linux/fs/jbd2/journal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/journal.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem journal-writing code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages journals: areas of disk reserved for logging
  13 * transactional updates.  This includes the kernel journaling thread
  14 * which is responsible for scheduling updates to the log.
  15 *
  16 * We do not actually manage the physical storage of the journal in this
  17 * file: that is left to a per-journal policy function, which allows us
  18 * to store the journal within a filesystem-specified area for ext2
  19 * journaling (ext2 can use a reserved inode for storing the log).
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/fs.h>
  25#include <linux/jbd2.h>
  26#include <linux/errno.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/mm.h>
  30#include <linux/freezer.h>
  31#include <linux/pagemap.h>
  32#include <linux/kthread.h>
  33#include <linux/poison.h>
  34#include <linux/proc_fs.h>
  35#include <linux/seq_file.h>
  36#include <linux/math64.h>
  37#include <linux/hash.h>
  38#include <linux/log2.h>
  39#include <linux/vmalloc.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bitops.h>
  42#include <linux/ratelimit.h>
  43#include <linux/sched/mm.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/jbd2.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/page.h>
  50
  51#ifdef CONFIG_JBD2_DEBUG
  52ushort jbd2_journal_enable_debug __read_mostly;
  53EXPORT_SYMBOL(jbd2_journal_enable_debug);
  54
  55module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  56MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  57#endif
  58
  59EXPORT_SYMBOL(jbd2_journal_extend);
  60EXPORT_SYMBOL(jbd2_journal_stop);
  61EXPORT_SYMBOL(jbd2_journal_lock_updates);
  62EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  63EXPORT_SYMBOL(jbd2_journal_get_write_access);
  64EXPORT_SYMBOL(jbd2_journal_get_create_access);
  65EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  66EXPORT_SYMBOL(jbd2_journal_set_triggers);
  67EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  68EXPORT_SYMBOL(jbd2_journal_forget);
  69#if 0
  70EXPORT_SYMBOL(journal_sync_buffer);
  71#endif
  72EXPORT_SYMBOL(jbd2_journal_flush);
  73EXPORT_SYMBOL(jbd2_journal_revoke);
  74
  75EXPORT_SYMBOL(jbd2_journal_init_dev);
  76EXPORT_SYMBOL(jbd2_journal_init_inode);
  77EXPORT_SYMBOL(jbd2_journal_check_used_features);
  78EXPORT_SYMBOL(jbd2_journal_check_available_features);
  79EXPORT_SYMBOL(jbd2_journal_set_features);
  80EXPORT_SYMBOL(jbd2_journal_load);
  81EXPORT_SYMBOL(jbd2_journal_destroy);
  82EXPORT_SYMBOL(jbd2_journal_abort);
  83EXPORT_SYMBOL(jbd2_journal_errno);
  84EXPORT_SYMBOL(jbd2_journal_ack_err);
  85EXPORT_SYMBOL(jbd2_journal_clear_err);
  86EXPORT_SYMBOL(jbd2_log_wait_commit);
  87EXPORT_SYMBOL(jbd2_log_start_commit);
  88EXPORT_SYMBOL(jbd2_journal_start_commit);
  89EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  90EXPORT_SYMBOL(jbd2_journal_wipe);
  91EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  92EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  93EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  94EXPORT_SYMBOL(jbd2_journal_force_commit);
  95EXPORT_SYMBOL(jbd2_journal_inode_add_write);
  96EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
  97EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  98EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
  99EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
 100EXPORT_SYMBOL(jbd2_inode_cache);
 101
 102static void __journal_abort_soft (journal_t *journal, int errno);
 103static int jbd2_journal_create_slab(size_t slab_size);
 104
 105#ifdef CONFIG_JBD2_DEBUG
 106void __jbd2_debug(int level, const char *file, const char *func,
 107                  unsigned int line, const char *fmt, ...)
 108{
 109        struct va_format vaf;
 110        va_list args;
 111
 112        if (level > jbd2_journal_enable_debug)
 113                return;
 114        va_start(args, fmt);
 115        vaf.fmt = fmt;
 116        vaf.va = &args;
 117        printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
 118        va_end(args);
 119}
 120EXPORT_SYMBOL(__jbd2_debug);
 121#endif
 122
 123/* Checksumming functions */
 124static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 125{
 126        if (!jbd2_journal_has_csum_v2or3_feature(j))
 127                return 1;
 128
 129        return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 130}
 131
 132static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 133{
 134        __u32 csum;
 135        __be32 old_csum;
 136
 137        old_csum = sb->s_checksum;
 138        sb->s_checksum = 0;
 139        csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 140        sb->s_checksum = old_csum;
 141
 142        return cpu_to_be32(csum);
 143}
 144
 145static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
 146{
 147        if (!jbd2_journal_has_csum_v2or3(j))
 148                return 1;
 149
 150        return sb->s_checksum == jbd2_superblock_csum(j, sb);
 151}
 152
 153static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
 154{
 155        if (!jbd2_journal_has_csum_v2or3(j))
 156                return;
 157
 158        sb->s_checksum = jbd2_superblock_csum(j, sb);
 159}
 160
 161/*
 162 * Helper function used to manage commit timeouts
 163 */
 164
 165static void commit_timeout(struct timer_list *t)
 166{
 167        journal_t *journal = from_timer(journal, t, j_commit_timer);
 168
 169        wake_up_process(journal->j_task);
 170}
 171
 172/*
 173 * kjournald2: The main thread function used to manage a logging device
 174 * journal.
 175 *
 176 * This kernel thread is responsible for two things:
 177 *
 178 * 1) COMMIT:  Every so often we need to commit the current state of the
 179 *    filesystem to disk.  The journal thread is responsible for writing
 180 *    all of the metadata buffers to disk.
 181 *
 182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 183 *    of the data in that part of the log has been rewritten elsewhere on
 184 *    the disk.  Flushing these old buffers to reclaim space in the log is
 185 *    known as checkpointing, and this thread is responsible for that job.
 186 */
 187
 188static int kjournald2(void *arg)
 189{
 190        journal_t *journal = arg;
 191        transaction_t *transaction;
 192
 193        /*
 194         * Set up an interval timer which can be used to trigger a commit wakeup
 195         * after the commit interval expires
 196         */
 197        timer_setup(&journal->j_commit_timer, commit_timeout, 0);
 198
 199        set_freezable();
 200
 201        /* Record that the journal thread is running */
 202        journal->j_task = current;
 203        wake_up(&journal->j_wait_done_commit);
 204
 205        /*
 206         * Make sure that no allocations from this kernel thread will ever
 207         * recurse to the fs layer because we are responsible for the
 208         * transaction commit and any fs involvement might get stuck waiting for
 209         * the trasn. commit.
 210         */
 211        memalloc_nofs_save();
 212
 213        /*
 214         * And now, wait forever for commit wakeup events.
 215         */
 216        write_lock(&journal->j_state_lock);
 217
 218loop:
 219        if (journal->j_flags & JBD2_UNMOUNT)
 220                goto end_loop;
 221
 222        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 223                journal->j_commit_sequence, journal->j_commit_request);
 224
 225        if (journal->j_commit_sequence != journal->j_commit_request) {
 226                jbd_debug(1, "OK, requests differ\n");
 227                write_unlock(&journal->j_state_lock);
 228                del_timer_sync(&journal->j_commit_timer);
 229                jbd2_journal_commit_transaction(journal);
 230                write_lock(&journal->j_state_lock);
 231                goto loop;
 232        }
 233
 234        wake_up(&journal->j_wait_done_commit);
 235        if (freezing(current)) {
 236                /*
 237                 * The simpler the better. Flushing journal isn't a
 238                 * good idea, because that depends on threads that may
 239                 * be already stopped.
 240                 */
 241                jbd_debug(1, "Now suspending kjournald2\n");
 242                write_unlock(&journal->j_state_lock);
 243                try_to_freeze();
 244                write_lock(&journal->j_state_lock);
 245        } else {
 246                /*
 247                 * We assume on resume that commits are already there,
 248                 * so we don't sleep
 249                 */
 250                DEFINE_WAIT(wait);
 251                int should_sleep = 1;
 252
 253                prepare_to_wait(&journal->j_wait_commit, &wait,
 254                                TASK_INTERRUPTIBLE);
 255                if (journal->j_commit_sequence != journal->j_commit_request)
 256                        should_sleep = 0;
 257                transaction = journal->j_running_transaction;
 258                if (transaction && time_after_eq(jiffies,
 259                                                transaction->t_expires))
 260                        should_sleep = 0;
 261                if (journal->j_flags & JBD2_UNMOUNT)
 262                        should_sleep = 0;
 263                if (should_sleep) {
 264                        write_unlock(&journal->j_state_lock);
 265                        schedule();
 266                        write_lock(&journal->j_state_lock);
 267                }
 268                finish_wait(&journal->j_wait_commit, &wait);
 269        }
 270
 271        jbd_debug(1, "kjournald2 wakes\n");
 272
 273        /*
 274         * Were we woken up by a commit wakeup event?
 275         */
 276        transaction = journal->j_running_transaction;
 277        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 278                journal->j_commit_request = transaction->t_tid;
 279                jbd_debug(1, "woke because of timeout\n");
 280        }
 281        goto loop;
 282
 283end_loop:
 284        del_timer_sync(&journal->j_commit_timer);
 285        journal->j_task = NULL;
 286        wake_up(&journal->j_wait_done_commit);
 287        jbd_debug(1, "Journal thread exiting.\n");
 288        write_unlock(&journal->j_state_lock);
 289        return 0;
 290}
 291
 292static int jbd2_journal_start_thread(journal_t *journal)
 293{
 294        struct task_struct *t;
 295
 296        t = kthread_run(kjournald2, journal, "jbd2/%s",
 297                        journal->j_devname);
 298        if (IS_ERR(t))
 299                return PTR_ERR(t);
 300
 301        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 302        return 0;
 303}
 304
 305static void journal_kill_thread(journal_t *journal)
 306{
 307        write_lock(&journal->j_state_lock);
 308        journal->j_flags |= JBD2_UNMOUNT;
 309
 310        while (journal->j_task) {
 311                write_unlock(&journal->j_state_lock);
 312                wake_up(&journal->j_wait_commit);
 313                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 314                write_lock(&journal->j_state_lock);
 315        }
 316        write_unlock(&journal->j_state_lock);
 317}
 318
 319/*
 320 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 321 *
 322 * Writes a metadata buffer to a given disk block.  The actual IO is not
 323 * performed but a new buffer_head is constructed which labels the data
 324 * to be written with the correct destination disk block.
 325 *
 326 * Any magic-number escaping which needs to be done will cause a
 327 * copy-out here.  If the buffer happens to start with the
 328 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 329 * magic number is only written to the log for descripter blocks.  In
 330 * this case, we copy the data and replace the first word with 0, and we
 331 * return a result code which indicates that this buffer needs to be
 332 * marked as an escaped buffer in the corresponding log descriptor
 333 * block.  The missing word can then be restored when the block is read
 334 * during recovery.
