2912        if (unlikely(qh->clearing_tt))
2913                return;
2914
2915        WARN_ON(qh->qh_state != QH_STATE_IDLE);
2916
2917        /* clear halt and/or toggle; and maybe recover from silicon quirk */
2918        qh_refresh(fotg210, qh);
2919
2920        /* splice right after start */
2921        head = fotg210->async;
2922        qh->qh_next = head->qh_next;
2923        qh->hw->hw_next = head->hw->hw_next;
2924        wmb();
2925
2926        head->qh_next.qh = qh;
2927        head->hw->hw_next = dma;
2928
2929        qh->xacterrs = 0;
2930        qh->qh_state = QH_STATE_LINKED;
2931        /* qtd completions reported later by interrupt */
2932
2933        enable_async(fotg210);
2934}
2935
2936/* For control/bulk/interrupt, return QH with these TDs appended.
2937 * Allocates and initializes the QH if necessary.
2938 * Returns null if it can't allocate a QH it needs to.
2939 * If the QH has TDs (urbs) already, that's great.
2940 */
2941static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2942                struct urb *urb, struct list_head *qtd_list,
2943                int epnum, void **ptr)
2944{
2945        struct fotg210_qh *qh = NULL;
2946        __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2947
2948        qh = (struct fotg210_qh *) *ptr;
2949        if (unlikely(qh == NULL)) {
2950                /* can't sleep here, we have fotg210->lock... */
2951                qh = qh_make(fotg210, urb, GFP_ATOMIC);
2952                *ptr = qh;
2953        }
2954        if (likely(qh != NULL)) {
2955                struct fotg210_qtd *qtd;
2956
2957                if (unlikely(list_empty(qtd_list)))
2958                        qtd = NULL;
2959                else
2960                        qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2961                                        qtd_list);
2962
2963                /* control qh may need patching ... */
2964                if (unlikely(epnum == 0)) {
2965                        /* usb_reset_device() briefly reverts to address 0 */
2966                        if (usb_pipedevice(urb->pipe) == 0)
2967                                qh->hw->hw_info1 &= ~qh_addr_mask;
2968                }
2969
2970                /* just one way to queue requests: swap with the dummy qtd.
2971                 * only hc or qh_refresh() ever modify the overlay.
2972                 */
2973                if (likely(qtd != NULL)) {
2974                        struct fotg210_qtd *dummy;
2975                        dma_addr_t dma;
2976                        __hc32 token;
2977
2978                        /* to avoid racing the HC, use the dummy td instead of
2979                         * the first td of our list (becomes new dummy).  both
2980                         * tds stay deactivated until we're done, when the
2981                         * HC is allowed to fetch the old dummy (4.10.2).
2982                         */
2983                        token = qtd->hw_token;
2984                        qtd->hw_token = HALT_BIT(fotg210);
2985
2986                        dummy = qh->dummy;
2987
2988                        dma = dummy->qtd_dma;
2989                        *dummy = *qtd;
2990                        dummy->qtd_dma = dma;
2991
2992                        list_del(&qtd->qtd_list);
2993                        list_add(&dummy->qtd_list, qtd_list);
2994                        list_splice_tail(qtd_list, &qh->qtd_list);
2995
2996                        fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2997                        qh->dummy = qtd;
2998
2999                        /* hc must see the new dummy at list end */
3000                        dma = qtd->qtd_dma;
3001                        qtd = list_entry(qh->qtd_list.prev,
3002                                        struct fotg210_qtd, qtd_list);
3003                        qtd->hw_next = QTD_NEXT(fotg210, dma);
3004
3005                        /* let the hc process these next qtds */
3006                        wmb();
3007                        dummy->hw_token = token;
3008
3009                        urb->hcpriv = qh;
3010                }
3011        }
3012        return qh;
3013}
3014
3015static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3016                struct list_head *qtd_list, gfp_t mem_flags)
3017{
3018        int epnum;
3019        unsigned long flags;
3020        struct fotg210_qh *qh = NULL;
3021        int rc;
3022
3023        epnum = urb->ep->desc.bEndpointAddress;
3024
3025#ifdef FOTG210_URB_TRACE
3026        {
3027                struct fotg210_qtd *qtd;
3028
3029                qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3030                fotg210_dbg(fotg210,
3031                                "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3032                                __func__, urb->dev->devpath, urb,
3033                                epnum & 0x0f, (epnum & USB_DIR_IN)
3034                                        ? "in" : "out",
3035                                urb->transfer_buffer_length,
3036                                qtd, urb->ep->hcpriv);
3037        }
3038#endif
3039
3040        spin_lock_irqsave(&fotg210->lock, flags);
3041        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3042                rc = -ESHUTDOWN;
3043                goto done;
3044        }
3045        rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3046        if (unlikely(rc))
3047                goto done;
3048
3049        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3050        if (unlikely(qh == NULL)) {
3051                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3052                rc = -ENOMEM;
3053                goto done;
3054        }
3055
3056        /* Control/bulk operations through TTs don't need scheduling,
3057         * the HC and TT handle it when the TT has a buffer ready.
3058         */
3059        if (likely(qh->qh_state == QH_STATE_IDLE))
3060                qh_link_async(fotg210, qh);
3061done:
3062        spin_unlock_irqrestore(&fotg210->lock, flags);
3063        if (unlikely(qh == NULL))
3064                qtd_list_free(fotg210, urb, qtd_list);
3065        return rc;
3066}
3067
3068static void single_unlink_async(struct fotg210_hcd *fotg210,
3069                struct fotg210_qh *qh)
3070{
3071        struct fotg210_qh *prev;
3072
3073        /* Add to the end of the list of QHs waiting for the next IAAD */
3074        qh->qh_state = QH_STATE_UNLINK;
3075        if (fotg210->async_unlink)
3076                fotg210->async_unlink_last->unlink_next = qh;
3077        else
3078                fotg210->async_unlink = qh;
3079        fotg210->async_unlink_last = qh;
3080
3081        /* Unlink it from the schedule */
3082        prev = fotg210->async;
3083        while (prev->qh_next.qh != qh)
3084                prev = prev->qh_next.qh;
3085
3086        prev->hw->hw_next = qh->hw->hw_next;
3087        prev->qh_next = qh->qh_next;
3088        if (fotg210->qh_scan_next == qh)
3089                fotg210->qh_scan_next = qh->qh_next.qh;
3090}
3091
3092static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3093{
3094        /*
3095         * Do nothing if an IAA cycle is already running or
3096         * if one will be started shortly.
3097         */
3098        if (fotg210->async_iaa || fotg210->async_unlinking)
3099                return;
3100
3101        /* Do all the waiting QHs at once */
3102        fotg210->async_iaa = fotg210->async_unlink;
3103        fotg210->async_unlink = NULL;
3104
3105        /* If the controller isn't running, we don't have to wait for it */
3106        if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3107                if (!nested)            /* Avoid recursion */
3108                        end_unlink_async(fotg210);
3109
3110        /* Otherwise start a new IAA cycle */
3111        } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3112                /* Make sure the unlinks are all visible to the hardware */
3113                wmb();
3114
3115                fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3116                                &fotg210->regs->command);
3117                fotg210_readl(fotg210, &fotg210->regs->command);
3118                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3119                                true);
3120        }
3121}
3122
3123/* the async qh for the qtds being unlinked are now gone from the HC */
3124
3125static void end_unlink_async(struct fotg210_hcd *fotg210)
3126{
3127        struct fotg210_qh *qh;
3128
3129        /* Process the idle QHs */
3130restart:
3131        fotg210->async_unlinking = true;
3132        while (fotg210->async_iaa) {
3133                qh = fotg210->async_iaa;
3134                fotg210->async_iaa = qh->unlink_next;
3135                qh->unlink_next = NULL;
3136
3137                qh->qh_state = QH_STATE_IDLE;
3138                qh->qh_next.qh = NULL;
3139
3140                qh_completions(fotg210, qh);
3141                if (!list_empty(&qh->qtd_list) &&
3142                                fotg210->rh_state == FOTG210_RH_RUNNING)
3143                        qh_link_async(fotg210, qh);
3144                disable_async(fotg210);
3145        }
3146        fotg210->async_unlinking = false;
3147
3148        /* Start a new IAA cycle if any QHs are waiting for it */
3149        if (fotg210->async_unlink) {
3150                start_iaa_cycle(fotg210, true);
3151                if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3152                        goto restart;
3153        }
3154}
3155
3156static void unlink_empty_async(struct fotg210_hcd *fotg210)
3157{
3158        struct fotg210_qh *qh, *next;
3159        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3160        bool check_unlinks_later = false;
3161
3162        /* Unlink all the async QHs that have been empty for a timer cycle */
3163        next = fotg210->async->qh_next.qh;
3164        while (next) {
3165                qh = next;
3166                next = qh->qh_next.qh;
3167
3168                if (list_empty(&qh->qtd_list) &&
3169                                qh->qh_state == QH_STATE_LINKED) {
3170                        if (!stopped && qh->unlink_cycle ==
3171                                        fotg210->async_unlink_cycle)
3172                                check_unlinks_later = true;
3173                        else
3174                                single_unlink_async(fotg210, qh);
3175                }
3176        }
3177
3178        /* Start a new IAA cycle if any QHs are waiting for it */
3179        if (fotg210->async_unlink)
3180                start_iaa_cycle(fotg210, false);
3181
3182        /* QHs that haven't been empty for long enough will be handled later */
3183        if (check_unlinks_later) {
3184                fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3185                                true);
3186                ++fotg210->async_unlink_cycle;
3187        }
3188}
3189
3190/* makes sure the async qh will become idle */
3191/* caller must own fotg210->lock */
3192
3193static void start_unlink_async(struct fotg210_hcd *fotg210,
3194                struct fotg210_qh *qh)
3195{
3196        /*
3197         * If the QH isn't linked then there's nothing we can do
3198         * unless we were called during a giveback, in which case
3199         * qh_completions() has to deal with it.
3200         */
3201        if (qh->qh_state != QH_STATE_LINKED) {
3202                if (qh->qh_state == QH_STATE_COMPLETING)
3203                        qh->needs_rescan = 1;
3204                return;
3205        }
3206
3207        single_unlink_async(fotg210, qh);
3208        start_iaa_cycle(fotg210, false);
3209}
3210
3211static void scan_async(struct fotg210_hcd *fotg210)
3212{
3213        struct fotg210_qh *qh;
3214        bool check_unlinks_later = false;
3215
3216        fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3217        while (fotg210->qh_scan_next) {
3218                qh = fotg210->qh_scan_next;
3219                fotg210->qh_scan_next = qh->qh_next.qh;
3220rescan:
3221                /* clean any finished work for this qh */
3222                if (!list_empty(&qh->qtd_list)) {
3223                        int temp;
3224
3225                        /*
3226                         * Unlinks could happen here; completion reporting
3227                         * drops the lock.  That's why fotg210->qh_scan_next
3228                         * always holds the next qh to scan; if the next qh
3229                         * gets unlinked then fotg210->qh_scan_next is adjusted
3230                         * in single_unlink_async().
3231                         */
3232                        temp = qh_completions(fotg210, qh);
3233                        if (qh->needs_rescan) {
3234                                start_unlink_async(fotg210, qh);
3235                        } else if (list_empty(&qh->qtd_list)
3236                                        && qh->qh_state == QH_STATE_LINKED) {
3237                                qh->unlink_cycle = fotg210->async_unlink_cycle;
3238                                check_unlinks_later = true;
3239                        } else if (temp != 0)
3240                                goto rescan;
3241                }
3242        }
3243
3244        /*
3245         * Unlink empty entries, reducing DMA usage as well
3246         * as HCD schedule-scanning costs.  Delay for any qh
3247         * we just scanned, there's a not-unusual case that it
3248         * doesn't stay idle for long.
