linux/fs/mbcache.c
<<
>>
Prefs
   1#include <linux/spinlock.h>
   2#include <linux/slab.h>
   3#include <linux/list.h>
   4#include <linux/list_bl.h>
   5#include <linux/module.h>
   6#include <linux/sched.h>
   7#include <linux/workqueue.h>
   8#include <linux/mbcache.h>
   9
  10/*
  11 * Mbcache is a simple key-value store. Keys need not be unique, however
  12 * key-value pairs are expected to be unique (we use this fact in
  13 * mb_cache_entry_delete()).
  14 *
  15 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
  16 * Ext4 also uses it for deduplication of xattr values stored in inodes.
  17 * They use hash of data as a key and provide a value that may represent a
  18 * block or inode number. That's why keys need not be unique (hash of different
  19 * data may be the same). However user provided value always uniquely
  20 * identifies a cache entry.
  21 *
  22 * We provide functions for creation and removal of entries, search by key,
  23 * and a special "delete entry with given key-value pair" operation. Fixed
  24 * size hash table is used for fast key lookups.
  25 */
  26
  27struct mb_cache {
  28        /* Hash table of entries */
  29        struct hlist_bl_head    *c_hash;
  30        /* log2 of hash table size */
  31        int                     c_bucket_bits;
  32        /* Maximum entries in cache to avoid degrading hash too much */
  33        unsigned long           c_max_entries;
  34        /* Protects c_list, c_entry_count */
  35        spinlock_t              c_list_lock;
  36        struct list_head        c_list;
  37        /* Number of entries in cache */
  38        unsigned long           c_entry_count;
  39        struct shrinker         c_shrink;
  40        /* Work for shrinking when the cache has too many entries */
  41        struct work_struct      c_shrink_work;
  42};
  43
  44static struct kmem_cache *mb_entry_cache;
  45
  46static unsigned long mb_cache_shrink(struct mb_cache *cache,
  47                                     unsigned long nr_to_scan);
  48
  49static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
  50                                                        u32 key)
  51{
  52        return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
  53}
  54
  55/*
  56 * Number of entries to reclaim synchronously when there are too many entries
  57 * in cache
  58 */
  59#define SYNC_SHRINK_BATCH 64
  60
  61/*
  62 * mb_cache_entry_create - create entry in cache
  63 * @cache - cache where the entry should be created
  64 * @mask - gfp mask with which the entry should be allocated
  65 * @key - key of the entry
  66 * @value - value of the entry
  67 * @reusable - is the entry reusable by others?
  68 *
  69 * Creates entry in @cache with key @key and value @value. The function returns
  70 * -EBUSY if entry with the same key and value already exists in cache.
  71 * Otherwise 0 is returned.
  72 */
  73int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
  74                          u64 value, bool reusable)
  75{
  76        struct mb_cache_entry *entry, *dup;
  77        struct hlist_bl_node *dup_node;
  78        struct hlist_bl_head *head;
  79
  80        /* Schedule background reclaim if there are too many entries */
  81        if (cache->c_entry_count >= cache->c_max_entries)
  82                schedule_work(&cache->c_shrink_work);
  83        /* Do some sync reclaim if background reclaim cannot keep up */
  84        if (cache->c_entry_count >= 2*cache->c_max_entries)
  85                mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
  86
  87        entry = kmem_cache_alloc(mb_entry_cache, mask);
  88        if (!entry)
  89                return -ENOMEM;
  90
  91        INIT_LIST_HEAD(&entry->e_list);
  92        /* One ref for hash, one ref returned */
  93        atomic_set(&entry->e_refcnt, 1);
  94        entry->e_key = key;
  95        entry->e_value = value;
  96        entry->e_reusable = reusable;
  97        entry->e_referenced = 0;
  98        head = mb_cache_entry_head(cache, key);
  99        hlist_bl_lock(head);
 100        hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
 101                if (dup->e_key == key && dup->e_value == value) {
 102                        hlist_bl_unlock(head);
 103                        kmem_cache_free(mb_entry_cache, entry);