 335 *
 336 * If the source buffer has already been modified by a new transaction
 337 * since we took the last commit snapshot, we use the frozen copy of
 338 * that data for IO. If we end up using the existing buffer_head's data
 339 * for the write, then we have to make sure nobody modifies it while the
 340 * IO is in progress. do_get_write_access() handles this.
 341 *
 342 * The function returns a pointer to the buffer_head to be used for IO.
 343 * 
 344 *
 345 * Return value:
 346 *  <0: Error
 347 * >=0: Finished OK
 348 *
 349 * On success:
 350 * Bit 0 set == escape performed on the data
 351 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 352 */
 353
 354int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 355                                  struct journal_head  *jh_in,
 356                                  struct buffer_head **bh_out,
 357                                  sector_t blocknr)
 358{
 359        int need_copy_out = 0;
 360        int done_copy_out = 0;
 361        int do_escape = 0;
 362        char *mapped_data;
 363        struct buffer_head *new_bh;
 364        struct page *new_page;
 365        unsigned int new_offset;
 366        struct buffer_head *bh_in = jh2bh(jh_in);
 367        journal_t *journal = transaction->t_journal;
 368
 369        /*
 370         * The buffer really shouldn't be locked: only the current committing
 371         * transaction is allowed to write it, so nobody else is allowed
 372         * to do any IO.
 373         *
 374         * akpm: except if we're journalling data, and write() output is
 375         * also part of a shared mapping, and another thread has
 376         * decided to launch a writepage() against this buffer.
 377         */
 378        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 379
 380        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 381
 382        /* keep subsequent assertions sane */
 383        atomic_set(&new_bh->b_count, 1);
 384
 385        jbd_lock_bh_state(bh_in);
 386repeat:
 387        /*
 388         * If a new transaction has already done a buffer copy-out, then
 389         * we use that version of the data for the commit.
 390         */
 391        if (jh_in->b_frozen_data) {
 392                done_copy_out = 1;
 393                new_page = virt_to_page(jh_in->b_frozen_data);
 394                new_offset = offset_in_page(jh_in->b_frozen_data);
 395        } else {
 396                new_page = jh2bh(jh_in)->b_page;
 397                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 398        }
 399
 400        mapped_data = kmap_atomic(new_page);
 401        /*
 402         * Fire data frozen trigger if data already wasn't frozen.  Do this
 403         * before checking for escaping, as the trigger may modify the magic
 404         * offset.  If a copy-out happens afterwards, it will have the correct
 405         * data in the buffer.
 406         */
 407        if (!done_copy_out)
 408                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 409                                           jh_in->b_triggers);
 410
 411        /*
 412         * Check for escaping
 413         */
 414        if (*((__be32 *)(mapped_data + new_offset)) ==
 415                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 416                need_copy_out = 1;
 417                do_escape = 1;
 418        }
 419        kunmap_atomic(mapped_data);
 420
 421        /*
 422         * Do we need to do a data copy?
 423         */
 424        if (need_copy_out && !done_copy_out) {
 425                char *tmp;
 426
 427                jbd_unlock_bh_state(bh_in);
 428                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 429                if (!tmp) {
 430                        brelse(new_bh);
 431                        return -ENOMEM;
 432                }
 433                jbd_lock_bh_state(bh_in);
 434                if (jh_in->b_frozen_data) {
 435                        jbd2_free(tmp, bh_in->b_size);
 436                        goto repeat;
 437                }
 438
 439                jh_in->b_frozen_data = tmp;
 440                mapped_data = kmap_atomic(new_page);
 441                memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 442                kunmap_atomic(mapped_data);
 443
 444                new_page = virt_to_page(tmp);
 445                new_offset = offset_in_page(tmp);
 446                done_copy_out = 1;
 447
 448                /*
 449                 * This isn't strictly necessary, as we're using frozen
 450                 * data for the escaping, but it keeps consistency with
 451                 * b_frozen_data usage.
 452                 */
 453                jh_in->b_frozen_triggers = jh_in->b_triggers;
 454        }
 455
 456        /*
 457         * Did we need to do an escaping?  Now we've done all the
 458         * copying, we can finally do so.
 459         */
 460        if (do_escape) {
 461                mapped_data = kmap_atomic(new_page);
 462                *((unsigned int *)(mapped_data + new_offset)) = 0;
 463                kunmap_atomic(mapped_data);
 464        }
 465
 466        set_bh_page(new_bh, new_page, new_offset);
 467        new_bh->b_size = bh_in->b_size;
 468        new_bh->b_bdev = journal->j_dev;
 469        new_bh->b_blocknr = blocknr;
 470        new_bh->b_private = bh_in;
 471        set_buffer_mapped(new_bh);
 472        set_buffer_dirty(new_bh);
 473
 474        *bh_out = new_bh;
 475
 476        /*
 477         * The to-be-written buffer needs to get moved to the io queue,
 478         * and the original buffer whose contents we are shadowing or
 479         * copying is moved to the transaction's shadow queue.
 480         */
 481        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 482        spin_lock(&journal->j_list_lock);
 483        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 484        spin_unlock(&journal->j_list_lock);
 485        set_buffer_shadow(bh_in);
 486        jbd_unlock_bh_state(bh_in);
 487
 488        return do_escape | (done_copy_out << 1);
 489}
 490
 491/*
 492 * Allocation code for the journal file.  Manage the space left in the
 493 * journal, so that we can begin checkpointing when appropriate.
 494 */
 495
 496/*
 497 * Called with j_state_lock locked for writing.
 498 * Returns true if a transaction commit was started.
 499 */
 500int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 501{
 502        /* Return if the txn has already requested to be committed */
 503        if (journal->j_commit_request == target)
 504                return 0;
 505
 506        /*
 507         * The only transaction we can possibly wait upon is the
 508         * currently running transaction (if it exists).  Otherwise,
 509         * the target tid must be an old one.
 510         */
 511        if (journal->j_running_transaction &&
 512            journal->j_running_transaction->t_tid == target) {
 513                /*
 514                 * We want a new commit: OK, mark the request and wakeup the
 515                 * commit thread.  We do _not_ do the commit ourselves.
 516                 */
 517
 518                journal->j_commit_request = target;
 519                jbd_debug(1, "JBD2: requesting commit %d/%d\n",
 520                          journal->j_commit_request,
 521                          journal->j_commit_sequence);
 522                journal->j_running_transaction->t_requested = jiffies;
 523                wake_up(&journal->j_wait_commit);
 524                return 1;
 525        } else if (!tid_geq(journal->j_commit_request, target))
 526                /* This should never happen, but if it does, preserve
 527                   the evidence before kjournald goes into a loop and
 528                   increments j_commit_sequence beyond all recognition. */
 529                WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 530                          journal->j_commit_request,
 531                          journal->j_commit_sequence,
 532                          target, journal->j_running_transaction ? 
 533                          journal->j_running_transaction->t_tid : 0);
 534        return 0;
 535}
 536
 537int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 538{
 539        int ret;
 540
 541        write_lock(&journal->j_state_lock);
 542        ret = __jbd2_log_start_commit(journal, tid);
 543        write_unlock(&journal->j_state_lock);
 544        return ret;
 545}
 546
 547/*
 548 * Force and wait any uncommitted transactions.  We can only force the running
 549 * transaction if we don't have an active handle, otherwise, we will deadlock.
 550 * Returns: <0 in case of error,
 551 *           0 if nothing to commit,
 552 *           1 if transaction was successfully committed.
 553 */
 554static int __jbd2_journal_force_commit(journal_t *journal)
 555{
 556        transaction_t *transaction = NULL;
 557        tid_t tid;
 558        int need_to_start = 0, ret = 0;
 559
 560        read_lock(&journal->j_state_lock);
 561        if (journal->j_running_transaction && !current->journal_info) {
 562                transaction = journal->j_running_transaction;
 563                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 564                        need_to_start = 1;
 565        } else if (journal->j_committing_transaction)
 566                transaction = journal->j_committing_transaction;
 567
 568        if (!transaction) {
 569                /* Nothing to commit */
 570                read_unlock(&journal->j_state_lock);
 571                return 0;
 572        }
 573        tid = transaction->t_tid;
 574        read_unlock(&journal->j_state_lock);
 575        if (need_to_start)
 576                jbd2_log_start_commit(journal, tid);
 577        ret = jbd2_log_wait_commit(journal, tid);
 578        if (!ret)
 579                ret = 1;
 580
 581        return ret;
 582}
 583
 584/**
 585 * Force and wait upon a commit if the calling process is not within
 586 * transaction.  This is used for forcing out undo-protected data which contains
 587 * bitmaps, when the fs is running out of space.
 588 *
 589 * @journal: journal to force
 590 * Returns true if progress was made.
 591 */
 592int jbd2_journal_force_commit_nested(journal_t *journal)
 593{
 594        int ret;
 595
 596        ret = __jbd2_journal_force_commit(journal);
 597        return ret > 0;
 598}
 599
 600/**
 601 * int journal_force_commit() - force any uncommitted transactions
 602 * @journal: journal to force
 603 *
 604 * Caller want unconditional commit. We can only force the running transaction
 605 * if we don't have an active handle, otherwise, we will deadlock.
 606 */
 607int jbd2_journal_force_commit(journal_t *journal)
 608{
 609        int ret;
 610
 611        J_ASSERT(!current->journal_info);
 612        ret = __jbd2_journal_force_commit(journal);
 613        if (ret > 0)
 614                ret = 0;
 615        return ret;
 616}
 617
 618/*
 619 * Start a commit of the current running transaction (if any).  Returns true
 620 * if a transaction is going to be committed (or is currently already
 621 * committing), and fills its tid in at *ptid
 622 */
 623int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 624{
 625        int ret = 0;
 626
 627        write_lock(&journal->j_state_lock);
 628        if (journal->j_running_transaction) {
 629                tid_t tid = journal->j_running_transaction->t_tid;
 630
 631                __jbd2_log_start_commit(journal, tid);
 632                /* There's a running transaction and we've just made sure
 633                 * it's commit has been scheduled. */
 634                if (ptid)
 635                        *ptid = tid;
 636                ret = 1;
 637        } else if (journal->j_committing_transaction) {
 638                /*
 639                 * If commit has been started, then we have to wait for
 640                 * completion of that transaction.
 641                 */
 642                if (ptid)
 643                        *ptid = journal->j_committing_transaction->t_tid;
 644                ret = 1;
 645        }
 646        write_unlock(&journal->j_state_lock);
 647        return ret;
 648}
 649
 650/*
 651 * Return 1 if a given transaction has not yet sent barrier request
 652 * connected with a transaction commit. If 0 is returned, transaction
 653 * may or may not have sent the barrier. Used to avoid sending barrier
 654 * twice in common cases.