3249         */
3250        if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3251                        !(fotg210->enabled_hrtimer_events &
3252                        BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3253                fotg210_enable_event(fotg210,
3254                                FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3255                ++fotg210->async_unlink_cycle;
3256        }
3257}
3258/* EHCI scheduled transaction support:  interrupt, iso, split iso
3259 * These are called "periodic" transactions in the EHCI spec.
3260 *
3261 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3262 * with the "asynchronous" transaction support (control/bulk transfers).
3263 * The only real difference is in how interrupt transfers are scheduled.
3264 *
3265 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3266 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3267 * pre-calculated schedule data to make appending to the queue be quick.
3268 */
3269static int fotg210_get_frame(struct usb_hcd *hcd);
3270
3271/* periodic_next_shadow - return "next" pointer on shadow list
3272 * @periodic: host pointer to qh/itd
3273 * @tag: hardware tag for type of this record
3274 */
3275static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3276                union fotg210_shadow *periodic, __hc32 tag)
3277{
3278        switch (hc32_to_cpu(fotg210, tag)) {
3279        case Q_TYPE_QH:
3280                return &periodic->qh->qh_next;
3281        case Q_TYPE_FSTN:
3282                return &periodic->fstn->fstn_next;
3283        default:
3284                return &periodic->itd->itd_next;
3285        }
3286}
3287
3288static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3289                union fotg210_shadow *periodic, __hc32 tag)
3290{
3291        switch (hc32_to_cpu(fotg210, tag)) {
3292        /* our fotg210_shadow.qh is actually software part */
3293        case Q_TYPE_QH:
3294                return &periodic->qh->hw->hw_next;
3295        /* others are hw parts */
3296        default:
3297                return periodic->hw_next;
3298        }
3299}
3300
3301/* caller must hold fotg210->lock */
3302static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3303                void *ptr)
3304{
3305        union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3306        __hc32 *hw_p = &fotg210->periodic[frame];
3307        union fotg210_shadow here = *prev_p;
3308
3309        /* find predecessor of "ptr"; hw and shadow lists are in sync */
3310        while (here.ptr && here.ptr != ptr) {
3311                prev_p = periodic_next_shadow(fotg210, prev_p,
3312                                Q_NEXT_TYPE(fotg210, *hw_p));
3313                hw_p = shadow_next_periodic(fotg210, &here,
3314                                Q_NEXT_TYPE(fotg210, *hw_p));
3315                here = *prev_p;
3316        }
3317        /* an interrupt entry (at list end) could have been shared */
3318        if (!here.ptr)
3319                return;
3320
3321        /* update shadow and hardware lists ... the old "next" pointers
3322         * from ptr may still be in use, the caller updates them.
3323         */
3324        *prev_p = *periodic_next_shadow(fotg210, &here,
3325                        Q_NEXT_TYPE(fotg210, *hw_p));
3326
3327        *hw_p = *shadow_next_periodic(fotg210, &here,
3328                        Q_NEXT_TYPE(fotg210, *hw_p));
3329}
3330
3331/* how many of the uframe's 125 usecs are allocated? */
3332static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3333                unsigned frame, unsigned uframe)
3334{
3335        __hc32 *hw_p = &fotg210->periodic[frame];
3336        union fotg210_shadow *q = &fotg210->pshadow[frame];
3337        unsigned usecs = 0;
3338        struct fotg210_qh_hw *hw;
3339
3340        while (q->ptr) {
3341                switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3342                case Q_TYPE_QH:
3343                        hw = q->qh->hw;
3344                        /* is it in the S-mask? */
3345                        if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3346                                usecs += q->qh->usecs;
3347                        /* ... or C-mask? */
3348                        if (hw->hw_info2 & cpu_to_hc32(fotg210,
3349                                        1 << (8 + uframe)))
3350                                usecs += q->qh->c_usecs;
3351                        hw_p = &hw->hw_next;
3352                        q = &q->qh->qh_next;
3353                        break;
3354                /* case Q_TYPE_FSTN: */
3355                default:
3356                        /* for "save place" FSTNs, count the relevant INTR
3357                         * bandwidth from the previous frame
3358                         */
3359                        if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3360                                fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3361
3362                        hw_p = &q->fstn->hw_next;
3363                        q = &q->fstn->fstn_next;
3364                        break;
3365                case Q_TYPE_ITD:
3366                        if (q->itd->hw_transaction[uframe])
3367                                usecs += q->itd->stream->usecs;
3368                        hw_p = &q->itd->hw_next;
3369                        q = &q->itd->itd_next;
3370                        break;
3371                }
3372        }
3373        if (usecs > fotg210->uframe_periodic_max)
3374                fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3375                                frame * 8 + uframe, usecs);
3376        return usecs;
3377}
3378
3379static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3380{
3381        if (!dev1->tt || !dev2->tt)
3382                return 0;
3383        if (dev1->tt != dev2->tt)
3384                return 0;
3385        if (dev1->tt->multi)
3386                return dev1->ttport == dev2->ttport;
3387        else
3388                return 1;
3389}
3390
3391/* return true iff the device's transaction translator is available
3392 * for a periodic transfer starting at the specified frame, using
3393 * all the uframes in the mask.
3394 */
3395static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3396                struct usb_device *dev, unsigned frame, u32 uf_mask)
3397{
3398        if (period == 0)        /* error */
3399                return 0;
3400
3401        /* note bandwidth wastage:  split never follows csplit
3402         * (different dev or endpoint) until the next uframe.
3403         * calling convention doesn't make that distinction.
3404         */
3405        for (; frame < fotg210->periodic_size; frame += period) {
3406                union fotg210_shadow here;
3407                __hc32 type;
3408                struct fotg210_qh_hw *hw;
3409
3410                here = fotg210->pshadow[frame];
3411                type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3412                while (here.ptr) {
3413                        switch (hc32_to_cpu(fotg210, type)) {
3414                        case Q_TYPE_ITD:
3415                                type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3416                                here = here.itd->itd_next;
3417                                continue;
3418                        case Q_TYPE_QH:
3419                                hw = here.qh->hw;
3420                                if (same_tt(dev, here.qh->dev)) {
3421                                        u32 mask;
3422
3423                                        mask = hc32_to_cpu(fotg210,
3424                                                        hw->hw_info2);
3425                                        /* "knows" no gap is needed */
3426                                        mask |= mask >> 8;
3427                                        if (mask & uf_mask)
3428                                                break;
3429                                }
3430                                type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3431                                here = here.qh->qh_next;
3432                                continue;
3433                        /* case Q_TYPE_FSTN: */
3434                        default:
3435                                fotg210_dbg(fotg210,
3436                                                "periodic frame %d bogus type %d\n",
3437                                                frame, type);
3438                        }
3439
3440                        /* collision or error */
3441                        return 0;
3442                }
3443        }
3444
3445        /* no collision */
3446        return 1;
3447}
3448
3449static void enable_periodic(struct fotg210_hcd *fotg210)
3450{
3451        if (fotg210->periodic_count++)
3452                return;
3453
3454        /* Stop waiting to turn off the periodic schedule */
3455        fotg210->enabled_hrtimer_events &=
3456                ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3457
3458        /* Don't start the schedule until PSS is 0 */
3459        fotg210_poll_PSS(fotg210);
3460        turn_on_io_watchdog(fotg210);
3461}
3462
3463static void disable_periodic(struct fotg210_hcd *fotg210)
3464{
3465        if (--fotg210->periodic_count)
3466                return;
3467
3468        /* Don't turn off the schedule until PSS is 1 */
3469        fotg210_poll_PSS(fotg210);
3470}
3471
3472/* periodic schedule slots have iso tds (normal or split) first, then a
3473 * sparse tree for active interrupt transfers.
3474 *
3475 * this just links in a qh; caller guarantees uframe masks are set right.
3476 * no FSTN support (yet; fotg210 0.96+)
3477 */
3478static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3479{
3480        unsigned i;
3481        unsigned period = qh->period;
3482
3483        dev_dbg(&qh->dev->dev,
3484                        "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3485                        hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3486                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3487                        qh->c_usecs);
3488
3489        /* high bandwidth, or otherwise every microframe */
3490        if (period == 0)
3491                period = 1;
3492
3493        for (i = qh->start; i < fotg210->periodic_size; i += period) {
3494                union fotg210_shadow *prev = &fotg210->pshadow[i];
3495                __hc32 *hw_p = &fotg210->periodic[i];
3496                union fotg210_shadow here = *prev;
3497                __hc32 type = 0;
3498
3499                /* skip the iso nodes at list head */
3500                while (here.ptr) {
3501                        type = Q_NEXT_TYPE(fotg210, *hw_p);
3502                        if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3503                                break;
3504                        prev = periodic_next_shadow(fotg210, prev, type);
3505                        hw_p = shadow_next_periodic(fotg210, &here, type);
3506                        here = *prev;
3507                }
3508
3509                /* sorting each branch by period (slow-->fast)
3510                 * enables sharing interior tree nodes
3511                 */
3512                while (here.ptr && qh != here.qh) {
3513                        if (qh->period > here.qh->period)
3514                                break;
3515                        prev = &here.qh->qh_next;
3516                        hw_p = &here.qh->hw->hw_next;
3517                        here = *prev;
3518                }
3519                /* link in this qh, unless some earlier pass did that */
3520                if (qh != here.qh) {
3521                        qh->qh_next = here;
3522                        if (here.qh)
3523                                qh->hw->hw_next = *hw_p;
3524                        wmb();
3525                        prev->qh = qh;
3526                        *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3527                }
3528        }
3529        qh->qh_state = QH_STATE_LINKED;
3530        qh->xacterrs = 0;
3531
3532        /* update per-qh bandwidth for usbfs */
3533        fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3534                ? ((qh->usecs + qh->c_usecs) / qh->period)
3535                : (qh->usecs * 8);
3536
3537        list_add(&qh->intr_node, &fotg210->intr_qh_list);
3538
3539        /* maybe enable periodic schedule processing */
3540        ++fotg210->intr_count;
3541        enable_periodic(fotg210);
3542}
3543
3544static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3545                struct fotg210_qh *qh)
3546{
3547        unsigned i;
3548        unsigned period;
3549
3550        /*
3551         * If qh is for a low/full-speed device, simply unlinking it
3552         * could interfere with an ongoing split transaction.  To unlink
3553         * it safely would require setting the QH_INACTIVATE bit and
3554         * waiting at least one frame, as described in EHCI 4.12.2.5.
3555         *
3556         * We won't bother with any of this.  Instead, we assume that the
3557         * only reason for unlinking an interrupt QH while the current URB
3558         * is still active is to dequeue all the URBs (flush the whole
3559         * endpoint queue).
3560         *
3561         * If rebalancing the periodic schedule is ever implemented, this
3562         * approach will no longer be valid.
