linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
  19#include <linux/freezer.h>
  20#include <linux/sched/signal.h>
  21
  22#include "f2fs.h"
  23#include "segment.h"
  24#include "node.h"
  25#include "gc.h"
  26#include "trace.h"
  27#include <trace/events/f2fs.h>
  28
  29#define __reverse_ffz(x) __reverse_ffs(~(x))
  30
  31static struct kmem_cache *discard_entry_slab;
  32static struct kmem_cache *discard_cmd_slab;
  33static struct kmem_cache *sit_entry_set_slab;
  34static struct kmem_cache *inmem_entry_slab;
  35
  36static unsigned long __reverse_ulong(unsigned char *str)
  37{
  38        unsigned long tmp = 0;
  39        int shift = 24, idx = 0;
  40
  41#if BITS_PER_LONG == 64
  42        shift = 56;
  43#endif
  44        while (shift >= 0) {
  45                tmp |= (unsigned long)str[idx++] << shift;
  46                shift -= BITS_PER_BYTE;
  47        }
  48        return tmp;
  49}
  50
  51/*
  52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  54 */
  55static inline unsigned long __reverse_ffs(unsigned long word)
  56{
  57        int num = 0;
  58
  59#if BITS_PER_LONG == 64
  60        if ((word & 0xffffffff00000000UL) == 0)
  61                num += 32;
  62        else
  63                word >>= 32;
  64#endif
  65        if ((word & 0xffff0000) == 0)
  66                num += 16;
  67        else
  68                word >>= 16;
  69
  70        if ((word & 0xff00) == 0)
  71                num += 8;
  72        else
  73                word >>= 8;
  74
  75        if ((word & 0xf0) == 0)
  76                num += 4;
  77        else
  78                word >>= 4;
  79
  80        if ((word & 0xc) == 0)
  81                num += 2;
  82        else
  83                word >>= 2;
  84
  85        if ((word & 0x2) == 0)
  86                num += 1;
  87        return num;
  88}
  89
  90/*
  91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  93 * @size must be integral times of unsigned long.
  94 * Example:
  95 *                             MSB <--> LSB
  96 *   f2fs_set_bit(0, bitmap) => 1000 0000
  97 *   f2fs_set_bit(7, bitmap) => 0000 0001
  98 */
  99static unsigned long __find_rev_next_bit(const unsigned long *addr,
 100                        unsigned long size, unsigned long offset)
 101{
 102        const unsigned long *p = addr + BIT_WORD(offset);
 103        unsigned long result = size;
 104        unsigned long tmp;
 105
 106        if (offset >= size)
 107                return size;
 108
 109        size -= (offset & ~(BITS_PER_LONG - 1));
 110        offset %= BITS_PER_LONG;
 111
 112        while (1) {
 113                if (*p == 0)
 114                        goto pass;
 115
 116                tmp = __reverse_ulong((unsigned char *)p);
 117
 118                tmp &= ~0UL >> offset;
 119                if (size < BITS_PER_LONG)
 120                        tmp &= (~0UL << (BITS_PER_LONG - size));
 121                if (tmp)
 122                        goto found;
 123pass:
 124                if (size <= BITS_PER_LONG)
 125                        break;
 126                size -= BITS_PER_LONG;
 127                offset = 0;
 128                p++;
 129        }
 130        return result;
 131found:
 132        return result - size + __reverse_ffs(tmp);
 133}
 134
 135static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 136                        unsigned long size, unsigned long offset)
 137{
 138        const unsigned long *p = addr + BIT_WORD(offset);
 139        unsigned long result = size;
 140        unsigned long tmp;
 141
 142        if (offset >= size)
 143                return size;
 144
 145        size -= (offset & ~(BITS_PER_LONG - 1));
 146        offset %= BITS_PER_LONG;
 147
 148        while (1) {
 149                if (*p == ~0UL)
 150                        goto pass;
 151
 152                tmp = __reverse_ulong((unsigned char *)p);
 153
 154                if (offset)
 155                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 156                if (size < BITS_PER_LONG)
 157                        tmp |= ~0UL >> size;
 158                if (tmp != ~0UL)
 159                        goto found;
 160pass:
 161                if (size <= BITS_PER_LONG)
 162                        break;
 163                size -= BITS_PER_LONG;
 164                offset = 0;
 165                p++;
 166        }
 167        return result;
 168found:
 169        return result - size + __reverse_ffz(tmp);
 170}
 171
 172bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 173{
 174        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 175        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 176        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 177
 178        if (test_opt(sbi, LFS))
 179                return false;
 180        if (sbi->gc_mode == GC_URGENT)
 181                return true;
 182
 183        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 184                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 185}
 186
 187void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 188{
 189        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 190        struct f2fs_inode_info *fi = F2FS_I(inode);
 191        struct inmem_pages *new;
 192
 193        f2fs_trace_pid(page);
 194
 195        set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 196        SetPagePrivate(page);
 197
 198        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 199
 200        /* add atomic page indices to the list */
 201        new->page = page;
 202        INIT_LIST_HEAD(&new->list);
 203
 204        /* increase reference count with clean state */
 205        mutex_lock(&fi->inmem_lock);
 206        get_page(page);
 207        list_add_tail(&new->list, &fi->inmem_pages);
 208        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 209        if (list_empty(&fi->inmem_ilist))
 210                list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
 211        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 212        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 213        mutex_unlock(&fi->inmem_lock);
 214
 215        trace_f2fs_register_inmem_page(page, INMEM);
 216}
 217
 218static int __revoke_inmem_pages(struct inode *inode,
 219                                struct list_head *head, bool drop, bool recover)
 220{
 221        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 222        struct inmem_pages *cur, *tmp;
 223        int err = 0;
 224
 225        list_for_each_entry_safe(cur, tmp, head, list) {
 226                struct page *page = cur->page;
 227
 228                if (drop)
 229                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 230
 231                lock_page(page);
 232
 233                f2fs_wait_on_page_writeback(page, DATA, true);
 234
 235                if (recover) {
 236                        struct dnode_of_data dn;
 237                        struct node_info ni;
 238
 239                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 240retry:
 241                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 242                        err = f2fs_get_dnode_of_data(&dn, page->index,
 243                                                                LOOKUP_NODE);
 244                        if (err) {
 245                                if (err == -ENOMEM) {
 246                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 247                                        cond_resched();
 248                                        goto retry;
 249                                }
 250                                err = -EAGAIN;
 251                                goto next;
 252                        }
 253
 254                        err = f2fs_get_node_info(sbi, dn.nid, &ni);
 255                        if (err) {
 256                                f2fs_put_dnode(&dn);
 257                                return err;
 258                        }
 259
 260                        if (cur->old_addr == NEW_ADDR) {
 261                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 262                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 263                        } else
 264                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 265                                        cur->old_addr, ni.version, true, true);
 266                        f2fs_put_dnode(&dn);
 267                }
 268next:
 269                /* we don't need to invalidate this in the sccessful status */
 270                if (drop || recover)
 271                        ClearPageUptodate(page);
 272                set_page_private(page, 0);
 273                ClearPagePrivate(page);
 274                f2fs_put_page(page, 1);
 275
 276                list_del(&cur->list);
 277                kmem_cache_free(inmem_entry_slab, cur);
 278                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 279        }
 280        return err;
 281}
 282
 283void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 284{
 285        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 286        struct inode *inode;
 287        struct f2fs_inode_info *fi;
 288next:
 289        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 290        if (list_empty(head)) {
 291                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 292                return;
 293        }
 294        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 295        inode = igrab(&fi->vfs_inode);
 296        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 297
 298        if (inode) {
 299                if (gc_failure) {
 300                        if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
 301                                goto drop;
 302                        goto skip;
 303                }
 304drop:
 305                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 306                f2fs_drop_inmem_pages(inode);
 307                iput(inode);
 308        }
 309skip:
 310        congestion_wait(BLK_RW_ASYNC, HZ/50);
 311        cond_resched();
 312        goto next;
 313}
 314
 315void f2fs_drop_inmem_pages(struct inode *inode)
 316{
 317        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 318        struct f2fs_inode_info *fi = F2FS_I(inode);
 319
 320        mutex_lock(&fi->inmem_lock);
 321        __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 322        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 323        if (!list_empty(&fi->inmem_ilist))
 324                list_del_init(&fi->inmem_ilist);
 325        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 326        mutex_unlock(&fi->inmem_lock);
 327
 328        clear_inode_flag(inode, FI_ATOMIC_FILE);
 329        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 330        stat_dec_atomic_write(inode);
 331}
 332
 333void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 334{
 335        struct f2fs_inode_info *fi = F2FS_I(inode);
 336        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 337        struct list_head *head = &fi->inmem_pages;
 338        struct inmem_pages *cur = NULL;
 339
 340        f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 341
 342        mutex_lock(&fi->inmem_lock);
 343        list_for_each_entry(cur, head, list) {
 344                if (cur->page == page)
 345                        break;
 346        }
 347
 348        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 349        list_del(&cur->list);
 350        mutex_unlock(&fi->inmem_lock);
 351
 352        dec_page_count(sbi, F2FS_INMEM_PAGES);
 353        kmem_cache_free(inmem_entry_slab, cur);
 354
 355        ClearPageUptodate(page);
 356        set_page_private(page, 0);
 357        ClearPagePrivate(page);
 358        f2fs_put_page(page, 0);
 359
 360        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 361}
 362
 363static int __f2fs_commit_inmem_pages(struct inode *inode)
 364{
 365        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 366        struct f2fs_inode_info *fi = F2FS_I(inode);
 367        struct inmem_pages *cur, *tmp;
 368        struct f2fs_io_info fio = {
 369                .sbi = sbi,
 370                .ino = inode->i_ino,
 371                .type = DATA,
 372                .op = REQ_OP_WRITE,
 373                .op_flags = REQ_SYNC | REQ_PRIO,
 374                .io_type = FS_DATA_IO,
 375        };
 376        struct list_head revoke_list;
 377        pgoff_t last_idx = ULONG_MAX;
 378        int err = 0;
 379
 380        INIT_LIST_HEAD(&revoke_list);
 381
 382        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 383                struct page *page = cur->page;
 384
 385                lock_page(page);
 386                if (page->mapping == inode->i_mapping) {
 387                        trace_f2fs_commit_inmem_page(page, INMEM);
 388
 389                        set_page_dirty(page);
 390                        f2fs_wait_on_page_writeback(page, DATA, true);
 391                        if (clear_page_dirty_for_io(page)) {
 392                                inode_dec_dirty_pages(inode);
 393                                f2fs_remove_dirty_inode(inode);
 394                        }
 395retry:
 396                        fio.page = page;
 397                        fio.old_blkaddr = NULL_ADDR;
 398                        fio.encrypted_page = NULL;
 399                        fio.need_lock = LOCK_DONE;
 400                        err = f2fs_do_write_data_page(&fio);
 401                        if (err) {
 402                                if (err == -ENOMEM) {
 403                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 404                                        cond_resched();
 405                                        goto retry;
 406                                }
 407                                unlock_page(page);
 408                                break;
 409                        }
 410                        /* record old blkaddr for revoking */
 411                        cur->old_addr = fio.old_blkaddr;
 412                        last_idx = page->index;
 413                }
 414                unlock_page(page);
 415                list_move_tail(&cur->list, &revoke_list);
 416        }
 417
 418        if (last_idx != ULONG_MAX)
 419                f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
 420
 421        if (err) {
 422                /*
 423                 * try to revoke all committed pages, but still we could fail
 424                 * due to no memory or other reason, if that happened, EAGAIN
 425                 * will be returned, which means in such case, transaction is
 426                 * already not integrity, caller should use journal to do the
 427                 * recovery or rewrite & commit last transaction. For other
 428                 * error number, revoking was done by filesystem itself.
 429                 */
 430                err = __revoke_inmem_pages(inode, &revoke_list, false, true);
 431
 432                /* drop all uncommitted pages */
 433                __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 434        } else {
 435                __revoke_inmem_pages(inode, &revoke_list, false, false);
 436        }
 437
 438        return err;
 439}
 440
 441int f2fs_commit_inmem_pages(struct inode *inode)
 442{
 443        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 444        struct f2fs_inode_info *fi = F2FS_I(inode);
 445        int err;
 446
 447        f2fs_balance_fs(sbi, true);
 448
 449        down_write(&fi->i_gc_rwsem[WRITE]);
 450
 451        f2fs_lock_op(sbi);
 452        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 453
 454        mutex_lock(&fi->inmem_lock);
 455        err = __f2fs_commit_inmem_pages(inode);
 456
 457        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 458        if (!list_empty(&fi->inmem_ilist))
 459                list_del_init(&fi->inmem_ilist);
 460        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 461        mutex_unlock(&fi->inmem_lock);
 462
 463        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 464
 465        f2fs_unlock_op(sbi);
 466        up_write(&fi->i_gc_rwsem[WRITE]);
 467
 468        return err;
 469}
 470
 471/*
 472 * This function balances dirty node and dentry pages.
 473 * In addition, it controls garbage collection.
 474 */
 475void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 476{
 477        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 478                f2fs_show_injection_info(FAULT_CHECKPOINT);
 479                f2fs_stop_checkpoint(sbi, false);
 480        }
 481
 482        /* balance_fs_bg is able to be pending */
 483        if (need && excess_cached_nats(sbi))
 484                f2fs_balance_fs_bg(sbi);
 485
 486        /*
 487         * We should do GC or end up with checkpoint, if there are so many dirty
 488         * dir/node pages without enough free segments.
