linux/fs/ocfs2/journal.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * journal.c
   5 *
   6 * Defines functions of journalling api
   7 *
   8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2 of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public
  21 * License along with this program; if not, write to the
  22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23 * Boston, MA 021110-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/types.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/kthread.h>
  31#include <linux/time.h>
  32#include <linux/random.h>
  33#include <linux/delay.h>
  34
  35#include <cluster/masklog.h>
  36
  37#include "ocfs2.h"
  38
  39#include "alloc.h"
  40#include "blockcheck.h"
  41#include "dir.h"
  42#include "dlmglue.h"
  43#include "extent_map.h"
  44#include "heartbeat.h"
  45#include "inode.h"
  46#include "journal.h"
  47#include "localalloc.h"
  48#include "slot_map.h"
  49#include "super.h"
  50#include "sysfile.h"
  51#include "uptodate.h"
  52#include "quota.h"
  53#include "file.h"
  54#include "namei.h"
  55
  56#include "buffer_head_io.h"
  57#include "ocfs2_trace.h"
  58
  59DEFINE_SPINLOCK(trans_inc_lock);
  60
  61#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  62
  63static int ocfs2_force_read_journal(struct inode *inode);
  64static int ocfs2_recover_node(struct ocfs2_super *osb,
  65                              int node_num, int slot_num);
  66static int __ocfs2_recovery_thread(void *arg);
  67static int ocfs2_commit_cache(struct ocfs2_super *osb);
  68static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  69static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  70                                      int dirty, int replayed);
  71static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  72                                 int slot_num);
  73static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  74                                 int slot,
  75                                 enum ocfs2_orphan_reco_type orphan_reco_type);
  76static int ocfs2_commit_thread(void *arg);
  77static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  78                                            int slot_num,
  79                                            struct ocfs2_dinode *la_dinode,
  80                                            struct ocfs2_dinode *tl_dinode,
  81                                            struct ocfs2_quota_recovery *qrec,
  82                                            enum ocfs2_orphan_reco_type orphan_reco_type);
  83
  84static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  85{
  86        return __ocfs2_wait_on_mount(osb, 0);
  87}
  88
  89static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  90{
  91        return __ocfs2_wait_on_mount(osb, 1);
  92}
  93
  94/*
  95 * This replay_map is to track online/offline slots, so we could recover
  96 * offline slots during recovery and mount
  97 */
  98
  99enum ocfs2_replay_state {
 100        REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
 101        REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
 102        REPLAY_DONE             /* Replay was already queued */
 103};
 104
 105struct ocfs2_replay_map {
 106        unsigned int rm_slots;
 107        enum ocfs2_replay_state rm_state;
 108        unsigned char rm_replay_slots[0];
 109};
 110
 111static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
 112{
 113        if (!osb->replay_map)
 114                return;
 115
 116        /* If we've already queued the replay, we don't have any more to do */
 117        if (osb->replay_map->rm_state == REPLAY_DONE)
 118                return;
 119
 120        osb->replay_map->rm_state = state;
 121}
 122
 123int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 124{
 125        struct ocfs2_replay_map *replay_map;
 126        int i, node_num;
 127
 128        /* If replay map is already set, we don't do it again */
 129        if (osb->replay_map)
 130                return 0;
 131
 132        replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 133                             (osb->max_slots * sizeof(char)), GFP_KERNEL);
 134
 135        if (!replay_map) {
 136                mlog_errno(-ENOMEM);
 137                return -ENOMEM;
 138        }
 139
 140        spin_lock(&osb->osb_lock);
 141
 142        replay_map->rm_slots = osb->max_slots;
 143        replay_map->rm_state = REPLAY_UNNEEDED;
 144
 145        /* set rm_replay_slots for offline slot(s) */
 146        for (i = 0; i < replay_map->rm_slots; i++) {
 147                if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 148                        replay_map->rm_replay_slots[i] = 1;
 149        }
 150
 151        osb->replay_map = replay_map;
 152        spin_unlock(&osb->osb_lock);
 153        return 0;
 154}
 155
 156static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 157                enum ocfs2_orphan_reco_type orphan_reco_type)
 158{
 159        struct ocfs2_replay_map *replay_map = osb->replay_map;
 160        int i;
 161
 162        if (!replay_map)
 163                return;
 164
 165        if (replay_map->rm_state != REPLAY_NEEDED)
 166                return;
 167
 168        for (i = 0; i < replay_map->rm_slots; i++)
 169                if (replay_map->rm_replay_slots[i])
 170                        ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 171                                                        NULL, NULL,
 172                                                        orphan_reco_type);
 173        replay_map->rm_state = REPLAY_DONE;
 174}
 175
 176static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 177{
 178        struct ocfs2_replay_map *replay_map = osb->replay_map;
 179
 180        if (!osb->replay_map)
 181                return;
 182
 183        kfree(replay_map);
 184        osb->replay_map = NULL;
 185}
 186
 187int ocfs2_recovery_init(struct ocfs2_super *osb)
 188{
 189        struct ocfs2_recovery_map *rm;
 190
 191        mutex_init(&osb->recovery_lock);
 192        osb->disable_recovery = 0;
 193        osb->recovery_thread_task = NULL;
 194        init_waitqueue_head(&osb->recovery_event);
 195
 196        rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 197                     osb->max_slots * sizeof(unsigned int),
 198                     GFP_KERNEL);
 199        if (!rm) {
 200                mlog_errno(-ENOMEM);
 201                return -ENOMEM;
 202        }
 203
 204        rm->rm_entries = (unsigned int *)((char *)rm +
 205                                          sizeof(struct ocfs2_recovery_map));
 206        osb->recovery_map = rm;
 207
 208        return 0;
 209}
 210
 211/* we can't grab the goofy sem lock from inside wait_event, so we use
 212 * memory barriers to make sure that we'll see the null task before
 213 * being woken up */
 214static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 215{
 216        mb();
 217        return osb->recovery_thread_task != NULL;
 218}
 219
 220void ocfs2_recovery_exit(struct ocfs2_super *osb)
 221{
 222        struct ocfs2_recovery_map *rm;
 223
 224        /* disable any new recovery threads and wait for any currently
 225         * running ones to exit. Do this before setting the vol_state. */
 226        mutex_lock(&osb->recovery_lock);
 227        osb->disable_recovery = 1;
 228        mutex_unlock(&osb->recovery_lock);
 229        wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 230
 231        /* At this point, we know that no more recovery threads can be
 232         * launched, so wait for any recovery completion work to
 233         * complete. */
 234        flush_workqueue(osb->ocfs2_wq);
 235
 236        /*
 237         * Now that recovery is shut down, and the osb is about to be
 238         * freed,  the osb_lock is not taken here.