 104                        return -EBUSY;
 105                }
 106        }
 107        hlist_bl_add_head(&entry->e_hash_list, head);
 108        hlist_bl_unlock(head);
 109
 110        spin_lock(&cache->c_list_lock);
 111        list_add_tail(&entry->e_list, &cache->c_list);
 112        /* Grab ref for LRU list */
 113        atomic_inc(&entry->e_refcnt);
 114        cache->c_entry_count++;
 115        spin_unlock(&cache->c_list_lock);
 116
 117        return 0;
 118}
 119EXPORT_SYMBOL(mb_cache_entry_create);
 120
 121void __mb_cache_entry_free(struct mb_cache_entry *entry)
 122{
 123        kmem_cache_free(mb_entry_cache, entry);
 124}
 125EXPORT_SYMBOL(__mb_cache_entry_free);
 126
 127static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
 128                                           struct mb_cache_entry *entry,
 129                                           u32 key)
 130{
 131        struct mb_cache_entry *old_entry = entry;
 132        struct hlist_bl_node *node;
 133        struct hlist_bl_head *head;
 134
 135        head = mb_cache_entry_head(cache, key);
 136        hlist_bl_lock(head);
 137        if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
 138                node = entry->e_hash_list.next;
 139        else
 140                node = hlist_bl_first(head);
 141        while (node) {
 142                entry = hlist_bl_entry(node, struct mb_cache_entry,
 143                                       e_hash_list);
 144                if (entry->e_key == key && entry->e_reusable) {
 145                        atomic_inc(&entry->e_refcnt);
 146                        goto out;
 147                }
 148                node = node->next;
 149        }
 150        entry = NULL;
 151out:
 152        hlist_bl_unlock(head);
 153        if (old_entry)
 154                mb_cache_entry_put(cache, old_entry);
 155
 156        return entry;
 157}
 158
 159/*
 160 * mb_cache_entry_find_first - find the first reusable entry with the given key
 161 * @cache: cache where we should search
 162 * @key: key to look for
 163 *
 164 * Search in @cache for a reusable entry with key @key. Grabs reference to the
 165 * first reusable entry found and returns the entry.
 166 */
 167struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
 168                                                 u32 key)
 169{
 170        return __entry_find(cache, NULL, key);
 171}
 172EXPORT_SYMBOL(mb_cache_entry_find_first);
 173
 174/*
 175 * mb_cache_entry_find_next - find next reusable entry with the same key
 176 * @cache: cache where we should search
 177 * @entry: entry to start search from
 178 *
 179 * Finds next reusable entry in the hash chain which has the same key as @entry.
 180 * If @entry is unhashed (which can happen when deletion of entry races with the
 181 * search), finds the first reusable entry in the hash chain. The function drops
 182 * reference to @entry and returns with a reference to the found entry.
 183 */
 184struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
 185                                                struct mb_cache_entry *entry)
 186{
 187        return __entry_find(cache, entry, entry->e_key);
 188}
 189EXPORT_SYMBOL(mb_cache_entry_find_next);
 190
 191/*
 192 * mb_cache_entry_get - get a cache entry by value (and key)
 193 * @cache - cache we work with
 194 * @key - key
 195 * @value - value
 196 */
 197struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
 198                                          u64 value)
 199{
 200        struct hlist_bl_node *node;
 201        struct hlist_bl_head *head;
 202        struct mb_cache_entry *entry;
 203
 204        head = mb_cache_entry_head(cache, key);
 205        hlist_bl_lock(head);
 206        hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
 207                if (entry->e_key == key && entry->e_value == value) {
 208                        atomic_inc(&entry->e_refcnt);
 209                        goto out;
 210                }
 211        }
 212        entry = NULL;
 213out:
 214        hlist_bl_unlock(head);
 215        return entry;
 216}
 217EXPORT_SYMBOL(mb_cache_entry_get);
 218
 219/* mb_cache_entry_delete - remove a cache entry
 220 * @cache - cache we work with
 221 * @key - key
 222 * @value - value
 223 *
 224 * Remove entry from cache @cache with key @key and value @value.