 489         */
 490        if (has_not_enough_free_secs(sbi, 0, 0)) {
 491                mutex_lock(&sbi->gc_mutex);
 492                f2fs_gc(sbi, false, false, NULL_SEGNO);
 493        }
 494}
 495
 496void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 497{
 498        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 499                return;
 500
 501        /* try to shrink extent cache when there is no enough memory */
 502        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 503                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 504
 505        /* check the # of cached NAT entries */
 506        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 507                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 508
 509        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 510                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 511        else
 512                f2fs_build_free_nids(sbi, false, false);
 513
 514        if (!is_idle(sbi) &&
 515                (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
 516                return;
 517
 518        /* checkpoint is the only way to shrink partial cached entries */
 519        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 520                        !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
 521                        excess_prefree_segs(sbi) ||
 522                        excess_dirty_nats(sbi) ||
 523                        excess_dirty_nodes(sbi) ||
 524                        f2fs_time_over(sbi, CP_TIME)) {
 525                if (test_opt(sbi, DATA_FLUSH)) {
 526                        struct blk_plug plug;
 527
 528                        blk_start_plug(&plug);
 529                        f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 530                        blk_finish_plug(&plug);
 531                }
 532                f2fs_sync_fs(sbi->sb, true);
 533                stat_inc_bg_cp_count(sbi->stat_info);
 534        }
 535}
 536
 537static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 538                                struct block_device *bdev)
 539{
 540        struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
 541        int ret;
 542
 543        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
 544        bio_set_dev(bio, bdev);
 545        ret = submit_bio_wait(bio);
 546        bio_put(bio);
 547
 548        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 549                                test_opt(sbi, FLUSH_MERGE), ret);
 550        return ret;
 551}
 552
 553static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 554{
 555        int ret = 0;
 556        int i;
 557
 558        if (!sbi->s_ndevs)
 559                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 560
 561        for (i = 0; i < sbi->s_ndevs; i++) {
 562                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 563                        continue;
 564                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 565                if (ret)
 566                        break;
 567        }
 568        return ret;
 569}
 570
 571static int issue_flush_thread(void *data)
 572{
 573        struct f2fs_sb_info *sbi = data;
 574        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 575        wait_queue_head_t *q = &fcc->flush_wait_queue;
 576repeat:
 577        if (kthread_should_stop())
 578                return 0;
 579
 580        sb_start_intwrite(sbi->sb);
 581
 582        if (!llist_empty(&fcc->issue_list)) {
 583                struct flush_cmd *cmd, *next;
 584                int ret;
 585
 586                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 587                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 588
 589                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 590
 591                ret = submit_flush_wait(sbi, cmd->ino);
 592                atomic_inc(&fcc->issued_flush);
 593
 594                llist_for_each_entry_safe(cmd, next,
 595                                          fcc->dispatch_list, llnode) {
 596                        cmd->ret = ret;
 597                        complete(&cmd->wait);
 598                }
 599                fcc->dispatch_list = NULL;
 600        }
 601
 602        sb_end_intwrite(sbi->sb);
 603
 604        wait_event_interruptible(*q,
 605                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 606        goto repeat;
 607}
 608
 609int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 610{
 611        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 612        struct flush_cmd cmd;
 613        int ret;
 614
 615        if (test_opt(sbi, NOBARRIER))
 616                return 0;
 617
 618        if (!test_opt(sbi, FLUSH_MERGE)) {
 619                ret = submit_flush_wait(sbi, ino);
 620                atomic_inc(&fcc->issued_flush);
 621                return ret;
 622        }
 623
 624        if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
 625                ret = submit_flush_wait(sbi, ino);
 626                atomic_dec(&fcc->issing_flush);
 627
 628                atomic_inc(&fcc->issued_flush);
 629                return ret;
 630        }
 631
 632        cmd.ino = ino;
 633        init_completion(&cmd.wait);
 634
 635        llist_add(&cmd.llnode, &fcc->issue_list);
 636
 637        /* update issue_list before we wake up issue_flush thread */
 638        smp_mb();
 639
 640        if (waitqueue_active(&fcc->flush_wait_queue))
 641                wake_up(&fcc->flush_wait_queue);
 642
 643        if (fcc->f2fs_issue_flush) {
 644                wait_for_completion(&cmd.wait);
 645                atomic_dec(&fcc->issing_flush);
 646        } else {
 647                struct llist_node *list;
 648
 649                list = llist_del_all(&fcc->issue_list);
 650                if (!list) {
 651                        wait_for_completion(&cmd.wait);
 652                        atomic_dec(&fcc->issing_flush);
 653                } else {
 654                        struct flush_cmd *tmp, *next;
 655
 656                        ret = submit_flush_wait(sbi, ino);
 657
 658                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 659                                if (tmp == &cmd) {
 660                                        cmd.ret = ret;
 661                                        atomic_dec(&fcc->issing_flush);
 662                                        continue;
 663                                }
 664                                tmp->ret = ret;
 665                                complete(&tmp->wait);
 666                        }
 667                }
 668        }
 669
 670        return cmd.ret;
 671}
 672
 673int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 674{
 675        dev_t dev = sbi->sb->s_bdev->bd_dev;
 676        struct flush_cmd_control *fcc;
 677        int err = 0;
 678
 679        if (SM_I(sbi)->fcc_info) {
 680                fcc = SM_I(sbi)->fcc_info;
 681                if (fcc->f2fs_issue_flush)
 682                        return err;
 683                goto init_thread;
 684        }
 685
 686        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 687        if (!fcc)
 688                return -ENOMEM;
 689        atomic_set(&fcc->issued_flush, 0);
 690        atomic_set(&fcc->issing_flush, 0);
 691        init_waitqueue_head(&fcc->flush_wait_queue);
 692        init_llist_head(&fcc->issue_list);
 693        SM_I(sbi)->fcc_info = fcc;
 694        if (!test_opt(sbi, FLUSH_MERGE))
 695                return err;
 696
 697init_thread:
 698        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 699                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 700        if (IS_ERR(fcc->f2fs_issue_flush)) {
 701                err = PTR_ERR(fcc->f2fs_issue_flush);
 702                kfree(fcc);
 703                SM_I(sbi)->fcc_info = NULL;
 704                return err;
 705        }
 706
 707        return err;
 708}
 709
 710void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 711{
 712        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 713
 714        if (fcc && fcc->f2fs_issue_flush) {
 715                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 716
 717                fcc->f2fs_issue_flush = NULL;
 718                kthread_stop(flush_thread);
 719        }
 720        if (free) {
 721                kfree(fcc);
 722                SM_I(sbi)->fcc_info = NULL;
 723        }
 724}
 725
 726int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 727{
 728        int ret = 0, i;
 729
 730        if (!sbi->s_ndevs)
 731                return 0;
 732
 733        for (i = 1; i < sbi->s_ndevs; i++) {
 734                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 735                        continue;
 736                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 737                if (ret)
 738                        break;
 739
 740                spin_lock(&sbi->dev_lock);
 741                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 742                spin_unlock(&sbi->dev_lock);
 743        }
 744
 745        return ret;
 746}
 747
 748static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 749                enum dirty_type dirty_type)
 750{
 751        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 752
 753        /* need not be added */
 754        if (IS_CURSEG(sbi, segno))
 755                return;
 756
 757        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 758                dirty_i->nr_dirty[dirty_type]++;
 759
 760        if (dirty_type == DIRTY) {
 761                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 762                enum dirty_type t = sentry->type;
 763
 764                if (unlikely(t >= DIRTY)) {
 765                        f2fs_bug_on(sbi, 1);
 766                        return;
 767                }
 768                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 769                        dirty_i->nr_dirty[t]++;
 770        }
 771}
 772
 773static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 774                enum dirty_type dirty_type)
 775{
 776        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 777
 778        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 779                dirty_i->nr_dirty[dirty_type]--;
 780
 781        if (dirty_type == DIRTY) {
 782                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 783                enum dirty_type t = sentry->type;
 784
 785                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 786                        dirty_i->nr_dirty[t]--;
 787
 788                if (get_valid_blocks(sbi, segno, true) == 0)
 789                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 790                                                dirty_i->victim_secmap);
 791        }
 792}
 793
 794/*
 795 * Should not occur error such as -ENOMEM.
 796 * Adding dirty entry into seglist is not critical operation.
 797 * If a given segment is one of current working segments, it won't be added.
 798 */
 799static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 800{
 801        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 802        unsigned short valid_blocks;
 803
 804        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 805                return;
 806
 807        mutex_lock(&dirty_i->seglist_lock);
 808
 809        valid_blocks = get_valid_blocks(sbi, segno, false);
 810
 811        if (valid_blocks == 0) {
 812                __locate_dirty_segment(sbi, segno, PRE);
 813                __remove_dirty_segment(sbi, segno, DIRTY);
 814        } else if (valid_blocks < sbi->blocks_per_seg) {
 815                __locate_dirty_segment(sbi, segno, DIRTY);
 816        } else {
 817                /* Recovery routine with SSR needs this */
 818                __remove_dirty_segment(sbi, segno, DIRTY);
 819        }
 820
 821        mutex_unlock(&dirty_i->seglist_lock);
 822}
 823
 824static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 825                struct block_device *bdev, block_t lstart,
 826                block_t start, block_t len)
 827{
 828        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 829        struct list_head *pend_list;
 830        struct discard_cmd *dc;
 831
 832        f2fs_bug_on(sbi, !len);
 833
 834        pend_list = &dcc->pend_list[plist_idx(len)];
 835
 836        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 837        INIT_LIST_HEAD(&dc->list);
 838        dc->bdev = bdev;
 839        dc->lstart = lstart;
 840        dc->start = start;
 841        dc->len = len;
 842        dc->ref = 0;
 843        dc->state = D_PREP;
 844        dc->issuing = 0;
 845        dc->error = 0;
 846        init_completion(&dc->wait);
 847        list_add_tail(&dc->list, pend_list);
 848        spin_lock_init(&dc->lock);
 849        dc->bio_ref = 0;
 850        atomic_inc(&dcc->discard_cmd_cnt);
 851        dcc->undiscard_blks += len;
 852
 853        return dc;
 854}
 855
 856static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 857                                struct block_device *bdev, block_t lstart,
 858                                block_t start, block_t len,
 859                                struct rb_node *parent, struct rb_node **p)
 860{
 861        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 862        struct discard_cmd *dc;
 863
 864        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 865
 866        rb_link_node(&dc->rb_node, parent, p);
 867        rb_insert_color(&dc->rb_node, &dcc->root);
 868
 869        return dc;
 870}
 871
 872static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 873                                                        struct discard_cmd *dc)
 874{
 875        if (dc->state == D_DONE)
 876                atomic_sub(dc->issuing, &dcc->issing_discard);
 877
 878        list_del(&dc->list);
 879        rb_erase(&dc->rb_node, &dcc->root);
 880        dcc->undiscard_blks -= dc->len;
 881
 882        kmem_cache_free(discard_cmd_slab, dc);
 883
 884        atomic_dec(&dcc->discard_cmd_cnt);
 885}
 886
 887static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 888                                                        struct discard_cmd *dc)
 889{
 890        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 891        unsigned long flags;
 892
 893        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 894
 895        spin_lock_irqsave(&dc->lock, flags);
 896        if (dc->bio_ref) {
 897                spin_unlock_irqrestore(&dc->lock, flags);
 898                return;
 899        }
 900        spin_unlock_irqrestore(&dc->lock, flags);
 901
 902        f2fs_bug_on(sbi, dc->ref);
 903
 904        if (dc->error == -EOPNOTSUPP)
 905                dc->error = 0;
 906
 907        if (dc->error)
 908                f2fs_msg(sbi->sb, KERN_INFO,
 909                        "Issue discard(%u, %u, %u) failed, ret: %d",
 910                        dc->lstart, dc->start, dc->len, dc->error);
 911        __detach_discard_cmd(dcc, dc);
 912}
 913
 914static void f2fs_submit_discard_endio(struct bio *bio)
 915{
 916        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
 917        unsigned long flags;
 918
 919        dc->error = blk_status_to_errno(bio->bi_status);
 920
 921        spin_lock_irqsave(&dc->lock, flags);
 922        dc->bio_ref--;
 923        if (!dc->bio_ref && dc->state == D_SUBMIT) {
 924                dc->state = D_DONE;
 925                complete_all(&dc->wait);
 926        }
 927        spin_unlock_irqrestore(&dc->lock, flags);
 928        bio_put(bio);
 929}
 930
 931static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
 932                                block_t start, block_t end)
 933{
 934#ifdef CONFIG_F2FS_CHECK_FS
 935        struct seg_entry *sentry;
 936        unsigned int segno;
 937        block_t blk = start;
 938        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
 939        unsigned long *map;
 940
 941        while (blk < end) {
 942                segno = GET_SEGNO(sbi, blk);
 943                sentry = get_seg_entry(sbi, segno);
 944                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
 945
 946                if (end < START_BLOCK(sbi, segno + 1))
 947                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
 948                else
 949                        size = max_blocks;
 950                map = (unsigned long *)(sentry->cur_valid_map);
 951                offset = __find_rev_next_bit(map, size, offset);
 952                f2fs_bug_on(sbi, offset != size);
 953                blk = START_BLOCK(sbi, segno + 1);
 954        }
 955#endif
 956}
 957
 958static void __init_discard_policy(struct f2fs_sb_info *sbi,
 959                                struct discard_policy *dpolicy,
 960                                int discard_type, unsigned int granularity)
 961{
 962        /* common policy */
 963        dpolicy->type = discard_type;
 964        dpolicy->sync = true;
 965        dpolicy->ordered = false;
 966        dpolicy->granularity = granularity;
 967
 968        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
 969        dpolicy->io_aware_gran = MAX_PLIST_NUM;
 970
 971        if (discard_type == DPOLICY_BG) {
 972                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 973                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
 974                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
 975                dpolicy->io_aware = true;
 976                dpolicy->sync = false;
 977                dpolicy->ordered = true;
 978                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
 979                        dpolicy->granularity = 1;
 980                        dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 981                }
 982        } else if (discard_type == DPOLICY_FORCE) {
 983                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 984                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
 985                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
 986                dpolicy->io_aware = false;
 987        } else if (discard_type == DPOLICY_FSTRIM) {
 988                dpolicy->io_aware = false;
 989        } else if (discard_type == DPOLICY_UMOUNT) {
 990                dpolicy->max_requests = UINT_MAX;
 991                dpolicy->io_aware = false;
 992        }
 993}
 994
 995static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
 996                                struct block_device *bdev, block_t lstart,
 997                                block_t start, block_t len);
 998/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
 999static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1000                                                struct discard_policy *dpolicy,
1001                                                struct discard_cmd *dc,
1002                                                unsigned int *issued)
1003{
1004        struct block_device *bdev = dc->bdev;
1005        struct request_queue *q = bdev_get_queue(bdev);
1006        unsigned int max_discard_blocks =
1007                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1008        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1009        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1010                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1011        int flag = dpolicy->sync ? REQ_SYNC : 0;
1012        block_t lstart, start, len, total_len;
1013        int err = 0;
1014
1015        if (dc->state != D_PREP)
1016                return 0;
1017
1018        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1019                return 0;
1020
1021        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1022
1023        lstart = dc->lstart;
1024        start = dc->start;
1025        len = dc->len;
1026        total_len = len;
1027
1028        dc->len = 0;
1029
1030        while (total_len && *issued < dpolicy->max_requests && !err) {
1031                struct bio *bio = NULL;
1032                unsigned long flags;
1033                bool last = true;
1034
1035                if (len > max_discard_blocks) {
1036                        len = max_discard_blocks;
1037                        last = false;
1038                }
1039
1040                (*issued)++;
1041                if (*issued == dpolicy->max_requests)
1042                        last = true;
1043
1044                dc->len += len;
1045
1046                if (time_to_inject(sbi, FAULT_DISCARD)) {
1047                        f2fs_show_injection_info(FAULT_DISCARD);
1048                        err = -EIO;
1049                        goto submit;
1050                }
1051                err = __blkdev_issue_discard(bdev,
1052                                        SECTOR_FROM_BLOCK(start),
1053                                        SECTOR_FROM_BLOCK(len),
1054                                        GFP_NOFS, 0, &bio);
1055submit:
1056                if (err) {
1057                        spin_lock_irqsave(&dc->lock, flags);
1058                        if (dc->state == D_PARTIAL)
1059                                dc->state = D_SUBMIT;
1060                        spin_unlock_irqrestore(&dc->lock, flags);
1061
1062                        break;
1063                }