 239         */
 240        rm = osb->recovery_map;
 241        /* XXX: Should we bug if there are dirty entries? */
 242
 243        kfree(rm);
 244}
 245
 246static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 247                                     unsigned int node_num)
 248{
 249        int i;
 250        struct ocfs2_recovery_map *rm = osb->recovery_map;
 251
 252        assert_spin_locked(&osb->osb_lock);
 253
 254        for (i = 0; i < rm->rm_used; i++) {
 255                if (rm->rm_entries[i] == node_num)
 256                        return 1;
 257        }
 258
 259        return 0;
 260}
 261
 262/* Behaves like test-and-set.  Returns the previous value */
 263static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 264                                  unsigned int node_num)
 265{
 266        struct ocfs2_recovery_map *rm = osb->recovery_map;
 267
 268        spin_lock(&osb->osb_lock);
 269        if (__ocfs2_recovery_map_test(osb, node_num)) {
 270                spin_unlock(&osb->osb_lock);
 271                return 1;
 272        }
 273
 274        /* XXX: Can this be exploited? Not from o2dlm... */
 275        BUG_ON(rm->rm_used >= osb->max_slots);
 276
 277        rm->rm_entries[rm->rm_used] = node_num;
 278        rm->rm_used++;
 279        spin_unlock(&osb->osb_lock);
 280
 281        return 0;
 282}
 283
 284static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 285                                     unsigned int node_num)
 286{
 287        int i;
 288        struct ocfs2_recovery_map *rm = osb->recovery_map;
 289
 290        spin_lock(&osb->osb_lock);
 291
 292        for (i = 0; i < rm->rm_used; i++) {
 293                if (rm->rm_entries[i] == node_num)
 294                        break;
 295        }
 296
 297        if (i < rm->rm_used) {
 298                /* XXX: be careful with the pointer math */
 299                memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 300                        (rm->rm_used - i - 1) * sizeof(unsigned int));
 301                rm->rm_used--;
 302        }
 303
 304        spin_unlock(&osb->osb_lock);
 305}
 306
 307static int ocfs2_commit_cache(struct ocfs2_super *osb)
 308{
 309        int status = 0;
 310        unsigned int flushed;
 311        struct ocfs2_journal *journal = NULL;
 312
 313        journal = osb->journal;
 314
 315        /* Flush all pending commits and checkpoint the journal. */
 316        down_write(&journal->j_trans_barrier);
 317
 318        flushed = atomic_read(&journal->j_num_trans);
 319        trace_ocfs2_commit_cache_begin(flushed);
 320        if (flushed == 0) {
 321                up_write(&journal->j_trans_barrier);
 322                goto finally;
 323        }
 324
 325        jbd2_journal_lock_updates(journal->j_journal);
 326        status = jbd2_journal_flush(journal->j_journal);
 327        jbd2_journal_unlock_updates(journal->j_journal);
 328        if (status < 0) {
 329                up_write(&journal->j_trans_barrier);
 330                mlog_errno(status);
 331                goto finally;
 332        }
 333
 334        ocfs2_inc_trans_id(journal);
 335
 336        flushed = atomic_read(&journal->j_num_trans);
 337        atomic_set(&journal->j_num_trans, 0);
 338        up_write(&journal->j_trans_barrier);
 339
 340        trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 341
 342        ocfs2_wake_downconvert_thread(osb);
 343        wake_up(&journal->j_checkpointed);
 344finally:
 345        return status;
 346}
 347
 348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 349{
 350        journal_t *journal = osb->journal->j_journal;
 351        handle_t *handle;
 352
 353        BUG_ON(!osb || !osb->journal->j_journal);
 354
 355        if (ocfs2_is_hard_readonly(osb))
 356                return ERR_PTR(-EROFS);
 357
 358        BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 359        BUG_ON(max_buffs <= 0);
 360
 361        /* Nested transaction? Just return the handle... */
 362        if (journal_current_handle())
 363                return jbd2_journal_start(journal, max_buffs);
 364
 365        sb_start_intwrite(osb->sb);
 366
 367        down_read(&osb->journal->j_trans_barrier);
 368
 369        handle = jbd2_journal_start(journal, max_buffs);
 370        if (IS_ERR(handle)) {
 371                up_read(&osb->journal->j_trans_barrier);
 372                sb_end_intwrite(osb->sb);
 373
 374                mlog_errno(PTR_ERR(handle));
 375
 376                if (is_journal_aborted(journal)) {
 377                        ocfs2_abort(osb->sb, "Detected aborted journal\n");
 378                        handle = ERR_PTR(-EROFS);
 379                }
 380        } else {
 381                if (!ocfs2_mount_local(osb))
 382                        atomic_inc(&(osb->journal->j_num_trans));
 383        }
 384
 385        return handle;
 386}
 387
 388int ocfs2_commit_trans(struct ocfs2_super *osb,
 389                       handle_t *handle)
 390{
 391        int ret, nested;
 392        struct ocfs2_journal *journal = osb->journal;
 393
 394        BUG_ON(!handle);
 395
 396        nested = handle->h_ref > 1;
 397        ret = jbd2_journal_stop(handle);
 398        if (ret < 0)
 399                mlog_errno(ret);
 400
 401        if (!nested) {
 402                up_read(&journal->j_trans_barrier);
 403                sb_end_intwrite(osb->sb);
 404        }
 405
 406        return ret;
 407}
 408
 409/*
 410 * 'nblocks' is what you want to add to the current transaction.
 411 *
 412 * This might call jbd2_journal_restart() which will commit dirty buffers
 413 * and then restart the transaction. Before calling
 414 * ocfs2_extend_trans(), any changed blocks should have been
 415 * dirtied. After calling it, all blocks which need to be changed must
 416 * go through another set of journal_access/journal_dirty calls.
 417 *
 418 * WARNING: This will not release any semaphores or disk locks taken
 419 * during the transaction, so make sure they were taken *before*
 420 * start_trans or we'll have ordering deadlocks.