3563         */
3564
3565        /* high bandwidth, or otherwise part of every microframe */
3566        period = qh->period;
3567        if (!period)
3568                period = 1;
3569
3570        for (i = qh->start; i < fotg210->periodic_size; i += period)
3571                periodic_unlink(fotg210, i, qh);
3572
3573        /* update per-qh bandwidth for usbfs */
3574        fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3575                ? ((qh->usecs + qh->c_usecs) / qh->period)
3576                : (qh->usecs * 8);
3577
3578        dev_dbg(&qh->dev->dev,
3579                        "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3580                        qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3581                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3582                        qh->c_usecs);
3583
3584        /* qh->qh_next still "live" to HC */
3585        qh->qh_state = QH_STATE_UNLINK;
3586        qh->qh_next.ptr = NULL;
3587
3588        if (fotg210->qh_scan_next == qh)
3589                fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3590                                struct fotg210_qh, intr_node);
3591        list_del(&qh->intr_node);
3592}
3593
3594static void start_unlink_intr(struct fotg210_hcd *fotg210,
3595                struct fotg210_qh *qh)
3596{
3597        /* If the QH isn't linked then there's nothing we can do
3598         * unless we were called during a giveback, in which case
3599         * qh_completions() has to deal with it.
3600         */
3601        if (qh->qh_state != QH_STATE_LINKED) {
3602                if (qh->qh_state == QH_STATE_COMPLETING)
3603                        qh->needs_rescan = 1;
3604                return;
3605        }
3606
3607        qh_unlink_periodic(fotg210, qh);
3608
3609        /* Make sure the unlinks are visible before starting the timer */
3610        wmb();
3611
3612        /*
3613         * The EHCI spec doesn't say how long it takes the controller to
3614         * stop accessing an unlinked interrupt QH.  The timer delay is
3615         * 9 uframes; presumably that will be long enough.
3616         */
3617        qh->unlink_cycle = fotg210->intr_unlink_cycle;
3618
3619        /* New entries go at the end of the intr_unlink list */
3620        if (fotg210->intr_unlink)
3621                fotg210->intr_unlink_last->unlink_next = qh;
3622        else
3623                fotg210->intr_unlink = qh;
3624        fotg210->intr_unlink_last = qh;
3625
3626        if (fotg210->intr_unlinking)
3627                ;       /* Avoid recursive calls */
3628        else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3629                fotg210_handle_intr_unlinks(fotg210);
3630        else if (fotg210->intr_unlink == qh) {
3631                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3632                                true);
3633                ++fotg210->intr_unlink_cycle;
3634        }
3635}
3636
3637static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3638{
3639        struct fotg210_qh_hw *hw = qh->hw;
3640        int rc;
3641
3642        qh->qh_state = QH_STATE_IDLE;
3643        hw->hw_next = FOTG210_LIST_END(fotg210);
3644
3645        qh_completions(fotg210, qh);
3646
3647        /* reschedule QH iff another request is queued */
3648        if (!list_empty(&qh->qtd_list) &&
3649                        fotg210->rh_state == FOTG210_RH_RUNNING) {
3650                rc = qh_schedule(fotg210, qh);
3651
3652                /* An error here likely indicates handshake failure
3653                 * or no space left in the schedule.  Neither fault
3654                 * should happen often ...
3655                 *
3656                 * FIXME kill the now-dysfunctional queued urbs
3657                 */
3658                if (rc != 0)
3659                        fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3660                                        qh, rc);
3661        }
3662
3663        /* maybe turn off periodic schedule */
3664        --fotg210->intr_count;
3665        disable_periodic(fotg210);
3666}
3667
3668static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3669                unsigned uframe, unsigned period, unsigned usecs)
3670{
3671        int claimed;
3672
3673        /* complete split running into next frame?
3674         * given FSTN support, we could sometimes check...
3675         */
3676        if (uframe >= 8)
3677                return 0;
3678
3679        /* convert "usecs we need" to "max already claimed" */
3680        usecs = fotg210->uframe_periodic_max - usecs;
3681
3682        /* we "know" 2 and 4 uframe intervals were rejected; so
3683         * for period 0, check _every_ microframe in the schedule.
3684         */
3685        if (unlikely(period == 0)) {
3686                do {
3687                        for (uframe = 0; uframe < 7; uframe++) {
3688                                claimed = periodic_usecs(fotg210, frame,
3689                                                uframe);
3690                                if (claimed > usecs)
3691                                        return 0;
3692                        }
3693                } while ((frame += 1) < fotg210->periodic_size);
3694
3695        /* just check the specified uframe, at that period */
3696        } else {
3697                do {
3698                        claimed = periodic_usecs(fotg210, frame, uframe);
3699                        if (claimed > usecs)
3700                                return 0;
3701                } while ((frame += period) < fotg210->periodic_size);
3702        }
3703
3704        /* success! */
3705        return 1;
3706}
3707
3708static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3709                unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3710{
3711        int retval = -ENOSPC;
3712        u8 mask = 0;
3713
3714        if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3715                goto done;
3716
3717        if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3718                goto done;
3719        if (!qh->c_usecs) {
3720                retval = 0;
3721                *c_maskp = 0;
3722                goto done;
3723        }
3724
3725        /* Make sure this tt's buffer is also available for CSPLITs.
3726         * We pessimize a bit; probably the typical full speed case
3727         * doesn't need the second CSPLIT.
3728         *
3729         * NOTE:  both SPLIT and CSPLIT could be checked in just
3730         * one smart pass...
3731         */
3732        mask = 0x03 << (uframe + qh->gap_uf);
3733        *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3734
3735        mask |= 1 << uframe;
3736        if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3737                if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3738                                qh->period, qh->c_usecs))
3739                        goto done;
3740                if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3741                                qh->period, qh->c_usecs))
3742                        goto done;
3743                retval = 0;
3744        }
3745done:
3746        return retval;
3747}
3748
3749/* "first fit" scheduling policy used the first time through,
3750 * or when the previous schedule slot can't be re-used.
3751 */
3752static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3753{
3754        int status;
3755        unsigned uframe;
3756        __hc32 c_mask;
3757        unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3758        struct fotg210_qh_hw *hw = qh->hw;
3759
3760        qh_refresh(fotg210, qh);
3761        hw->hw_next = FOTG210_LIST_END(fotg210);
3762        frame = qh->start;
3763
3764        /* reuse the previous schedule slots, if we can */
3765        if (frame < qh->period) {
3766                uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3767                status = check_intr_schedule(fotg210, frame, --uframe,
3768                                qh, &c_mask);
3769        } else {
3770                uframe = 0;
3771                c_mask = 0;
3772                status = -ENOSPC;
3773        }
3774
3775        /* else scan the schedule to find a group of slots such that all
3776         * uframes have enough periodic bandwidth available.
3777         */
3778        if (status) {
3779                /* "normal" case, uframing flexible except with splits */
3780                if (qh->period) {
3781                        int i;
3782
3783                        for (i = qh->period; status && i > 0; --i) {
3784                                frame = ++fotg210->random_frame % qh->period;
3785                                for (uframe = 0; uframe < 8; uframe++) {
3786                                        status = check_intr_schedule(fotg210,
3787                                                        frame, uframe, qh,
3788                                                        &c_mask);
3789                                        if (status == 0)
3790                                                break;
3791                                }
3792                        }
3793
3794                /* qh->period == 0 means every uframe */
3795                } else {
3796                        frame = 0;
3797                        status = check_intr_schedule(fotg210, 0, 0, qh,
3798                                        &c_mask);
3799                }
3800                if (status)
3801                        goto done;
3802                qh->start = frame;
3803
3804                /* reset S-frame and (maybe) C-frame masks */
3805                hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3806                hw->hw_info2 |= qh->period
3807                        ? cpu_to_hc32(fotg210, 1 << uframe)
3808                        : cpu_to_hc32(fotg210, QH_SMASK);
3809                hw->hw_info2 |= c_mask;
3810        } else
3811                fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3812
3813        /* stuff into the periodic schedule */
3814        qh_link_periodic(fotg210, qh);
3815done:
3816        return status;
3817}
3818
3819static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3820                struct list_head *qtd_list, gfp_t mem_flags)
3821{
3822        unsigned epnum;
3823        unsigned long flags;
3824        struct fotg210_qh *qh;
3825        int status;
3826        struct list_head empty;
3827
3828        /* get endpoint and transfer/schedule data */
3829        epnum = urb->ep->desc.bEndpointAddress;
3830
3831        spin_lock_irqsave(&fotg210->lock, flags);
3832
3833        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3834                status = -ESHUTDOWN;
3835                goto done_not_linked;
3836        }
3837        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3838        if (unlikely(status))
3839                goto done_not_linked;
3840
3841        /* get qh and force any scheduling errors */
3842        INIT_LIST_HEAD(&empty);
3843        qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3844        if (qh == NULL) {
3845                status = -ENOMEM;
3846                goto done;
3847        }
3848        if (qh->qh_state == QH_STATE_IDLE) {
3849                status = qh_schedule(fotg210, qh);
3850                if (status)
3851                        goto done;
3852        }
3853
3854        /* then queue the urb's tds to the qh */
3855        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3856        BUG_ON(qh == NULL);
3857
3858        /* ... update usbfs periodic stats */
3859        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3860
3861done:
3862        if (unlikely(status))
3863                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3864done_not_linked:
3865        spin_unlock_irqrestore(&fotg210->lock, flags);
3866        if (status)
3867                qtd_list_free(fotg210, urb, qtd_list);
3868
3869        return status;
3870}
3871
3872static void scan_intr(struct fotg210_hcd *fotg210)
3873{
3874        struct fotg210_qh *qh;
3875
3876        list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3877                        &fotg210->intr_qh_list, intr_node) {
3878rescan:
3879                /* clean any finished work for this qh */
3880                if (!list_empty(&qh->qtd_list)) {
3881                        int temp;
3882
3883                        /*
3884                         * Unlinks could happen here; completion reporting
3885                         * drops the lock.  That's why fotg210->qh_scan_next
3886                         * always holds the next qh to scan; if the next qh
3887                         * gets unlinked then fotg210->qh_scan_next is adjusted
3888                         * in qh_unlink_periodic().
3889                         */
3890                        temp = qh_completions(fotg210, qh);
3891                        if (unlikely(qh->needs_rescan ||
3892                                        (list_empty(&qh->qtd_list) &&
3893                                        qh->qh_state == QH_STATE_LINKED)))
3894                                start_unlink_intr(fotg210, qh);
3895                        else if (temp != 0)
3896                                goto rescan;
3897                }
3898        }
3899}
3900
3901/* fotg210_iso_stream ops work with both ITD and SITD */
3902
3903static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3904{
3905        struct fotg210_iso_stream *stream;
3906
3907        stream = kzalloc(sizeof(*stream), mem_flags);
3908        if (likely(stream != NULL)) {
3909                INIT_LIST_HEAD(&stream->td_list);
3910                INIT_LIST_HEAD(&stream->free_list);
3911                stream->next_uframe = -1;
3912        }
3913        return stream;
3914}
3915
3916static void iso_stream_init(struct fotg210_hcd *fotg210,
3917                struct fotg210_iso_stream *stream, struct usb_device *dev,
3918                int pipe, unsigned interval)
3919{
3920        u32 buf1;
3921        unsigned epnum, maxp;
3922        int is_input;
3923        long bandwidth;
3924        unsigned multi;
3925
3926        /*
3927         * this might be a "high bandwidth" highspeed endpoint,
3928         * as encoded in the ep descriptor's wMaxPacket field
3929         */
3930        epnum = usb_pipeendpoint(pipe);
3931        is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3932        maxp = usb_maxpacket(dev, pipe, !is_input);
3933        if (is_input)
3934                buf1 = (1 << 11);
3935        else
3936                buf1 = 0;
3937
3938        maxp = max_packet(maxp);
3939        multi = hb_mult(maxp);
3940        buf1 |= maxp;
3941        maxp *= multi;
3942
3943        stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3944        stream->buf1 = cpu_to_hc32(fotg210, buf1);
3945        stream->buf2 = cpu_to_hc32(fotg210, multi);
3946
3947        /* usbfs wants to report the average usecs per frame tied up
3948         * when transfers on this endpoint are scheduled ...