1064
1065                f2fs_bug_on(sbi, !bio);
1066
1067                /*
1068                 * should keep before submission to avoid D_DONE
1069                 * right away
1070                 */
1071                spin_lock_irqsave(&dc->lock, flags);
1072                if (last)
1073                        dc->state = D_SUBMIT;
1074                else
1075                        dc->state = D_PARTIAL;
1076                dc->bio_ref++;
1077                spin_unlock_irqrestore(&dc->lock, flags);
1078
1079                atomic_inc(&dcc->issing_discard);
1080                dc->issuing++;
1081                list_move_tail(&dc->list, wait_list);
1082
1083                /* sanity check on discard range */
1084                __check_sit_bitmap(sbi, start, start + len);
1085
1086                bio->bi_private = dc;
1087                bio->bi_end_io = f2fs_submit_discard_endio;
1088                bio->bi_opf |= flag;
1089                submit_bio(bio);
1090
1091                atomic_inc(&dcc->issued_discard);
1092
1093                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1094
1095                lstart += len;
1096                start += len;
1097                total_len -= len;
1098                len = total_len;
1099        }
1100
1101        if (!err && len)
1102                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1103        return err;
1104}
1105
1106static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1107                                struct block_device *bdev, block_t lstart,
1108                                block_t start, block_t len,
1109                                struct rb_node **insert_p,
1110                                struct rb_node *insert_parent)
1111{
1112        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1113        struct rb_node **p;
1114        struct rb_node *parent = NULL;
1115        struct discard_cmd *dc = NULL;
1116
1117        if (insert_p && insert_parent) {
1118                parent = insert_parent;
1119                p = insert_p;
1120                goto do_insert;
1121        }
1122
1123        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1124do_insert:
1125        dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1126        if (!dc)
1127                return NULL;
1128
1129        return dc;
1130}
1131
1132static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1133                                                struct discard_cmd *dc)
1134{
1135        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1136}
1137
1138static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1139                                struct discard_cmd *dc, block_t blkaddr)
1140{
1141        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1142        struct discard_info di = dc->di;
1143        bool modified = false;
1144
1145        if (dc->state == D_DONE || dc->len == 1) {
1146                __remove_discard_cmd(sbi, dc);
1147                return;
1148        }
1149
1150        dcc->undiscard_blks -= di.len;
1151
1152        if (blkaddr > di.lstart) {
1153                dc->len = blkaddr - dc->lstart;
1154                dcc->undiscard_blks += dc->len;
1155                __relocate_discard_cmd(dcc, dc);
1156                modified = true;
1157        }
1158
1159        if (blkaddr < di.lstart + di.len - 1) {
1160                if (modified) {
1161                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1162                                        di.start + blkaddr + 1 - di.lstart,
1163                                        di.lstart + di.len - 1 - blkaddr,
1164                                        NULL, NULL);
1165                } else {
1166                        dc->lstart++;
1167                        dc->len--;
1168                        dc->start++;
1169                        dcc->undiscard_blks += dc->len;
1170                        __relocate_discard_cmd(dcc, dc);
1171                }
1172        }
1173}
1174
1175static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1176                                struct block_device *bdev, block_t lstart,
1177                                block_t start, block_t len)
1178{
1179        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1180        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1181        struct discard_cmd *dc;
1182        struct discard_info di = {0};
1183        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1184        struct request_queue *q = bdev_get_queue(bdev);
1185        unsigned int max_discard_blocks =
1186                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1187        block_t end = lstart + len;
1188
1189        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1190                                        NULL, lstart,
1191                                        (struct rb_entry **)&prev_dc,
1192                                        (struct rb_entry **)&next_dc,
1193                                        &insert_p, &insert_parent, true);
1194        if (dc)
1195                prev_dc = dc;
1196
1197        if (!prev_dc) {
1198                di.lstart = lstart;
1199                di.len = next_dc ? next_dc->lstart - lstart : len;
1200                di.len = min(di.len, len);
1201                di.start = start;
1202        }
1203
1204        while (1) {
1205                struct rb_node *node;
1206                bool merged = false;
1207                struct discard_cmd *tdc = NULL;
1208
1209                if (prev_dc) {
1210                        di.lstart = prev_dc->lstart + prev_dc->len;
1211                        if (di.lstart < lstart)
1212                                di.lstart = lstart;
1213                        if (di.lstart >= end)
1214                                break;
1215
1216                        if (!next_dc || next_dc->lstart > end)
1217                                di.len = end - di.lstart;
1218                        else
1219                                di.len = next_dc->lstart - di.lstart;
1220                        di.start = start + di.lstart - lstart;
1221                }
1222
1223                if (!di.len)
1224                        goto next;
1225
1226                if (prev_dc && prev_dc->state == D_PREP &&
1227                        prev_dc->bdev == bdev &&
1228                        __is_discard_back_mergeable(&di, &prev_dc->di,
1229                                                        max_discard_blocks)) {
1230                        prev_dc->di.len += di.len;
1231                        dcc->undiscard_blks += di.len;
1232                        __relocate_discard_cmd(dcc, prev_dc);
1233                        di = prev_dc->di;
1234                        tdc = prev_dc;
1235                        merged = true;
1236                }
1237
1238                if (next_dc && next_dc->state == D_PREP &&
1239                        next_dc->bdev == bdev &&
1240                        __is_discard_front_mergeable(&di, &next_dc->di,
1241                                                        max_discard_blocks)) {
1242                        next_dc->di.lstart = di.lstart;
1243                        next_dc->di.len += di.len;
1244                        next_dc->di.start = di.start;
1245                        dcc->undiscard_blks += di.len;
1246                        __relocate_discard_cmd(dcc, next_dc);
1247                        if (tdc)
1248                                __remove_discard_cmd(sbi, tdc);
1249                        merged = true;
1250                }
1251
1252                if (!merged) {
1253                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1254                                                        di.len, NULL, NULL);
1255                }
1256 next:
1257                prev_dc = next_dc;
1258                if (!prev_dc)
1259                        break;
1260
1261                node = rb_next(&prev_dc->rb_node);
1262                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1263        }
1264}
1265
1266static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1267                struct block_device *bdev, block_t blkstart, block_t blklen)
1268{
1269        block_t lblkstart = blkstart;
1270
1271        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1272
1273        if (sbi->s_ndevs) {
1274                int devi = f2fs_target_device_index(sbi, blkstart);
1275
1276                blkstart -= FDEV(devi).start_blk;
1277        }
1278        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1279        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1280        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1281        return 0;
1282}
1283
1284static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1285                                        struct discard_policy *dpolicy)
1286{
1287        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1290        struct discard_cmd *dc;
1291        struct blk_plug plug;
1292        unsigned int pos = dcc->next_pos;
1293        unsigned int issued = 0;
1294        bool io_interrupted = false;
1295
1296        mutex_lock(&dcc->cmd_lock);
1297        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298                                        NULL, pos,
1299                                        (struct rb_entry **)&prev_dc,
1300                                        (struct rb_entry **)&next_dc,
1301                                        &insert_p, &insert_parent, true);
1302        if (!dc)
1303                dc = next_dc;
1304
1305        blk_start_plug(&plug);
1306
1307        while (dc) {
1308                struct rb_node *node;
1309                int err = 0;
1310
1311                if (dc->state != D_PREP)
1312                        goto next;
1313
1314                if (dpolicy->io_aware && !is_idle(sbi)) {
1315                        io_interrupted = true;
1316                        break;
1317                }
1318
1319                dcc->next_pos = dc->lstart + dc->len;
1320                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1321
1322                if (issued >= dpolicy->max_requests)
1323                        break;
1324next:
1325                node = rb_next(&dc->rb_node);
1326                if (err)
1327                        __remove_discard_cmd(sbi, dc);
1328                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1329        }
1330
1331        blk_finish_plug(&plug);
1332
1333        if (!dc)
1334                dcc->next_pos = 0;
1335
1336        mutex_unlock(&dcc->cmd_lock);
1337
1338        if (!issued && io_interrupted)
1339                issued = -1;
1340
1341        return issued;
1342}
1343
1344static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1345                                        struct discard_policy *dpolicy)
1346{
1347        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1348        struct list_head *pend_list;
1349        struct discard_cmd *dc, *tmp;
1350        struct blk_plug plug;
1351        int i, issued = 0;
1352        bool io_interrupted = false;
1353
1354        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1355                if (i + 1 < dpolicy->granularity)
1356                        break;
1357
1358                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1359                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1360
1361                pend_list = &dcc->pend_list[i];
1362
1363                mutex_lock(&dcc->cmd_lock);
1364                if (list_empty(pend_list))
1365                        goto next;
1366                if (unlikely(dcc->rbtree_check))
1367                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1368                                                                &dcc->root));
1369                blk_start_plug(&plug);
1370                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1371                        f2fs_bug_on(sbi, dc->state != D_PREP);
1372
1373                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1374                                                                !is_idle(sbi)) {
1375                                io_interrupted = true;
1376                                break;
1377                        }
1378
1379                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1380
1381                        if (issued >= dpolicy->max_requests)
1382                                break;
1383                }
1384                blk_finish_plug(&plug);
1385next:
1386                mutex_unlock(&dcc->cmd_lock);
1387
1388                if (issued >= dpolicy->max_requests || io_interrupted)
1389                        break;
1390        }
1391
1392        if (!issued && io_interrupted)
1393                issued = -1;
1394
1395        return issued;
1396}
1397
1398static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1399{
1400        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1401        struct list_head *pend_list;
1402        struct discard_cmd *dc, *tmp;
1403        int i;
1404        bool dropped = false;
1405
1406        mutex_lock(&dcc->cmd_lock);
1407        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1408                pend_list = &dcc->pend_list[i];
1409                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1410                        f2fs_bug_on(sbi, dc->state != D_PREP);
1411                        __remove_discard_cmd(sbi, dc);
1412                        dropped = true;
1413                }
1414        }
1415        mutex_unlock(&dcc->cmd_lock);
1416
1417        return dropped;
1418}
1419
1420void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1421{
1422        __drop_discard_cmd(sbi);
1423}
1424
1425static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1426                                                        struct discard_cmd *dc)
1427{
1428        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1429        unsigned int len = 0;
1430
1431        wait_for_completion_io(&dc->wait);
1432        mutex_lock(&dcc->cmd_lock);
1433        f2fs_bug_on(sbi, dc->state != D_DONE);
1434        dc->ref--;
1435        if (!dc->ref) {
1436                if (!dc->error)
1437                        len = dc->len;
1438                __remove_discard_cmd(sbi, dc);
1439        }
1440        mutex_unlock(&dcc->cmd_lock);
1441
1442        return len;
1443}
1444
1445static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1446                                                struct discard_policy *dpolicy,
1447                                                block_t start, block_t end)
1448{
1449        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1450        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1451                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1452        struct discard_cmd *dc, *tmp;
1453        bool need_wait;
1454        unsigned int trimmed = 0;
1455
1456next:
1457        need_wait = false;
1458
1459        mutex_lock(&dcc->cmd_lock);
1460        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1461                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1462                        continue;
1463                if (dc->len < dpolicy->granularity)
1464                        continue;
1465                if (dc->state == D_DONE && !dc->ref) {
1466                        wait_for_completion_io(&dc->wait);
1467                        if (!dc->error)
1468                                trimmed += dc->len;
1469                        __remove_discard_cmd(sbi, dc);
1470                } else {
1471                        dc->ref++;
1472                        need_wait = true;
1473                        break;
1474                }
1475        }
1476        mutex_unlock(&dcc->cmd_lock);
1477
1478        if (need_wait) {
1479                trimmed += __wait_one_discard_bio(sbi, dc);
1480                goto next;
1481        }
1482
1483        return trimmed;
1484}
1485
1486static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1487                                                struct discard_policy *dpolicy)
1488{
1489        struct discard_policy dp;
1490        unsigned int discard_blks;
1491
1492        if (dpolicy)
1493                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1494
1495        /* wait all */
1496        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1497        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1498        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1499        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1500
1501        return discard_blks;
1502}
1503
1504/* This should be covered by global mutex, &sit_i->sentry_lock */
1505static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1506{
1507        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1508        struct discard_cmd *dc;
1509        bool need_wait = false;
1510
1511        mutex_lock(&dcc->cmd_lock);
1512        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1513                                                        NULL, blkaddr);
1514        if (dc) {
1515                if (dc->state == D_PREP) {
1516                        __punch_discard_cmd(sbi, dc, blkaddr);
1517                } else {
1518                        dc->ref++;
1519                        need_wait = true;
1520                }
1521        }
1522        mutex_unlock(&dcc->cmd_lock);
1523
1524        if (need_wait)
1525                __wait_one_discard_bio(sbi, dc);
1526}
1527
1528void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1529{
1530        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531
1532        if (dcc && dcc->f2fs_issue_discard) {
1533                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1534
1535                dcc->f2fs_issue_discard = NULL;
1536                kthread_stop(discard_thread);
1537        }
1538}
1539
1540/* This comes from f2fs_put_super */
1541bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1542{
1543        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1544        struct discard_policy dpolicy;
1545        bool dropped;
1546
1547        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1548                                        dcc->discard_granularity);
1549        __issue_discard_cmd(sbi, &dpolicy);
1550        dropped = __drop_discard_cmd(sbi);
1551
1552        /* just to make sure there is no pending discard commands */
1553        __wait_all_discard_cmd(sbi, NULL);
1554
1555        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1556        return dropped;
1557}
1558
1559static int issue_discard_thread(void *data)
1560{
1561        struct f2fs_sb_info *sbi = data;
1562        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563        wait_queue_head_t *q = &dcc->discard_wait_queue;
1564        struct discard_policy dpolicy;
1565        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1566        int issued;
1567
1568        set_freezable();
1569
1570        do {
1571                __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1572                                        dcc->discard_granularity);
1573
1574                wait_event_interruptible_timeout(*q,
1575                                kthread_should_stop() || freezing(current) ||
1576                                dcc->discard_wake,
1577                                msecs_to_jiffies(wait_ms));
1578
1579                if (dcc->discard_wake)
1580                        dcc->discard_wake = 0;
1581
1582                if (try_to_freeze())
1583                        continue;
1584                if (f2fs_readonly(sbi->sb))
1585                        continue;
1586                if (kthread_should_stop())
1587                        return 0;
1588                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1589                        wait_ms = dpolicy.max_interval;
1590                        continue;
1591                }
1592
1593                if (sbi->gc_mode == GC_URGENT)
1594                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1595
1596                sb_start_intwrite(sbi->sb);
1597
1598                issued = __issue_discard_cmd(sbi, &dpolicy);
1599                if (issued > 0) {
1600                        __wait_all_discard_cmd(sbi, &dpolicy);
1601                        wait_ms = dpolicy.min_interval;
1602                } else if (issued == -1){
1603                        wait_ms = dpolicy.mid_interval;
1604                } else {
1605                        wait_ms = dpolicy.max_interval;
1606                }
1607
1608                sb_end_intwrite(sbi->sb);
1609
1610        } while (!kthread_should_stop());
1611        return 0;
1612}
1613
1614#ifdef CONFIG_BLK_DEV_ZONED
1615static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1616                struct block_device *bdev, block_t blkstart, block_t blklen)
1617{
1618        sector_t sector, nr_sects;
1619        block_t lblkstart = blkstart;
1620        int devi = 0;
1621
1622        if (sbi->s_ndevs) {
1623                devi = f2fs_target_device_index(sbi, blkstart);
1624                blkstart -= FDEV(devi).start_blk;
1625        }
1626
1627        /*
1628         * We need to know the type of the zone: for conventional zones,
1629         * use regular discard if the drive supports it. For sequential
1630         * zones, reset the zone write pointer.