 421 *
 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 423 * good because transaction ids haven't yet been recorded on the
 424 * cluster locks associated with this handle.
 425 */
 426int ocfs2_extend_trans(handle_t *handle, int nblocks)
 427{
 428        int status, old_nblocks;
 429
 430        BUG_ON(!handle);
 431        BUG_ON(nblocks < 0);
 432
 433        if (!nblocks)
 434                return 0;
 435
 436        old_nblocks = handle->h_buffer_credits;
 437
 438        trace_ocfs2_extend_trans(old_nblocks, nblocks);
 439
 440#ifdef CONFIG_OCFS2_DEBUG_FS
 441        status = 1;
 442#else
 443        status = jbd2_journal_extend(handle, nblocks);
 444        if (status < 0) {
 445                mlog_errno(status);
 446                goto bail;
 447        }
 448#endif
 449
 450        if (status > 0) {
 451                trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 452                status = jbd2_journal_restart(handle,
 453                                              old_nblocks + nblocks);
 454                if (status < 0) {
 455                        mlog_errno(status);
 456                        goto bail;
 457                }
 458        }
 459
 460        status = 0;
 461bail:
 462        return status;
 463}
 464
 465/*
 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 467 * If that fails, restart the transaction & regain write access for the
 468 * buffer head which is used for metadata modifications.
 469 * Taken from Ext4: extend_or_restart_transaction()
 470 */
 471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 472{
 473        int status, old_nblks;
 474
 475        BUG_ON(!handle);
 476
 477        old_nblks = handle->h_buffer_credits;
 478        trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 479
 480        if (old_nblks < thresh)
 481                return 0;
 482
 483        status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
 484        if (status < 0) {
 485                mlog_errno(status);
 486                goto bail;
 487        }
 488
 489        if (status > 0) {
 490                status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 491                if (status < 0)
 492                        mlog_errno(status);
 493        }
 494
 495bail:
 496        return status;
 497}
 498
 499
 500struct ocfs2_triggers {
 501        struct jbd2_buffer_trigger_type ot_triggers;
 502        int                             ot_offset;
 503};
 504
 505static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 506{
 507        return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 508}
 509
 510static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 511                                 struct buffer_head *bh,
 512                                 void *data, size_t size)
 513{
 514        struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 515
 516        /*
 517         * We aren't guaranteed to have the superblock here, so we
 518         * must unconditionally compute the ecc data.
 519         * __ocfs2_journal_access() will only set the triggers if
 520         * metaecc is enabled.
 521         */
 522        ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 523}
 524
 525/*
 526 * Quota blocks have their own trigger because the struct ocfs2_block_check
 527 * offset depends on the blocksize.
 528 */
 529static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 530                                 struct buffer_head *bh,
 531                                 void *data, size_t size)
 532{
 533        struct ocfs2_disk_dqtrailer *dqt =
 534                ocfs2_block_dqtrailer(size, data);
 535
 536        /*
 537         * We aren't guaranteed to have the superblock here, so we
 538         * must unconditionally compute the ecc data.
 539         * __ocfs2_journal_access() will only set the triggers if
 540         * metaecc is enabled.
 541         */
 542        ocfs2_block_check_compute(data, size, &dqt->dq_check);
 543}
 544
 545/*
 546 * Directory blocks also have their own trigger because the
 547 * struct ocfs2_block_check offset depends on the blocksize.
 548 */
 549static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 550                                 struct buffer_head *bh,
 551                                 void *data, size_t size)
 552{
 553        struct ocfs2_dir_block_trailer *trailer =
 554                ocfs2_dir_trailer_from_size(size, data);
 555
 556        /*
 557         * We aren't guaranteed to have the superblock here, so we
 558         * must unconditionally compute the ecc data.
 559         * __ocfs2_journal_access() will only set the triggers if
 560         * metaecc is enabled.
 561         */
 562        ocfs2_block_check_compute(data, size, &trailer->db_check);
 563}
 564
 565static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 566                                struct buffer_head *bh)
 567{
 568        mlog(ML_ERROR,
 569             "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 570             "bh->b_blocknr = %llu\n",
 571             (unsigned long)bh,
 572             (unsigned long long)bh->b_blocknr);
 573
 574        ocfs2_error(bh->b_bdev->bd_super,
 575                    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 576}
 577
 578static struct ocfs2_triggers di_triggers = {
 579        .ot_triggers = {
 580                .t_frozen = ocfs2_frozen_trigger,
 581                .t_abort = ocfs2_abort_trigger,
 582        },
 583        .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 584};
 585
 586static struct ocfs2_triggers eb_triggers = {
 587        .ot_triggers = {
 588                .t_frozen = ocfs2_frozen_trigger,
 589                .t_abort = ocfs2_abort_trigger,
 590        },
 591        .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 592};
 593
 594static struct ocfs2_triggers rb_triggers = {
 595        .ot_triggers = {
 596                .t_frozen = ocfs2_frozen_trigger,
 597                .t_abort = ocfs2_abort_trigger,
 598        },
 599        .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 600};
 601
 602static struct ocfs2_triggers gd_triggers = {
 603        .ot_triggers = {
 604                .t_frozen = ocfs2_frozen_trigger,
 605                .t_abort = ocfs2_abort_trigger,
 606        },
 607        .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 608};
 609
 610static struct ocfs2_triggers db_triggers = {
 611        .ot_triggers = {
 612                .t_frozen = ocfs2_db_frozen_trigger,
 613                .t_abort = ocfs2_abort_trigger,
 614        },
 615};
 616
 617static struct ocfs2_triggers xb_triggers = {
 618        .ot_triggers = {
 619                .t_frozen = ocfs2_frozen_trigger,
 620                .t_abort = ocfs2_abort_trigger,
 621        },
 622        .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 623};
 624
 625static struct ocfs2_triggers dq_triggers = {
 626        .ot_triggers = {
 627                .t_frozen = ocfs2_dq_frozen_trigger,
 628                .t_abort = ocfs2_abort_trigger,
 629        },
 630};
 631
 632static struct ocfs2_triggers dr_triggers = {
 633        .ot_triggers = {
 634                .t_frozen = ocfs2_frozen_trigger,
 635                .t_abort = ocfs2_abort_trigger,
 636        },
 637        .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 638};
 639
 640static struct ocfs2_triggers dl_triggers = {
 641        .ot_triggers = {
 642                .t_frozen = ocfs2_frozen_trigger,
 643                .t_abort = ocfs2_abort_trigger,
 644        },
 645        .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 646};
 647
 648static int __ocfs2_journal_access(handle_t *handle,
 649                                  struct ocfs2_caching_info *ci,
 650                                  struct buffer_head *bh,
 651                                  struct ocfs2_triggers *triggers,
 652                                  int type)
 653{
 654        int status;
 655        struct ocfs2_super *osb =
 656                OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 657
 658        BUG_ON(!ci || !ci->ci_ops);
 659        BUG_ON(!handle);
 660        BUG_ON(!bh);
 661
 662        trace_ocfs2_journal_access(
 663                (unsigned long long)ocfs2_metadata_cache_owner(ci),
 664                (unsigned long long)bh->b_blocknr, type, bh->b_size);
 665
 666        /* we can safely remove this assertion after testing. */
 667        if (!buffer_uptodate(bh)) {
 668                mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 669                mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
 670                     (unsigned long long)bh->b_blocknr, bh->b_state);
 671
 672                lock_buffer(bh);
 673                /*
 674                 * A previous transaction with a couple of buffer heads fail
 675                 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
 676                 * For current transaction, the bh is just among those error
 677                 * bhs which previous transaction handle. We can't just clear
 678                 * its BH_Write_EIO and reuse directly, since other bhs are
 679                 * not written to disk yet and that will cause metadata
 680                 * inconsistency. So we should set fs read-only to avoid
 681                 * further damage.