3949         */
3950        if (dev->speed == USB_SPEED_FULL) {
3951                interval <<= 3;
3952                stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3953                                is_input, 1, maxp));
3954                stream->usecs /= 8;
3955        } else {
3956                stream->highspeed = 1;
3957                stream->usecs = HS_USECS_ISO(maxp);
3958        }
3959        bandwidth = stream->usecs * 8;
3960        bandwidth /= interval;
3961
3962        stream->bandwidth = bandwidth;
3963        stream->udev = dev;
3964        stream->bEndpointAddress = is_input | epnum;
3965        stream->interval = interval;
3966        stream->maxp = maxp;
3967}
3968
3969static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3970                struct urb *urb)
3971{
3972        unsigned epnum;
3973        struct fotg210_iso_stream *stream;
3974        struct usb_host_endpoint *ep;
3975        unsigned long flags;
3976
3977        epnum = usb_pipeendpoint(urb->pipe);
3978        if (usb_pipein(urb->pipe))
3979                ep = urb->dev->ep_in[epnum];
3980        else
3981                ep = urb->dev->ep_out[epnum];
3982
3983        spin_lock_irqsave(&fotg210->lock, flags);
3984        stream = ep->hcpriv;
3985
3986        if (unlikely(stream == NULL)) {
3987                stream = iso_stream_alloc(GFP_ATOMIC);
3988                if (likely(stream != NULL)) {
3989                        ep->hcpriv = stream;
3990                        stream->ep = ep;
3991                        iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3992                                        urb->interval);
3993                }
3994
3995        /* if dev->ep[epnum] is a QH, hw is set */
3996        } else if (unlikely(stream->hw != NULL)) {
3997                fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3998                                urb->dev->devpath, epnum,
3999                                usb_pipein(urb->pipe) ? "in" : "out");
4000                stream = NULL;
4001        }
4002
4003        spin_unlock_irqrestore(&fotg210->lock, flags);
4004        return stream;
4005}
4006
4007/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4008
4009static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4010                gfp_t mem_flags)
4011{
4012        struct fotg210_iso_sched *iso_sched;
4013        int size = sizeof(*iso_sched);
4014
4015        size += packets * sizeof(struct fotg210_iso_packet);
4016        iso_sched = kzalloc(size, mem_flags);
4017        if (likely(iso_sched != NULL))
4018                INIT_LIST_HEAD(&iso_sched->td_list);
4019
4020        return iso_sched;
4021}
4022
4023static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4024                struct fotg210_iso_sched *iso_sched,
4025                struct fotg210_iso_stream *stream, struct urb *urb)
4026{
4027        unsigned i;
4028        dma_addr_t dma = urb->transfer_dma;
4029
4030        /* how many uframes are needed for these transfers */
4031        iso_sched->span = urb->number_of_packets * stream->interval;
4032
4033        /* figure out per-uframe itd fields that we'll need later
4034         * when we fit new itds into the schedule.
4035         */
4036        for (i = 0; i < urb->number_of_packets; i++) {
4037                struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4038                unsigned length;
4039                dma_addr_t buf;
4040                u32 trans;
4041
4042                length = urb->iso_frame_desc[i].length;
4043                buf = dma + urb->iso_frame_desc[i].offset;
4044
4045                trans = FOTG210_ISOC_ACTIVE;
4046                trans |= buf & 0x0fff;
4047                if (unlikely(((i + 1) == urb->number_of_packets))
4048                                && !(urb->transfer_flags & URB_NO_INTERRUPT))
4049                        trans |= FOTG210_ITD_IOC;
4050                trans |= length << 16;
4051                uframe->transaction = cpu_to_hc32(fotg210, trans);
4052
4053                /* might need to cross a buffer page within a uframe */
4054                uframe->bufp = (buf & ~(u64)0x0fff);
4055                buf += length;
4056                if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4057                        uframe->cross = 1;
4058        }
4059}
4060
4061static void iso_sched_free(struct fotg210_iso_stream *stream,
4062                struct fotg210_iso_sched *iso_sched)
4063{
4064        if (!iso_sched)
4065                return;
4066        /* caller must hold fotg210->lock!*/
4067        list_splice(&iso_sched->td_list, &stream->free_list);
4068        kfree(iso_sched);
4069}
4070
4071static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4072                struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4073{
4074        struct fotg210_itd *itd;
4075        dma_addr_t itd_dma;
4076        int i;
4077        unsigned num_itds;
4078        struct fotg210_iso_sched *sched;
4079        unsigned long flags;
4080
4081        sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4082        if (unlikely(sched == NULL))
4083                return -ENOMEM;
4084
4085        itd_sched_init(fotg210, sched, stream, urb);
4086
4087        if (urb->interval < 8)
4088                num_itds = 1 + (sched->span + 7) / 8;
4089        else
4090                num_itds = urb->number_of_packets;
4091
4092        /* allocate/init ITDs */
4093        spin_lock_irqsave(&fotg210->lock, flags);
4094        for (i = 0; i < num_itds; i++) {
4095
4096                /*
4097                 * Use iTDs from the free list, but not iTDs that may
4098                 * still be in use by the hardware.
4099                 */
4100                if (likely(!list_empty(&stream->free_list))) {
4101                        itd = list_first_entry(&stream->free_list,
4102                                        struct fotg210_itd, itd_list);
4103                        if (itd->frame == fotg210->now_frame)
4104                                goto alloc_itd;
4105                        list_del(&itd->itd_list);
4106                        itd_dma = itd->itd_dma;
4107                } else {
4108alloc_itd:
4109                        spin_unlock_irqrestore(&fotg210->lock, flags);
4110                        itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4111                                        &itd_dma);
4112                        spin_lock_irqsave(&fotg210->lock, flags);
4113                        if (!itd) {
4114                                iso_sched_free(stream, sched);
4115                                spin_unlock_irqrestore(&fotg210->lock, flags);
4116                                return -ENOMEM;
4117                        }
4118                }
4119
4120                itd->itd_dma = itd_dma;
4121                list_add(&itd->itd_list, &sched->td_list);
4122        }
4123        spin_unlock_irqrestore(&fotg210->lock, flags);
4124
4125        /* temporarily store schedule info in hcpriv */
4126        urb->hcpriv = sched;
4127        urb->error_count = 0;
4128        return 0;
4129}
4130
4131static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4132                u8 usecs, u32 period)
4133{
4134        uframe %= period;
4135        do {
4136                /* can't commit more than uframe_periodic_max usec */
4137                if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4138                                > (fotg210->uframe_periodic_max - usecs))
4139                        return 0;
4140
4141                /* we know urb->interval is 2^N uframes */
4142                uframe += period;
4143        } while (uframe < mod);
4144        return 1;
4145}
4146
4147/* This scheduler plans almost as far into the future as it has actual
4148 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4149 * "as small as possible" to be cache-friendlier.)  That limits the size
4150 * transfers you can stream reliably; avoid more than 64 msec per urb.
4151 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4152 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4153 * and other factors); or more than about 230 msec total (for portability,
4154 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4155 */
4156
4157#define SCHEDULE_SLOP 80 /* microframes */
4158
4159static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4160                struct fotg210_iso_stream *stream)
4161{
4162        u32 now, next, start, period, span;
4163        int status;
4164        unsigned mod = fotg210->periodic_size << 3;
4165        struct fotg210_iso_sched *sched = urb->hcpriv;
4166
4167        period = urb->interval;
4168        span = sched->span;
4169
4170        if (span > mod - SCHEDULE_SLOP) {
4171                fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4172                status = -EFBIG;
4173                goto fail;
4174        }
4175
4176        now = fotg210_read_frame_index(fotg210) & (mod - 1);
4177
4178        /* Typical case: reuse current schedule, stream is still active.
4179         * Hopefully there are no gaps from the host falling behind
4180         * (irq delays etc), but if there are we'll take the next
4181         * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4182         */
4183        if (likely(!list_empty(&stream->td_list))) {
4184                u32 excess;
4185
4186                /* For high speed devices, allow scheduling within the
4187                 * isochronous scheduling threshold.  For full speed devices
4188                 * and Intel PCI-based controllers, don't (work around for
4189                 * Intel ICH9 bug).
4190                 */
4191                if (!stream->highspeed && fotg210->fs_i_thresh)
4192                        next = now + fotg210->i_thresh;
4193                else
4194                        next = now;
4195
4196                /* Fell behind (by up to twice the slop amount)?
4197                 * We decide based on the time of the last currently-scheduled
4198                 * slot, not the time of the next available slot.
4199                 */
4200                excess = (stream->next_uframe - period - next) & (mod - 1);
4201                if (excess >= mod - 2 * SCHEDULE_SLOP)
4202                        start = next + excess - mod + period *
4203                                        DIV_ROUND_UP(mod - excess, period);
4204                else
4205                        start = next + excess + period;
4206                if (start - now >= mod) {
4207                        fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4208                                        urb, start - now - period, period,
4209                                        mod);
4210                        status = -EFBIG;
4211                        goto fail;
4212                }
4213        }
4214
4215        /* need to schedule; when's the next (u)frame we could start?
4216         * this is bigger than fotg210->i_thresh allows; scheduling itself
4217         * isn't free, the slop should handle reasonably slow cpus.  it
4218         * can also help high bandwidth if the dma and irq loads don't
4219         * jump until after the queue is primed.
4220         */
4221        else {
4222                int done = 0;
4223
4224                start = SCHEDULE_SLOP + (now & ~0x07);
4225
4226                /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4227
4228                /* find a uframe slot with enough bandwidth.
4229                 * Early uframes are more precious because full-speed
4230                 * iso IN transfers can't use late uframes,
4231                 * and therefore they should be allocated last.