1631         */
1632        switch (get_blkz_type(sbi, bdev, blkstart)) {
1633
1634        case BLK_ZONE_TYPE_CONVENTIONAL:
1635                if (!blk_queue_discard(bdev_get_queue(bdev)))
1636                        return 0;
1637                return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1638        case BLK_ZONE_TYPE_SEQWRITE_REQ:
1639        case BLK_ZONE_TYPE_SEQWRITE_PREF:
1640                sector = SECTOR_FROM_BLOCK(blkstart);
1641                nr_sects = SECTOR_FROM_BLOCK(blklen);
1642
1643                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1644                                nr_sects != bdev_zone_sectors(bdev)) {
1645                        f2fs_msg(sbi->sb, KERN_INFO,
1646                                "(%d) %s: Unaligned discard attempted (block %x + %x)",
1647                                devi, sbi->s_ndevs ? FDEV(devi).path: "",
1648                                blkstart, blklen);
1649                        return -EIO;
1650                }
1651                trace_f2fs_issue_reset_zone(bdev, blkstart);
1652                return blkdev_reset_zones(bdev, sector,
1653                                          nr_sects, GFP_NOFS);
1654        default:
1655                /* Unknown zone type: broken device ? */
1656                return -EIO;
1657        }
1658}
1659#endif
1660
1661static int __issue_discard_async(struct f2fs_sb_info *sbi,
1662                struct block_device *bdev, block_t blkstart, block_t blklen)
1663{
1664#ifdef CONFIG_BLK_DEV_ZONED
1665        if (f2fs_sb_has_blkzoned(sbi->sb) &&
1666                                bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1667                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1668#endif
1669        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1670}
1671
1672static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1673                                block_t blkstart, block_t blklen)
1674{
1675        sector_t start = blkstart, len = 0;
1676        struct block_device *bdev;
1677        struct seg_entry *se;
1678        unsigned int offset;
1679        block_t i;
1680        int err = 0;
1681
1682        bdev = f2fs_target_device(sbi, blkstart, NULL);
1683
1684        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1685                if (i != start) {
1686                        struct block_device *bdev2 =
1687                                f2fs_target_device(sbi, i, NULL);
1688
1689                        if (bdev2 != bdev) {
1690                                err = __issue_discard_async(sbi, bdev,
1691                                                start, len);
1692                                if (err)
1693                                        return err;
1694                                bdev = bdev2;
1695                                start = i;
1696                                len = 0;
1697                        }
1698                }
1699
1700                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1701                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1702
1703                if (!f2fs_test_and_set_bit(offset, se->discard_map))
1704                        sbi->discard_blks--;
1705        }
1706
1707        if (len)
1708                err = __issue_discard_async(sbi, bdev, start, len);
1709        return err;
1710}
1711
1712static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1713                                                        bool check_only)
1714{
1715        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1716        int max_blocks = sbi->blocks_per_seg;
1717        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1718        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1719        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1720        unsigned long *discard_map = (unsigned long *)se->discard_map;
1721        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1722        unsigned int start = 0, end = -1;
1723        bool force = (cpc->reason & CP_DISCARD);
1724        struct discard_entry *de = NULL;
1725        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1726        int i;
1727
1728        if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1729                return false;
1730
1731        if (!force) {
1732                if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1733                        SM_I(sbi)->dcc_info->nr_discards >=
1734                                SM_I(sbi)->dcc_info->max_discards)
1735                        return false;
1736        }
1737
1738        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1739        for (i = 0; i < entries; i++)
1740                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1741                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1742
1743        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1744                                SM_I(sbi)->dcc_info->max_discards) {
1745                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1746                if (start >= max_blocks)
1747                        break;
1748
1749                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1750                if (force && start && end != max_blocks
1751                                        && (end - start) < cpc->trim_minlen)
1752                        continue;
1753
1754                if (check_only)
1755                        return true;
1756
1757                if (!de) {
1758                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1759                                                                GFP_F2FS_ZERO);
1760                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1761                        list_add_tail(&de->list, head);
1762                }
1763
1764                for (i = start; i < end; i++)
1765                        __set_bit_le(i, (void *)de->discard_map);
1766
1767                SM_I(sbi)->dcc_info->nr_discards += end - start;
1768        }
1769        return false;
1770}
1771
1772static void release_discard_addr(struct discard_entry *entry)
1773{
1774        list_del(&entry->list);
1775        kmem_cache_free(discard_entry_slab, entry);
1776}
1777
1778void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1779{
1780        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1781        struct discard_entry *entry, *this;
1782
1783        /* drop caches */
1784        list_for_each_entry_safe(entry, this, head, list)
1785                release_discard_addr(entry);
1786}
1787
1788/*
1789 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1790 */
1791static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1792{
1793        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1794        unsigned int segno;
1795
1796        mutex_lock(&dirty_i->seglist_lock);
1797        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1798                __set_test_and_free(sbi, segno);
1799        mutex_unlock(&dirty_i->seglist_lock);
1800}
1801
1802void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1803                                                struct cp_control *cpc)
1804{
1805        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1806        struct list_head *head = &dcc->entry_list;
1807        struct discard_entry *entry, *this;
1808        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1809        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1810        unsigned int start = 0, end = -1;
1811        unsigned int secno, start_segno;
1812        bool force = (cpc->reason & CP_DISCARD);
1813        bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
1814
1815        mutex_lock(&dirty_i->seglist_lock);
1816
1817        while (1) {
1818                int i;
1819
1820                if (need_align && end != -1)
1821                        end--;
1822                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1823                if (start >= MAIN_SEGS(sbi))
1824                        break;
1825                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1826                                                                start + 1);
1827
1828                if (need_align) {
1829                        start = rounddown(start, sbi->segs_per_sec);
1830                        end = roundup(end, sbi->segs_per_sec);
1831                }
1832
1833                for (i = start; i < end; i++) {
1834                        if (test_and_clear_bit(i, prefree_map))
1835                                dirty_i->nr_dirty[PRE]--;
1836                }
1837
1838                if (!test_opt(sbi, DISCARD))
1839                        continue;
1840
1841                if (force && start >= cpc->trim_start &&
1842                                        (end - 1) <= cpc->trim_end)
1843                                continue;
1844
1845                if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1846                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1847                                (end - start) << sbi->log_blocks_per_seg);
1848                        continue;
1849                }
1850next:
1851                secno = GET_SEC_FROM_SEG(sbi, start);
1852                start_segno = GET_SEG_FROM_SEC(sbi, secno);
1853                if (!IS_CURSEC(sbi, secno) &&
1854                        !get_valid_blocks(sbi, start, true))
1855                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1856                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
1857
1858                start = start_segno + sbi->segs_per_sec;
1859                if (start < end)
1860                        goto next;
1861                else
1862                        end = start - 1;
1863        }
1864        mutex_unlock(&dirty_i->seglist_lock);
1865
1866        /* send small discards */
1867        list_for_each_entry_safe(entry, this, head, list) {
1868                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1869                bool is_valid = test_bit_le(0, entry->discard_map);
1870
1871find_next:
1872                if (is_valid) {
1873                        next_pos = find_next_zero_bit_le(entry->discard_map,
1874                                        sbi->blocks_per_seg, cur_pos);
1875                        len = next_pos - cur_pos;
1876
1877                        if (f2fs_sb_has_blkzoned(sbi->sb) ||
1878                            (force && len < cpc->trim_minlen))
1879                                goto skip;
1880
1881                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1882                                                                        len);
1883                        total_len += len;
1884                } else {
1885                        next_pos = find_next_bit_le(entry->discard_map,
1886                                        sbi->blocks_per_seg, cur_pos);
1887                }
1888skip:
1889                cur_pos = next_pos;
1890                is_valid = !is_valid;
1891
1892                if (cur_pos < sbi->blocks_per_seg)
1893                        goto find_next;
1894
1895                release_discard_addr(entry);
1896                dcc->nr_discards -= total_len;
1897        }
1898
1899        wake_up_discard_thread(sbi, false);
1900}
1901
1902static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1903{
1904        dev_t dev = sbi->sb->s_bdev->bd_dev;
1905        struct discard_cmd_control *dcc;
1906        int err = 0, i;
1907
1908        if (SM_I(sbi)->dcc_info) {
1909                dcc = SM_I(sbi)->dcc_info;
1910                goto init_thread;
1911        }
1912
1913        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1914        if (!dcc)
1915                return -ENOMEM;
1916
1917        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1918        INIT_LIST_HEAD(&dcc->entry_list);
1919        for (i = 0; i < MAX_PLIST_NUM; i++)
1920                INIT_LIST_HEAD(&dcc->pend_list[i]);
1921        INIT_LIST_HEAD(&dcc->wait_list);
1922        INIT_LIST_HEAD(&dcc->fstrim_list);
1923        mutex_init(&dcc->cmd_lock);
1924        atomic_set(&dcc->issued_discard, 0);
1925        atomic_set(&dcc->issing_discard, 0);
1926        atomic_set(&dcc->discard_cmd_cnt, 0);
1927        dcc->nr_discards = 0;
1928        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1929        dcc->undiscard_blks = 0;
1930        dcc->next_pos = 0;
1931        dcc->root = RB_ROOT;
1932        dcc->rbtree_check = false;
1933
1934        init_waitqueue_head(&dcc->discard_wait_queue);
1935        SM_I(sbi)->dcc_info = dcc;
1936init_thread:
1937        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1938                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1939        if (IS_ERR(dcc->f2fs_issue_discard)) {
1940                err = PTR_ERR(dcc->f2fs_issue_discard);
1941                kfree(dcc);
1942                SM_I(sbi)->dcc_info = NULL;
1943                return err;
1944        }
1945
1946        return err;
1947}
1948
1949static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1950{
1951        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1952
1953        if (!dcc)
1954                return;
1955
1956        f2fs_stop_discard_thread(sbi);
1957
1958        kfree(dcc);
1959        SM_I(sbi)->dcc_info = NULL;
1960}
1961
1962static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1963{
1964        struct sit_info *sit_i = SIT_I(sbi);
1965
1966        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1967                sit_i->dirty_sentries++;
1968                return false;
1969        }
1970
1971        return true;
1972}
1973
1974static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1975                                        unsigned int segno, int modified)
1976{
1977        struct seg_entry *se = get_seg_entry(sbi, segno);
1978        se->type = type;
1979        if (modified)
1980                __mark_sit_entry_dirty(sbi, segno);
1981}
1982
1983static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1984{
1985        struct seg_entry *se;
1986        unsigned int segno, offset;
1987        long int new_vblocks;
1988        bool exist;
1989#ifdef CONFIG_F2FS_CHECK_FS
1990        bool mir_exist;
1991#endif
1992
1993        segno = GET_SEGNO(sbi, blkaddr);
1994
1995        se = get_seg_entry(sbi, segno);
1996        new_vblocks = se->valid_blocks + del;
1997        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1998
1999        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2000                                (new_vblocks > sbi->blocks_per_seg)));
2001
2002        se->valid_blocks = new_vblocks;
2003        se->mtime = get_mtime(sbi, false);
2004        if (se->mtime > SIT_I(sbi)->max_mtime)
2005                SIT_I(sbi)->max_mtime = se->mtime;
2006
2007        /* Update valid block bitmap */
2008        if (del > 0) {
2009                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2010#ifdef CONFIG_F2FS_CHECK_FS
2011                mir_exist = f2fs_test_and_set_bit(offset,
2012                                                se->cur_valid_map_mir);
2013                if (unlikely(exist != mir_exist)) {
2014                        f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2015                                "when setting bitmap, blk:%u, old bit:%d",
2016                                blkaddr, exist);
2017                        f2fs_bug_on(sbi, 1);
2018                }
2019#endif
2020                if (unlikely(exist)) {
2021                        f2fs_msg(sbi->sb, KERN_ERR,
2022                                "Bitmap was wrongly set, blk:%u", blkaddr);
2023                        f2fs_bug_on(sbi, 1);
2024                        se->valid_blocks--;
2025                        del = 0;
2026                }
2027
2028                if (f2fs_discard_en(sbi) &&
2029                        !f2fs_test_and_set_bit(offset, se->discard_map))
2030                        sbi->discard_blks--;
2031
2032                /* don't overwrite by SSR to keep node chain */
2033                if (IS_NODESEG(se->type)) {
2034                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2035                                se->ckpt_valid_blocks++;
2036                }
2037        } else {
2038                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2039#ifdef CONFIG_F2FS_CHECK_FS
2040                mir_exist = f2fs_test_and_clear_bit(offset,
2041                                                se->cur_valid_map_mir);
2042                if (unlikely(exist != mir_exist)) {
2043                        f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2044                                "when clearing bitmap, blk:%u, old bit:%d",
2045                                blkaddr, exist);
2046                        f2fs_bug_on(sbi, 1);
2047                }
2048#endif
2049                if (unlikely(!exist)) {
2050                        f2fs_msg(sbi->sb, KERN_ERR,
2051                                "Bitmap was wrongly cleared, blk:%u", blkaddr);
2052                        f2fs_bug_on(sbi, 1);
2053                        se->valid_blocks++;
2054                        del = 0;
2055                }
2056
2057                if (f2fs_discard_en(sbi) &&
2058                        f2fs_test_and_clear_bit(offset, se->discard_map))
2059                        sbi->discard_blks++;
2060        }
2061        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2062                se->ckpt_valid_blocks += del;
2063
2064        __mark_sit_entry_dirty(sbi, segno);
2065
2066        /* update total number of valid blocks to be written in ckpt area */
2067        SIT_I(sbi)->written_valid_blocks += del;
2068
2069        if (sbi->segs_per_sec > 1)
2070                get_sec_entry(sbi, segno)->valid_blocks += del;
2071}
2072
2073void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2074{
2075        unsigned int segno = GET_SEGNO(sbi, addr);
2076        struct sit_info *sit_i = SIT_I(sbi);
2077
2078        f2fs_bug_on(sbi, addr == NULL_ADDR);
2079        if (addr == NEW_ADDR)
2080                return;
2081
2082        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2083
2084        /* add it into sit main buffer */
2085        down_write(&sit_i->sentry_lock);
2086
2087        update_sit_entry(sbi, addr, -1);
2088
2089        /* add it into dirty seglist */
2090        locate_dirty_segment(sbi, segno);
2091
2092        up_write(&sit_i->sentry_lock);
2093}
2094
2095bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2096{
2097        struct sit_info *sit_i = SIT_I(sbi);
2098        unsigned int segno, offset;
2099        struct seg_entry *se;
2100        bool is_cp = false;
2101
2102        if (!is_valid_data_blkaddr(sbi, blkaddr))
2103                return true;
2104
2105        down_read(&sit_i->sentry_lock);
2106
2107        segno = GET_SEGNO(sbi, blkaddr);
2108        se = get_seg_entry(sbi, segno);
2109        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2110
2111        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2112                is_cp = true;
2113
2114        up_read(&sit_i->sentry_lock);
2115
2116        return is_cp;
2117}
2118
2119/*
2120 * This function should be resided under the curseg_mutex lock
2121 */
2122static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2123                                        struct f2fs_summary *sum)
2124{
2125        struct curseg_info *curseg = CURSEG_I(sbi, type);
2126        void *addr = curseg->sum_blk;
2127        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2128        memcpy(addr, sum, sizeof(struct f2fs_summary));
2129}
2130
2131/*
2132 * Calculate the number of current summary pages for writing
2133 */
2134int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2135{
2136        int valid_sum_count = 0;
2137        int i, sum_in_page;
2138
2139        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2140                if (sbi->ckpt->alloc_type[i] == SSR)
2141                        valid_sum_count += sbi->blocks_per_seg;
2142                else {
2143                        if (for_ra)
2144                                valid_sum_count += le16_to_cpu(
2145                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2146                        else
2147                                valid_sum_count += curseg_blkoff(sbi, i);
2148                }
2149        }
2150
2151        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2152                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2153        if (valid_sum_count <= sum_in_page)
2154                return 1;
2155        else if ((valid_sum_count - sum_in_page) <=
2156                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2157                return 2;
2158        return 3;
2159}
2160
2161/*
2162 * Caller should put this summary page
2163 */
2164struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2165{
2166        return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2167}
2168
2169void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2170                                        void *src, block_t blk_addr)
2171{
2172        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2173
2174        memcpy(page_address(page), src, PAGE_SIZE);
2175        set_page_dirty(page);
2176        f2fs_put_page(page, 1);
2177}
2178
2179static void write_sum_page(struct f2fs_sb_info *sbi,
2180                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2181{
2182        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2183}
2184
2185static void write_current_sum_page(struct f2fs_sb_info *sbi,
2186                                                int type, block_t blk_addr)
2187{
2188        struct curseg_info *curseg = CURSEG_I(sbi, type);
2189        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2190        struct f2fs_summary_block *src = curseg->sum_blk;
2191        struct f2fs_summary_block *dst;
2192
2193        dst = (struct f2fs_summary_block *)page_address(page);
2194        memset(dst, 0, PAGE_SIZE);
2195
2196        mutex_lock(&curseg->curseg_mutex);
2197
2198        down_read(&curseg->journal_rwsem);
2199        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2200        up_read(&curseg->journal_rwsem);
2201
2202        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2203        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2204
2205        mutex_unlock(&curseg->curseg_mutex);
2206
2207        set_page_dirty(page);
2208        f2fs_put_page(page, 1);
2209}
2210
2211static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2212{
2213        struct curseg_info *curseg = CURSEG_I(sbi, type);
2214        unsigned int segno = curseg->segno + 1;
2215        struct free_segmap_info *free_i = FREE_I(sbi);
2216
2217        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2218                return !test_bit(segno, free_i->free_segmap);
2219        return 0;
2220}
2221
2222/*
2223 * Find a new segment from the free segments bitmap to right order
2224 * This function should be returned with success, otherwise BUG
2225 */
2226static void get_new_segment(struct f2fs_sb_info *sbi,
2227                        unsigned int *newseg, bool new_sec, int dir)
2228{
2229        struct free_segmap_info *free_i = FREE_I(sbi);
2230        unsigned int segno, secno, zoneno;
2231        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2232        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2233        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2234        unsigned int left_start = hint;
2235        bool init = true;
2236        int go_left = 0;
2237        int i;
2238
2239        spin_lock(&free_i->segmap_lock);
2240
2241        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2242                segno = find_next_zero_bit(free_i->free_segmap,
2243                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2244                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2245                        goto got_it;
2246        }
2247find_other_zone:
2248        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2249        if (secno >= MAIN_SECS(sbi)) {
2250                if (dir == ALLOC_RIGHT) {
2251                        secno = find_next_zero_bit(free_i->free_secmap,
2252                                                        MAIN_SECS(sbi), 0);
2253                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2254                } else {
2255                        go_left = 1;
2256                        left_start = hint - 1;
2257                }
2258        }
2259        if (go_left == 0)
2260                goto skip_left;
2261
2262        while (test_bit(left_start, free_i->free_secmap)) {
2263                if (left_start > 0) {
2264                        left_start--;
2265                        continue;
2266                }
2267                left_start = find_next_zero_bit(free_i->free_secmap,
2268                                                        MAIN_SECS(sbi), 0);
2269                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2270                break;
2271        }
2272        secno = left_start;
2273skip_left:
2274        segno = GET_SEG_FROM_SEC(sbi, secno);
2275        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2276
2277        /* give up on finding another zone */
2278        if (!init)
2279                goto got_it;
2280        if (sbi->secs_per_zone == 1)
2281                goto got_it;
2282        if (zoneno == old_zoneno)
2283                goto got_it;
2284        if (dir == ALLOC_LEFT) {
2285                if (!go_left && zoneno + 1 >= total_zones)
2286                        goto got_it;
2287                if (go_left && zoneno == 0)
2288                        goto got_it;
2289        }
2290        for (i = 0; i < NR_CURSEG_TYPE; i++)
2291                if (CURSEG_I(sbi, i)->zone == zoneno)
2292                        break;
2293
2294        if (i < NR_CURSEG_TYPE) {
2295                /* zone is in user, try another */
2296                if (go_left)
2297                        hint = zoneno * sbi->secs_per_zone - 1;
2298                else if (zoneno + 1 >= total_zones)
2299                        hint = 0;
2300                else
2301                        hint = (zoneno + 1) * sbi->secs_per_zone;
2302                init = false;
2303                goto find_other_zone;
2304        }
2305got_it:
2306        /* set it as dirty segment in free segmap */
2307        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2308        __set_inuse(sbi, segno);
2309        *newseg = segno;
2310        spin_unlock(&free_i->segmap_lock);
2311}
2312
2313static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2314{
2315        struct curseg_info *curseg = CURSEG_I(sbi, type);
2316        struct summary_footer *sum_footer;
2317
2318        curseg->segno = curseg->next_segno;
2319        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2320        curseg->next_blkoff = 0;
2321        curseg->next_segno = NULL_SEGNO;
2322
2323        sum_footer = &(curseg->sum_blk->footer);
2324        memset(sum_footer, 0, sizeof(struct summary_footer));
2325        if (IS_DATASEG(type))
2326                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2327        if (IS_NODESEG(type))
2328                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2329        __set_sit_entry_type(sbi, type, curseg->segno, modified);
2330}
2331
2332static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2333{
2334        /* if segs_per_sec is large than 1, we need to keep original policy. */
2335        if (sbi->segs_per_sec != 1)
2336                return CURSEG_I(sbi, type)->segno;
2337
2338        if (test_opt(sbi, NOHEAP) &&
2339                (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2340                return 0;
2341
2342        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2343                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2344
2345        /* find segments from 0 to reuse freed segments */
2346        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2347                return 0;
2348
2349        return CURSEG_I(sbi, type)->segno;
2350}
2351
2352/*
2353 * Allocate a current working segment.