 225 */
 226void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value)
 227{
 228        struct hlist_bl_node *node;
 229        struct hlist_bl_head *head;
 230        struct mb_cache_entry *entry;
 231
 232        head = mb_cache_entry_head(cache, key);
 233        hlist_bl_lock(head);
 234        hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
 235                if (entry->e_key == key && entry->e_value == value) {
 236                        /* We keep hash list reference to keep entry alive */
 237                        hlist_bl_del_init(&entry->e_hash_list);
 238                        hlist_bl_unlock(head);
 239                        spin_lock(&cache->c_list_lock);
 240                        if (!list_empty(&entry->e_list)) {
 241                                list_del_init(&entry->e_list);
 242                                if (!WARN_ONCE(cache->c_entry_count == 0,
 243                "mbcache: attempt to decrement c_entry_count past zero"))
 244                                        cache->c_entry_count--;
 245                                atomic_dec(&entry->e_refcnt);
 246                        }
 247                        spin_unlock(&cache->c_list_lock);
 248                        mb_cache_entry_put(cache, entry);
 249                        return;
 250                }
 251        }
 252        hlist_bl_unlock(head);
 253}
 254EXPORT_SYMBOL(mb_cache_entry_delete);
 255
 256/* mb_cache_entry_touch - cache entry got used
 257 * @cache - cache the entry belongs to
 258 * @entry - entry that got used
 259 *
 260 * Marks entry as used to give hit higher chances of surviving in cache.
 261 */
 262void mb_cache_entry_touch(struct mb_cache *cache,
 263                          struct mb_cache_entry *entry)
 264{
 265        entry->e_referenced = 1;
 266}
 267EXPORT_SYMBOL(mb_cache_entry_touch);
 268
 269static unsigned long mb_cache_count(struct shrinker *shrink,
 270                                    struct shrink_control *sc)
 271{
 272        struct mb_cache *cache = container_of(shrink, struct mb_cache,
 273                                              c_shrink);
 274
 275        return cache->c_entry_count;
 276}
 277
 278/* Shrink number of entries in cache */
 279static unsigned long mb_cache_shrink(struct mb_cache *cache,
 280                                     unsigned long nr_to_scan)
 281{
 282        struct mb_cache_entry *entry;
 283        struct hlist_bl_head *head;
 284        unsigned long shrunk = 0;
 285
 286        spin_lock(&cache->c_list_lock);
 287        while (nr_to_scan-- && !list_empty(&cache->c_list)) {
 288                entry = list_first_entry(&cache->c_list,
 289                                         struct mb_cache_entry, e_list);
 290                if (entry->e_referenced) {
 291                        entry->e_referenced = 0;
 292                        list_move_tail(&entry->e_list, &cache->c_list);
 293                        continue;
 294                }
 295                list_del_init(&entry->e_list);
 296                cache->c_entry_count--;
 297                /*
 298                 * We keep LRU list reference so that entry doesn't go away
 299                 * from under us.
 300                 */
 301                spin_unlock(&cache->c_list_lock);
 302                head = mb_cache_entry_head(cache, entry->e_key);
 303                hlist_bl_lock(head);
 304                if (!hlist_bl_unhashed(&entry->e_hash_list)) {
 305                        hlist_bl_del_init(&entry->e_hash_list);
 306                        atomic_dec(&entry->e_refcnt);
 307                }
 308                hlist_bl_unlock(head);
 309                if (mb_cache_entry_put(cache, entry))
 310                        shrunk++;
 311                cond_resched();
 312                spin_lock(&cache->c_list_lock);
 313        }
 314        spin_unlock(&cache->c_list_lock);
 315
 316        return shrunk;
 317}
 318
 319static unsigned long mb_cache_scan(struct shrinker *shrink,
 320                                   struct shrink_control *sc)
 321{
 322        struct mb_cache *cache = container_of(shrink, struct mb_cache,
 323                                              c_shrink);
 324        return mb_cache_shrink(cache, sc->nr_to_scan);
 325}
 326
 327/* We shrink 1/X of the cache when we have too many entries in it */
 328#define SHRINK_DIVISOR 16
 329
 330static void mb_cache_shrink_worker(struct work_struct *work)
 331{
 332        struct mb_cache *cache = container_of(work, struct mb_cache,
 333                                              c_shrink_work);
 334        mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
 335}
 336
 337/*
 338 * mb_cache_create - create cache
 339 * @bucket_bits: log2 of the hash table size
 340 *
 341 * Create cache for keys with 2^bucket_bits hash entries.