4232                 */
4233                next = start;
4234                start += period;
4235                do {
4236                        start--;
4237                        /* check schedule: enough space? */
4238                        if (itd_slot_ok(fotg210, mod, start,
4239                                        stream->usecs, period))
4240                                done = 1;
4241                } while (start > next && !done);
4242
4243                /* no room in the schedule */
4244                if (!done) {
4245                        fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4246                                        urb, now, now + mod);
4247                        status = -ENOSPC;
4248                        goto fail;
4249                }
4250        }
4251
4252        /* Tried to schedule too far into the future? */
4253        if (unlikely(start - now + span - period >=
4254                        mod - 2 * SCHEDULE_SLOP)) {
4255                fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4256                                urb, start - now, span - period,
4257                                mod - 2 * SCHEDULE_SLOP);
4258                status = -EFBIG;
4259                goto fail;
4260        }
4261
4262        stream->next_uframe = start & (mod - 1);
4263
4264        /* report high speed start in uframes; full speed, in frames */
4265        urb->start_frame = stream->next_uframe;
4266        if (!stream->highspeed)
4267                urb->start_frame >>= 3;
4268
4269        /* Make sure scan_isoc() sees these */
4270        if (fotg210->isoc_count == 0)
4271                fotg210->next_frame = now >> 3;
4272        return 0;
4273
4274fail:
4275        iso_sched_free(stream, sched);
4276        urb->hcpriv = NULL;
4277        return status;
4278}
4279
4280static inline void itd_init(struct fotg210_hcd *fotg210,
4281                struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4282{
4283        int i;
4284
4285        /* it's been recently zeroed */
4286        itd->hw_next = FOTG210_LIST_END(fotg210);
4287        itd->hw_bufp[0] = stream->buf0;
4288        itd->hw_bufp[1] = stream->buf1;
4289        itd->hw_bufp[2] = stream->buf2;
4290
4291        for (i = 0; i < 8; i++)
4292                itd->index[i] = -1;
4293
4294        /* All other fields are filled when scheduling */
4295}
4296
4297static inline void itd_patch(struct fotg210_hcd *fotg210,
4298                struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4299                unsigned index, u16 uframe)
4300{
4301        struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4302        unsigned pg = itd->pg;
4303
4304        uframe &= 0x07;
4305        itd->index[uframe] = index;
4306
4307        itd->hw_transaction[uframe] = uf->transaction;
4308        itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4309        itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4310        itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4311
4312        /* iso_frame_desc[].offset must be strictly increasing */
4313        if (unlikely(uf->cross)) {
4314                u64 bufp = uf->bufp + 4096;
4315
4316                itd->pg = ++pg;
4317                itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4318                itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4319        }
4320}
4321
4322static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4323                struct fotg210_itd *itd)
4324{
4325        union fotg210_shadow *prev = &fotg210->pshadow[frame];
4326        __hc32 *hw_p = &fotg210->periodic[frame];
4327        union fotg210_shadow here = *prev;
4328        __hc32 type = 0;
4329
4330        /* skip any iso nodes which might belong to previous microframes */
4331        while (here.ptr) {
4332                type = Q_NEXT_TYPE(fotg210, *hw_p);
4333                if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4334                        break;
4335                prev = periodic_next_shadow(fotg210, prev, type);
4336                hw_p = shadow_next_periodic(fotg210, &here, type);
4337                here = *prev;
4338        }
4339
4340        itd->itd_next = here;
4341        itd->hw_next = *hw_p;
4342        prev->itd = itd;
4343        itd->frame = frame;
4344        wmb();
4345        *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4346}
4347
4348/* fit urb's itds into the selected schedule slot; activate as needed */
4349static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4350                unsigned mod, struct fotg210_iso_stream *stream)
4351{
4352        int packet;
4353        unsigned next_uframe, uframe, frame;
4354        struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4355        struct fotg210_itd *itd;
4356
4357        next_uframe = stream->next_uframe & (mod - 1);
4358
4359        if (unlikely(list_empty(&stream->td_list))) {
4360                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4361                                += stream->bandwidth;
4362                fotg210_dbg(fotg210,
4363                        "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4364                        urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4365                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4366                        urb->interval,
4367                        next_uframe >> 3, next_uframe & 0x7);
4368        }
4369
4370        /* fill iTDs uframe by uframe */
4371        for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4372                if (itd == NULL) {
4373                        /* ASSERT:  we have all necessary itds */
4374
4375                        /* ASSERT:  no itds for this endpoint in this uframe */
4376
4377                        itd = list_entry(iso_sched->td_list.next,
4378                                        struct fotg210_itd, itd_list);
4379                        list_move_tail(&itd->itd_list, &stream->td_list);
4380                        itd->stream = stream;
4381                        itd->urb = urb;
4382                        itd_init(fotg210, stream, itd);
4383                }
4384
4385                uframe = next_uframe & 0x07;
4386                frame = next_uframe >> 3;
4387
4388                itd_patch(fotg210, itd, iso_sched, packet, uframe);
4389
4390                next_uframe += stream->interval;
4391                next_uframe &= mod - 1;
4392                packet++;
4393
4394                /* link completed itds into the schedule */
4395                if (((next_uframe >> 3) != frame)
4396                                || packet == urb->number_of_packets) {
4397                        itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4398                                        itd);
4399                        itd = NULL;
4400                }
4401        }
4402        stream->next_uframe = next_uframe;
4403
4404        /* don't need that schedule data any more */
4405        iso_sched_free(stream, iso_sched);
4406        urb->hcpriv = NULL;
4407
4408        ++fotg210->isoc_count;
4409        enable_periodic(fotg210);
4410}
4411
4412#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4413                FOTG210_ISOC_XACTERR)
4414
4415/* Process and recycle a completed ITD.  Return true iff its urb completed,
4416 * and hence its completion callback probably added things to the hardware
4417 * schedule.
4418 *
4419 * Note that we carefully avoid recycling this descriptor until after any
4420 * completion callback runs, so that it won't be reused quickly.  That is,
4421 * assuming (a) no more than two urbs per frame on this endpoint, and also
4422 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4423 * corrupts things if you reuse completed descriptors very quickly...
4424 */
4425static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4426{
4427        struct urb *urb = itd->urb;
4428        struct usb_iso_packet_descriptor *desc;
4429        u32 t;
4430        unsigned uframe;
4431        int urb_index = -1;
4432        struct fotg210_iso_stream *stream = itd->stream;
4433        struct usb_device *dev;
4434        bool retval = false;
4435
4436        /* for each uframe with a packet */
4437        for (uframe = 0; uframe < 8; uframe++) {
4438                if (likely(itd->index[uframe] == -1))
4439                        continue;
4440                urb_index = itd->index[uframe];
4441                desc = &urb->iso_frame_desc[urb_index];
4442
4443                t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4444                itd->hw_transaction[uframe] = 0;
4445
4446                /* report transfer status */
4447                if (unlikely(t & ISO_ERRS)) {
4448                        urb->error_count++;
4449                        if (t & FOTG210_ISOC_BUF_ERR)
4450                                desc->status = usb_pipein(urb->pipe)
4451                                        ? -ENOSR  /* hc couldn't read */
4452                                        : -ECOMM; /* hc couldn't write */
4453                        else if (t & FOTG210_ISOC_BABBLE)
4454                                desc->status = -EOVERFLOW;
4455                        else /* (t & FOTG210_ISOC_XACTERR) */
4456                                desc->status = -EPROTO;
4457
4458                        /* HC need not update length with this error */
4459                        if (!(t & FOTG210_ISOC_BABBLE)) {
4460                                desc->actual_length =
4461                                        fotg210_itdlen(urb, desc, t);
4462                                urb->actual_length += desc->actual_length;
4463                        }
4464                } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4465                        desc->status = 0;
4466                        desc->actual_length = fotg210_itdlen(urb, desc, t);
4467                        urb->actual_length += desc->actual_length;
4468                } else {
4469                        /* URB was too late */
4470                        desc->status = -EXDEV;
4471                }
4472        }
4473
4474        /* handle completion now? */
4475        if (likely((urb_index + 1) != urb->number_of_packets))
4476                goto done;
4477
4478        /* ASSERT: it's really the last itd for this urb
4479         * list_for_each_entry (itd, &stream->td_list, itd_list)
4480         *      BUG_ON (itd->urb == urb);
4481         */
4482
4483        /* give urb back to the driver; completion often (re)submits */
4484        dev = urb->dev;
4485        fotg210_urb_done(fotg210, urb, 0);
4486        retval = true;
4487        urb = NULL;
4488
4489        --fotg210->isoc_count;
4490        disable_periodic(fotg210);
4491
4492        if (unlikely(list_is_singular(&stream->td_list))) {
4493                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4494                                -= stream->bandwidth;
4495                fotg210_dbg(fotg210,
4496                        "deschedule devp %s ep%d%s-iso\n",
4497                        dev->devpath, stream->bEndpointAddress & 0x0f,
4498                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4499        }
4500
4501done:
4502        itd->urb = NULL;
4503
4504        /* Add to the end of the free list for later reuse */
4505        list_move_tail(&itd->itd_list, &stream->free_list);
4506
4507        /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4508        if (list_empty(&stream->td_list)) {
4509                list_splice_tail_init(&stream->free_list,
4510                                &fotg210->cached_itd_list);
4511                start_free_itds(fotg210);
4512        }
4513
4514        return retval;
4515}
4516
4517static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4518                gfp_t mem_flags)
4519{
4520        int status = -EINVAL;
4521        unsigned long flags;
4522        struct fotg210_iso_stream *stream;
4523
4524        /* Get iso_stream head */
4525        stream = iso_stream_find(fotg210, urb);
4526        if (unlikely(stream == NULL)) {
4527                fotg210_dbg(fotg210, "can't get iso stream\n");
4528                return -ENOMEM;
4529        }
4530        if (unlikely(urb->interval != stream->interval &&
4531                        fotg210_port_speed(fotg210, 0) ==
4532                        USB_PORT_STAT_HIGH_SPEED)) {
4533                fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4534                                stream->interval, urb->interval);
4535                goto done;
4536        }
4537
4538#ifdef FOTG210_URB_TRACE
4539        fotg210_dbg(fotg210,
4540                        "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4541                        __func__, urb->dev->devpath, urb,
4542                        usb_pipeendpoint(urb->pipe),
4543                        usb_pipein(urb->pipe) ? "in" : "out",
4544                        urb->transfer_buffer_length,
4545                        urb->number_of_packets, urb->interval,
4546                        stream);
4547#endif
4548
4549        /* allocate ITDs w/o locking anything */
4550        status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4551        if (unlikely(status < 0)) {
4552                fotg210_dbg(fotg210, "can't init itds\n");
4553                goto done;
4554        }
4555
4556        /* schedule ... need to lock */
4557        spin_lock_irqsave(&fotg210->lock, flags);
4558        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4559                status = -ESHUTDOWN;
4560                goto done_not_linked;
4561        }
4562        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4563        if (unlikely(status))
4564                goto done_not_linked;
4565        status = iso_stream_schedule(fotg210, urb, stream);
4566        if (likely(status == 0))
4567                itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4568        else
4569                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4570done_not_linked:
4571        spin_unlock_irqrestore(&fotg210->lock, flags);
4572done:
4573        return status;
4574}
4575
4576static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4577                unsigned now_frame, bool live)
4578{
4579        unsigned uf;
4580        bool modified;
4581        union fotg210_shadow q, *q_p;
4582        __hc32 type, *hw_p;
4583
4584        /* scan each element in frame's queue for completions */
4585        q_p = &fotg210->pshadow[frame];
4586        hw_p = &fotg210->periodic[frame];
4587        q.ptr = q_p->ptr;
4588        type = Q_NEXT_TYPE(fotg210, *hw_p);
4589        modified = false;
4590
4591        while (q.ptr) {
4592                switch (hc32_to_cpu(fotg210, type)) {
4593                case Q_TYPE_ITD:
4594                        /* If this ITD is still active, leave it for
4595                         * later processing ... check the next entry.
4596                         * No need to check for activity unless the
4597                         * frame is current.
4598                         */
4599                        if (frame == now_frame && live) {
4600                                rmb();
4601                                for (uf = 0; uf < 8; uf++) {
4602                                        if (q.itd->hw_transaction[uf] &
4603                                                        ITD_ACTIVE(fotg210))
4604                                                break;
4605                                }
4606                                if (uf < 8) {
4607                                        q_p = &q.itd->itd_next;
4608                                        hw_p = &q.itd->hw_next;
4609                                        type = Q_NEXT_TYPE(fotg210,
4610                                                        q.itd->hw_next);
4611                                        q = *q_p;
4612                                        break;
4613                                }
4614                        }
4615
4616                        /* Take finished ITDs out of the schedule
4617                         * and process them:  recycle, maybe report
4618                         * URB completion.  HC won't cache the
4619                         * pointer for much longer, if at all.