2354 * This function always allocates a free segment in LFS manner.
2355 */
2356static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2357{
2358        struct curseg_info *curseg = CURSEG_I(sbi, type);
2359        unsigned int segno = curseg->segno;
2360        int dir = ALLOC_LEFT;
2361
2362        write_sum_page(sbi, curseg->sum_blk,
2363                                GET_SUM_BLOCK(sbi, segno));
2364        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2365                dir = ALLOC_RIGHT;
2366
2367        if (test_opt(sbi, NOHEAP))
2368                dir = ALLOC_RIGHT;
2369
2370        segno = __get_next_segno(sbi, type);
2371        get_new_segment(sbi, &segno, new_sec, dir);
2372        curseg->next_segno = segno;
2373        reset_curseg(sbi, type, 1);
2374        curseg->alloc_type = LFS;
2375}
2376
2377static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2378                        struct curseg_info *seg, block_t start)
2379{
2380        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2381        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2382        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2383        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2384        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2385        int i, pos;
2386
2387        for (i = 0; i < entries; i++)
2388                target_map[i] = ckpt_map[i] | cur_map[i];
2389
2390        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2391
2392        seg->next_blkoff = pos;
2393}
2394
2395/*
2396 * If a segment is written by LFS manner, next block offset is just obtained
2397 * by increasing the current block offset. However, if a segment is written by
2398 * SSR manner, next block offset obtained by calling __next_free_blkoff
2399 */
2400static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2401                                struct curseg_info *seg)
2402{
2403        if (seg->alloc_type == SSR)
2404                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2405        else
2406                seg->next_blkoff++;
2407}
2408
2409/*
2410 * This function always allocates a used segment(from dirty seglist) by SSR
2411 * manner, so it should recover the existing segment information of valid blocks
2412 */
2413static void change_curseg(struct f2fs_sb_info *sbi, int type)
2414{
2415        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416        struct curseg_info *curseg = CURSEG_I(sbi, type);
2417        unsigned int new_segno = curseg->next_segno;
2418        struct f2fs_summary_block *sum_node;
2419        struct page *sum_page;
2420
2421        write_sum_page(sbi, curseg->sum_blk,
2422                                GET_SUM_BLOCK(sbi, curseg->segno));
2423        __set_test_and_inuse(sbi, new_segno);
2424
2425        mutex_lock(&dirty_i->seglist_lock);
2426        __remove_dirty_segment(sbi, new_segno, PRE);
2427        __remove_dirty_segment(sbi, new_segno, DIRTY);
2428        mutex_unlock(&dirty_i->seglist_lock);
2429
2430        reset_curseg(sbi, type, 1);
2431        curseg->alloc_type = SSR;
2432        __next_free_blkoff(sbi, curseg, 0);
2433
2434        sum_page = f2fs_get_sum_page(sbi, new_segno);
2435        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2436        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2437        f2fs_put_page(sum_page, 1);
2438}
2439
2440static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2441{
2442        struct curseg_info *curseg = CURSEG_I(sbi, type);
2443        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2444        unsigned segno = NULL_SEGNO;
2445        int i, cnt;
2446        bool reversed = false;
2447
2448        /* f2fs_need_SSR() already forces to do this */
2449        if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2450                curseg->next_segno = segno;
2451                return 1;
2452        }
2453
2454        /* For node segments, let's do SSR more intensively */
2455        if (IS_NODESEG(type)) {
2456                if (type >= CURSEG_WARM_NODE) {
2457                        reversed = true;
2458                        i = CURSEG_COLD_NODE;
2459                } else {
2460                        i = CURSEG_HOT_NODE;
2461                }
2462                cnt = NR_CURSEG_NODE_TYPE;
2463        } else {
2464                if (type >= CURSEG_WARM_DATA) {
2465                        reversed = true;
2466                        i = CURSEG_COLD_DATA;
2467                } else {
2468                        i = CURSEG_HOT_DATA;
2469                }
2470                cnt = NR_CURSEG_DATA_TYPE;
2471        }
2472
2473        for (; cnt-- > 0; reversed ? i-- : i++) {
2474                if (i == type)
2475                        continue;
2476                if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2477                        curseg->next_segno = segno;
2478                        return 1;
2479                }
2480        }
2481        return 0;
2482}
2483
2484/*
2485 * flush out current segment and replace it with new segment
2486 * This function should be returned with success, otherwise BUG
2487 */
2488static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2489                                                int type, bool force)
2490{
2491        struct curseg_info *curseg = CURSEG_I(sbi, type);
2492
2493        if (force)
2494                new_curseg(sbi, type, true);
2495        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2496                                        type == CURSEG_WARM_NODE)
2497                new_curseg(sbi, type, false);
2498        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2499                new_curseg(sbi, type, false);
2500        else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2501                change_curseg(sbi, type);
2502        else
2503                new_curseg(sbi, type, false);
2504
2505        stat_inc_seg_type(sbi, curseg);
2506}
2507
2508void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2509{
2510        struct curseg_info *curseg;
2511        unsigned int old_segno;
2512        int i;
2513
2514        down_write(&SIT_I(sbi)->sentry_lock);
2515
2516        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2517                curseg = CURSEG_I(sbi, i);
2518                old_segno = curseg->segno;
2519                SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2520                locate_dirty_segment(sbi, old_segno);
2521        }
2522
2523        up_write(&SIT_I(sbi)->sentry_lock);
2524}
2525
2526static const struct segment_allocation default_salloc_ops = {
2527        .allocate_segment = allocate_segment_by_default,
2528};
2529
2530bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2531                                                struct cp_control *cpc)
2532{
2533        __u64 trim_start = cpc->trim_start;
2534        bool has_candidate = false;
2535
2536        down_write(&SIT_I(sbi)->sentry_lock);
2537        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2538                if (add_discard_addrs(sbi, cpc, true)) {
2539                        has_candidate = true;
2540                        break;
2541                }
2542        }
2543        up_write(&SIT_I(sbi)->sentry_lock);
2544
2545        cpc->trim_start = trim_start;
2546        return has_candidate;
2547}
2548
2549static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2550                                        struct discard_policy *dpolicy,
2551                                        unsigned int start, unsigned int end)
2552{
2553        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2554        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2555        struct rb_node **insert_p = NULL, *insert_parent = NULL;
2556        struct discard_cmd *dc;
2557        struct blk_plug plug;
2558        int issued;
2559        unsigned int trimmed = 0;
2560
2561next:
2562        issued = 0;
2563
2564        mutex_lock(&dcc->cmd_lock);
2565        if (unlikely(dcc->rbtree_check))
2566                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2567                                                                &dcc->root));
2568
2569        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2570                                        NULL, start,
2571                                        (struct rb_entry **)&prev_dc,
2572                                        (struct rb_entry **)&next_dc,
2573                                        &insert_p, &insert_parent, true);
2574        if (!dc)
2575                dc = next_dc;
2576
2577        blk_start_plug(&plug);
2578
2579        while (dc && dc->lstart <= end) {
2580                struct rb_node *node;
2581                int err = 0;
2582
2583                if (dc->len < dpolicy->granularity)
2584                        goto skip;
2585
2586                if (dc->state != D_PREP) {
2587                        list_move_tail(&dc->list, &dcc->fstrim_list);
2588                        goto skip;
2589                }
2590
2591                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2592
2593                if (issued >= dpolicy->max_requests) {
2594                        start = dc->lstart + dc->len;
2595
2596                        if (err)
2597                                __remove_discard_cmd(sbi, dc);
2598
2599                        blk_finish_plug(&plug);
2600                        mutex_unlock(&dcc->cmd_lock);
2601                        trimmed += __wait_all_discard_cmd(sbi, NULL);
2602                        congestion_wait(BLK_RW_ASYNC, HZ/50);
2603                        goto next;
2604                }
2605skip:
2606                node = rb_next(&dc->rb_node);
2607                if (err)
2608                        __remove_discard_cmd(sbi, dc);
2609                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2610
2611                if (fatal_signal_pending(current))
2612                        break;
2613        }
2614
2615        blk_finish_plug(&plug);
2616        mutex_unlock(&dcc->cmd_lock);
2617
2618        return trimmed;
2619}
2620
2621int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2622{
2623        __u64 start = F2FS_BYTES_TO_BLK(range->start);
2624        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2625        unsigned int start_segno, end_segno;
2626        block_t start_block, end_block;
2627        struct cp_control cpc;
2628        struct discard_policy dpolicy;
2629        unsigned long long trimmed = 0;
2630        int err = 0;
2631        bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
2632
2633        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2634                return -EINVAL;
2635
2636        if (end < MAIN_BLKADDR(sbi))
2637                goto out;
2638
2639        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2640                f2fs_msg(sbi->sb, KERN_WARNING,
2641                        "Found FS corruption, run fsck to fix.");
2642                return -EIO;
2643        }
2644
2645        /* start/end segment number in main_area */
2646        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2647        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2648                                                GET_SEGNO(sbi, end);
2649        if (need_align) {
2650                start_segno = rounddown(start_segno, sbi->segs_per_sec);
2651                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2652        }
2653
2654        cpc.reason = CP_DISCARD;
2655        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2656        cpc.trim_start = start_segno;
2657        cpc.trim_end = end_segno;
2658
2659        if (sbi->discard_blks == 0)
2660                goto out;
2661
2662        mutex_lock(&sbi->gc_mutex);
2663        err = f2fs_write_checkpoint(sbi, &cpc);
2664        mutex_unlock(&sbi->gc_mutex);
2665        if (err)
2666                goto out;
2667
2668        /*
2669         * We filed discard candidates, but actually we don't need to wait for
2670         * all of them, since they'll be issued in idle time along with runtime
2671         * discard option. User configuration looks like using runtime discard
2672         * or periodic fstrim instead of it.
2673         */
2674        if (test_opt(sbi, DISCARD))
2675                goto out;
2676
2677        start_block = START_BLOCK(sbi, start_segno);
2678        end_block = START_BLOCK(sbi, end_segno + 1);
2679
2680        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2681        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2682                                        start_block, end_block);
2683
2684        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2685                                        start_block, end_block);
2686out:
2687        if (!err)
2688                range->len = F2FS_BLK_TO_BYTES(trimmed);
2689        return err;
2690}
2691
2692static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2693{
2694        struct curseg_info *curseg = CURSEG_I(sbi, type);
2695        if (curseg->next_blkoff < sbi->blocks_per_seg)
2696                return true;
2697        return false;
2698}
2699
2700int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2701{
2702        switch (hint) {
2703        case WRITE_LIFE_SHORT:
2704                return CURSEG_HOT_DATA;
2705        case WRITE_LIFE_EXTREME:
2706                return CURSEG_COLD_DATA;
2707        default:
2708                return CURSEG_WARM_DATA;
2709        }
2710}
2711
2712/* This returns write hints for each segment type. This hints will be
2713 * passed down to block layer. There are mapping tables which depend on
2714 * the mount option 'whint_mode'.