 682                 */
 683                if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 684                        unlock_buffer(bh);
 685                        return ocfs2_error(osb->sb, "A previous attempt to "
 686                                        "write this buffer head failed\n");
 687                }
 688                unlock_buffer(bh);
 689        }
 690
 691        /* Set the current transaction information on the ci so
 692         * that the locking code knows whether it can drop it's locks
 693         * on this ci or not. We're protected from the commit
 694         * thread updating the current transaction id until
 695         * ocfs2_commit_trans() because ocfs2_start_trans() took
 696         * j_trans_barrier for us. */
 697        ocfs2_set_ci_lock_trans(osb->journal, ci);
 698
 699        ocfs2_metadata_cache_io_lock(ci);
 700        switch (type) {
 701        case OCFS2_JOURNAL_ACCESS_CREATE:
 702        case OCFS2_JOURNAL_ACCESS_WRITE:
 703                status = jbd2_journal_get_write_access(handle, bh);
 704                break;
 705
 706        case OCFS2_JOURNAL_ACCESS_UNDO:
 707                status = jbd2_journal_get_undo_access(handle, bh);
 708                break;
 709
 710        default:
 711                status = -EINVAL;
 712                mlog(ML_ERROR, "Unknown access type!\n");
 713        }
 714        if (!status && ocfs2_meta_ecc(osb) && triggers)
 715                jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 716        ocfs2_metadata_cache_io_unlock(ci);
 717
 718        if (status < 0)
 719                mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 720                     status, type);
 721
 722        return status;
 723}
 724
 725int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 726                            struct buffer_head *bh, int type)
 727{
 728        return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 729}
 730
 731int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 732                            struct buffer_head *bh, int type)
 733{
 734        return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 735}
 736
 737int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 738                            struct buffer_head *bh, int type)
 739{
 740        return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 741                                      type);
 742}
 743
 744int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 745                            struct buffer_head *bh, int type)
 746{
 747        return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 748}
 749
 750int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 751                            struct buffer_head *bh, int type)
 752{
 753        return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 754}
 755
 756int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 757                            struct buffer_head *bh, int type)
 758{
 759        return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 760}
 761
 762int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 763                            struct buffer_head *bh, int type)
 764{
 765        return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 766}
 767
 768int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 769                            struct buffer_head *bh, int type)
 770{
 771        return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 772}
 773
 774int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 775                            struct buffer_head *bh, int type)
 776{
 777        return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 778}
 779
 780int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 781                         struct buffer_head *bh, int type)
 782{
 783        return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 784}
 785
 786void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 787{
 788        int status;
 789
 790        trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 791
 792        status = jbd2_journal_dirty_metadata(handle, bh);
 793        if (status) {
 794                mlog_errno(status);
 795                if (!is_handle_aborted(handle)) {
 796                        journal_t *journal = handle->h_transaction->t_journal;
 797                        struct super_block *sb = bh->b_bdev->bd_super;
 798
 799                        mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 800                                        "Aborting transaction and journal.\n");
 801                        handle->h_err = status;
 802                        jbd2_journal_abort_handle(handle);
 803                        jbd2_journal_abort(journal, status);
 804                        ocfs2_abort(sb, "Journal already aborted.\n");
 805                }
 806        }
 807}
 808
 809#define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 810
 811void ocfs2_set_journal_params(struct ocfs2_super *osb)
 812{
 813        journal_t *journal = osb->journal->j_journal;
 814        unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 815
 816        if (osb->osb_commit_interval)
 817                commit_interval = osb->osb_commit_interval;
 818
 819        write_lock(&journal->j_state_lock);
 820        journal->j_commit_interval = commit_interval;
 821        if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 822                journal->j_flags |= JBD2_BARRIER;
 823        else
 824                journal->j_flags &= ~JBD2_BARRIER;
 825        write_unlock(&journal->j_state_lock);
 826}
 827
 828int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 829{
 830        int status = -1;
 831        struct inode *inode = NULL; /* the journal inode */
 832        journal_t *j_journal = NULL;
 833        struct ocfs2_dinode *di = NULL;
 834        struct buffer_head *bh = NULL;
 835        struct ocfs2_super *osb;
 836        int inode_lock = 0;
 837
 838        BUG_ON(!journal);
 839
 840        osb = journal->j_osb;
 841
 842        /* already have the inode for our journal */
 843        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 844                                            osb->slot_num);
 845        if (inode == NULL) {
 846                status = -EACCES;
 847                mlog_errno(status);
 848                goto done;
 849        }
 850        if (is_bad_inode(inode)) {
 851                mlog(ML_ERROR, "access error (bad inode)\n");
 852                iput(inode);
 853                inode = NULL;
 854                status = -EACCES;
 855                goto done;
 856        }
 857
 858        SET_INODE_JOURNAL(inode);
 859        OCFS2_I(inode)->ip_open_count++;
 860
 861        /* Skip recovery waits here - journal inode metadata never
 862         * changes in a live cluster so it can be considered an
 863         * exception to the rule. */
 864        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 865        if (status < 0) {
 866                if (status != -ERESTARTSYS)
 867                        mlog(ML_ERROR, "Could not get lock on journal!\n");
 868                goto done;
 869        }
 870
 871        inode_lock = 1;
 872        di = (struct ocfs2_dinode *)bh->b_data;
 873
 874        if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 875                mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 876                     i_size_read(inode));
 877                status = -EINVAL;
 878                goto done;
 879        }
 880
 881        trace_ocfs2_journal_init(i_size_read(inode),
 882                                 (unsigned long long)inode->i_blocks,
 883                                 OCFS2_I(inode)->ip_clusters);
 884
 885        /* call the kernels journal init function now */
 886        j_journal = jbd2_journal_init_inode(inode);