4620                         */
4621                        *q_p = q.itd->itd_next;
4622                        *hw_p = q.itd->hw_next;
4623                        type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4624                        wmb();
4625                        modified = itd_complete(fotg210, q.itd);
4626                        q = *q_p;
4627                        break;
4628                default:
4629                        fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4630                                        type, frame, q.ptr);
4631                        /* FALL THROUGH */
4632                case Q_TYPE_QH:
4633                case Q_TYPE_FSTN:
4634                        /* End of the iTDs and siTDs */
4635                        q.ptr = NULL;
4636                        break;
4637                }
4638
4639                /* assume completion callbacks modify the queue */
4640                if (unlikely(modified && fotg210->isoc_count > 0))
4641                        return -EINVAL;
4642        }
4643        return 0;
4644}
4645
4646static void scan_isoc(struct fotg210_hcd *fotg210)
4647{
4648        unsigned uf, now_frame, frame, ret;
4649        unsigned fmask = fotg210->periodic_size - 1;
4650        bool live;
4651
4652        /*
4653         * When running, scan from last scan point up to "now"
4654         * else clean up by scanning everything that's left.
4655         * Touches as few pages as possible:  cache-friendly.
4656         */
4657        if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4658                uf = fotg210_read_frame_index(fotg210);
4659                now_frame = (uf >> 3) & fmask;
4660                live = true;
4661        } else  {
4662                now_frame = (fotg210->next_frame - 1) & fmask;
4663                live = false;
4664        }
4665        fotg210->now_frame = now_frame;
4666
4667        frame = fotg210->next_frame;
4668        for (;;) {
4669                ret = 1;
4670                while (ret != 0)
4671                        ret = scan_frame_queue(fotg210, frame,
4672                                        now_frame, live);
4673
4674                /* Stop when we have reached the current frame */
4675                if (frame == now_frame)
4676                        break;
4677                frame = (frame + 1) & fmask;
4678        }
4679        fotg210->next_frame = now_frame;
4680}
4681
4682/* Display / Set uframe_periodic_max
4683 */
4684static ssize_t uframe_periodic_max_show(struct device *dev,
4685                struct device_attribute *attr, char *buf)
4686{
4687        struct fotg210_hcd *fotg210;
4688        int n;
4689
4690        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4691        n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4692        return n;
4693}
4694
4695
4696static ssize_t uframe_periodic_max_store(struct device *dev,
4697                struct device_attribute *attr, const char *buf, size_t count)
4698{
4699        struct fotg210_hcd *fotg210;
4700        unsigned uframe_periodic_max;
4701        unsigned frame, uframe;
4702        unsigned short allocated_max;
4703        unsigned long flags;
4704        ssize_t ret;
4705
4706        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4707        if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4708                return -EINVAL;
4709
4710        if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4711                fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4712                                uframe_periodic_max);
4713                return -EINVAL;
4714        }
4715
4716        ret = -EINVAL;
4717
4718        /*
4719         * lock, so that our checking does not race with possible periodic
4720         * bandwidth allocation through submitting new urbs.
4721         */
4722        spin_lock_irqsave(&fotg210->lock, flags);
4723
4724        /*
4725         * for request to decrease max periodic bandwidth, we have to check
4726         * every microframe in the schedule to see whether the decrease is
4727         * possible.
4728         */
4729        if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4730                allocated_max = 0;
4731
4732                for (frame = 0; frame < fotg210->periodic_size; ++frame)
4733                        for (uframe = 0; uframe < 7; ++uframe)
4734                                allocated_max = max(allocated_max,
4735                                                periodic_usecs(fotg210, frame,
4736                                                uframe));
4737
4738                if (allocated_max > uframe_periodic_max) {
4739                        fotg210_info(fotg210,
4740                                        "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4741                                        allocated_max, uframe_periodic_max);
4742                        goto out_unlock;
4743                }
4744        }
4745
4746        /* increasing is always ok */
4747
4748        fotg210_info(fotg210,
4749                        "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4750                        100 * uframe_periodic_max/125, uframe_periodic_max);
4751
4752        if (uframe_periodic_max != 100)
4753                fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4754
4755        fotg210->uframe_periodic_max = uframe_periodic_max;
4756        ret = count;
4757
4758out_unlock:
4759        spin_unlock_irqrestore(&fotg210->lock, flags);
4760        return ret;
4761}
4762
4763static DEVICE_ATTR_RW(uframe_periodic_max);
4764
4765static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4766{
4767        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4768
4769        return device_create_file(controller, &dev_attr_uframe_periodic_max);
4770}
4771
4772static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4773{
4774        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4775
4776        device_remove_file(controller, &dev_attr_uframe_periodic_max);
4777}
4778/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4779 * The firmware seems to think that powering off is a wakeup event!
4780 * This routine turns off remote wakeup and everything else, on all ports.
4781 */
4782static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4783{
4784        u32 __iomem *status_reg = &fotg210->regs->port_status;
4785
4786        fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4787}
4788
4789/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4790 * Must be called with interrupts enabled and the lock not held.
4791 */
4792static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4793{
4794        fotg210_halt(fotg210);
4795
4796        spin_lock_irq(&fotg210->lock);
4797        fotg210->rh_state = FOTG210_RH_HALTED;
4798        fotg210_turn_off_all_ports(fotg210);
4799        spin_unlock_irq(&fotg210->lock);
4800}
4801
4802/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4803 * This forcibly disables dma and IRQs, helping kexec and other cases
4804 * where the next system software may expect clean state.
4805 */
4806static void fotg210_shutdown(struct usb_hcd *hcd)
4807{
4808        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4809
4810        spin_lock_irq(&fotg210->lock);
4811        fotg210->shutdown = true;
4812        fotg210->rh_state = FOTG210_RH_STOPPING;
4813        fotg210->enabled_hrtimer_events = 0;
4814        spin_unlock_irq(&fotg210->lock);
4815
4816        fotg210_silence_controller(fotg210);
4817
4818        hrtimer_cancel(&fotg210->hrtimer);
4819}
4820
4821/* fotg210_work is called from some interrupts, timers, and so on.
4822 * it calls driver completion functions, after dropping fotg210->lock.
4823 */
4824static void fotg210_work(struct fotg210_hcd *fotg210)
4825{
4826        /* another CPU may drop fotg210->lock during a schedule scan while
4827         * it reports urb completions.  this flag guards against bogus
4828         * attempts at re-entrant schedule scanning.
4829         */
4830        if (fotg210->scanning) {
4831                fotg210->need_rescan = true;
4832                return;
4833        }
4834        fotg210->scanning = true;
4835
4836rescan:
4837        fotg210->need_rescan = false;
4838        if (fotg210->async_count)
4839                scan_async(fotg210);
4840        if (fotg210->intr_count > 0)
4841                scan_intr(fotg210);
4842        if (fotg210->isoc_count > 0)
4843                scan_isoc(fotg210);
4844        if (fotg210->need_rescan)
4845                goto rescan;
4846        fotg210->scanning = false;
4847
4848        /* the IO watchdog guards against hardware or driver bugs that
4849         * misplace IRQs, and should let us run completely without IRQs.
4850         * such lossage has been observed on both VT6202 and VT8235.
4851         */
4852        turn_on_io_watchdog(fotg210);
4853}
4854
4855/* Called when the fotg210_hcd module is removed.
4856 */
4857static void fotg210_stop(struct usb_hcd *hcd)
4858{
4859        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4860
4861        fotg210_dbg(fotg210, "stop\n");
4862
4863        /* no more interrupts ... */
4864
4865        spin_lock_irq(&fotg210->lock);
4866        fotg210->enabled_hrtimer_events = 0;
4867        spin_unlock_irq(&fotg210->lock);
4868
4869        fotg210_quiesce(fotg210);
4870        fotg210_silence_controller(fotg210);
4871        fotg210_reset(fotg210);
4872
4873        hrtimer_cancel(&fotg210->hrtimer);
4874        remove_sysfs_files(fotg210);
4875        remove_debug_files(fotg210);
4876
4877        /* root hub is shut down separately (first, when possible) */
4878        spin_lock_irq(&fotg210->lock);
4879        end_free_itds(fotg210);
4880        spin_unlock_irq(&fotg210->lock);
4881        fotg210_mem_cleanup(fotg210);
4882
4883#ifdef FOTG210_STATS
4884        fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4885                        fotg210->stats.normal, fotg210->stats.error,
4886                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
4887        fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4888                        fotg210->stats.complete, fotg210->stats.unlink);
4889#endif
4890
4891        dbg_status(fotg210, "fotg210_stop completed",
4892                        fotg210_readl(fotg210, &fotg210->regs->status));
4893}
4894
4895/* one-time init, only for memory state */
4896static int hcd_fotg210_init(struct usb_hcd *hcd)
4897{
4898        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4899        u32 temp;
4900        int retval;
4901        u32 hcc_params;
4902        struct fotg210_qh_hw *hw;
4903
4904        spin_lock_init(&fotg210->lock);
4905
4906        /*
4907         * keep io watchdog by default, those good HCDs could turn off it later
4908         */
4909        fotg210->need_io_watchdog = 1;
4910
4911        hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4912        fotg210->hrtimer.function = fotg210_hrtimer_func;
4913        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4914
4915        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4916
4917        /*
4918         * by default set standard 80% (== 100 usec/uframe) max periodic
4919         * bandwidth as required by USB 2.0
4920         */
4921        fotg210->uframe_periodic_max = 100;
4922
4923        /*
4924         * hw default: 1K periodic list heads, one per frame.
4925         * periodic_size can shrink by USBCMD update if hcc_params allows.
4926         */
4927        fotg210->periodic_size = DEFAULT_I_TDPS;
4928        INIT_LIST_HEAD(&fotg210->intr_qh_list);
4929        INIT_LIST_HEAD(&fotg210->cached_itd_list);
4930
4931        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4932                /* periodic schedule size can be smaller than default */
4933                switch (FOTG210_TUNE_FLS) {
4934                case 0:
4935                        fotg210->periodic_size = 1024;
4936                        break;
4937                case 1:
4938                        fotg210->periodic_size = 512;
4939                        break;
4940                case 2:
4941                        fotg210->periodic_size = 256;
4942                        break;
4943                default:
4944                        BUG();
4945                }
4946        }
4947        retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4948        if (retval < 0)
4949                return retval;
4950
4951        /* controllers may cache some of the periodic schedule ... */
4952        fotg210->i_thresh = 2;
4953
4954        /*
4955         * dedicate a qh for the async ring head, since we couldn't unlink
4956         * a 'real' qh without stopping the async schedule [4.8].  use it
4957         * as the 'reclamation list head' too.
4958         * its dummy is used in hw_alt_next of many tds, to prevent the qh
4959         * from automatically advancing to the next td after short reads.
4960         */
4961        fotg210->async->qh_next.qh = NULL;
4962        hw = fotg210->async->hw;
4963        hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4964        hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4965        hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4966        hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4967        fotg210->async->qh_state = QH_STATE_LINKED;
4968        hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4969
4970        /* clear interrupt enables, set irq latency */
4971        if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4972                log2_irq_thresh = 0;
4973        temp = 1 << (16 + log2_irq_thresh);
4974        if (HCC_CANPARK(hcc_params)) {
4975                /* HW default park == 3, on hardware that supports it (like
4976                 * NVidia and ALI silicon), maximizes throughput on the async
4977                 * schedule by avoiding QH fetches between transfers.
4978                 *
4979                 * With fast usb storage devices and NForce2, "park" seems to
4980                 * make problems:  throughput reduction (!), data errors...