2715 *
2716 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2717 *
2718 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2719 *
2720 * User                  F2FS                     Block
2721 * ----                  ----                     -----
2722 *                       META                     WRITE_LIFE_NOT_SET
2723 *                       HOT_NODE                 "
2724 *                       WARM_NODE                "
2725 *                       COLD_NODE                "
2726 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2727 * extension list        "                        "
2728 *
2729 * -- buffered io
2730 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2731 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2732 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2733 * WRITE_LIFE_NONE       "                        "
2734 * WRITE_LIFE_MEDIUM     "                        "
2735 * WRITE_LIFE_LONG       "                        "
2736 *
2737 * -- direct io
2738 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2739 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2740 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2741 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2742 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2743 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2744 *
2745 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2746 *
2747 * User                  F2FS                     Block
2748 * ----                  ----                     -----
2749 *                       META                     WRITE_LIFE_MEDIUM;
2750 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2751 *                       WARM_NODE                "
2752 *                       COLD_NODE                WRITE_LIFE_NONE
2753 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2754 * extension list        "                        "
2755 *
2756 * -- buffered io
2757 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2758 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2759 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2760 * WRITE_LIFE_NONE       "                        "
2761 * WRITE_LIFE_MEDIUM     "                        "
2762 * WRITE_LIFE_LONG       "                        "
2763 *
2764 * -- direct io
2765 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2766 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2767 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2768 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2769 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2770 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2771 */
2772
2773enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2774                                enum page_type type, enum temp_type temp)
2775{
2776        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2777                if (type == DATA) {
2778                        if (temp == WARM)
2779                                return WRITE_LIFE_NOT_SET;
2780                        else if (temp == HOT)
2781                                return WRITE_LIFE_SHORT;
2782                        else if (temp == COLD)
2783                                return WRITE_LIFE_EXTREME;
2784                } else {
2785                        return WRITE_LIFE_NOT_SET;
2786                }
2787        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2788                if (type == DATA) {
2789                        if (temp == WARM)
2790                                return WRITE_LIFE_LONG;
2791                        else if (temp == HOT)
2792                                return WRITE_LIFE_SHORT;
2793                        else if (temp == COLD)
2794                                return WRITE_LIFE_EXTREME;
2795                } else if (type == NODE) {
2796                        if (temp == WARM || temp == HOT)
2797                                return WRITE_LIFE_NOT_SET;
2798                        else if (temp == COLD)
2799                                return WRITE_LIFE_NONE;
2800                } else if (type == META) {
2801                        return WRITE_LIFE_MEDIUM;
2802                }
2803        }
2804        return WRITE_LIFE_NOT_SET;
2805}
2806
2807static int __get_segment_type_2(struct f2fs_io_info *fio)
2808{
2809        if (fio->type == DATA)
2810                return CURSEG_HOT_DATA;
2811        else
2812                return CURSEG_HOT_NODE;
2813}
2814
2815static int __get_segment_type_4(struct f2fs_io_info *fio)
2816{
2817        if (fio->type == DATA) {
2818                struct inode *inode = fio->page->mapping->host;
2819
2820                if (S_ISDIR(inode->i_mode))
2821                        return CURSEG_HOT_DATA;
2822                else
2823                        return CURSEG_COLD_DATA;
2824        } else {
2825                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2826                        return CURSEG_WARM_NODE;
2827                else
2828                        return CURSEG_COLD_NODE;
2829        }
2830}
2831
2832static int __get_segment_type_6(struct f2fs_io_info *fio)
2833{
2834        if (fio->type == DATA) {
2835                struct inode *inode = fio->page->mapping->host;
2836
2837                if (is_cold_data(fio->page) || file_is_cold(inode))
2838                        return CURSEG_COLD_DATA;
2839                if (file_is_hot(inode) ||
2840                                is_inode_flag_set(inode, FI_HOT_DATA) ||
2841                                f2fs_is_atomic_file(inode) ||
2842                                f2fs_is_volatile_file(inode))
2843                        return CURSEG_HOT_DATA;
2844                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2845        } else {
2846                if (IS_DNODE(fio->page))
2847                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2848                                                CURSEG_HOT_NODE;
2849                return CURSEG_COLD_NODE;
2850        }
2851}
2852
2853static int __get_segment_type(struct f2fs_io_info *fio)
2854{
2855        int type = 0;
2856
2857        switch (F2FS_OPTION(fio->sbi).active_logs) {
2858        case 2:
2859                type = __get_segment_type_2(fio);
2860                break;
2861        case 4:
2862                type = __get_segment_type_4(fio);
2863                break;
2864        case 6:
2865                type = __get_segment_type_6(fio);
2866                break;
2867        default:
2868                f2fs_bug_on(fio->sbi, true);
2869        }
2870
2871        if (IS_HOT(type))
2872                fio->temp = HOT;
2873        else if (IS_WARM(type))
2874                fio->temp = WARM;
2875        else
2876                fio->temp = COLD;
2877        return type;
2878}
2879
2880void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2881                block_t old_blkaddr, block_t *new_blkaddr,
2882                struct f2fs_summary *sum, int type,
2883                struct f2fs_io_info *fio, bool add_list)
2884{
2885        struct sit_info *sit_i = SIT_I(sbi);
2886        struct curseg_info *curseg = CURSEG_I(sbi, type);
2887
2888        down_read(&SM_I(sbi)->curseg_lock);
2889
2890        mutex_lock(&curseg->curseg_mutex);
2891        down_write(&sit_i->sentry_lock);
2892
2893        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2894
2895        f2fs_wait_discard_bio(sbi, *new_blkaddr);
2896
2897        /*
2898         * __add_sum_entry should be resided under the curseg_mutex
2899         * because, this function updates a summary entry in the
2900         * current summary block.
2901         */
2902        __add_sum_entry(sbi, type, sum);
2903
2904        __refresh_next_blkoff(sbi, curseg);
2905
2906        stat_inc_block_count(sbi, curseg);
2907
2908        /*
2909         * SIT information should be updated before segment allocation,
2910         * since SSR needs latest valid block information.
2911         */
2912        update_sit_entry(sbi, *new_blkaddr, 1);
2913        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2914                update_sit_entry(sbi, old_blkaddr, -1);
2915
2916        if (!__has_curseg_space(sbi, type))
2917                sit_i->s_ops->allocate_segment(sbi, type, false);
2918
2919        /*
2920         * segment dirty status should be updated after segment allocation,
2921         * so we just need to update status only one time after previous
2922         * segment being closed.
2923         */
2924        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2925        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2926
2927        up_write(&sit_i->sentry_lock);
2928
2929        if (page && IS_NODESEG(type)) {
2930                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2931
2932                f2fs_inode_chksum_set(sbi, page);
2933        }
2934
2935        if (add_list) {
2936                struct f2fs_bio_info *io;
2937
2938                INIT_LIST_HEAD(&fio->list);
2939                fio->in_list = true;
2940                fio->retry = false;
2941                io = sbi->write_io[fio->type] + fio->temp;
2942                spin_lock(&io->io_lock);
2943                list_add_tail(&fio->list, &io->io_list);
2944                spin_unlock(&io->io_lock);
2945        }
2946
2947        mutex_unlock(&curseg->curseg_mutex);
2948
2949        up_read(&SM_I(sbi)->curseg_lock);
2950}
2951
2952static void update_device_state(struct f2fs_io_info *fio)
2953{
2954        struct f2fs_sb_info *sbi = fio->sbi;
2955        unsigned int devidx;
2956
2957        if (!sbi->s_ndevs)
2958                return;
2959
2960        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2961
2962        /* update device state for fsync */
2963        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2964
2965        /* update device state for checkpoint */
2966        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2967                spin_lock(&sbi->dev_lock);
2968                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2969                spin_unlock(&sbi->dev_lock);
2970        }
2971}
2972
2973static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2974{
2975        int type = __get_segment_type(fio);
2976        bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
2977
2978        if (keep_order)
2979                down_read(&fio->sbi->io_order_lock);
2980reallocate:
2981        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2982                        &fio->new_blkaddr, sum, type, fio, true);
2983        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
2984                invalidate_mapping_pages(META_MAPPING(fio->sbi),
2985                                        fio->old_blkaddr, fio->old_blkaddr);
2986
2987        /* writeout dirty page into bdev */
2988        f2fs_submit_page_write(fio);
2989        if (fio->retry) {
2990                fio->old_blkaddr = fio->new_blkaddr;
2991                goto reallocate;
2992        }
2993
2994        update_device_state(fio);
2995
2996        if (keep_order)
2997                up_read(&fio->sbi->io_order_lock);
2998}
2999
3000void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3001                                        enum iostat_type io_type)
3002{
3003        struct f2fs_io_info fio = {
3004                .sbi = sbi,
3005                .type = META,
3006                .temp = HOT,
3007                .op = REQ_OP_WRITE,
3008                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3009                .old_blkaddr = page->index,
3010                .new_blkaddr = page->index,
3011                .page = page,
3012                .encrypted_page = NULL,
3013                .in_list = false,
3014        };
3015
3016        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3017                fio.op_flags &= ~REQ_META;
3018
3019        set_page_writeback(page);
3020        ClearPageError(page);
3021        f2fs_submit_page_write(&fio);
3022
3023        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3024}
3025
3026void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3027{
3028        struct f2fs_summary sum;
3029
3030        set_summary(&sum, nid, 0, 0);
3031        do_write_page(&sum, fio);
3032
3033        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3034}
3035
3036void f2fs_outplace_write_data(struct dnode_of_data *dn,
3037                                        struct f2fs_io_info *fio)
3038{
3039        struct f2fs_sb_info *sbi = fio->sbi;
3040        struct f2fs_summary sum;
3041
3042        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3043        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3044        do_write_page(&sum, fio);
3045        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3046
3047        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3048}
3049
3050int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3051{
3052        int err;
3053        struct f2fs_sb_info *sbi = fio->sbi;
3054
3055        fio->new_blkaddr = fio->old_blkaddr;
3056        /* i/o temperature is needed for passing down write hints */
3057        __get_segment_type(fio);
3058
3059        f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3060                        GET_SEGNO(sbi, fio->new_blkaddr))->type));
3061
3062        stat_inc_inplace_blocks(fio->sbi);
3063
3064        err = f2fs_submit_page_bio(fio);
3065        if (!err)
3066                update_device_state(fio);
3067
3068        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3069
3070        return err;
3071}
3072
3073static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3074                                                unsigned int segno)
3075{
3076        int i;
3077
3078        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3079                if (CURSEG_I(sbi, i)->segno == segno)
3080                        break;
3081        }
3082        return i;
3083}
3084
3085void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3086                                block_t old_blkaddr, block_t new_blkaddr,
3087                                bool recover_curseg, bool recover_newaddr)
3088{
3089        struct sit_info *sit_i = SIT_I(sbi);
3090        struct curseg_info *curseg;
3091        unsigned int segno, old_cursegno;
3092        struct seg_entry *se;
3093        int type;
3094        unsigned short old_blkoff;
3095
3096        segno = GET_SEGNO(sbi, new_blkaddr);
3097        se = get_seg_entry(sbi, segno);
3098        type = se->type;
3099
3100        down_write(&SM_I(sbi)->curseg_lock);
3101
3102        if (!recover_curseg) {
3103                /* for recovery flow */
3104                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3105                        if (old_blkaddr == NULL_ADDR)
3106                                type = CURSEG_COLD_DATA;
3107                        else
3108                                type = CURSEG_WARM_DATA;
3109                }
3110        } else {
3111                if (IS_CURSEG(sbi, segno)) {
3112                        /* se->type is volatile as SSR allocation */
3113                        type = __f2fs_get_curseg(sbi, segno);
3114                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3115                } else {
3116                        type = CURSEG_WARM_DATA;
3117                }
3118        }
3119
3120        f2fs_bug_on(sbi, !IS_DATASEG(type));
3121        curseg = CURSEG_I(sbi, type);
3122
3123        mutex_lock(&curseg->curseg_mutex);
3124        down_write(&sit_i->sentry_lock);
3125
3126        old_cursegno = curseg->segno;
3127        old_blkoff = curseg->next_blkoff;
3128
3129        /* change the current segment */
3130        if (segno != curseg->segno) {
3131                curseg->next_segno = segno;
3132                change_curseg(sbi, type);
3133        }
3134
3135        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3136        __add_sum_entry(sbi, type, sum);
3137
3138        if (!recover_curseg || recover_newaddr)
3139                update_sit_entry(sbi, new_blkaddr, 1);
3140        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3141                invalidate_mapping_pages(META_MAPPING(sbi),
3142                                        old_blkaddr, old_blkaddr);
3143                update_sit_entry(sbi, old_blkaddr, -1);
3144        }
3145
3146        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3147        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3148
3149        locate_dirty_segment(sbi, old_cursegno);
3150
3151        if (recover_curseg) {
3152                if (old_cursegno != curseg->segno) {
3153                        curseg->next_segno = old_cursegno;
3154                        change_curseg(sbi, type);
3155                }
3156                curseg->next_blkoff = old_blkoff;
3157        }
3158
3159        up_write(&sit_i->sentry_lock);
3160        mutex_unlock(&curseg->curseg_mutex);
3161        up_write(&SM_I(sbi)->curseg_lock);
3162}
3163
3164void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3165                                block_t old_addr, block_t new_addr,
3166                                unsigned char version, bool recover_curseg,
3167                                bool recover_newaddr)
3168{
3169        struct f2fs_summary sum;
3170
3171        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3172
3173        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3174                                        recover_curseg, recover_newaddr);
3175
3176        f2fs_update_data_blkaddr(dn, new_addr);
3177}
3178
3179void f2fs_wait_on_page_writeback(struct page *page,
3180                                enum page_type type, bool ordered)
3181{
3182        if (PageWriteback(page)) {
3183                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3184
3185                f2fs_submit_merged_write_cond(sbi, page->mapping->host,
3186                                                0, page->index, type);
3187                if (ordered)
3188                        wait_on_page_writeback(page);
3189                else
3190                        wait_for_stable_page(page);
3191        }
3192}
3193
3194void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
3195{
3196        struct page *cpage;
3197
3198        if (!is_valid_data_blkaddr(sbi, blkaddr))
3199                return;
3200
3201        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3202        if (cpage) {
3203                f2fs_wait_on_page_writeback(cpage, DATA, true);
3204                f2fs_put_page(cpage, 1);
3205        }
3206}
3207
3208static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3209{
3210        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3211        struct curseg_info *seg_i;
3212        unsigned char *kaddr;
3213        struct page *page;
3214        block_t start;
3215        int i, j, offset;
3216
3217        start = start_sum_block(sbi);
3218
3219        page = f2fs_get_meta_page(sbi, start++);
3220        if (IS_ERR(page))
3221                return PTR_ERR(page);
3222        kaddr = (unsigned char *)page_address(page);
3223
3224        /* Step 1: restore nat cache */
3225        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3226        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3227
3228        /* Step 2: restore sit cache */
3229        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3230        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3231        offset = 2 * SUM_JOURNAL_SIZE;
3232
3233        /* Step 3: restore summary entries */
3234        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3235                unsigned short blk_off;
3236                unsigned int segno;
3237
3238                seg_i = CURSEG_I(sbi, i);
3239                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3240                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3241                seg_i->next_segno = segno;
3242                reset_curseg(sbi, i, 0);
3243                seg_i->alloc_type = ckpt->alloc_type[i];
3244                seg_i->next_blkoff = blk_off;
3245
3246                if (seg_i->alloc_type == SSR)
3247                        blk_off = sbi->blocks_per_seg;
3248
3249                for (j = 0; j < blk_off; j++) {
3250                        struct f2fs_summary *s;
3251                        s = (struct f2fs_summary *)(kaddr + offset);
3252                        seg_i->sum_blk->entries[j] = *s;
3253                        offset += SUMMARY_SIZE;
3254                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3255                                                SUM_FOOTER_SIZE)
3256                                continue;
3257
3258                        f2fs_put_page(page, 1);
3259                        page = NULL;
3260
3261                        page = f2fs_get_meta_page(sbi, start++);
3262                        if (IS_ERR(page))
3263                                return PTR_ERR(page);