 655 */
 656int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 657{
 658        int ret = 0;
 659        transaction_t *commit_trans;
 660
 661        if (!(journal->j_flags & JBD2_BARRIER))
 662                return 0;
 663        read_lock(&journal->j_state_lock);
 664        /* Transaction already committed? */
 665        if (tid_geq(journal->j_commit_sequence, tid))
 666                goto out;
 667        commit_trans = journal->j_committing_transaction;
 668        if (!commit_trans || commit_trans->t_tid != tid) {
 669                ret = 1;
 670                goto out;
 671        }
 672        /*
 673         * Transaction is being committed and we already proceeded to
 674         * submitting a flush to fs partition?
 675         */
 676        if (journal->j_fs_dev != journal->j_dev) {
 677                if (!commit_trans->t_need_data_flush ||
 678                    commit_trans->t_state >= T_COMMIT_DFLUSH)
 679                        goto out;
 680        } else {
 681                if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 682                        goto out;
 683        }
 684        ret = 1;
 685out:
 686        read_unlock(&journal->j_state_lock);
 687        return ret;
 688}
 689EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 690
 691/*
 692 * Wait for a specified commit to complete.
 693 * The caller may not hold the journal lock.
 694 */
 695int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 696{
 697        int err = 0;
 698
 699        read_lock(&journal->j_state_lock);
 700#ifdef CONFIG_PROVE_LOCKING
 701        /*
 702         * Some callers make sure transaction is already committing and in that
 703         * case we cannot block on open handles anymore. So don't warn in that
 704         * case.
 705         */
 706        if (tid_gt(tid, journal->j_commit_sequence) &&
 707            (!journal->j_committing_transaction ||
 708             journal->j_committing_transaction->t_tid != tid)) {
 709                read_unlock(&journal->j_state_lock);
 710                jbd2_might_wait_for_commit(journal);
 711                read_lock(&journal->j_state_lock);
 712        }
 713#endif
 714#ifdef CONFIG_JBD2_DEBUG
 715        if (!tid_geq(journal->j_commit_request, tid)) {
 716                printk(KERN_ERR
 717                       "%s: error: j_commit_request=%d, tid=%d\n",
 718                       __func__, journal->j_commit_request, tid);
 719        }
 720#endif
 721        while (tid_gt(tid, journal->j_commit_sequence)) {
 722                jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
 723                                  tid, journal->j_commit_sequence);
 724                read_unlock(&journal->j_state_lock);
 725                wake_up(&journal->j_wait_commit);
 726                wait_event(journal->j_wait_done_commit,
 727                                !tid_gt(tid, journal->j_commit_sequence));
 728                read_lock(&journal->j_state_lock);
 729        }
 730        read_unlock(&journal->j_state_lock);
 731
 732        if (unlikely(is_journal_aborted(journal)))
 733                err = -EIO;
 734        return err;
 735}
 736
 737/* Return 1 when transaction with given tid has already committed. */
 738int jbd2_transaction_committed(journal_t *journal, tid_t tid)
 739{
 740        int ret = 1;
 741
 742        read_lock(&journal->j_state_lock);
 743        if (journal->j_running_transaction &&
 744            journal->j_running_transaction->t_tid == tid)
 745                ret = 0;
 746        if (journal->j_committing_transaction &&
 747            journal->j_committing_transaction->t_tid == tid)
 748                ret = 0;
 749        read_unlock(&journal->j_state_lock);
 750        return ret;
 751}
 752EXPORT_SYMBOL(jbd2_transaction_committed);
 753
 754/*
 755 * When this function returns the transaction corresponding to tid
 756 * will be completed.  If the transaction has currently running, start
 757 * committing that transaction before waiting for it to complete.  If
 758 * the transaction id is stale, it is by definition already completed,
 759 * so just return SUCCESS.
 760 */
 761int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 762{
 763        int     need_to_wait = 1;
 764
 765        read_lock(&journal->j_state_lock);
 766        if (journal->j_running_transaction &&
 767            journal->j_running_transaction->t_tid == tid) {
 768                if (journal->j_commit_request != tid) {
 769                        /* transaction not yet started, so request it */
 770                        read_unlock(&journal->j_state_lock);
 771                        jbd2_log_start_commit(journal, tid);
 772                        goto wait_commit;
 773                }
 774        } else if (!(journal->j_committing_transaction &&
 775                     journal->j_committing_transaction->t_tid == tid))
 776                need_to_wait = 0;
 777        read_unlock(&journal->j_state_lock);
 778        if (!need_to_wait)
 779                return 0;
 780wait_commit:
 781        return jbd2_log_wait_commit(journal, tid);
 782}
 783EXPORT_SYMBOL(jbd2_complete_transaction);
 784
 785/*
 786 * Log buffer allocation routines:
 787 */
 788
 789int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 790{
 791        unsigned long blocknr;
 792
 793        write_lock(&journal->j_state_lock);
 794        J_ASSERT(journal->j_free > 1);
 795
 796        blocknr = journal->j_head;
 797        journal->j_head++;
 798        journal->j_free--;
 799        if (journal->j_head == journal->j_last)
 800                journal->j_head = journal->j_first;
 801        write_unlock(&journal->j_state_lock);
 802        return jbd2_journal_bmap(journal, blocknr, retp);
 803}
 804
 805/*
 806 * Conversion of logical to physical block numbers for the journal
 807 *
 808 * On external journals the journal blocks are identity-mapped, so
 809 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 810 * ready.
 811 */
 812int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 813                 unsigned long long *retp)
 814{
 815        int err = 0;
 816        unsigned long long ret;
 817
 818        if (journal->j_inode) {
 819                ret = bmap(journal->j_inode, blocknr);
 820                if (ret)
 821                        *retp = ret;
 822                else {
 823                        printk(KERN_ALERT "%s: journal block not found "
 824                                        "at offset %lu on %s\n",
 825                               __func__, blocknr, journal->j_devname);
 826                        err = -EIO;
 827                        __journal_abort_soft(journal, err);
 828                }
 829        } else {
 830                *retp = blocknr; /* +journal->j_blk_offset */
 831        }
 832        return err;
 833}
 834
 835/*
 836 * We play buffer_head aliasing tricks to write data/metadata blocks to
 837 * the journal without copying their contents, but for journal
 838 * descriptor blocks we do need to generate bona fide buffers.
 839 *
 840 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 841 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 842 * But we don't bother doing that, so there will be coherency problems with
 843 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 844 */
 845struct buffer_head *
 846jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 847{
 848        journal_t *journal = transaction->t_journal;
 849        struct buffer_head *bh;
 850        unsigned long long blocknr;
 851        journal_header_t *header;
 852        int err;
 853
 854        err = jbd2_journal_next_log_block(journal, &blocknr);
 855
 856        if (err)
 857                return NULL;
 858
 859        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 860        if (!bh)
 861                return NULL;
 862        lock_buffer(bh);
 863        memset(bh->b_data, 0, journal->j_blocksize);
 864        header = (journal_header_t *)bh->b_data;
 865        header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 866        header->h_blocktype = cpu_to_be32(type);
 867        header->h_sequence = cpu_to_be32(transaction->t_tid);
 868        set_buffer_uptodate(bh);
 869        unlock_buffer(bh);
 870        BUFFER_TRACE(bh, "return this buffer");
 871        return bh;
 872}
 873
 874void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 875{
 876        struct jbd2_journal_block_tail *tail;
 877        __u32 csum;
 878
 879        if (!jbd2_journal_has_csum_v2or3(j))
 880                return;
 881
 882        tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 883                        sizeof(struct jbd2_journal_block_tail));
 884        tail->t_checksum = 0;
 885        csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 886        tail->t_checksum = cpu_to_be32(csum);
 887}
 888
 889/*
 890 * Return tid of the oldest transaction in the journal and block in the journal
 891 * where the transaction starts.
 892 *
 893 * If the journal is now empty, return which will be the next transaction ID
 894 * we will write and where will that transaction start.
 895 *
 896 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 897 * it can.
 898 */
 899int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 900                              unsigned long *block)
 901{
 902        transaction_t *transaction;
 903        int ret;
 904
 905        read_lock(&journal->j_state_lock);
 906        spin_lock(&journal->j_list_lock);
 907        transaction = journal->j_checkpoint_transactions;
 908        if (transaction) {
 909                *tid = transaction->t_tid;
 910                *block = transaction->t_log_start;
 911        } else if ((transaction = journal->j_committing_transaction) != NULL) {
 912                *tid = transaction->t_tid;
 913                *block = transaction->t_log_start;
 914        } else if ((transaction = journal->j_running_transaction) != NULL) {
 915                *tid = transaction->t_tid;
 916                *block = journal->j_head;
 917        } else {
 918                *tid = journal->j_transaction_sequence;
 919                *block = journal->j_head;
 920        }
 921        ret = tid_gt(*tid, journal->j_tail_sequence);
 922        spin_unlock(&journal->j_list_lock);
 923        read_unlock(&journal->j_state_lock);
 924
 925        return ret;
 926}
 927
 928/*
 929 * Update information in journal structure and in on disk journal superblock
 930 * about log tail. This function does not check whether information passed in
 931 * really pushes log tail further. It's responsibility of the caller to make
 932 * sure provided log tail information is valid (e.g. by holding
 933 * j_checkpoint_mutex all the time between computing log tail and calling this
 934 * function as is the case with jbd2_cleanup_journal_tail()).
 935 *
 936 * Requires j_checkpoint_mutex
 937 */
 938int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 939{
 940        unsigned long freed;
 941        int ret;
 942
 943        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 944
 945        /*
 946         * We cannot afford for write to remain in drive's caches since as
 947         * soon as we update j_tail, next transaction can start reusing journal
 948         * space and if we lose sb update during power failure we'd replay
 949         * old transaction with possibly newly overwritten data.
 950         */
 951        ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
 952                                              REQ_SYNC | REQ_FUA);
 953        if (ret)
 954                goto out;
 955
 956        write_lock(&journal->j_state_lock);
 957        freed = block - journal->j_tail;
 958        if (block < journal->j_tail)
 959                freed += journal->j_last - journal->j_first;
 960
 961        trace_jbd2_update_log_tail(journal, tid, block, freed);
 962        jbd_debug(1,
 963                  "Cleaning journal tail from %d to %d (offset %lu), "
 964                  "freeing %lu\n",
 965                  journal->j_tail_sequence, tid, block, freed);
 966
 967        journal->j_free += freed;
 968        journal->j_tail_sequence = tid;
 969        journal->j_tail = block;
 970        write_unlock(&journal->j_state_lock);
 971
 972out:
 973        return ret;
 974}
 975
 976/*
 977 * This is a variation of __jbd2_update_log_tail which checks for validity of
 978 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 979 * with other threads updating log tail.