 887        if (j_journal == NULL) {
 888                mlog(ML_ERROR, "Linux journal layer error\n");
 889                status = -EINVAL;
 890                goto done;
 891        }
 892
 893        trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
 894
 895        *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 896                  OCFS2_JOURNAL_DIRTY_FL);
 897
 898        journal->j_journal = j_journal;
 899        journal->j_inode = inode;
 900        journal->j_bh = bh;
 901
 902        ocfs2_set_journal_params(osb);
 903
 904        journal->j_state = OCFS2_JOURNAL_LOADED;
 905
 906        status = 0;
 907done:
 908        if (status < 0) {
 909                if (inode_lock)
 910                        ocfs2_inode_unlock(inode, 1);
 911                brelse(bh);
 912                if (inode) {
 913                        OCFS2_I(inode)->ip_open_count--;
 914                        iput(inode);
 915                }
 916        }
 917
 918        return status;
 919}
 920
 921static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 922{
 923        le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 924}
 925
 926static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 927{
 928        return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 929}
 930
 931static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 932                                      int dirty, int replayed)
 933{
 934        int status;
 935        unsigned int flags;
 936        struct ocfs2_journal *journal = osb->journal;
 937        struct buffer_head *bh = journal->j_bh;
 938        struct ocfs2_dinode *fe;
 939
 940        fe = (struct ocfs2_dinode *)bh->b_data;
 941
 942        /* The journal bh on the osb always comes from ocfs2_journal_init()
 943         * and was validated there inside ocfs2_inode_lock_full().  It's a
 944         * code bug if we mess it up. */
 945        BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 946
 947        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 948        if (dirty)
 949                flags |= OCFS2_JOURNAL_DIRTY_FL;
 950        else
 951                flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 952        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 953
 954        if (replayed)
 955                ocfs2_bump_recovery_generation(fe);
 956
 957        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 958        status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 959        if (status < 0)
 960                mlog_errno(status);
 961
 962        return status;
 963}
 964
 965/*
 966 * If the journal has been kmalloc'd it needs to be freed after this
 967 * call.
 968 */
 969void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 970{
 971        struct ocfs2_journal *journal = NULL;
 972        int status = 0;
 973        struct inode *inode = NULL;
 974        int num_running_trans = 0;
 975
 976        BUG_ON(!osb);
 977
 978        journal = osb->journal;
 979        if (!journal)
 980                goto done;
 981
 982        inode = journal->j_inode;
 983
 984        if (journal->j_state != OCFS2_JOURNAL_LOADED)
 985                goto done;
 986
 987        /* need to inc inode use count - jbd2_journal_destroy will iput. */
 988        if (!igrab(inode))
 989                BUG();
 990
 991        num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 992        trace_ocfs2_journal_shutdown(num_running_trans);
 993
 994        /* Do a commit_cache here. It will flush our journal, *and*
 995         * release any locks that are still held.
 996         * set the SHUTDOWN flag and release the trans lock.
 997         * the commit thread will take the trans lock for us below. */
 998        journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 999
1000        /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001         * drop the trans_lock (which we want to hold until we
1002         * completely destroy the journal. */
1003        if (osb->commit_task) {
1004                /* Wait for the commit thread */
1005                trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006                kthread_stop(osb->commit_task);
1007                osb->commit_task = NULL;
1008        }
1009
1010        BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011
1012        if (ocfs2_mount_local(osb)) {
1013                jbd2_journal_lock_updates(journal->j_journal);
1014                status = jbd2_journal_flush(journal->j_journal);
1015                jbd2_journal_unlock_updates(journal->j_journal);
1016                if (status < 0)
1017                        mlog_errno(status);
1018        }
1019
1020        if (status == 0) {
1021                /*
1022                 * Do not toggle if flush was unsuccessful otherwise
1023                 * will leave dirty metadata in a "clean" journal
1024                 */
1025                status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1026                if (status < 0)
1027                        mlog_errno(status);
1028        }
1029
1030        /* Shutdown the kernel journal system */
1031        jbd2_journal_destroy(journal->j_journal);
1032        journal->j_journal = NULL;
1033
1034        OCFS2_I(inode)->ip_open_count--;
1035
1036        /* unlock our journal */
1037        ocfs2_inode_unlock(inode, 1);
1038
1039        brelse(journal->j_bh);
1040        journal->j_bh = NULL;
1041
1042        journal->j_state = OCFS2_JOURNAL_FREE;
1043
1044//      up_write(&journal->j_trans_barrier);
1045done:
1046        iput(inode);
1047}
1048
1049static void ocfs2_clear_journal_error(struct super_block *sb,
1050                                      journal_t *journal,
1051                                      int slot)
1052{
1053        int olderr;
1054
1055        olderr = jbd2_journal_errno(journal);
1056        if (olderr) {
1057                mlog(ML_ERROR, "File system error %d recorded in "
1058                     "journal %u.\n", olderr, slot);
1059                mlog(ML_ERROR, "File system on device %s needs checking.\n",
1060                     sb->s_id);
1061
1062                jbd2_journal_ack_err(journal);
1063                jbd2_journal_clear_err(journal);
1064        }
1065}
1066
1067int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1068{
1069        int status = 0;
1070        struct ocfs2_super *osb;
1071
1072        BUG_ON(!journal);
1073
1074        osb = journal->j_osb;
1075
1076        status = jbd2_journal_load(journal->j_journal);
1077        if (status < 0) {
1078                mlog(ML_ERROR, "Failed to load journal!\n");
1079                goto done;
1080        }
1081
1082        ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1083
1084        status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1085        if (status < 0) {
1086                mlog_errno(status);
1087                goto done;
1088        }
1089
1090        /* Launch the commit thread */
1091        if (!local) {
1092                osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1093                                "ocfs2cmt-%s", osb->uuid_str);
1094                if (IS_ERR(osb->commit_task)) {
1095                        status = PTR_ERR(osb->commit_task);
1096                        osb->commit_task = NULL;
1097                        mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1098                             "error=%d", status);
1099                        goto done;
1100                }
1101        } else
1102                osb->commit_task = NULL;
1103
1104done:
1105        return status;
1106}
1107
1108
1109/* 'full' flag tells us whether we clear out all blocks or if we just
1110 * mark the journal clean */
1111int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1112{
1113        int status;
1114
1115        BUG_ON(!journal);
1116