3264                        kaddr = (unsigned char *)page_address(page);
3265                        offset = 0;
3266                }
3267        }
3268        f2fs_put_page(page, 1);
3269        return 0;
3270}
3271
3272static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3273{
3274        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3275        struct f2fs_summary_block *sum;
3276        struct curseg_info *curseg;
3277        struct page *new;
3278        unsigned short blk_off;
3279        unsigned int segno = 0;
3280        block_t blk_addr = 0;
3281        int err = 0;
3282
3283        /* get segment number and block addr */
3284        if (IS_DATASEG(type)) {
3285                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3286                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3287                                                        CURSEG_HOT_DATA]);
3288                if (__exist_node_summaries(sbi))
3289                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3290                else
3291                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3292        } else {
3293                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3294                                                        CURSEG_HOT_NODE]);
3295                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3296                                                        CURSEG_HOT_NODE]);
3297                if (__exist_node_summaries(sbi))
3298                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3299                                                        type - CURSEG_HOT_NODE);
3300                else
3301                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3302        }
3303
3304        new = f2fs_get_meta_page(sbi, blk_addr);
3305        if (IS_ERR(new))
3306                return PTR_ERR(new);
3307        sum = (struct f2fs_summary_block *)page_address(new);
3308
3309        if (IS_NODESEG(type)) {
3310                if (__exist_node_summaries(sbi)) {
3311                        struct f2fs_summary *ns = &sum->entries[0];
3312                        int i;
3313                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3314                                ns->version = 0;
3315                                ns->ofs_in_node = 0;
3316                        }
3317                } else {
3318                        err = f2fs_restore_node_summary(sbi, segno, sum);
3319                        if (err)
3320                                goto out;
3321                }
3322        }
3323
3324        /* set uncompleted segment to curseg */
3325        curseg = CURSEG_I(sbi, type);
3326        mutex_lock(&curseg->curseg_mutex);
3327
3328        /* update journal info */
3329        down_write(&curseg->journal_rwsem);
3330        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3331        up_write(&curseg->journal_rwsem);
3332
3333        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3334        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3335        curseg->next_segno = segno;
3336        reset_curseg(sbi, type, 0);
3337        curseg->alloc_type = ckpt->alloc_type[type];
3338        curseg->next_blkoff = blk_off;
3339        mutex_unlock(&curseg->curseg_mutex);
3340out:
3341        f2fs_put_page(new, 1);
3342        return err;
3343}
3344
3345static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3346{
3347        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3348        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3349        int type = CURSEG_HOT_DATA;
3350        int err;
3351
3352        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3353                int npages = f2fs_npages_for_summary_flush(sbi, true);
3354
3355                if (npages >= 2)
3356                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3357                                                        META_CP, true);
3358
3359                /* restore for compacted data summary */
3360                err = read_compacted_summaries(sbi);
3361                if (err)
3362                        return err;
3363                type = CURSEG_HOT_NODE;
3364        }
3365
3366        if (__exist_node_summaries(sbi))
3367                f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3368                                        NR_CURSEG_TYPE - type, META_CP, true);
3369
3370        for (; type <= CURSEG_COLD_NODE; type++) {
3371                err = read_normal_summaries(sbi, type);
3372                if (err)
3373                        return err;
3374        }
3375
3376        /* sanity check for summary blocks */
3377        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3378                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3379                return -EINVAL;
3380
3381        return 0;
3382}
3383
3384static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3385{
3386        struct page *page;
3387        unsigned char *kaddr;
3388        struct f2fs_summary *summary;
3389        struct curseg_info *seg_i;
3390        int written_size = 0;
3391        int i, j;
3392
3393        page = f2fs_grab_meta_page(sbi, blkaddr++);
3394        kaddr = (unsigned char *)page_address(page);
3395        memset(kaddr, 0, PAGE_SIZE);
3396
3397        /* Step 1: write nat cache */
3398        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3399        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3400        written_size += SUM_JOURNAL_SIZE;
3401
3402        /* Step 2: write sit cache */
3403        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3404        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3405        written_size += SUM_JOURNAL_SIZE;
3406
3407        /* Step 3: write summary entries */
3408        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3409                unsigned short blkoff;
3410                seg_i = CURSEG_I(sbi, i);
3411                if (sbi->ckpt->alloc_type[i] == SSR)
3412                        blkoff = sbi->blocks_per_seg;
3413                else
3414                        blkoff = curseg_blkoff(sbi, i);
3415
3416                for (j = 0; j < blkoff; j++) {
3417                        if (!page) {
3418                                page = f2fs_grab_meta_page(sbi, blkaddr++);
3419                                kaddr = (unsigned char *)page_address(page);
3420                                memset(kaddr, 0, PAGE_SIZE);
3421                                written_size = 0;
3422                        }
3423                        summary = (struct f2fs_summary *)(kaddr + written_size);
3424                        *summary = seg_i->sum_blk->entries[j];
3425                        written_size += SUMMARY_SIZE;
3426
3427                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3428                                                        SUM_FOOTER_SIZE)
3429                                continue;
3430
3431                        set_page_dirty(page);
3432                        f2fs_put_page(page, 1);
3433                        page = NULL;
3434                }
3435        }
3436        if (page) {
3437                set_page_dirty(page);
3438                f2fs_put_page(page, 1);
3439        }
3440}
3441
3442static void write_normal_summaries(struct f2fs_sb_info *sbi,
3443                                        block_t blkaddr, int type)
3444{
3445        int i, end;
3446        if (IS_DATASEG(type))
3447                end = type + NR_CURSEG_DATA_TYPE;
3448        else
3449                end = type + NR_CURSEG_NODE_TYPE;
3450
3451        for (i = type; i < end; i++)
3452                write_current_sum_page(sbi, i, blkaddr + (i - type));
3453}
3454
3455void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3456{
3457        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3458                write_compacted_summaries(sbi, start_blk);
3459        else
3460                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3461}
3462
3463void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3464{
3465        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3466}
3467
3468int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3469                                        unsigned int val, int alloc)
3470{
3471        int i;
3472
3473        if (type == NAT_JOURNAL) {
3474                for (i = 0; i < nats_in_cursum(journal); i++) {
3475                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3476                                return i;
3477                }
3478                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3479                        return update_nats_in_cursum(journal, 1);
3480        } else if (type == SIT_JOURNAL) {
3481                for (i = 0; i < sits_in_cursum(journal); i++)
3482                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3483                                return i;
3484                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3485                        return update_sits_in_cursum(journal, 1);
3486        }
3487        return -1;
3488}
3489
3490static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3491                                        unsigned int segno)
3492{
3493        return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3494}
3495
3496static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3497                                        unsigned int start)
3498{
3499        struct sit_info *sit_i = SIT_I(sbi);
3500        struct page *page;
3501        pgoff_t src_off, dst_off;
3502
3503        src_off = current_sit_addr(sbi, start);
3504        dst_off = next_sit_addr(sbi, src_off);
3505
3506        page = f2fs_grab_meta_page(sbi, dst_off);
3507        seg_info_to_sit_page(sbi, page, start);
3508
3509        set_page_dirty(page);
3510        set_to_next_sit(sit_i, start);
3511
3512        return page;
3513}
3514
3515static struct sit_entry_set *grab_sit_entry_set(void)
3516{
3517        struct sit_entry_set *ses =
3518                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3519
3520        ses->entry_cnt = 0;
3521        INIT_LIST_HEAD(&ses->set_list);
3522        return ses;
3523}
3524
3525static void release_sit_entry_set(struct sit_entry_set *ses)
3526{
3527        list_del(&ses->set_list);
3528        kmem_cache_free(sit_entry_set_slab, ses);
3529}
3530
3531static void adjust_sit_entry_set(struct sit_entry_set *ses,
3532                                                struct list_head *head)
3533{
3534        struct sit_entry_set *next = ses;
3535
3536        if (list_is_last(&ses->set_list, head))
3537                return;
3538
3539        list_for_each_entry_continue(next, head, set_list)
3540                if (ses->entry_cnt <= next->entry_cnt)
3541                        break;
3542
3543        list_move_tail(&ses->set_list, &next->set_list);
3544}
3545
3546static void add_sit_entry(unsigned int segno, struct list_head *head)
3547{
3548        struct sit_entry_set *ses;
3549        unsigned int start_segno = START_SEGNO(segno);
3550
3551        list_for_each_entry(ses, head, set_list) {
3552                if (ses->start_segno == start_segno) {
3553                        ses->entry_cnt++;
3554                        adjust_sit_entry_set(ses, head);
3555                        return;
3556                }
3557        }
3558
3559        ses = grab_sit_entry_set();
3560
3561        ses->start_segno = start_segno;
3562        ses->entry_cnt++;
3563        list_add(&ses->set_list, head);
3564}
3565
3566static void add_sits_in_set(struct f2fs_sb_info *sbi)
3567{
3568        struct f2fs_sm_info *sm_info = SM_I(sbi);
3569        struct list_head *set_list = &sm_info->sit_entry_set;
3570        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3571        unsigned int segno;
3572
3573        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3574                add_sit_entry(segno, set_list);
3575}
3576
3577static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3578{
3579        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3580        struct f2fs_journal *journal = curseg->journal;
3581        int i;
3582
3583        down_write(&curseg->journal_rwsem);
3584        for (i = 0; i < sits_in_cursum(journal); i++) {
3585                unsigned int segno;
3586                bool dirtied;
3587
3588                segno = le32_to_cpu(segno_in_journal(journal, i));
3589                dirtied = __mark_sit_entry_dirty(sbi, segno);
3590
3591                if (!dirtied)
3592                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3593        }
3594        update_sits_in_cursum(journal, -i);
3595        up_write(&curseg->journal_rwsem);
3596}
3597
3598/*
3599 * CP calls this function, which flushes SIT entries including sit_journal,
3600 * and moves prefree segs to free segs.
3601 */
3602void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3603{
3604        struct sit_info *sit_i = SIT_I(sbi);
3605        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3606        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3607        struct f2fs_journal *journal = curseg->journal;
3608        struct sit_entry_set *ses, *tmp;
3609        struct list_head *head = &SM_I(sbi)->sit_entry_set;
3610        bool to_journal = true;
3611        struct seg_entry *se;
3612
3613        down_write(&sit_i->sentry_lock);
3614
3615        if (!sit_i->dirty_sentries)
3616                goto out;
3617
3618        /*
3619         * add and account sit entries of dirty bitmap in sit entry
3620         * set temporarily
3621         */
3622        add_sits_in_set(sbi);
3623
3624        /*
3625         * if there are no enough space in journal to store dirty sit
3626         * entries, remove all entries from journal and add and account
3627         * them in sit entry set.
3628         */
3629        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3630                remove_sits_in_journal(sbi);
3631
3632        /*
3633         * there are two steps to flush sit entries:
3634         * #1, flush sit entries to journal in current cold data summary block.
3635         * #2, flush sit entries to sit page.
3636         */
3637        list_for_each_entry_safe(ses, tmp, head, set_list) {
3638                struct page *page = NULL;
3639                struct f2fs_sit_block *raw_sit = NULL;
3640                unsigned int start_segno = ses->start_segno;
3641                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3642                                                (unsigned long)MAIN_SEGS(sbi));
3643                unsigned int segno = start_segno;
3644
3645                if (to_journal &&
3646                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3647                        to_journal = false;
3648
3649                if (to_journal) {
3650                        down_write(&curseg->journal_rwsem);
3651                } else {
3652                        page = get_next_sit_page(sbi, start_segno);
3653                        raw_sit = page_address(page);
3654                }
3655
3656                /* flush dirty sit entries in region of current sit set */
3657                for_each_set_bit_from(segno, bitmap, end) {
3658                        int offset, sit_offset;
3659
3660                        se = get_seg_entry(sbi, segno);
3661#ifdef CONFIG_F2FS_CHECK_FS
3662                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3663                                                SIT_VBLOCK_MAP_SIZE))
3664                                f2fs_bug_on(sbi, 1);
3665#endif
3666
3667                        /* add discard candidates */
3668                        if (!(cpc->reason & CP_DISCARD)) {
3669                                cpc->trim_start = segno;
3670                                add_discard_addrs(sbi, cpc, false);
3671                        }
3672
3673                        if (to_journal) {
3674                                offset = f2fs_lookup_journal_in_cursum(journal,
3675                                                        SIT_JOURNAL, segno, 1);
3676                                f2fs_bug_on(sbi, offset < 0);
3677                                segno_in_journal(journal, offset) =
3678                                                        cpu_to_le32(segno);
3679                                seg_info_to_raw_sit(se,
3680                                        &sit_in_journal(journal, offset));
3681                                check_block_count(sbi, segno,
3682                                        &sit_in_journal(journal, offset));
3683                        } else {
3684                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3685                                seg_info_to_raw_sit(se,
3686                                                &raw_sit->entries[sit_offset]);
3687                                check_block_count(sbi, segno,
3688                                                &raw_sit->entries[sit_offset]);
3689                        }
3690
3691                        __clear_bit(segno, bitmap);
3692                        sit_i->dirty_sentries--;
3693                        ses->entry_cnt--;
3694                }
3695
3696                if (to_journal)
3697                        up_write(&curseg->journal_rwsem);
3698                else
3699                        f2fs_put_page(page, 1);
3700
3701                f2fs_bug_on(sbi, ses->entry_cnt);
3702                release_sit_entry_set(ses);
3703        }
3704
3705        f2fs_bug_on(sbi, !list_empty(head));
3706        f2fs_bug_on(sbi, sit_i->dirty_sentries);
3707out:
3708        if (cpc->reason & CP_DISCARD) {
3709                __u64 trim_start = cpc->trim_start;
3710
3711                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3712                        add_discard_addrs(sbi, cpc, false);
3713
3714                cpc->trim_start = trim_start;
3715        }
3716        up_write(&sit_i->sentry_lock);
3717
3718        set_prefree_as_free_segments(sbi);
3719}
3720
3721static int build_sit_info(struct f2fs_sb_info *sbi)
3722{
3723        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3724        struct sit_info *sit_i;
3725        unsigned int sit_segs, start;
3726        char *src_bitmap;
3727        unsigned int bitmap_size;
3728
3729        /* allocate memory for SIT information */
3730        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3731        if (!sit_i)
3732                return -ENOMEM;
3733
3734        SM_I(sbi)->sit_info = sit_i;
3735
3736        sit_i->sentries =
3737                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3738                                              MAIN_SEGS(sbi)),
3739                              GFP_KERNEL);
3740        if (!sit_i->sentries)
3741                return -ENOMEM;
3742
3743        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3744        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3745                                                                GFP_KERNEL);
3746        if (!sit_i->dirty_sentries_bitmap)
3747                return -ENOMEM;
3748
3749        for (start = 0; start < MAIN_SEGS(sbi); start++) {
3750                sit_i->sentries[start].cur_valid_map
3751                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3752                sit_i->sentries[start].ckpt_valid_map
3753                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3754                if (!sit_i->sentries[start].cur_valid_map ||
3755                                !sit_i->sentries[start].ckpt_valid_map)
3756                        return -ENOMEM;
3757
3758#ifdef CONFIG_F2FS_CHECK_FS
3759                sit_i->sentries[start].cur_valid_map_mir
3760                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3761                if (!sit_i->sentries[start].cur_valid_map_mir)
3762                        return -ENOMEM;
3763#endif
3764
3765                if (f2fs_discard_en(sbi)) {
3766                        sit_i->sentries[start].discard_map
3767                                = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3768                                                                GFP_KERNEL);
3769                        if (!sit_i->sentries[start].discard_map)
3770                                return -ENOMEM;
3771                }
3772        }
3773
3774        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3775        if (!sit_i->tmp_map)
3776                return -ENOMEM;
3777
3778        if (sbi->segs_per_sec > 1) {
3779                sit_i->sec_entries =
3780                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3781                                                      MAIN_SECS(sbi)),
3782                                      GFP_KERNEL);
3783                if (!sit_i->sec_entries)
3784                        return -ENOMEM;
3785        }
3786
3787        /* get information related with SIT */