 980 */
 981void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 982{
 983        mutex_lock_io(&journal->j_checkpoint_mutex);
 984        if (tid_gt(tid, journal->j_tail_sequence))
 985                __jbd2_update_log_tail(journal, tid, block);
 986        mutex_unlock(&journal->j_checkpoint_mutex);
 987}
 988
 989struct jbd2_stats_proc_session {
 990        journal_t *journal;
 991        struct transaction_stats_s *stats;
 992        int start;
 993        int max;
 994};
 995
 996static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 997{
 998        return *pos ? NULL : SEQ_START_TOKEN;
 999}
1000
1001static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1002{
1003        return NULL;
1004}
1005
1006static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1007{
1008        struct jbd2_stats_proc_session *s = seq->private;
1009
1010        if (v != SEQ_START_TOKEN)
1011                return 0;
1012        seq_printf(seq, "%lu transactions (%lu requested), "
1013                   "each up to %u blocks\n",
1014                   s->stats->ts_tid, s->stats->ts_requested,
1015                   s->journal->j_max_transaction_buffers);
1016        if (s->stats->ts_tid == 0)
1017                return 0;
1018        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1019            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1020        seq_printf(seq, "  %ums request delay\n",
1021            (s->stats->ts_requested == 0) ? 0 :
1022            jiffies_to_msecs(s->stats->run.rs_request_delay /
1023                             s->stats->ts_requested));
1024        seq_printf(seq, "  %ums running transaction\n",
1025            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1026        seq_printf(seq, "  %ums transaction was being locked\n",
1027            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1028        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1029            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1030        seq_printf(seq, "  %ums logging transaction\n",
1031            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1032        seq_printf(seq, "  %lluus average transaction commit time\n",
1033                   div_u64(s->journal->j_average_commit_time, 1000));
1034        seq_printf(seq, "  %lu handles per transaction\n",
1035            s->stats->run.rs_handle_count / s->stats->ts_tid);
1036        seq_printf(seq, "  %lu blocks per transaction\n",
1037            s->stats->run.rs_blocks / s->stats->ts_tid);
1038        seq_printf(seq, "  %lu logged blocks per transaction\n",
1039            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1040        return 0;
1041}
1042
1043static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1044{
1045}
1046
1047static const struct seq_operations jbd2_seq_info_ops = {
1048        .start  = jbd2_seq_info_start,
1049        .next   = jbd2_seq_info_next,
1050        .stop   = jbd2_seq_info_stop,
1051        .show   = jbd2_seq_info_show,
1052};
1053
1054static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1055{
1056        journal_t *journal = PDE_DATA(inode);
1057        struct jbd2_stats_proc_session *s;
1058        int rc, size;
1059
1060        s = kmalloc(sizeof(*s), GFP_KERNEL);
1061        if (s == NULL)
1062                return -ENOMEM;
1063        size = sizeof(struct transaction_stats_s);
1064        s->stats = kmalloc(size, GFP_KERNEL);
1065        if (s->stats == NULL) {
1066                kfree(s);
1067                return -ENOMEM;
1068        }
1069        spin_lock(&journal->j_history_lock);
1070        memcpy(s->stats, &journal->j_stats, size);
1071        s->journal = journal;
1072        spin_unlock(&journal->j_history_lock);
1073
1074        rc = seq_open(file, &jbd2_seq_info_ops);
1075        if (rc == 0) {
1076                struct seq_file *m = file->private_data;
1077                m->private = s;
1078        } else {
1079                kfree(s->stats);
1080                kfree(s);
1081        }
1082        return rc;
1083
1084}
1085
1086static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1087{
1088        struct seq_file *seq = file->private_data;
1089        struct jbd2_stats_proc_session *s = seq->private;
1090        kfree(s->stats);
1091        kfree(s);
1092        return seq_release(inode, file);
1093}
1094
1095static const struct file_operations jbd2_seq_info_fops = {
1096        .owner          = THIS_MODULE,
1097        .open           = jbd2_seq_info_open,
1098        .read           = seq_read,
1099        .llseek         = seq_lseek,
1100        .release        = jbd2_seq_info_release,
1101};
1102
1103static struct proc_dir_entry *proc_jbd2_stats;
1104
1105static void jbd2_stats_proc_init(journal_t *journal)
1106{
1107        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1108        if (journal->j_proc_entry) {
1109                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1110                                 &jbd2_seq_info_fops, journal);
1111        }
1112}
1113
1114static void jbd2_stats_proc_exit(journal_t *journal)
1115{
1116        remove_proc_entry("info", journal->j_proc_entry);
1117        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1118}
1119
1120/*
1121 * Management for journal control blocks: functions to create and
1122 * destroy journal_t structures, and to initialise and read existing
1123 * journal blocks from disk.  */
1124
1125/* First: create and setup a journal_t object in memory.  We initialise
1126 * very few fields yet: that has to wait until we have created the
1127 * journal structures from from scratch, or loaded them from disk. */
1128
1129static journal_t *journal_init_common(struct block_device *bdev,
1130                        struct block_device *fs_dev,
1131                        unsigned long long start, int len, int blocksize)
1132{
1133        static struct lock_class_key jbd2_trans_commit_key;
1134        journal_t *journal;
1135        int err;
1136        struct buffer_head *bh;
1137        int n;
1138
1139        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1140        if (!journal)
1141                return NULL;
1142
1143        init_waitqueue_head(&journal->j_wait_transaction_locked);
1144        init_waitqueue_head(&journal->j_wait_done_commit);
1145        init_waitqueue_head(&journal->j_wait_commit);
1146        init_waitqueue_head(&journal->j_wait_updates);
1147        init_waitqueue_head(&journal->j_wait_reserved);
1148        mutex_init(&journal->j_barrier);
1149        mutex_init(&journal->j_checkpoint_mutex);
1150        spin_lock_init(&journal->j_revoke_lock);
1151        spin_lock_init(&journal->j_list_lock);
1152        rwlock_init(&journal->j_state_lock);
1153
1154        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1155        journal->j_min_batch_time = 0;
1156        journal->j_max_batch_time = 15000; /* 15ms */
1157        atomic_set(&journal->j_reserved_credits, 0);
1158
1159        /* The journal is marked for error until we succeed with recovery! */
1160        journal->j_flags = JBD2_ABORT;
1161
1162        /* Set up a default-sized revoke table for the new mount. */
1163        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1164        if (err)
1165                goto err_cleanup;
1166
1167        spin_lock_init(&journal->j_history_lock);
1168
1169        lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1170                         &jbd2_trans_commit_key, 0);
1171
1172        /* journal descriptor can store up to n blocks -bzzz */
1173        journal->j_blocksize = blocksize;
1174        journal->j_dev = bdev;
1175        journal->j_fs_dev = fs_dev;
1176        journal->j_blk_offset = start;
1177        journal->j_maxlen = len;
1178        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179        journal->j_wbufsize = n;
1180        journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1181                                        GFP_KERNEL);
1182        if (!journal->j_wbuf)
1183                goto err_cleanup;
1184
1185        bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1186        if (!bh) {
1187                pr_err("%s: Cannot get buffer for journal superblock\n",
1188                        __func__);
1189                goto err_cleanup;
1190        }
1191        journal->j_sb_buffer = bh;
1192        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1193
1194        return journal;
1195
1196err_cleanup:
1197        kfree(journal->j_wbuf);
1198        jbd2_journal_destroy_revoke(journal);
1199        kfree(journal);
1200        return NULL;
1201}
1202
1203/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1204 *
1205 * Create a journal structure assigned some fixed set of disk blocks to
1206 * the journal.  We don't actually touch those disk blocks yet, but we
1207 * need to set up all of the mapping information to tell the journaling
1208 * system where the journal blocks are.
1209 *
1210 */
1211
1212/**
1213 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1214 *  @bdev: Block device on which to create the journal
1215 *  @fs_dev: Device which hold journalled filesystem for this journal.
1216 *  @start: Block nr Start of journal.
1217 *  @len:  Length of the journal in blocks.
1218 *  @blocksize: blocksize of journalling device
1219 *
1220 *  Returns: a newly created journal_t *
1221 *
1222 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1223 *  range of blocks on an arbitrary block device.
1224 *
1225 */
1226journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1227                        struct block_device *fs_dev,
1228                        unsigned long long start, int len, int blocksize)
1229{
1230        journal_t *journal;
1231
1232        journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1233        if (!journal)
1234                return NULL;
1235
1236        bdevname(journal->j_dev, journal->j_devname);
1237        strreplace(journal->j_devname, '/', '!');
1238        jbd2_stats_proc_init(journal);
1239
1240        return journal;
1241}
1242
1243/**
1244 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1245 *  @inode: An inode to create the journal in
1246 *
1247 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1248 * the journal.  The inode must exist already, must support bmap() and
1249 * must have all data blocks preallocated.
1250 */
1251journal_t *jbd2_journal_init_inode(struct inode *inode)
1252{
1253        journal_t *journal;
1254        char *p;
1255        unsigned long long blocknr;
1256
1257        blocknr = bmap(inode, 0);
1258        if (!blocknr) {
1259                pr_err("%s: Cannot locate journal superblock\n",
1260                        __func__);
1261                return NULL;
1262        }
1263
1264        jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265                  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1267
1268        journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269                        blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270                        inode->i_sb->s_blocksize);
1271        if (!journal)
1272                return NULL;
1273
1274        journal->j_inode = inode;
1275        bdevname(journal->j_dev, journal->j_devname);
1276        p = strreplace(journal->j_devname, '/', '!');
1277        sprintf(p, "-%lu", journal->j_inode->i_ino);
1278        jbd2_stats_proc_init(journal);
1279
1280        return journal;
1281}
1282
1283/*
1284 * If the journal init or create aborts, we need to mark the journal
1285 * superblock as being NULL to prevent the journal destroy from writing
1286 * back a bogus superblock.
1287 */
1288static void journal_fail_superblock (journal_t *journal)
1289{
1290        struct buffer_head *bh = journal->j_sb_buffer;
1291        brelse(bh);
1292        journal->j_sb_buffer = NULL;
1293}
1294
1295/*
1296 * Given a journal_t structure, initialise the various fields for
1297 * startup of a new journaling session.  We use this both when creating
1298 * a journal, and after recovering an old journal to reset it for
1299 * subsequent use.
1300 */
1301
1302static int journal_reset(journal_t *journal)
1303{
1304        journal_superblock_t *sb = journal->j_superblock;
1305        unsigned long long first, last;
1306
1307        first = be32_to_cpu(sb->s_first);
1308        last = be32_to_cpu(sb->s_maxlen);
1309        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310                printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311                       first, last);
1312                journal_fail_superblock(journal);
1313                return -EINVAL;
1314        }
1315
1316        journal->j_first = first;
1317        journal->j_last = last;
1318
1319        journal->j_head = first;
1320        journal->j_tail = first;
1321        journal->j_free = last - first;
1322
1323        journal->j_tail_sequence = journal->j_transaction_sequence;
1324        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325        journal->j_commit_request = journal->j_commit_sequence;
1326
1327        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1328
1329        /*
1330         * As a special case, if the on-disk copy is already marked as needing
1331         * no recovery (s_start == 0), then we can safely defer the superblock
1332         * update until the next commit by setting JBD2_FLUSHED.  This avoids
1333         * attempting a write to a potential-readonly device.