1117        status = jbd2_journal_wipe(journal->j_journal, full);
1118        if (status < 0) {
1119                mlog_errno(status);
1120                goto bail;
1121        }
1122
1123        status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1124        if (status < 0)
1125                mlog_errno(status);
1126
1127bail:
1128        return status;
1129}
1130
1131static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1132{
1133        int empty;
1134        struct ocfs2_recovery_map *rm = osb->recovery_map;
1135
1136        spin_lock(&osb->osb_lock);
1137        empty = (rm->rm_used == 0);
1138        spin_unlock(&osb->osb_lock);
1139
1140        return empty;
1141}
1142
1143void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1144{
1145        wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1146}
1147
1148/*
1149 * JBD Might read a cached version of another nodes journal file. We
1150 * don't want this as this file changes often and we get no
1151 * notification on those changes. The only way to be sure that we've
1152 * got the most up to date version of those blocks then is to force
1153 * read them off disk. Just searching through the buffer cache won't
1154 * work as there may be pages backing this file which are still marked
1155 * up to date. We know things can't change on this file underneath us
1156 * as we have the lock by now :)
1157 */
1158static int ocfs2_force_read_journal(struct inode *inode)
1159{
1160        int status = 0;
1161        int i;
1162        u64 v_blkno, p_blkno, p_blocks, num_blocks;
1163        struct buffer_head *bh = NULL;
1164        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1165
1166        num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1167        v_blkno = 0;
1168        while (v_blkno < num_blocks) {
1169                status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1170                                                     &p_blkno, &p_blocks, NULL);
1171                if (status < 0) {
1172                        mlog_errno(status);
1173                        goto bail;
1174                }
1175
1176                for (i = 0; i < p_blocks; i++, p_blkno++) {
1177                        bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1178                                        osb->sb->s_blocksize);
1179                        /* block not cached. */
1180                        if (!bh)
1181                                continue;
1182
1183                        brelse(bh);
1184                        bh = NULL;
1185                        /* We are reading journal data which should not
1186                         * be put in the uptodate cache.
1187                         */
1188                        status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1189                        if (status < 0) {
1190                                mlog_errno(status);
1191                                goto bail;
1192                        }
1193
1194                        brelse(bh);
1195                        bh = NULL;
1196                }
1197
1198                v_blkno += p_blocks;
1199        }
1200
1201bail:
1202        return status;
1203}
1204
1205struct ocfs2_la_recovery_item {
1206        struct list_head        lri_list;
1207        int                     lri_slot;
1208        struct ocfs2_dinode     *lri_la_dinode;
1209        struct ocfs2_dinode     *lri_tl_dinode;
1210        struct ocfs2_quota_recovery *lri_qrec;
1211        enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1212};
1213
1214/* Does the second half of the recovery process. By this point, the
1215 * node is marked clean and can actually be considered recovered,
1216 * hence it's no longer in the recovery map, but there's still some
1217 * cleanup we can do which shouldn't happen within the recovery thread
1218 * as locking in that context becomes very difficult if we are to take
1219 * recovering nodes into account.
1220 *
1221 * NOTE: This function can and will sleep on recovery of other nodes
1222 * during cluster locking, just like any other ocfs2 process.
1223 */
1224void ocfs2_complete_recovery(struct work_struct *work)
1225{
1226        int ret = 0;
1227        struct ocfs2_journal *journal =
1228                container_of(work, struct ocfs2_journal, j_recovery_work);
1229        struct ocfs2_super *osb = journal->j_osb;
1230        struct ocfs2_dinode *la_dinode, *tl_dinode;
1231        struct ocfs2_la_recovery_item *item, *n;
1232        struct ocfs2_quota_recovery *qrec;
1233        enum ocfs2_orphan_reco_type orphan_reco_type;
1234        LIST_HEAD(tmp_la_list);
1235
1236        trace_ocfs2_complete_recovery(
1237                (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1238
1239        spin_lock(&journal->j_lock);
1240        list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1241        spin_unlock(&journal->j_lock);
1242
1243        list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1244                list_del_init(&item->lri_list);
1245
1246                ocfs2_wait_on_quotas(osb);
1247
1248                la_dinode = item->lri_la_dinode;
1249                tl_dinode = item->lri_tl_dinode;
1250                qrec = item->lri_qrec;
1251                orphan_reco_type = item->lri_orphan_reco_type;
1252
1253                trace_ocfs2_complete_recovery_slot(item->lri_slot,
1254                        la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1255                        tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1256                        qrec);
1257
1258                if (la_dinode) {
1259                        ret = ocfs2_complete_local_alloc_recovery(osb,
1260                                                                  la_dinode);
1261                        if (ret < 0)
1262                                mlog_errno(ret);
1263
1264                        kfree(la_dinode);
1265                }
1266
1267                if (tl_dinode) {
1268                        ret = ocfs2_complete_truncate_log_recovery(osb,
1269                                                                   tl_dinode);
1270                        if (ret < 0)
1271                                mlog_errno(ret);
1272
1273                        kfree(tl_dinode);
1274                }
1275
1276                ret = ocfs2_recover_orphans(osb, item->lri_slot,
1277                                orphan_reco_type);
1278                if (ret < 0)
1279                        mlog_errno(ret);
1280
1281                if (qrec) {
1282                        ret = ocfs2_finish_quota_recovery(osb, qrec,
1283                                                          item->lri_slot);
1284                        if (ret < 0)
1285                                mlog_errno(ret);
1286                        /* Recovery info is already freed now */
1287                }
1288
1289                kfree(item);
1290        }
1291
1292        trace_ocfs2_complete_recovery_end(ret);
1293}
1294
1295/* NOTE: This function always eats your references to la_dinode and
1296 * tl_dinode, either manually on error, or by passing them to
1297 * ocfs2_complete_recovery */
1298static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1299                                            int slot_num,
1300                                            struct ocfs2_dinode *la_dinode,
1301                                            struct ocfs2_dinode *tl_dinode,
1302                                            struct ocfs2_quota_recovery *qrec,
1303                                            enum ocfs2_orphan_reco_type orphan_reco_type)
1304{
1305        struct ocfs2_la_recovery_item *item;
1306
1307        item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1308        if (!item) {
1309                /* Though we wish to avoid it, we are in fact safe in
1310                 * skipping local alloc cleanup as fsck.ocfs2 is more