4981                 */
4982                if (park) {
4983                        park = min_t(unsigned, park, 3);
4984                        temp |= CMD_PARK;
4985                        temp |= park << 8;
4986                }
4987                fotg210_dbg(fotg210, "park %d\n", park);
4988        }
4989        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4990                /* periodic schedule size can be smaller than default */
4991                temp &= ~(3 << 2);
4992                temp |= (FOTG210_TUNE_FLS << 2);
4993        }
4994        fotg210->command = temp;
4995
4996        /* Accept arbitrarily long scatter-gather lists */
4997        if (!(hcd->driver->flags & HCD_LOCAL_MEM))
4998                hcd->self.sg_tablesize = ~0;
4999        return 0;
5000}
5001
5002/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5003static int fotg210_run(struct usb_hcd *hcd)
5004{
5005        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5006        u32 temp;
5007        u32 hcc_params;
5008
5009        hcd->uses_new_polling = 1;
5010
5011        /* EHCI spec section 4.1 */
5012
5013        fotg210_writel(fotg210, fotg210->periodic_dma,
5014                        &fotg210->regs->frame_list);
5015        fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5016                        &fotg210->regs->async_next);
5017
5018        /*
5019         * hcc_params controls whether fotg210->regs->segment must (!!!)
5020         * be used; it constrains QH/ITD/SITD and QTD locations.
5021         * dma_pool consistent memory always uses segment zero.
5022         * streaming mappings for I/O buffers, like pci_map_single(),
5023         * can return segments above 4GB, if the device allows.
5024         *
5025         * NOTE:  the dma mask is visible through dev->dma_mask, so
5026         * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5027         * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5028         * host side drivers though.
5029         */
5030        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5031
5032        /*
5033         * Philips, Intel, and maybe others need CMD_RUN before the
5034         * root hub will detect new devices (why?); NEC doesn't
5035         */
5036        fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5037        fotg210->command |= CMD_RUN;
5038        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5039        dbg_cmd(fotg210, "init", fotg210->command);
5040
5041        /*
5042         * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5043         * are explicitly handed to companion controller(s), so no TT is
5044         * involved with the root hub.  (Except where one is integrated,
5045         * and there's no companion controller unless maybe for USB OTG.)
5046         *
5047         * Turning on the CF flag will transfer ownership of all ports
5048         * from the companions to the EHCI controller.  If any of the
5049         * companions are in the middle of a port reset at the time, it
5050         * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5051         * guarantees that no resets are in progress.  After we set CF,
5052         * a short delay lets the hardware catch up; new resets shouldn't
5053         * be started before the port switching actions could complete.
5054         */
5055        down_write(&ehci_cf_port_reset_rwsem);
5056        fotg210->rh_state = FOTG210_RH_RUNNING;
5057        /* unblock posted writes */
5058        fotg210_readl(fotg210, &fotg210->regs->command);
5059        usleep_range(5000, 10000);
5060        up_write(&ehci_cf_port_reset_rwsem);
5061        fotg210->last_periodic_enable = ktime_get_real();
5062
5063        temp = HC_VERSION(fotg210,
5064                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5065        fotg210_info(fotg210,
5066                        "USB %x.%x started, EHCI %x.%02x\n",
5067                        ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5068                        temp >> 8, temp & 0xff);
5069
5070        fotg210_writel(fotg210, INTR_MASK,
5071                        &fotg210->regs->intr_enable); /* Turn On Interrupts */
5072
5073        /* GRR this is run-once init(), being done every time the HC starts.
5074         * So long as they're part of class devices, we can't do it init()
5075         * since the class device isn't created that early.
5076         */
5077        create_debug_files(fotg210);
5078        create_sysfs_files(fotg210);
5079
5080        return 0;
5081}
5082
5083static int fotg210_setup(struct usb_hcd *hcd)
5084{
5085        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5086        int retval;
5087
5088        fotg210->regs = (void __iomem *)fotg210->caps +
5089                        HC_LENGTH(fotg210,
5090                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5091        dbg_hcs_params(fotg210, "reset");
5092        dbg_hcc_params(fotg210, "reset");
5093
5094        /* cache this readonly data; minimize chip reads */
5095        fotg210->hcs_params = fotg210_readl(fotg210,
5096                        &fotg210->caps->hcs_params);
5097
5098        fotg210->sbrn = HCD_USB2;
5099
5100        /* data structure init */
5101        retval = hcd_fotg210_init(hcd);
5102        if (retval)
5103                return retval;
5104
5105        retval = fotg210_halt(fotg210);
5106        if (retval)
5107                return retval;
5108
5109        fotg210_reset(fotg210);
5110
5111        return 0;
5112}
5113
5114static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5115{
5116        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5117        u32 status, masked_status, pcd_status = 0, cmd;
5118        int bh;
5119
5120        spin_lock(&fotg210->lock);
5121
5122        status = fotg210_readl(fotg210, &fotg210->regs->status);
5123
5124        /* e.g. cardbus physical eject */
5125        if (status == ~(u32) 0) {
5126                fotg210_dbg(fotg210, "device removed\n");
5127                goto dead;
5128        }
5129
5130        /*
5131         * We don't use STS_FLR, but some controllers don't like it to
5132         * remain on, so mask it out along with the other status bits.
5133         */
5134        masked_status = status & (INTR_MASK | STS_FLR);
5135
5136        /* Shared IRQ? */
5137        if (!masked_status ||
5138                        unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5139                spin_unlock(&fotg210->lock);
5140                return IRQ_NONE;
5141        }
5142
5143        /* clear (just) interrupts */
5144        fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5145        cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5146        bh = 0;
5147
5148        /* unrequested/ignored: Frame List Rollover */
5149        dbg_status(fotg210, "irq", status);
5150
5151        /* INT, ERR, and IAA interrupt rates can be throttled */
5152
5153        /* normal [4.15.1.2] or error [4.15.1.1] completion */
5154        if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5155                if (likely((status & STS_ERR) == 0))
5156                        COUNT(fotg210->stats.normal);
5157                else
5158                        COUNT(fotg210->stats.error);
5159                bh = 1;
5160        }
5161
5162        /* complete the unlinking of some qh [4.15.2.3] */
5163        if (status & STS_IAA) {
5164
5165                /* Turn off the IAA watchdog */
5166                fotg210->enabled_hrtimer_events &=
5167                        ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5168
5169                /*
5170                 * Mild optimization: Allow another IAAD to reset the
5171                 * hrtimer, if one occurs before the next expiration.
5172                 * In theory we could always cancel the hrtimer, but
5173                 * tests show that about half the time it will be reset
5174                 * for some other event anyway.
5175                 */
5176                if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5177                        ++fotg210->next_hrtimer_event;
5178
5179                /* guard against (alleged) silicon errata */
5180                if (cmd & CMD_IAAD)
5181                        fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5182                if (fotg210->async_iaa) {
5183                        COUNT(fotg210->stats.iaa);
5184                        end_unlink_async(fotg210);
5185                } else
5186                        fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5187        }
5188
5189        /* remote wakeup [4.3.1] */
5190        if (status & STS_PCD) {
5191                int pstatus;
5192                u32 __iomem *status_reg = &fotg210->regs->port_status;
5193
5194                /* kick root hub later */
5195                pcd_status = status;
5196
5197                /* resume root hub? */
5198                if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5199                        usb_hcd_resume_root_hub(hcd);
5200
5201                pstatus = fotg210_readl(fotg210, status_reg);
5202
5203                if (test_bit(0, &fotg210->suspended_ports) &&
5204                                ((pstatus & PORT_RESUME) ||
5205                                !(pstatus & PORT_SUSPEND)) &&
5206                                (pstatus & PORT_PE) &&
5207                                fotg210->reset_done[0] == 0) {
5208
5209                        /* start 20 msec resume signaling from this port,
5210                         * and make hub_wq collect PORT_STAT_C_SUSPEND to
5211                         * stop that signaling.  Use 5 ms extra for safety,
5212                         * like usb_port_resume() does.
5213                         */
5214                        fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5215                        set_bit(0, &fotg210->resuming_ports);
5216                        fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5217                        mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5218                }
5219        }
5220
5221        /* PCI errors [4.15.2.4] */
5222        if (unlikely((status & STS_FATAL) != 0)) {
5223                fotg210_err(fotg210, "fatal error\n");
5224                dbg_cmd(fotg210, "fatal", cmd);
5225                dbg_status(fotg210, "fatal", status);
5226dead:
5227                usb_hc_died(hcd);
5228
5229                /* Don't let the controller do anything more */
5230                fotg210->shutdown = true;
5231                fotg210->rh_state = FOTG210_RH_STOPPING;
5232                fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5233                fotg210_writel(fotg210, fotg210->command,
5234                                &fotg210->regs->command);
5235                fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5236                fotg210_handle_controller_death(fotg210);
5237
5238                /* Handle completions when the controller stops */
5239                bh = 0;
5240        }
5241
5242        if (bh)
5243                fotg210_work(fotg210);
5244        spin_unlock(&fotg210->lock);
5245        if (pcd_status)
5246                usb_hcd_poll_rh_status(hcd);
5247        return IRQ_HANDLED;
5248}
5249
5250/* non-error returns are a promise to giveback() the urb later
5251 * we drop ownership so next owner (or urb unlink) can get it
5252 *
5253 * urb + dev is in hcd.self.controller.urb_list
5254 * we're queueing TDs onto software and hardware lists
5255 *
5256 * hcd-specific init for hcpriv hasn't been done yet
5257 *
5258 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5259 * to a (possibly active) QH, and the same QH scanning code.
5260 */
5261static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5262                gfp_t mem_flags)
5263{
5264        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5265        struct list_head qtd_list;
5266
5267        INIT_LIST_HEAD(&qtd_list);
5268
5269        switch (usb_pipetype(urb->pipe)) {
5270        case PIPE_CONTROL:
5271                /* qh_completions() code doesn't handle all the fault cases
5272                 * in multi-TD control transfers.  Even 1KB is rare anyway.
5273                 */
5274                if (urb->transfer_buffer_length > (16 * 1024))
5275                        return -EMSGSIZE;
5276                /* FALLTHROUGH */
5277        /* case PIPE_BULK: */
5278        default:
5279                if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5280                        return -ENOMEM;
5281                return submit_async(fotg210, urb, &qtd_list, mem_flags);
5282
5283        case PIPE_INTERRUPT:
5284                if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5285                        return -ENOMEM;
5286                return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5287
5288        case PIPE_ISOCHRONOUS:
5289                return itd_submit(fotg210, urb, mem_flags);
5290        }
5291}
5292
5293/* remove from hardware lists
5294 * completions normally happen asynchronously
5295 */
5296
5297static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5298{
5299        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5300        struct fotg210_qh *qh;
5301        unsigned long flags;
5302        int rc;
5303
5304        spin_lock_irqsave(&fotg210->lock, flags);
5305        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5306        if (rc)
5307                goto done;
5308
5309        switch (usb_pipetype(urb->pipe)) {
5310        /* case PIPE_CONTROL: */
5311        /* case PIPE_BULK:*/
5312        default:
5313                qh = (struct fotg210_qh *) urb->hcpriv;
5314                if (!qh)
5315                        break;
5316                switch (qh->qh_state) {
5317                case QH_STATE_LINKED:
5318                case QH_STATE_COMPLETING:
5319                        start_unlink_async(fotg210, qh);
5320                        break;
5321                case QH_STATE_UNLINK:
5322                case QH_STATE_UNLINK_WAIT:
5323                        /* already started */
5324                        break;
5325                case QH_STATE_IDLE:
5326                        /* QH might be waiting for a Clear-TT-Buffer */
5327                        qh_completions(fotg210, qh);
5328                        break;
5329                }
5330                break;
5331
5332        case PIPE_INTERRUPT:
5333                qh = (struct fotg210_qh *) urb->hcpriv;
5334                if (!qh)
5335                        break;
5336                switch (qh->qh_state) {
5337                case QH_STATE_LINKED:
5338                case QH_STATE_COMPLETING:
5339                        start_unlink_intr(fotg210, qh);
5340                        break;
5341                case QH_STATE_IDLE:
5342                        qh_completions(fotg210, qh);
5343                        break;
5344                default:
5345                        fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5346                                        qh, qh->qh_state);
5347                        goto done;
5348                }
5349                break;
5350
5351        case PIPE_ISOCHRONOUS:
5352                /* itd... */
5353
5354                /* wait till next completion, do it then. */
5355                /* completion irqs can wait up to 1024 msec, */
5356                break;
5357        }
5358done:
5359        spin_unlock_irqrestore(&fotg210->lock, flags);
5360        return rc;
5361}
5362
5363/* bulk qh holds the data toggle */
5364
5365static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5366                struct usb_host_endpoint *ep)
5367{
5368        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5369        unsigned long flags;
5370        struct fotg210_qh *qh, *tmp;
5371
5372        /* ASSERT:  any requests/urbs are being unlinked */
5373        /* ASSERT:  nobody can be submitting urbs for this any more */
5374
5375rescan:
5376        spin_lock_irqsave(&fotg210->lock, flags);
5377        qh = ep->hcpriv;
5378        if (!qh)
5379                goto done;
5380
5381        /* endpoints can be iso streams.  for now, we don't
5382         * accelerate iso completions ... so spin a while.