1334         */
1335        if (sb->s_start == 0) {
1336                jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337                        "(start %ld, seq %d, errno %d)\n",
1338                        journal->j_tail, journal->j_tail_sequence,
1339                        journal->j_errno);
1340                journal->j_flags |= JBD2_FLUSHED;
1341        } else {
1342                /* Lock here to make assertions happy... */
1343                mutex_lock_io(&journal->j_checkpoint_mutex);
1344                /*
1345                 * Update log tail information. We use REQ_FUA since new
1346                 * transaction will start reusing journal space and so we
1347                 * must make sure information about current log tail is on
1348                 * disk before that.
1349                 */
1350                jbd2_journal_update_sb_log_tail(journal,
1351                                                journal->j_tail_sequence,
1352                                                journal->j_tail,
1353                                                REQ_SYNC | REQ_FUA);
1354                mutex_unlock(&journal->j_checkpoint_mutex);
1355        }
1356        return jbd2_journal_start_thread(journal);
1357}
1358
1359static int jbd2_write_superblock(journal_t *journal, int write_flags)
1360{
1361        struct buffer_head *bh = journal->j_sb_buffer;
1362        journal_superblock_t *sb = journal->j_superblock;
1363        int ret;
1364
1365        trace_jbd2_write_superblock(journal, write_flags);
1366        if (!(journal->j_flags & JBD2_BARRIER))
1367                write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1368        lock_buffer(bh);
1369        if (buffer_write_io_error(bh)) {
1370                /*
1371                 * Oh, dear.  A previous attempt to write the journal
1372                 * superblock failed.  This could happen because the
1373                 * USB device was yanked out.  Or it could happen to
1374                 * be a transient write error and maybe the block will
1375                 * be remapped.  Nothing we can do but to retry the
1376                 * write and hope for the best.
1377                 */
1378                printk(KERN_ERR "JBD2: previous I/O error detected "
1379                       "for journal superblock update for %s.\n",
1380                       journal->j_devname);
1381                clear_buffer_write_io_error(bh);
1382                set_buffer_uptodate(bh);
1383        }
1384        jbd2_superblock_csum_set(journal, sb);
1385        get_bh(bh);
1386        bh->b_end_io = end_buffer_write_sync;
1387        ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1388        wait_on_buffer(bh);
1389        if (buffer_write_io_error(bh)) {
1390                clear_buffer_write_io_error(bh);
1391                set_buffer_uptodate(bh);
1392                ret = -EIO;
1393        }
1394        if (ret) {
1395                printk(KERN_ERR "JBD2: Error %d detected when updating "
1396                       "journal superblock for %s.\n", ret,
1397                       journal->j_devname);
1398                jbd2_journal_abort(journal, ret);
1399        }
1400
1401        return ret;
1402}
1403
1404/**
1405 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406 * @journal: The journal to update.
1407 * @tail_tid: TID of the new transaction at the tail of the log
1408 * @tail_block: The first block of the transaction at the tail of the log
1409 * @write_op: With which operation should we write the journal sb
1410 *
1411 * Update a journal's superblock information about log tail and write it to
1412 * disk, waiting for the IO to complete.
1413 */
1414int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1415                                     unsigned long tail_block, int write_op)
1416{
1417        journal_superblock_t *sb = journal->j_superblock;
1418        int ret;
1419
1420        if (is_journal_aborted(journal))
1421                return -EIO;
1422
1423        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424        jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425                  tail_block, tail_tid);
1426
1427        sb->s_sequence = cpu_to_be32(tail_tid);
1428        sb->s_start    = cpu_to_be32(tail_block);
1429
1430        ret = jbd2_write_superblock(journal, write_op);
1431        if (ret)
1432                goto out;
1433
1434        /* Log is no longer empty */
1435        write_lock(&journal->j_state_lock);
1436        WARN_ON(!sb->s_sequence);
1437        journal->j_flags &= ~JBD2_FLUSHED;
1438        write_unlock(&journal->j_state_lock);
1439
1440out:
1441        return ret;
1442}
1443
1444/**
1445 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446 * @journal: The journal to update.
1447 * @write_op: With which operation should we write the journal sb
1448 *
1449 * Update a journal's dynamic superblock fields to show that journal is empty.
1450 * Write updated superblock to disk waiting for IO to complete.
1451 */
1452static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453{
1454        journal_superblock_t *sb = journal->j_superblock;
1455
1456        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457        read_lock(&journal->j_state_lock);
1458        /* Is it already empty? */
1459        if (sb->s_start == 0) {
1460                read_unlock(&journal->j_state_lock);
1461                return;
1462        }
1463        jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464                  journal->j_tail_sequence);
1465
1466        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467        sb->s_start    = cpu_to_be32(0);
1468        read_unlock(&journal->j_state_lock);
1469
1470        jbd2_write_superblock(journal, write_op);
1471
1472        /* Log is no longer empty */
1473        write_lock(&journal->j_state_lock);
1474        journal->j_flags |= JBD2_FLUSHED;
1475        write_unlock(&journal->j_state_lock);
1476}
1477
1478
1479/**
1480 * jbd2_journal_update_sb_errno() - Update error in the journal.
1481 * @journal: The journal to update.
1482 *
1483 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1484 * to complete.
1485 */
1486void jbd2_journal_update_sb_errno(journal_t *journal)
1487{
1488        journal_superblock_t *sb = journal->j_superblock;
1489        int errcode;
1490
1491        read_lock(&journal->j_state_lock);
1492        errcode = journal->j_errno;
1493        read_unlock(&journal->j_state_lock);
1494        if (errcode == -ESHUTDOWN)
1495                errcode = 0;
1496        jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1497        sb->s_errno    = cpu_to_be32(errcode);
1498
1499        jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1500}
1501EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1502
1503/*
1504 * Read the superblock for a given journal, performing initial
1505 * validation of the format.
1506 */
1507static int journal_get_superblock(journal_t *journal)
1508{
1509        struct buffer_head *bh;
1510        journal_superblock_t *sb;
1511        int err = -EIO;
1512
1513        bh = journal->j_sb_buffer;
1514
1515        J_ASSERT(bh != NULL);
1516        if (!buffer_uptodate(bh)) {
1517                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1518                wait_on_buffer(bh);
1519                if (!buffer_uptodate(bh)) {
1520                        printk(KERN_ERR
1521                                "JBD2: IO error reading journal superblock\n");
1522                        goto out;
1523                }
1524        }
1525
1526        if (buffer_verified(bh))
1527                return 0;
1528
1529        sb = journal->j_superblock;
1530
1531        err = -EINVAL;
1532
1533        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1534            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1535                printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1536                goto out;
1537        }
1538
1539        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1540        case JBD2_SUPERBLOCK_V1:
1541                journal->j_format_version = 1;
1542                break;
1543        case JBD2_SUPERBLOCK_V2:
1544                journal->j_format_version = 2;
1545                break;
1546        default:
1547                printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1548                goto out;
1549        }
1550
1551        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1552                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1553        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1554                printk(KERN_WARNING "JBD2: journal file too short\n");
1555                goto out;
1556        }
1557
1558        if (be32_to_cpu(sb->s_first) == 0 ||
1559            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1560                printk(KERN_WARNING
1561                        "JBD2: Invalid start block of journal: %u\n",
1562                        be32_to_cpu(sb->s_first));
1563                goto out;
1564        }
1565
1566        if (jbd2_has_feature_csum2(journal) &&
1567            jbd2_has_feature_csum3(journal)) {
1568                /* Can't have checksum v2 and v3 at the same time! */
1569                printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1570                       "at the same time!\n");
1571                goto out;
1572        }
1573
1574        if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1575            jbd2_has_feature_checksum(journal)) {
1576                /* Can't have checksum v1 and v2 on at the same time! */
1577                printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1578                       "at the same time!\n");
1579                goto out;
1580        }
1581
1582        if (!jbd2_verify_csum_type(journal, sb)) {
1583                printk(KERN_ERR "JBD2: Unknown checksum type\n");
1584                goto out;
1585        }
1586
1587        /* Load the checksum driver */
1588        if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1589                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1590                if (IS_ERR(journal->j_chksum_driver)) {
1591                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1592                        err = PTR_ERR(journal->j_chksum_driver);
1593                        journal->j_chksum_driver = NULL;
1594                        goto out;
1595                }
1596        }
1597
1598        /* Check superblock checksum */
1599        if (!jbd2_superblock_csum_verify(journal, sb)) {
1600                printk(KERN_ERR "JBD2: journal checksum error\n");
1601                err = -EFSBADCRC;
1602                goto out;
1603        }
1604
1605        /* Precompute checksum seed for all metadata */
1606        if (jbd2_journal_has_csum_v2or3(journal))
1607                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1608                                                   sizeof(sb->s_uuid));
1609
1610        set_buffer_verified(bh);
1611
1612        return 0;
1613
1614out:
1615        journal_fail_superblock(journal);
1616        return err;
1617}
1618
1619/*
1620 * Load the on-disk journal superblock and read the key fields into the
1621 * journal_t.
1622 */
1623
1624static int load_superblock(journal_t *journal)
1625{
1626        int err;
1627        journal_superblock_t *sb;
1628
1629        err = journal_get_superblock(journal);
1630        if (err)
1631                return err;
1632
1633        sb = journal->j_superblock;
1634
1635        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1636        journal->j_tail = be32_to_cpu(sb->s_start);
1637        journal->j_first = be32_to_cpu(sb->s_first);
1638        journal->j_last = be32_to_cpu(sb->s_maxlen);
1639        journal->j_errno = be32_to_cpu(sb->s_errno);
1640
1641        return 0;
1642}
1643
1644
1645/**
1646 * int jbd2_journal_load() - Read journal from disk.
1647 * @journal: Journal to act on.
1648 *
1649 * Given a journal_t structure which tells us which disk blocks contain
1650 * a journal, read the journal from disk to initialise the in-memory
1651 * structures.
1652 */
1653int jbd2_journal_load(journal_t *journal)
1654{
1655        int err;
1656        journal_superblock_t *sb;
1657
1658        err = load_superblock(journal);
1659        if (err)
1660                return err;
1661
1662        sb = journal->j_superblock;
1663        /* If this is a V2 superblock, then we have to check the
1664         * features flags on it. */
1665
1666        if (journal->j_format_version >= 2) {
1667                if ((sb->s_feature_ro_compat &
1668                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1669                    (sb->s_feature_incompat &
1670                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1671                        printk(KERN_WARNING
1672                                "JBD2: Unrecognised features on journal\n");
1673                        return -EINVAL;
1674                }
1675        }
1676
1677        /*
1678         * Create a slab for this blocksize
1679         */
1680        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1681        if (err)
1682                return err;
1683
1684        /* Let the recovery code check whether it needs to recover any
1685         * data from the journal. */
1686        if (jbd2_journal_recover(journal))
1687                goto recovery_error;
1688
1689        if (journal->j_failed_commit) {
1690                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1691                       "is corrupt.\n", journal->j_failed_commit,
1692                       journal->j_devname);
1693                return -EFSCORRUPTED;
1694        }
1695
1696        /* OK, we've finished with the dynamic journal bits:
1697         * reinitialise the dynamic contents of the superblock in memory
1698         * and reset them on disk. */
1699        if (journal_reset(journal))
1700                goto recovery_error;
1701
1702        journal->j_flags &= ~JBD2_ABORT;
1703        journal->j_flags |= JBD2_LOADED;
1704        return 0;
1705
1706recovery_error:
1707        printk(KERN_WARNING "JBD2: recovery failed\n");
1708        return -EIO;
1709}
1710
1711/**
1712 * void jbd2_journal_destroy() - Release a journal_t structure.