1311                 * than capable of reclaiming unused space. */
1312                kfree(la_dinode);
1313                kfree(tl_dinode);
1314
1315                if (qrec)
1316                        ocfs2_free_quota_recovery(qrec);
1317
1318                mlog_errno(-ENOMEM);
1319                return;
1320        }
1321
1322        INIT_LIST_HEAD(&item->lri_list);
1323        item->lri_la_dinode = la_dinode;
1324        item->lri_slot = slot_num;
1325        item->lri_tl_dinode = tl_dinode;
1326        item->lri_qrec = qrec;
1327        item->lri_orphan_reco_type = orphan_reco_type;
1328
1329        spin_lock(&journal->j_lock);
1330        list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1331        queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1332        spin_unlock(&journal->j_lock);
1333}
1334
1335/* Called by the mount code to queue recovery the last part of
1336 * recovery for it's own and offline slot(s). */
1337void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1338{
1339        struct ocfs2_journal *journal = osb->journal;
1340
1341        if (ocfs2_is_hard_readonly(osb))
1342                return;
1343
1344        /* No need to queue up our truncate_log as regular cleanup will catch
1345         * that */
1346        ocfs2_queue_recovery_completion(journal, osb->slot_num,
1347                                        osb->local_alloc_copy, NULL, NULL,
1348                                        ORPHAN_NEED_TRUNCATE);
1349        ocfs2_schedule_truncate_log_flush(osb, 0);
1350
1351        osb->local_alloc_copy = NULL;
1352
1353        /* queue to recover orphan slots for all offline slots */
1354        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1355        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1356        ocfs2_free_replay_slots(osb);
1357}
1358
1359void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1360{
1361        if (osb->quota_rec) {
1362                ocfs2_queue_recovery_completion(osb->journal,
1363                                                osb->slot_num,
1364                                                NULL,
1365                                                NULL,
1366                                                osb->quota_rec,
1367                                                ORPHAN_NEED_TRUNCATE);
1368                osb->quota_rec = NULL;
1369        }
1370}
1371
1372static int __ocfs2_recovery_thread(void *arg)
1373{
1374        int status, node_num, slot_num;
1375        struct ocfs2_super *osb = arg;
1376        struct ocfs2_recovery_map *rm = osb->recovery_map;
1377        int *rm_quota = NULL;
1378        int rm_quota_used = 0, i;
1379        struct ocfs2_quota_recovery *qrec;
1380
1381        status = ocfs2_wait_on_mount(osb);
1382        if (status < 0) {
1383                goto bail;
1384        }
1385
1386        rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1387        if (!rm_quota) {
1388                status = -ENOMEM;
1389                goto bail;
1390        }
1391restart:
1392        status = ocfs2_super_lock(osb, 1);
1393        if (status < 0) {
1394                mlog_errno(status);
1395                goto bail;
1396        }
1397
1398        status = ocfs2_compute_replay_slots(osb);
1399        if (status < 0)
1400                mlog_errno(status);
1401
1402        /* queue recovery for our own slot */
1403        ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1404                                        NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1405
1406        spin_lock(&osb->osb_lock);
1407        while (rm->rm_used) {
1408                /* It's always safe to remove entry zero, as we won't
1409                 * clear it until ocfs2_recover_node() has succeeded. */
1410                node_num = rm->rm_entries[0];
1411                spin_unlock(&osb->osb_lock);
1412                slot_num = ocfs2_node_num_to_slot(osb, node_num);
1413                trace_ocfs2_recovery_thread_node(node_num, slot_num);
1414                if (slot_num == -ENOENT) {
1415                        status = 0;
1416                        goto skip_recovery;
1417                }
1418
1419                /* It is a bit subtle with quota recovery. We cannot do it
1420                 * immediately because we have to obtain cluster locks from
1421                 * quota files and we also don't want to just skip it because
1422                 * then quota usage would be out of sync until some node takes
1423                 * the slot. So we remember which nodes need quota recovery
1424                 * and when everything else is done, we recover quotas. */
1425                for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1426                if (i == rm_quota_used)
1427                        rm_quota[rm_quota_used++] = slot_num;
1428
1429                status = ocfs2_recover_node(osb, node_num, slot_num);
1430skip_recovery:
1431                if (!status) {
1432                        ocfs2_recovery_map_clear(osb, node_num);
1433                } else {
1434                        mlog(ML_ERROR,
1435                             "Error %d recovering node %d on device (%u,%u)!\n",
1436                             status, node_num,
1437                             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1438                        mlog(ML_ERROR, "Volume requires unmount.\n");
1439                }
1440
1441                spin_lock(&osb->osb_lock);
1442        }
1443        spin_unlock(&osb->osb_lock);
1444        trace_ocfs2_recovery_thread_end(status);
1445
1446        /* Refresh all journal recovery generations from disk */
1447        status = ocfs2_check_journals_nolocks(osb);
1448        status = (status == -EROFS) ? 0 : status;
1449        if (status < 0)
1450                mlog_errno(status);
1451
1452        /* Now it is right time to recover quotas... We have to do this under
1453         * superblock lock so that no one can start using the slot (and crash)
1454         * before we recover it */
1455        for (i = 0; i < rm_quota_used; i++) {
1456                qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1457                if (IS_ERR(qrec)) {
1458                        status = PTR_ERR(qrec);
1459                        mlog_errno(status);
1460                        continue;
1461                }
1462                ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1463                                                NULL, NULL, qrec,
1464                                                ORPHAN_NEED_TRUNCATE);
1465        }
1466
1467        ocfs2_super_unlock(osb, 1);
1468
1469        /* queue recovery for offline slots */
1470        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471
1472bail:
1473        mutex_lock(&osb->recovery_lock);
1474        if (!status && !ocfs2_recovery_completed(osb)) {
1475                mutex_unlock(&osb->recovery_lock);
1476                goto restart;
1477        }
1478
1479        ocfs2_free_replay_slots(osb);
1480        osb->recovery_thread_task = NULL;
1481        mb(); /* sync with ocfs2_recovery_thread_running */
1482        wake_up(&osb->recovery_event);
1483
1484        mutex_unlock(&osb->recovery_lock);
1485
1486        kfree(rm_quota);
1487
1488        /* no one is callint kthread_stop() for us so the kthread() api
1489         * requires that we call do_exit().  And it isn't exported, but
1490         * complete_and_exit() seems to be a minimal wrapper around it. */
1491        complete_and_exit(NULL, status);
1492}
1493
1494void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1495{
1496        mutex_lock(&osb->recovery_lock);
1497
1498        trace_ocfs2_recovery_thread(node_num, osb->node_num,
1499                osb->disable_recovery, osb->recovery_thread_task,
1500                osb->disable_recovery ?