 342 */
 343struct mb_cache *mb_cache_create(int bucket_bits)
 344{
 345        struct mb_cache *cache;
 346        unsigned long bucket_count = 1UL << bucket_bits;
 347        unsigned long i;
 348
 349        cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
 350        if (!cache)
 351                goto err_out;
 352        cache->c_bucket_bits = bucket_bits;
 353        cache->c_max_entries = bucket_count << 4;
 354        INIT_LIST_HEAD(&cache->c_list);
 355        spin_lock_init(&cache->c_list_lock);
 356        cache->c_hash = kmalloc_array(bucket_count,
 357                                      sizeof(struct hlist_bl_head),
 358                                      GFP_KERNEL);
 359        if (!cache->c_hash) {
 360                kfree(cache);
 361                goto err_out;
 362        }
 363        for (i = 0; i < bucket_count; i++)
 364                INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
 365
 366        cache->c_shrink.count_objects = mb_cache_count;
 367        cache->c_shrink.scan_objects = mb_cache_scan;
 368        cache->c_shrink.seeks = DEFAULT_SEEKS;
 369        if (register_shrinker(&cache->c_shrink)) {
 370                kfree(cache->c_hash);
 371                kfree(cache);
 372                goto err_out;
 373        }
 374
 375        INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
 376
 377        return cache;
 378
 379err_out:
 380        return NULL;
 381}
 382EXPORT_SYMBOL(mb_cache_create);
 383
 384/*
 385 * mb_cache_destroy - destroy cache
 386 * @cache: the cache to destroy
 387 *
 388 * Free all entries in cache and cache itself. Caller must make sure nobody
 389 * (except shrinker) can reach @cache when calling this.
 390 */
 391void mb_cache_destroy(struct mb_cache *cache)
 392{
 393        struct mb_cache_entry *entry, *next;
 394
 395        unregister_shrinker(&cache->c_shrink);
 396
 397        /*
 398         * We don't bother with any locking. Cache must not be used at this
 399         * point.
 400         */
 401        list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
 402                if (!hlist_bl_unhashed(&entry->e_hash_list)) {
 403                        hlist_bl_del_init(&entry->e_hash_list);
 404                        atomic_dec(&entry->e_refcnt);
 405                } else
 406                        WARN_ON(1);
 407                list_del(&entry->e_list);
 408                WARN_ON(atomic_read(&entry->e_refcnt) != 1);
 409                mb_cache_entry_put(cache, entry);
 410        }
 411        kfree(cache->c_hash);
 412        kfree(cache);
 413}
 414EXPORT_SYMBOL(mb_cache_destroy);
 415
 416static int __init mbcache_init(void)
 417{
 418        mb_entry_cache = kmem_cache_create("mbcache",
 419                                sizeof(struct mb_cache_entry), 0,
 420                                SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
 421        if (!mb_entry_cache)
 422                return -ENOMEM;
 423        return 0;
 424}
 425
 426static void __exit mbcache_exit(void)
 427{
 428        kmem_cache_destroy(mb_entry_cache);
 429}
 430
 431module_init(mbcache_init)
 432module_exit(mbcache_exit)
 433
 434MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
 435MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
 436MODULE_LICENSE("GPL");
 437