1713 * @journal: Journal to act on.
1714 *
1715 * Release a journal_t structure once it is no longer in use by the
1716 * journaled object.
1717 * Return <0 if we couldn't clean up the journal.
1718 */
1719int jbd2_journal_destroy(journal_t *journal)
1720{
1721        int err = 0;
1722
1723        /* Wait for the commit thread to wake up and die. */
1724        journal_kill_thread(journal);
1725
1726        /* Force a final log commit */
1727        if (journal->j_running_transaction)
1728                jbd2_journal_commit_transaction(journal);
1729
1730        /* Force any old transactions to disk */
1731
1732        /* Totally anal locking here... */
1733        spin_lock(&journal->j_list_lock);
1734        while (journal->j_checkpoint_transactions != NULL) {
1735                spin_unlock(&journal->j_list_lock);
1736                mutex_lock_io(&journal->j_checkpoint_mutex);
1737                err = jbd2_log_do_checkpoint(journal);
1738                mutex_unlock(&journal->j_checkpoint_mutex);
1739                /*
1740                 * If checkpointing failed, just free the buffers to avoid
1741                 * looping forever
1742                 */
1743                if (err) {
1744                        jbd2_journal_destroy_checkpoint(journal);
1745                        spin_lock(&journal->j_list_lock);
1746                        break;
1747                }
1748                spin_lock(&journal->j_list_lock);
1749        }
1750
1751        J_ASSERT(journal->j_running_transaction == NULL);
1752        J_ASSERT(journal->j_committing_transaction == NULL);
1753        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1754        spin_unlock(&journal->j_list_lock);
1755
1756        if (journal->j_sb_buffer) {
1757                if (!is_journal_aborted(journal)) {
1758                        mutex_lock_io(&journal->j_checkpoint_mutex);
1759
1760                        write_lock(&journal->j_state_lock);
1761                        journal->j_tail_sequence =
1762                                ++journal->j_transaction_sequence;
1763                        write_unlock(&journal->j_state_lock);
1764
1765                        jbd2_mark_journal_empty(journal,
1766                                        REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1767                        mutex_unlock(&journal->j_checkpoint_mutex);
1768                } else
1769                        err = -EIO;
1770                brelse(journal->j_sb_buffer);
1771        }
1772
1773        if (journal->j_proc_entry)
1774                jbd2_stats_proc_exit(journal);
1775        iput(journal->j_inode);
1776        if (journal->j_revoke)
1777                jbd2_journal_destroy_revoke(journal);
1778        if (journal->j_chksum_driver)
1779                crypto_free_shash(journal->j_chksum_driver);
1780        kfree(journal->j_wbuf);
1781        kfree(journal);
1782
1783        return err;
1784}
1785
1786
1787/**
1788 *int jbd2_journal_check_used_features () - Check if features specified are used.
1789 * @journal: Journal to check.
1790 * @compat: bitmask of compatible features
1791 * @ro: bitmask of features that force read-only mount
1792 * @incompat: bitmask of incompatible features
1793 *
1794 * Check whether the journal uses all of a given set of
1795 * features.  Return true (non-zero) if it does.
1796 **/
1797
1798int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1799                                 unsigned long ro, unsigned long incompat)
1800{
1801        journal_superblock_t *sb;
1802
1803        if (!compat && !ro && !incompat)
1804                return 1;
1805        /* Load journal superblock if it is not loaded yet. */
1806        if (journal->j_format_version == 0 &&
1807            journal_get_superblock(journal) != 0)
1808                return 0;
1809        if (journal->j_format_version == 1)
1810                return 0;
1811
1812        sb = journal->j_superblock;
1813
1814        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1815            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1816            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1817                return 1;
1818
1819        return 0;
1820}
1821
1822/**
1823 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1824 * @journal: Journal to check.
1825 * @compat: bitmask of compatible features
1826 * @ro: bitmask of features that force read-only mount
1827 * @incompat: bitmask of incompatible features
1828 *
1829 * Check whether the journaling code supports the use of
1830 * all of a given set of features on this journal.  Return true
1831 * (non-zero) if it can. */
1832
1833int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1834                                      unsigned long ro, unsigned long incompat)
1835{
1836        if (!compat && !ro && !incompat)
1837                return 1;
1838
1839        /* We can support any known requested features iff the
1840         * superblock is in version 2.  Otherwise we fail to support any
1841         * extended sb features. */
1842
1843        if (journal->j_format_version != 2)
1844                return 0;
1845
1846        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1847            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1848            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1849                return 1;
1850
1851        return 0;
1852}
1853
1854/**
1855 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1856 * @journal: Journal to act on.
1857 * @compat: bitmask of compatible features
1858 * @ro: bitmask of features that force read-only mount
1859 * @incompat: bitmask of incompatible features
1860 *
1861 * Mark a given journal feature as present on the
1862 * superblock.  Returns true if the requested features could be set.
1863 *
1864 */
1865
1866int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1867                          unsigned long ro, unsigned long incompat)
1868{
1869#define INCOMPAT_FEATURE_ON(f) \
1870                ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1871#define COMPAT_FEATURE_ON(f) \
1872                ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1873        journal_superblock_t *sb;
1874
1875        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1876                return 1;
1877
1878        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1879                return 0;
1880
1881        /* If enabling v2 checksums, turn on v3 instead */
1882        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1883                incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1884                incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1885        }
1886
1887        /* Asking for checksumming v3 and v1?  Only give them v3. */
1888        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1889            compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1890                compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1891
1892        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1893                  compat, ro, incompat);
1894
1895        sb = journal->j_superblock;
1896
1897        /* If enabling v3 checksums, update superblock */
1898        if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1899                sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1900                sb->s_feature_compat &=
1901                        ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1902
1903                /* Load the checksum driver */
1904                if (journal->j_chksum_driver == NULL) {
1905                        journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1906                                                                      0, 0);
1907                        if (IS_ERR(journal->j_chksum_driver)) {
1908                                printk(KERN_ERR "JBD2: Cannot load crc32c "
1909                                       "driver.\n");
1910                                journal->j_chksum_driver = NULL;
1911                                return 0;
1912                        }
1913
1914                        /* Precompute checksum seed for all metadata */
1915                        journal->j_csum_seed = jbd2_chksum(journal, ~0,
1916                                                           sb->s_uuid,
1917                                                           sizeof(sb->s_uuid));
1918                }
1919        }
1920
1921        /* If enabling v1 checksums, downgrade superblock */
1922        if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1923                sb->s_feature_incompat &=
1924                        ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1925                                     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1926
1927        sb->s_feature_compat    |= cpu_to_be32(compat);
1928        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1929        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1930
1931        return 1;
1932#undef COMPAT_FEATURE_ON
1933#undef INCOMPAT_FEATURE_ON
1934}
1935
1936/*
1937 * jbd2_journal_clear_features () - Clear a given journal feature in the
1938 *                                  superblock
1939 * @journal: Journal to act on.
1940 * @compat: bitmask of compatible features
1941 * @ro: bitmask of features that force read-only mount
1942 * @incompat: bitmask of incompatible features
1943 *
1944 * Clear a given journal feature as present on the
1945 * superblock.
1946 */
1947void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1948                                unsigned long ro, unsigned long incompat)
1949{
1950        journal_superblock_t *sb;
1951
1952        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1953                  compat, ro, incompat);
1954
1955        sb = journal->j_superblock;
1956
1957        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1958        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1959        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1960}
1961EXPORT_SYMBOL(jbd2_journal_clear_features);
1962
1963/**
1964 * int jbd2_journal_flush () - Flush journal
1965 * @journal: Journal to act on.
1966 *
1967 * Flush all data for a given journal to disk and empty the journal.
1968 * Filesystems can use this when remounting readonly to ensure that
1969 * recovery does not need to happen on remount.
1970 */
1971
1972int jbd2_journal_flush(journal_t *journal)
1973{
1974        int err = 0;
1975        transaction_t *transaction = NULL;
1976
1977        write_lock(&journal->j_state_lock);
1978
1979        /* Force everything buffered to the log... */
1980        if (journal->j_running_transaction) {
1981                transaction = journal->j_running_transaction;
1982                __jbd2_log_start_commit(journal, transaction->t_tid);
1983        } else if (journal->j_committing_transaction)
1984                transaction = journal->j_committing_transaction;
1985
1986        /* Wait for the log commit to complete... */
1987        if (transaction) {
1988                tid_t tid = transaction->t_tid;
1989
1990                write_unlock(&journal->j_state_lock);
1991                jbd2_log_wait_commit(journal, tid);
1992        } else {
1993                write_unlock(&journal->j_state_lock);
1994        }
1995
1996        /* ...and flush everything in the log out to disk. */
1997        spin_lock(&journal->j_list_lock);
1998        while (!err && journal->j_checkpoint_transactions != NULL) {
1999                spin_unlock(&journal->j_list_lock);
2000                mutex_lock_io(&journal->j_checkpoint_mutex);
2001                err = jbd2_log_do_checkpoint(journal);
2002                mutex_unlock(&journal->j_checkpoint_mutex);
2003                spin_lock(&journal->j_list_lock);
2004        }
2005        spin_unlock(&journal->j_list_lock);
2006
2007        if (is_journal_aborted(journal))
2008                return -EIO;
2009
2010        mutex_lock_io(&journal->j_checkpoint_mutex);
2011        if (!err) {
2012                err = jbd2_cleanup_journal_tail(journal);
2013                if (err < 0) {
2014                        mutex_unlock(&journal->j_checkpoint_mutex);
2015                        goto out;
2016                }
2017                err = 0;
2018        }
2019
2020        /* Finally, mark the journal as really needing no recovery.
2021         * This sets s_start==0 in the underlying superblock, which is
2022         * the magic code for a fully-recovered superblock.  Any future
2023         * commits of data to the journal will restore the current
2024         * s_start value. */
2025        jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2026        mutex_unlock(&journal->j_checkpoint_mutex);
2027        write_lock(&journal->j_state_lock);
2028        J_ASSERT(!journal->j_running_transaction);
2029        J_ASSERT(!journal->j_committing_transaction);
2030        J_ASSERT(!journal->j_checkpoint_transactions);
2031        J_ASSERT(journal->j_head == journal->j_tail);
2032        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2033        write_unlock(&journal->j_state_lock);
2034out:
2035        return err;
2036}
2037
2038/**
2039 * int jbd2_journal_wipe() - Wipe journal contents
2040 * @journal: Journal to act on.