5383         */
5384        if (qh->hw == NULL) {
5385                struct fotg210_iso_stream *stream = ep->hcpriv;
5386
5387                if (!list_empty(&stream->td_list))
5388                        goto idle_timeout;
5389
5390                /* BUG_ON(!list_empty(&stream->free_list)); */
5391                kfree(stream);
5392                goto done;
5393        }
5394
5395        if (fotg210->rh_state < FOTG210_RH_RUNNING)
5396                qh->qh_state = QH_STATE_IDLE;
5397        switch (qh->qh_state) {
5398        case QH_STATE_LINKED:
5399        case QH_STATE_COMPLETING:
5400                for (tmp = fotg210->async->qh_next.qh;
5401                                tmp && tmp != qh;
5402                                tmp = tmp->qh_next.qh)
5403                        continue;
5404                /* periodic qh self-unlinks on empty, and a COMPLETING qh
5405                 * may already be unlinked.
5406                 */
5407                if (tmp)
5408                        start_unlink_async(fotg210, qh);
5409                /* FALL THROUGH */
5410        case QH_STATE_UNLINK:           /* wait for hw to finish? */
5411        case QH_STATE_UNLINK_WAIT:
5412idle_timeout:
5413                spin_unlock_irqrestore(&fotg210->lock, flags);
5414                schedule_timeout_uninterruptible(1);
5415                goto rescan;
5416        case QH_STATE_IDLE:             /* fully unlinked */
5417                if (qh->clearing_tt)
5418                        goto idle_timeout;
5419                if (list_empty(&qh->qtd_list)) {
5420                        qh_destroy(fotg210, qh);
5421                        break;
5422                }
5423                /* fall through */
5424        default:
5425                /* caller was supposed to have unlinked any requests;
5426                 * that's not our job.  just leak this memory.
5427                 */
5428                fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5429                                qh, ep->desc.bEndpointAddress, qh->qh_state,
5430                                list_empty(&qh->qtd_list) ? "" : "(has tds)");
5431                break;
5432        }
5433done:
5434        ep->hcpriv = NULL;
5435        spin_unlock_irqrestore(&fotg210->lock, flags);
5436}
5437
5438static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5439                struct usb_host_endpoint *ep)
5440{
5441        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5442        struct fotg210_qh *qh;
5443        int eptype = usb_endpoint_type(&ep->desc);
5444        int epnum = usb_endpoint_num(&ep->desc);
5445        int is_out = usb_endpoint_dir_out(&ep->desc);
5446        unsigned long flags;
5447
5448        if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5449                return;
5450
5451        spin_lock_irqsave(&fotg210->lock, flags);
5452        qh = ep->hcpriv;
5453
5454        /* For Bulk and Interrupt endpoints we maintain the toggle state
5455         * in the hardware; the toggle bits in udev aren't used at all.
5456         * When an endpoint is reset by usb_clear_halt() we must reset
5457         * the toggle bit in the QH.
5458         */
5459        if (qh) {
5460                usb_settoggle(qh->dev, epnum, is_out, 0);
5461                if (!list_empty(&qh->qtd_list)) {
5462                        WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5463                } else if (qh->qh_state == QH_STATE_LINKED ||
5464                                qh->qh_state == QH_STATE_COMPLETING) {
5465
5466                        /* The toggle value in the QH can't be updated
5467                         * while the QH is active.  Unlink it now;
5468                         * re-linking will call qh_refresh().
5469                         */
5470                        if (eptype == USB_ENDPOINT_XFER_BULK)
5471                                start_unlink_async(fotg210, qh);
5472                        else
5473                                start_unlink_intr(fotg210, qh);
5474                }
5475        }
5476        spin_unlock_irqrestore(&fotg210->lock, flags);
5477}
5478
5479static int fotg210_get_frame(struct usb_hcd *hcd)
5480{
5481        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5482
5483        return (fotg210_read_frame_index(fotg210) >> 3) %
5484                fotg210->periodic_size;
5485}
5486
5487/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5488 * because its registers (and irq) are shared between host/gadget/otg
5489 * functions  and in order to facilitate role switching we cannot
5490 * give the fotg210 driver exclusive access to those.
5491 */
5492MODULE_DESCRIPTION(DRIVER_DESC);
5493MODULE_AUTHOR(DRIVER_AUTHOR);
5494MODULE_LICENSE("GPL");
5495
5496static const struct hc_driver fotg210_fotg210_hc_driver = {
5497        .description            = hcd_name,
5498        .product_desc           = "Faraday USB2.0 Host Controller",
5499        .hcd_priv_size          = sizeof(struct fotg210_hcd),
5500
5501        /*
5502         * generic hardware linkage
5503         */
5504        .irq                    = fotg210_irq,
5505        .flags                  = HCD_MEMORY | HCD_USB2,
5506
5507        /*
5508         * basic lifecycle operations
5509         */
5510        .reset                  = hcd_fotg210_init,
5511        .start                  = fotg210_run,
5512        .stop                   = fotg210_stop,
5513        .shutdown               = fotg210_shutdown,
5514
5515        /*
5516         * managing i/o requests and associated device resources
5517         */
5518        .urb_enqueue            = fotg210_urb_enqueue,
5519        .urb_dequeue            = fotg210_urb_dequeue,
5520        .endpoint_disable       = fotg210_endpoint_disable,
5521        .endpoint_reset         = fotg210_endpoint_reset,
5522
5523        /*
5524         * scheduling support
5525         */
5526        .get_frame_number       = fotg210_get_frame,
5527
5528        /*
5529         * root hub support
5530         */
5531        .hub_status_data        = fotg210_hub_status_data,
5532        .hub_control            = fotg210_hub_control,
5533        .bus_suspend            = fotg210_bus_suspend,
5534        .bus_resume             = fotg210_bus_resume,
5535
5536        .relinquish_port        = fotg210_relinquish_port,
5537        .port_handed_over       = fotg210_port_handed_over,
5538
5539        .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5540};
5541
5542static void fotg210_init(struct fotg210_hcd *fotg210)
5543{
5544        u32 value;
5545
5546        iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5547                        &fotg210->regs->gmir);
5548
5549        value = ioread32(&fotg210->regs->otgcsr);
5550        value &= ~OTGCSR_A_BUS_DROP;
5551        value |= OTGCSR_A_BUS_REQ;
5552        iowrite32(value, &fotg210->regs->otgcsr);
5553}
5554
5555/**
5556 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5557 *
5558 * Allocates basic resources for this USB host controller, and
5559 * then invokes the start() method for the HCD associated with it
5560 * through the hotplug entry's driver_data.
5561 */
5562static int fotg210_hcd_probe(struct platform_device *pdev)
5563{
5564        struct device *dev = &pdev->dev;
5565        struct usb_hcd *hcd;
5566        struct resource *res;
5567        int irq;
5568        int retval = -ENODEV;
5569        struct fotg210_hcd *fotg210;
5570
5571        if (usb_disabled())
5572                return -ENODEV;
5573
5574        pdev->dev.power.power_state = PMSG_ON;
5575
5576        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5577        if (!res) {
5578                dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5579                                dev_name(dev));
5580                return -ENODEV;
5581        }
5582
5583        irq = res->start;
5584
5585        hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5586                        dev_name(dev));
5587        if (!hcd) {
5588                dev_err(dev, "failed to create hcd with err %d\n", retval);
5589                retval = -ENOMEM;
5590                goto fail_create_hcd;
5591        }
5592
5593        hcd->has_tt = 1;
5594
5595        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5596        hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5597        if (IS_ERR(hcd->regs)) {
5598                retval = PTR_ERR(hcd->regs);
5599                goto failed;
5600        }
5601
5602        hcd->rsrc_start = res->start;
5603        hcd->rsrc_len = resource_size(res);
5604
5605        fotg210 = hcd_to_fotg210(hcd);
5606
5607        fotg210->caps = hcd->regs;
5608
5609        retval = fotg210_setup(hcd);
5610        if (retval)
5611                goto failed;
5612
5613        fotg210_init(fotg210);
5614
5615        retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5616        if (retval) {
5617                dev_err(dev, "failed to add hcd with err %d\n", retval);
5618                goto failed;
5619        }
5620        device_wakeup_enable(hcd->self.controller);
5621
5622        return retval;
5623
5624failed:
5625        usb_put_hcd(hcd);
5626fail_create_hcd:
5627        dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5628        return retval;
5629}
5630
5631/**
5632 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5633 * @dev: USB Host Controller being removed
5634 *
5635 */
5636static int fotg210_hcd_remove(struct platform_device *pdev)
5637{
5638        struct device *dev = &pdev->dev;
5639        struct usb_hcd *hcd = dev_get_drvdata(dev);
5640
5641        if (!hcd)
5642                return 0;
5643
5644        usb_remove_hcd(hcd);
5645        usb_put_hcd(hcd);
5646
5647        return 0;
5648}
5649
5650static struct platform_driver fotg210_hcd_driver = {
5651        .driver = {
5652                .name   = "fotg210-hcd",
5653        },
5654        .probe  = fotg210_hcd_probe,
5655        .remove = fotg210_hcd_remove,
5656};
5657
5658static int __init fotg210_hcd_init(void)
5659{
5660        int retval = 0;
5661
5662        if (usb_disabled())
5663                return -ENODEV;
5664
5665        pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5666        set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5667        if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5668                        test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5669                pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5670
5671        pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5672                        hcd_name, sizeof(struct fotg210_qh),
5673                        sizeof(struct fotg210_qtd),
5674                        sizeof(struct fotg210_itd));
5675
5676        fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5677
5678        retval = platform_driver_register(&fotg210_hcd_driver);
5679        if (retval < 0)
5680                goto clean;
5681        return retval;
5682
5683clean:
5684        debugfs_remove(fotg210_debug_root);
5685        fotg210_debug_root = NULL;
5686
5687        clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5688        return retval;
5689}
5690module_init(fotg210_hcd_init);
5691
5692static void __exit fotg210_hcd_cleanup(void)
5693{
5694        platform_driver_unregister(&fotg210_hcd_driver);
5695        debugfs_remove(fotg210_debug_root);
5696        clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5697}
5698module_exit(fotg210_hcd_cleanup);
5699