3788        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3789
3790        /* setup SIT bitmap from ckeckpoint pack */
3791        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3792        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3793
3794        sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3795        if (!sit_i->sit_bitmap)
3796                return -ENOMEM;
3797
3798#ifdef CONFIG_F2FS_CHECK_FS
3799        sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3800        if (!sit_i->sit_bitmap_mir)
3801                return -ENOMEM;
3802#endif
3803
3804        /* init SIT information */
3805        sit_i->s_ops = &default_salloc_ops;
3806
3807        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3808        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3809        sit_i->written_valid_blocks = 0;
3810        sit_i->bitmap_size = bitmap_size;
3811        sit_i->dirty_sentries = 0;
3812        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3813        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3814        sit_i->mounted_time = ktime_get_real_seconds();
3815        init_rwsem(&sit_i->sentry_lock);
3816        return 0;
3817}
3818
3819static int build_free_segmap(struct f2fs_sb_info *sbi)
3820{
3821        struct free_segmap_info *free_i;
3822        unsigned int bitmap_size, sec_bitmap_size;
3823
3824        /* allocate memory for free segmap information */
3825        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3826        if (!free_i)
3827                return -ENOMEM;
3828
3829        SM_I(sbi)->free_info = free_i;
3830
3831        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3832        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3833        if (!free_i->free_segmap)
3834                return -ENOMEM;
3835
3836        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3837        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3838        if (!free_i->free_secmap)
3839                return -ENOMEM;
3840
3841        /* set all segments as dirty temporarily */
3842        memset(free_i->free_segmap, 0xff, bitmap_size);
3843        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3844
3845        /* init free segmap information */
3846        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3847        free_i->free_segments = 0;
3848        free_i->free_sections = 0;
3849        spin_lock_init(&free_i->segmap_lock);
3850        return 0;
3851}
3852
3853static int build_curseg(struct f2fs_sb_info *sbi)
3854{
3855        struct curseg_info *array;
3856        int i;
3857
3858        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3859                             GFP_KERNEL);
3860        if (!array)
3861                return -ENOMEM;
3862
3863        SM_I(sbi)->curseg_array = array;
3864
3865        for (i = 0; i < NR_CURSEG_TYPE; i++) {
3866                mutex_init(&array[i].curseg_mutex);
3867                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3868                if (!array[i].sum_blk)
3869                        return -ENOMEM;
3870                init_rwsem(&array[i].journal_rwsem);
3871                array[i].journal = f2fs_kzalloc(sbi,
3872                                sizeof(struct f2fs_journal), GFP_KERNEL);
3873                if (!array[i].journal)
3874                        return -ENOMEM;
3875                array[i].segno = NULL_SEGNO;
3876                array[i].next_blkoff = 0;
3877        }
3878        return restore_curseg_summaries(sbi);
3879}
3880
3881static int build_sit_entries(struct f2fs_sb_info *sbi)
3882{
3883        struct sit_info *sit_i = SIT_I(sbi);
3884        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3885        struct f2fs_journal *journal = curseg->journal;
3886        struct seg_entry *se;
3887        struct f2fs_sit_entry sit;
3888        int sit_blk_cnt = SIT_BLK_CNT(sbi);
3889        unsigned int i, start, end;
3890        unsigned int readed, start_blk = 0;
3891        int err = 0;
3892        block_t total_node_blocks = 0;
3893
3894        do {
3895                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3896                                                        META_SIT, true);
3897
3898                start = start_blk * sit_i->sents_per_block;
3899                end = (start_blk + readed) * sit_i->sents_per_block;
3900
3901                for (; start < end && start < MAIN_SEGS(sbi); start++) {
3902                        struct f2fs_sit_block *sit_blk;
3903                        struct page *page;
3904
3905                        se = &sit_i->sentries[start];
3906                        page = get_current_sit_page(sbi, start);
3907                        sit_blk = (struct f2fs_sit_block *)page_address(page);
3908                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3909                        f2fs_put_page(page, 1);
3910
3911                        err = check_block_count(sbi, start, &sit);
3912                        if (err)
3913                                return err;
3914                        seg_info_from_raw_sit(se, &sit);
3915                        if (IS_NODESEG(se->type))
3916                                total_node_blocks += se->valid_blocks;
3917
3918                        /* build discard map only one time */
3919                        if (f2fs_discard_en(sbi)) {
3920                                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3921                                        memset(se->discard_map, 0xff,
3922                                                SIT_VBLOCK_MAP_SIZE);
3923                                } else {
3924                                        memcpy(se->discard_map,
3925                                                se->cur_valid_map,
3926                                                SIT_VBLOCK_MAP_SIZE);
3927                                        sbi->discard_blks +=
3928                                                sbi->blocks_per_seg -
3929                                                se->valid_blocks;
3930                                }
3931                        }
3932
3933                        if (sbi->segs_per_sec > 1)
3934                                get_sec_entry(sbi, start)->valid_blocks +=
3935                                                        se->valid_blocks;
3936                }
3937                start_blk += readed;
3938        } while (start_blk < sit_blk_cnt);
3939
3940        down_read(&curseg->journal_rwsem);
3941        for (i = 0; i < sits_in_cursum(journal); i++) {
3942                unsigned int old_valid_blocks;
3943
3944                start = le32_to_cpu(segno_in_journal(journal, i));
3945                if (start >= MAIN_SEGS(sbi)) {
3946                        f2fs_msg(sbi->sb, KERN_ERR,
3947                                        "Wrong journal entry on segno %u",
3948                                        start);
3949                        set_sbi_flag(sbi, SBI_NEED_FSCK);
3950                        err = -EINVAL;
3951                        break;
3952                }
3953
3954                se = &sit_i->sentries[start];
3955                sit = sit_in_journal(journal, i);
3956
3957                old_valid_blocks = se->valid_blocks;
3958                if (IS_NODESEG(se->type))
3959                        total_node_blocks -= old_valid_blocks;
3960
3961                err = check_block_count(sbi, start, &sit);
3962                if (err)
3963                        break;
3964                seg_info_from_raw_sit(se, &sit);
3965                if (IS_NODESEG(se->type))
3966                        total_node_blocks += se->valid_blocks;
3967
3968                if (f2fs_discard_en(sbi)) {
3969                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3970                                memset(se->discard_map, 0xff,
3971                                                        SIT_VBLOCK_MAP_SIZE);
3972                        } else {
3973                                memcpy(se->discard_map, se->cur_valid_map,
3974                                                        SIT_VBLOCK_MAP_SIZE);
3975                                sbi->discard_blks += old_valid_blocks;
3976                                sbi->discard_blks -= se->valid_blocks;
3977                        }
3978                }
3979
3980                if (sbi->segs_per_sec > 1) {
3981                        get_sec_entry(sbi, start)->valid_blocks +=
3982                                                        se->valid_blocks;
3983                        get_sec_entry(sbi, start)->valid_blocks -=
3984                                                        old_valid_blocks;
3985                }
3986        }
3987        up_read(&curseg->journal_rwsem);
3988
3989        if (!err && total_node_blocks != valid_node_count(sbi)) {
3990                f2fs_msg(sbi->sb, KERN_ERR,
3991                        "SIT is corrupted node# %u vs %u",
3992                        total_node_blocks, valid_node_count(sbi));
3993                set_sbi_flag(sbi, SBI_NEED_FSCK);
3994                err = -EINVAL;
3995        }
3996
3997        return err;
3998}
3999
4000static void init_free_segmap(struct f2fs_sb_info *sbi)
4001{
4002        unsigned int start;
4003        int type;
4004
4005        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4006                struct seg_entry *sentry = get_seg_entry(sbi, start);
4007                if (!sentry->valid_blocks)
4008                        __set_free(sbi, start);
4009                else
4010                        SIT_I(sbi)->written_valid_blocks +=
4011                                                sentry->valid_blocks;
4012        }
4013
4014        /* set use the current segments */
4015        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4016                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4017                __set_test_and_inuse(sbi, curseg_t->segno);
4018        }
4019}
4020
4021static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4022{
4023        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4024        struct free_segmap_info *free_i = FREE_I(sbi);
4025        unsigned int segno = 0, offset = 0;
4026        unsigned short valid_blocks;
4027
4028        while (1) {
4029                /* find dirty segment based on free segmap */
4030                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4031                if (segno >= MAIN_SEGS(sbi))
4032                        break;
4033                offset = segno + 1;
4034                valid_blocks = get_valid_blocks(sbi, segno, false);
4035                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4036                        continue;
4037                if (valid_blocks > sbi->blocks_per_seg) {
4038                        f2fs_bug_on(sbi, 1);
4039                        continue;
4040                }
4041                mutex_lock(&dirty_i->seglist_lock);
4042                __locate_dirty_segment(sbi, segno, DIRTY);
4043                mutex_unlock(&dirty_i->seglist_lock);
4044        }
4045}
4046
4047static int init_victim_secmap(struct f2fs_sb_info *sbi)
4048{
4049        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4050        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4051
4052        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4053        if (!dirty_i->victim_secmap)
4054                return -ENOMEM;
4055        return 0;
4056}
4057
4058static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4059{
4060        struct dirty_seglist_info *dirty_i;
4061        unsigned int bitmap_size, i;
4062
4063        /* allocate memory for dirty segments list information */
4064        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4065                                                                GFP_KERNEL);
4066        if (!dirty_i)
4067                return -ENOMEM;
4068
4069        SM_I(sbi)->dirty_info = dirty_i;
4070        mutex_init(&dirty_i->seglist_lock);
4071
4072        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4073
4074        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4075                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4076                                                                GFP_KERNEL);
4077                if (!dirty_i->dirty_segmap[i])
4078                        return -ENOMEM;
4079        }
4080
4081        init_dirty_segmap(sbi);
4082        return init_victim_secmap(sbi);
4083}
4084
4085/*
4086 * Update min, max modified time for cost-benefit GC algorithm
4087 */
4088static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4089{
4090        struct sit_info *sit_i = SIT_I(sbi);
4091        unsigned int segno;
4092
4093        down_write(&sit_i->sentry_lock);
4094
4095        sit_i->min_mtime = ULLONG_MAX;
4096
4097        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4098                unsigned int i;
4099                unsigned long long mtime = 0;
4100
4101                for (i = 0; i < sbi->segs_per_sec; i++)
4102                        mtime += get_seg_entry(sbi, segno + i)->mtime;
4103
4104                mtime = div_u64(mtime, sbi->segs_per_sec);
4105
4106                if (sit_i->min_mtime > mtime)
4107                        sit_i->min_mtime = mtime;
4108        }
4109        sit_i->max_mtime = get_mtime(sbi, false);
4110        up_write(&sit_i->sentry_lock);
4111}
4112
4113int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4114{
4115        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4116        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4117        struct f2fs_sm_info *sm_info;
4118        int err;
4119
4120        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4121        if (!sm_info)
4122                return -ENOMEM;
4123
4124        /* init sm info */
4125        sbi->sm_info = sm_info;
4126        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4127        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4128        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4129        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4130        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4131        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4132        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4133        sm_info->rec_prefree_segments = sm_info->main_segments *
4134                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4135        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4136                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4137
4138        if (!test_opt(sbi, LFS))
4139                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4140        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4141        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4142        sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4143        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4144        sm_info->min_ssr_sections = reserved_sections(sbi);
4145
4146        INIT_LIST_HEAD(&sm_info->sit_entry_set);
4147
4148        init_rwsem(&sm_info->curseg_lock);
4149
4150        if (!f2fs_readonly(sbi->sb)) {
4151                err = f2fs_create_flush_cmd_control(sbi);
4152                if (err)
4153                        return err;
4154        }
4155
4156        err = create_discard_cmd_control(sbi);
4157        if (err)
4158                return err;
4159
4160        err = build_sit_info(sbi);
4161        if (err)
4162                return err;
4163        err = build_free_segmap(sbi);
4164        if (err)
4165                return err;
4166        err = build_curseg(sbi);
4167        if (err)
4168                return err;
4169
4170        /* reinit free segmap based on SIT */
4171        err = build_sit_entries(sbi);
4172        if (err)
4173                return err;
4174
4175        init_free_segmap(sbi);
4176        err = build_dirty_segmap(sbi);
4177        if (err)
4178                return err;
4179
4180        init_min_max_mtime(sbi);
4181        return 0;
4182}
4183
4184static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4185                enum dirty_type dirty_type)
4186{
4187        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4188
4189        mutex_lock(&dirty_i->seglist_lock);
4190        kvfree(dirty_i->dirty_segmap[dirty_type]);
4191        dirty_i->nr_dirty[dirty_type] = 0;
4192        mutex_unlock(&dirty_i->seglist_lock);
4193}
4194
4195static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4196{
4197        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4198        kvfree(dirty_i->victim_secmap);
4199}
4200
4201static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4202{
4203        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4204        int i;
4205
4206        if (!dirty_i)
4207                return;
4208
4209        /* discard pre-free/dirty segments list */
4210        for (i = 0; i < NR_DIRTY_TYPE; i++)
4211                discard_dirty_segmap(sbi, i);
4212
4213        destroy_victim_secmap(sbi);
4214        SM_I(sbi)->dirty_info = NULL;
4215        kfree(dirty_i);
4216}
4217
4218static void destroy_curseg(struct f2fs_sb_info *sbi)
4219{
4220        struct curseg_info *array = SM_I(sbi)->curseg_array;
4221        int i;
4222
4223        if (!array)
4224                return;
4225        SM_I(sbi)->curseg_array = NULL;
4226        for (i = 0; i < NR_CURSEG_TYPE; i++) {
4227                kfree(array[i].sum_blk);
4228                kfree(array[i].journal);
4229        }
4230        kfree(array);
4231}
4232
4233static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4234{
4235        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4236        if (!free_i)
4237                return;
4238        SM_I(sbi)->free_info = NULL;
4239        kvfree(free_i->free_segmap);
4240        kvfree(free_i->free_secmap);
4241        kfree(free_i);
4242}
4243
4244static void destroy_sit_info(struct f2fs_sb_info *sbi)
4245{
4246        struct sit_info *sit_i = SIT_I(sbi);
4247        unsigned int start;
4248
4249        if (!sit_i)
4250                return;
4251
4252        if (sit_i->sentries) {
4253                for (start = 0; start < MAIN_SEGS(sbi); start++) {
4254                        kfree(sit_i->sentries[start].cur_valid_map);
4255#ifdef CONFIG_F2FS_CHECK_FS
4256                        kfree(sit_i->sentries[start].cur_valid_map_mir);
4257#endif
4258                        kfree(sit_i->sentries[start].ckpt_valid_map);
4259                        kfree(sit_i->sentries[start].discard_map);
4260                }
4261        }
4262        kfree(sit_i->tmp_map);
4263
4264        kvfree(sit_i->sentries);
4265        kvfree(sit_i->sec_entries);
4266        kvfree(sit_i->dirty_sentries_bitmap);
4267
4268        SM_I(sbi)->sit_info = NULL;
4269        kfree(sit_i->sit_bitmap);
4270#ifdef CONFIG_F2FS_CHECK_FS
4271        kfree(sit_i->sit_bitmap_mir);
4272#endif
4273        kfree(sit_i);
4274}
4275
4276void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4277{
4278        struct f2fs_sm_info *sm_info = SM_I(sbi);
4279
4280        if (!sm_info)
4281                return;
4282        f2fs_destroy_flush_cmd_control(sbi, true);
4283        destroy_discard_cmd_control(sbi);
4284        destroy_dirty_segmap(sbi);
4285        destroy_curseg(sbi);
4286        destroy_free_segmap(sbi);
4287        destroy_sit_info(sbi);
4288        sbi->sm_info = NULL;
4289        kfree(sm_info);
4290}
4291
4292int __init f2fs_create_segment_manager_caches(void)
4293{
4294        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4295                        sizeof(struct discard_entry));
4296        if (!discard_entry_slab)
4297                goto fail;
4298
4299        discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4300                        sizeof(struct discard_cmd));
4301        if (!discard_cmd_slab)
4302                goto destroy_discard_entry;
4303
4304        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4305                        sizeof(struct sit_entry_set));
4306        if (!sit_entry_set_slab)
4307                goto destroy_discard_cmd;
4308
4309        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4310                        sizeof(struct inmem_pages));
4311        if (!inmem_entry_slab)
4312                goto destroy_sit_entry_set;
4313        return 0;
4314
4315destroy_sit_entry_set:
4316        kmem_cache_destroy(sit_entry_set_slab);
4317destroy_discard_cmd:
4318        kmem_cache_destroy(discard_cmd_slab);
4319destroy_discard_entry:
4320        kmem_cache_destroy(discard_entry_slab);
4321fail:
4322        return -ENOMEM;
4323}
4324
4325void f2fs_destroy_segment_manager_caches(void)
4326{
4327        kmem_cache_destroy(sit_entry_set_slab);
4328        kmem_cache_destroy(discard_cmd_slab);
4329        kmem_cache_destroy(discard_entry_slab);
4330        kmem_cache_destroy(inmem_entry_slab);
4331}
4332