2041 * @write: flag (see below)
2042 *
2043 * Wipe out all of the contents of a journal, safely.  This will produce
2044 * a warning if the journal contains any valid recovery information.
2045 * Must be called between journal_init_*() and jbd2_journal_load().
2046 *
2047 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2048 * we merely suppress recovery.
2049 */
2050
2051int jbd2_journal_wipe(journal_t *journal, int write)
2052{
2053        int err = 0;
2054
2055        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2056
2057        err = load_superblock(journal);
2058        if (err)
2059                return err;
2060
2061        if (!journal->j_tail)
2062                goto no_recovery;
2063
2064        printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2065                write ? "Clearing" : "Ignoring");
2066
2067        err = jbd2_journal_skip_recovery(journal);
2068        if (write) {
2069                /* Lock to make assertions happy... */
2070                mutex_lock(&journal->j_checkpoint_mutex);
2071                jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2072                mutex_unlock(&journal->j_checkpoint_mutex);
2073        }
2074
2075 no_recovery:
2076        return err;
2077}
2078
2079/*
2080 * Journal abort has very specific semantics, which we describe
2081 * for journal abort.
2082 *
2083 * Two internal functions, which provide abort to the jbd layer
2084 * itself are here.
2085 */
2086
2087/*
2088 * Quick version for internal journal use (doesn't lock the journal).
2089 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2090 * and don't attempt to make any other journal updates.
2091 */
2092void __jbd2_journal_abort_hard(journal_t *journal)
2093{
2094        transaction_t *transaction;
2095
2096        if (journal->j_flags & JBD2_ABORT)
2097                return;
2098
2099        printk(KERN_ERR "Aborting journal on device %s.\n",
2100               journal->j_devname);
2101
2102        write_lock(&journal->j_state_lock);
2103        journal->j_flags |= JBD2_ABORT;
2104        transaction = journal->j_running_transaction;
2105        if (transaction)
2106                __jbd2_log_start_commit(journal, transaction->t_tid);
2107        write_unlock(&journal->j_state_lock);
2108}
2109
2110/* Soft abort: record the abort error status in the journal superblock,
2111 * but don't do any other IO. */
2112static void __journal_abort_soft (journal_t *journal, int errno)
2113{
2114        int old_errno;
2115
2116        write_lock(&journal->j_state_lock);
2117        old_errno = journal->j_errno;
2118        if (!journal->j_errno || errno == -ESHUTDOWN)
2119                journal->j_errno = errno;
2120
2121        if (journal->j_flags & JBD2_ABORT) {
2122                write_unlock(&journal->j_state_lock);
2123                if (!old_errno && old_errno != -ESHUTDOWN &&
2124                    errno == -ESHUTDOWN)
2125                        jbd2_journal_update_sb_errno(journal);
2126                return;
2127        }
2128        write_unlock(&journal->j_state_lock);
2129
2130        __jbd2_journal_abort_hard(journal);
2131
2132        if (errno) {
2133                jbd2_journal_update_sb_errno(journal);
2134                write_lock(&journal->j_state_lock);
2135                journal->j_flags |= JBD2_REC_ERR;
2136                write_unlock(&journal->j_state_lock);
2137        }
2138}
2139
2140/**
2141 * void jbd2_journal_abort () - Shutdown the journal immediately.
2142 * @journal: the journal to shutdown.
2143 * @errno:   an error number to record in the journal indicating
2144 *           the reason for the shutdown.
2145 *
2146 * Perform a complete, immediate shutdown of the ENTIRE
2147 * journal (not of a single transaction).  This operation cannot be
2148 * undone without closing and reopening the journal.
2149 *
2150 * The jbd2_journal_abort function is intended to support higher level error
2151 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2152 * mode.
2153 *
2154 * Journal abort has very specific semantics.  Any existing dirty,
2155 * unjournaled buffers in the main filesystem will still be written to
2156 * disk by bdflush, but the journaling mechanism will be suspended
2157 * immediately and no further transaction commits will be honoured.
2158 *
2159 * Any dirty, journaled buffers will be written back to disk without
2160 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2161 * filesystem, but we _do_ attempt to leave as much data as possible
2162 * behind for fsck to use for cleanup.
2163 *
2164 * Any attempt to get a new transaction handle on a journal which is in
2165 * ABORT state will just result in an -EROFS error return.  A
2166 * jbd2_journal_stop on an existing handle will return -EIO if we have
2167 * entered abort state during the update.
2168 *
2169 * Recursive transactions are not disturbed by journal abort until the
2170 * final jbd2_journal_stop, which will receive the -EIO error.
2171 *
2172 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2173 * which will be recorded (if possible) in the journal superblock.  This
2174 * allows a client to record failure conditions in the middle of a
2175 * transaction without having to complete the transaction to record the
2176 * failure to disk.  ext3_error, for example, now uses this
2177 * functionality.
2178 *
2179 * Errors which originate from within the journaling layer will NOT
2180 * supply an errno; a null errno implies that absolutely no further
2181 * writes are done to the journal (unless there are any already in
2182 * progress).
2183 *
2184 */
2185
2186void jbd2_journal_abort(journal_t *journal, int errno)
2187{
2188        __journal_abort_soft(journal, errno);
2189}
2190
2191/**
2192 * int jbd2_journal_errno () - returns the journal's error state.
2193 * @journal: journal to examine.
2194 *
2195 * This is the errno number set with jbd2_journal_abort(), the last
2196 * time the journal was mounted - if the journal was stopped
2197 * without calling abort this will be 0.
2198 *
2199 * If the journal has been aborted on this mount time -EROFS will
2200 * be returned.
2201 */
2202int jbd2_journal_errno(journal_t *journal)
2203{
2204        int err;
2205
2206        read_lock(&journal->j_state_lock);
2207        if (journal->j_flags & JBD2_ABORT)
2208                err = -EROFS;
2209        else
2210                err = journal->j_errno;
2211        read_unlock(&journal->j_state_lock);
2212        return err;
2213}
2214
2215/**
2216 * int jbd2_journal_clear_err () - clears the journal's error state
2217 * @journal: journal to act on.
2218 *
2219 * An error must be cleared or acked to take a FS out of readonly
2220 * mode.
2221 */
2222int jbd2_journal_clear_err(journal_t *journal)
2223{
2224        int err = 0;
2225
2226        write_lock(&journal->j_state_lock);
2227        if (journal->j_flags & JBD2_ABORT)
2228                err = -EROFS;
2229        else
2230                journal->j_errno = 0;
2231        write_unlock(&journal->j_state_lock);
2232        return err;
2233}
2234
2235/**
2236 * void jbd2_journal_ack_err() - Ack journal err.
2237 * @journal: journal to act on.
2238 *
2239 * An error must be cleared or acked to take a FS out of readonly
2240 * mode.
2241 */
2242void jbd2_journal_ack_err(journal_t *journal)
2243{
2244        write_lock(&journal->j_state_lock);
2245        if (journal->j_errno)
2246                journal->j_flags |= JBD2_ACK_ERR;
2247        write_unlock(&journal->j_state_lock);
2248}
2249
2250int jbd2_journal_blocks_per_page(struct inode *inode)
2251{
2252        return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2253}
2254
2255/*
2256 * helper functions to deal with 32 or 64bit block numbers.
2257 */
2258size_t journal_tag_bytes(journal_t *journal)
2259{
2260        size_t sz;
2261
2262        if (jbd2_has_feature_csum3(journal))
2263                return sizeof(journal_block_tag3_t);
2264
2265        sz = sizeof(journal_block_tag_t);
2266
2267        if (jbd2_has_feature_csum2(journal))
2268                sz += sizeof(__u16);
2269
2270        if (jbd2_has_feature_64bit(journal))
2271                return sz;
2272        else
2273                return sz - sizeof(__u32);
2274}
2275
2276/*
2277 * JBD memory management
2278 *
2279 * These functions are used to allocate block-sized chunks of memory
2280 * used for making copies of buffer_head data.  Very often it will be
2281 * page-sized chunks of data, but sometimes it will be in
2282 * sub-page-size chunks.  (For example, 16k pages on Power systems
2283 * with a 4k block file system.)  For blocks smaller than a page, we
2284 * use a SLAB allocator.  There are slab caches for each block size,
2285 * which are allocated at mount time, if necessary, and we only free
2286 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2287 * this reason we don't need to a mutex to protect access to
2288 * jbd2_slab[] allocating or releasing memory; only in
2289 * jbd2_journal_create_slab().
2290 */
2291#define JBD2_MAX_SLABS 8
2292static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2293
2294static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2295        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2296        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2297};
2298
2299
2300static void jbd2_journal_destroy_slabs(void)
2301{
2302        int i;
2303
2304        for (i = 0; i < JBD2_MAX_SLABS; i++) {
2305                kmem_cache_destroy(jbd2_slab[i]);
2306                jbd2_slab[i] = NULL;
2307        }
2308}
2309
2310static int jbd2_journal_create_slab(size_t size)
2311{
2312        static DEFINE_MUTEX(jbd2_slab_create_mutex);
2313        int i = order_base_2(size) - 10;
2314        size_t slab_size;
2315
2316        if (size == PAGE_SIZE)
2317                return 0;
2318
2319        if (i >= JBD2_MAX_SLABS)
2320                return -EINVAL;
2321
2322        if (unlikely(i < 0))
2323                i = 0;
2324        mutex_lock(&jbd2_slab_create_mutex);
2325        if (jbd2_slab[i]) {
2326                mutex_unlock(&jbd2_slab_create_mutex);
2327                return 0;       /* Already created */
2328        }
2329
2330        slab_size = 1 << (i+10);
2331        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2332                                         slab_size, 0, NULL);
2333        mutex_unlock(&jbd2_slab_create_mutex);
2334        if (!jbd2_slab[i]) {
2335                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2336                return -ENOMEM;
2337        }
2338        return 0;
2339}
2340
2341static struct kmem_cache *get_slab(size_t size)
2342{
2343        int i = order_base_2(size) - 10;
2344
2345        BUG_ON(i >= JBD2_MAX_SLABS);
2346        if (unlikely(i < 0))
2347                i = 0;
2348        BUG_ON(jbd2_slab[i] == NULL);
2349        return jbd2_slab[i];
2350}
2351
2352void *jbd2_alloc(size_t size, gfp_t flags)
2353{
2354        void *ptr;
2355
2356        BUG_ON(size & (size-1)); /* Must be a power of 2 */
2357
2358        if (size < PAGE_SIZE)
2359                ptr = kmem_cache_alloc(get_slab(size), flags);
2360        else
2361                ptr = (void *)__get_free_pages(flags, get_order(size));
2362
2363        /* Check alignment; SLUB has gotten this wrong in the past,
2364         * and this can lead to user data corruption! */
2365        BUG_ON(((unsigned long) ptr) & (size-1));
2366
2367        return ptr;
2368}
2369
2370void jbd2_free(void *ptr, size_t size)
2371{
2372        if (size < PAGE_SIZE)
2373                kmem_cache_free(get_slab(size), ptr);
2374        else
2375                free_pages((unsigned long)ptr, get_order(size));
2376};
2377
2378/*
2379 * Journal_head storage management
2380 */
2381static struct kmem_cache *jbd2_journal_head_cache;
2382#ifdef CONFIG_JBD2_DEBUG
2383static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2384#endif
2385
2386static int jbd2_journal_init_journal_head_cache(void)
2387{
2388        int retval;
2389
2390        J_ASSERT(jbd2_journal_head_cache == NULL);
2391        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2392                                sizeof(struct journal_head),
2393                                0,              /* offset */
2394                                SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2395                                NULL);          /* ctor */
2396        retval = 0;
2397        if (!jbd2_journal_head_cache) {
2398                retval = -ENOMEM;
2399                printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2400        }
2401        return retval;
2402}
2403
2404static void jbd2_journal_destroy_journal_head_cache(void)
2405{
2406        kmem_cache_destroy(jbd2_journal_head_cache);
2407        jbd2_journal_head_cache = NULL;
2408}
2409
2410/*
2411 * journal_head splicing and dicing
2412 */
2413static struct journal_head *journal_alloc_journal_head(void)
2414{
2415        struct journal_head *ret;
2416
2417#ifdef CONFIG_JBD2_DEBUG
2418        atomic_inc(&nr_journal_heads);
2419#endif
2420        ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2421        if (!ret) {
2422                jbd_debug(1, "out of memory for journal_head\n");
2423                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2424                ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2425                                GFP_NOFS | __GFP_NOFAIL);
2426        }
2427        return ret;
2428}
2429
2430static void journal_free_journal_head(struct journal_head *jh)
2431{
2432#ifdef CONFIG_JBD2_DEBUG
2433        atomic_dec(&nr_journal_heads);
2434        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2435#endif
2436        kmem_cache_free(jbd2_journal_head_cache, jh);
2437}
2438
2439/*
2440 * A journal_head is attached to a buffer_head whenever JBD has an
2441 * interest in the buffer.
2442 *
2443 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2444 * is set.  This bit is tested in core kernel code where we need to take
2445 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2446 * there.
2447 *
2448 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2449 *
2450 * When a buffer has its BH_JBD bit set it is immune from being released by
2451 * core kernel code, mainly via ->b_count.
2452 *
2453 * A journal_head is detached from its buffer_head when the journal_head's
2454 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2455 * transaction (b_cp_transaction) hold their references to b_jcount.
2456 *
2457 * Various places in the kernel want to attach a journal_head to a buffer_head
2458 * _before_ attaching the journal_head to a transaction.  To protect the
2459 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2460 * journal_head's b_jcount refcount by one.  The caller must call
2461 * jbd2_journal_put_journal_head() to undo this.
2462 *
2463 * So the typical usage would be:
2464 *
2465 *      (Attach a journal_head if needed.  Increments b_jcount)
2466 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2467 *      ...
2468 *      (Get another reference for transaction)
2469 *      jbd2_journal_grab_journal_head(bh);
2470 *      jh->b_transaction = xxx;
2471 *      (Put original reference)
2472 *      jbd2_journal_put_journal_head(jh);
2473 */
2474
2475/*
2476 * Give a buffer_head a journal_head.
2477 *
2478 * May sleep.
2479 */
2480struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2481{
2482        struct journal_head *jh;
2483        struct journal_head *new_jh = NULL;
2484
2485repeat:
2486        if (!buffer_jbd(bh))
2487                new_jh = journal_alloc_journal_head();
2488
2489        jbd_lock_bh_journal_head(bh);
2490        if (buffer_jbd(bh)) {
2491                jh = bh2jh(bh);
2492        } else {
2493                J_ASSERT_BH(bh,
2494                        (atomic_read(&bh->b_count) > 0) ||
2495                        (bh->b_page && bh->b_page->mapping));
2496
2497                if (!new_jh) {
2498                        jbd_unlock_bh_journal_head(bh);
2499                        goto repeat;
2500                }
2501
2502                jh = new_jh;
2503                new_jh = NULL;          /* We consumed it */
2504                set_buffer_jbd(bh);
2505                bh->b_private = jh;
2506                jh->b_bh = bh;
2507                get_bh(bh);
2508                BUFFER_TRACE(bh, "added journal_head");
2509        }
2510        jh->b_jcount++;
2511        jbd_unlock_bh_journal_head(bh);
2512        if (new_jh)
2513                journal_free_journal_head(new_jh);
2514        return bh->b_private;
2515}
2516
2517/*
2518 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2519 * having a journal_head, return NULL
2520 */
2521struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2522{
2523        struct journal_head *jh = NULL;
2524
2525        jbd_lock_bh_journal_head(bh);
2526        if (buffer_jbd(bh)) {
2527                jh = bh2jh(bh);
2528                jh->b_jcount++;
2529        }
2530        jbd_unlock_bh_journal_head(bh);
2531        return jh;
2532}
2533
2534static void __journal_remove_journal_head(struct buffer_head *bh)
2535{
2536        struct journal_head *jh = bh2jh(bh);
2537
2538        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2539        J_ASSERT_JH(jh, jh->b_transaction == NULL);
2540        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2541        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2542        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2543        J_ASSERT_BH(bh, buffer_jbd(bh));
2544        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2545        BUFFER_TRACE(bh, "remove journal_head");
2546        if (jh->b_frozen_data) {
2547                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2548                jbd2_free(jh->b_frozen_data, bh->b_size);
2549        }
2550        if (jh->b_committed_data) {
2551                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2552                jbd2_free(jh->b_committed_data, bh->b_size);
2553        }
2554        bh->b_private = NULL;
2555        jh->b_bh = NULL;        /* debug, really */
2556        clear_buffer_jbd(bh);
2557        journal_free_journal_head(jh);
2558}
2559
2560/*
2561 * Drop a reference on the passed journal_head.  If it fell to zero then
2562 * release the journal_head from the buffer_head.
2563 */
2564void jbd2_journal_put_journal_head(struct journal_head *jh)
2565{
2566        struct buffer_head *bh = jh2bh(jh);
2567
2568        jbd_lock_bh_journal_head(bh);
2569        J_ASSERT_JH(jh, jh->b_jcount > 0);
2570        --jh->b_jcount;
2571        if (!jh->b_jcount) {
2572                __journal_remove_journal_head(bh);
2573                jbd_unlock_bh_journal_head(bh);
2574                __brelse(bh);
2575        } else
2576                jbd_unlock_bh_journal_head(bh);
2577}
2578
2579/*
2580 * Initialize jbd inode head
2581 */
2582void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2583{
2584        jinode->i_transaction = NULL;
2585        jinode->i_next_transaction = NULL;
2586        jinode->i_vfs_inode = inode;
2587        jinode->i_flags = 0;
2588        INIT_LIST_HEAD(&jinode->i_list);
2589}
2590
2591/*
2592 * Function to be called before we start removing inode from memory (i.e.,
2593 * clear_inode() is a fine place to be called from). It removes inode from
2594 * transaction's lists.
2595 */
2596void jbd2_journal_release_jbd_inode(journal_t *journal,
2597                                    struct jbd2_inode *jinode)
2598{
2599        if (!journal)
2600                return;
2601restart:
2602        spin_lock(&journal->j_list_lock);
2603        /* Is commit writing out inode - we have to wait */
2604        if (jinode->i_flags & JI_COMMIT_RUNNING) {
2605                wait_queue_head_t *wq;
2606                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2607                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2608                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2609                spin_unlock(&journal->j_list_lock);
2610                schedule();
2611                finish_wait(wq, &wait.wq_entry);
2612                goto restart;
2613        }
2614
2615        if (jinode->i_transaction) {
2616                list_del(&jinode->i_list);
2617                jinode->i_transaction = NULL;
2618        }
2619        spin_unlock(&journal->j_list_lock);
2620}
2621
2622
2623#ifdef CONFIG_PROC_FS
2624
2625#define JBD2_STATS_PROC_NAME "fs/jbd2"
2626
2627static void __init jbd2_create_jbd_stats_proc_entry(void)
2628{
2629        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2630}
2631
2632static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2633{
2634        if (proc_jbd2_stats)
2635                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2636}
2637
2638#else
2639
2640#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2641#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2642
2643#endif
2644
2645struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2646
2647static int __init jbd2_journal_init_handle_cache(void)
2648{
2649        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650        if (jbd2_handle_cache == NULL) {
2651                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652                return -ENOMEM;
2653        }
2654        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2655        if (jbd2_inode_cache == NULL) {
2656                printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2657                kmem_cache_destroy(jbd2_handle_cache);
2658                return -ENOMEM;
2659        }
2660        return 0;
2661}
2662
2663static void jbd2_journal_destroy_handle_cache(void)
2664{
2665        kmem_cache_destroy(jbd2_handle_cache);
2666        jbd2_handle_cache = NULL;
2667        kmem_cache_destroy(jbd2_inode_cache);
2668        jbd2_inode_cache = NULL;
2669}
2670
2671/*
2672 * Module startup and shutdown
2673 */
2674
2675static int __init journal_init_caches(void)
2676{
2677        int ret;
2678
2679        ret = jbd2_journal_init_revoke_caches();
2680        if (ret == 0)
2681                ret = jbd2_journal_init_journal_head_cache();
2682        if (ret == 0)
2683                ret = jbd2_journal_init_handle_cache();
2684        if (ret == 0)
2685                ret = jbd2_journal_init_transaction_cache();
2686        return ret;
2687}
2688
2689static void jbd2_journal_destroy_caches(void)
2690{
2691        jbd2_journal_destroy_revoke_caches();
2692        jbd2_journal_destroy_journal_head_cache();
2693        jbd2_journal_destroy_handle_cache();
2694        jbd2_journal_destroy_transaction_cache();
2695        jbd2_journal_destroy_slabs();
2696}
2697
2698static int __init journal_init(void)
2699{
2700        int ret;
2701
2702        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2703
2704        ret = journal_init_caches();
2705        if (ret == 0) {
2706                jbd2_create_jbd_stats_proc_entry();
2707        } else {
2708                jbd2_journal_destroy_caches();
2709        }
2710        return ret;
2711}
2712
2713static void __exit journal_exit(void)
2714{
2715#ifdef CONFIG_JBD2_DEBUG
2716        int n = atomic_read(&nr_journal_heads);
2717        if (n)
2718                printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2719#endif
2720        jbd2_remove_jbd_stats_proc_entry();
2721        jbd2_journal_destroy_caches();
2722}
2723
2724MODULE_LICENSE("GPL");
2725module_init(journal_init);
2726module_exit(journal_exit);
2727
2728