1501                -1 : ocfs2_recovery_map_set(osb, node_num));
1502
1503        if (osb->disable_recovery)
1504                goto out;
1505
1506        if (osb->recovery_thread_task)
1507                goto out;
1508
1509        osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1510                        "ocfs2rec-%s", osb->uuid_str);
1511        if (IS_ERR(osb->recovery_thread_task)) {
1512                mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1513                osb->recovery_thread_task = NULL;
1514        }
1515
1516out:
1517        mutex_unlock(&osb->recovery_lock);
1518        wake_up(&osb->recovery_event);
1519}
1520
1521static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1522                                    int slot_num,
1523                                    struct buffer_head **bh,
1524                                    struct inode **ret_inode)
1525{
1526        int status = -EACCES;
1527        struct inode *inode = NULL;
1528
1529        BUG_ON(slot_num >= osb->max_slots);
1530
1531        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1532                                            slot_num);
1533        if (!inode || is_bad_inode(inode)) {
1534                mlog_errno(status);
1535                goto bail;
1536        }
1537        SET_INODE_JOURNAL(inode);
1538
1539        status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1540        if (status < 0) {
1541                mlog_errno(status);
1542                goto bail;
1543        }
1544
1545        status = 0;
1546
1547bail:
1548        if (inode) {
1549                if (status || !ret_inode)
1550                        iput(inode);
1551                else
1552                        *ret_inode = inode;
1553        }
1554        return status;
1555}
1556
1557/* Does the actual journal replay and marks the journal inode as
1558 * clean. Will only replay if the journal inode is marked dirty. */
1559static int ocfs2_replay_journal(struct ocfs2_super *osb,
1560                                int node_num,
1561                                int slot_num)
1562{
1563        int status;
1564        int got_lock = 0;
1565        unsigned int flags;
1566        struct inode *inode = NULL;
1567        struct ocfs2_dinode *fe;
1568        journal_t *journal = NULL;
1569        struct buffer_head *bh = NULL;
1570        u32 slot_reco_gen;
1571
1572        status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1573        if (status) {
1574                mlog_errno(status);
1575                goto done;
1576        }
1577
1578        fe = (struct ocfs2_dinode *)bh->b_data;
1579        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580        brelse(bh);
1581        bh = NULL;
1582
1583        /*
1584         * As the fs recovery is asynchronous, there is a small chance that
1585         * another node mounted (and recovered) the slot before the recovery
1586         * thread could get the lock. To handle that, we dirty read the journal
1587         * inode for that slot to get the recovery generation. If it is
1588         * different than what we expected, the slot has been recovered.
1589         * If not, it needs recovery.
1590         */
1591        if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1592                trace_ocfs2_replay_journal_recovered(slot_num,
1593                     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1594                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1595                status = -EBUSY;
1596                goto done;
1597        }
1598
1599        /* Continue with recovery as the journal has not yet been recovered */
1600
1601        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1602        if (status < 0) {
1603                trace_ocfs2_replay_journal_lock_err(status);
1604                if (status != -ERESTARTSYS)
1605                        mlog(ML_ERROR, "Could not lock journal!\n");
1606                goto done;
1607        }
1608        got_lock = 1;
1609
1610        fe = (struct ocfs2_dinode *) bh->b_data;
1611
1612        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1613        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1614
1615        if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1616                trace_ocfs2_replay_journal_skip(node_num);
1617                /* Refresh recovery generation for the slot */
1618                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619                goto done;
1620        }
1621
1622        /* we need to run complete recovery for offline orphan slots */
1623        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1624
1625        printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1626               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1627               MINOR(osb->sb->s_dev));
1628
1629        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1630
1631        status = ocfs2_force_read_journal(inode);
1632        if (status < 0) {
1633                mlog_errno(status);
1634                goto done;
1635        }
1636
1637        journal = jbd2_journal_init_inode(inode);
1638        if (journal == NULL) {
1639                mlog(ML_ERROR, "Linux journal layer error\n");
1640                status = -EIO;
1641                goto done;
1642        }
1643
1644        status = jbd2_journal_load(journal);
1645        if (status < 0) {
1646                mlog_errno(status);
1647                if (!igrab(inode))
1648                        BUG();
1649                jbd2_journal_destroy(journal);
1650                goto done;
1651        }
1652
1653        ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1654
1655        /* wipe the journal */
1656        jbd2_journal_lock_updates(journal);
1657        status = jbd2_journal_flush(journal);
1658        jbd2_journal_unlock_updates(journal);
1659        if (status < 0)
1660                mlog_errno(status);
1661
1662        /* This will mark the node clean */
1663        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1664        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1665        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1666
1667        /* Increment recovery generation to indicate successful recovery */
1668        ocfs2_bump_recovery_generation(fe);
1669        osb->slot_recovery_generations[slot_num] =
1670                                        ocfs2_get_recovery_generation(fe);
1671
1672        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1673        status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1674        if (status < 0)
1675                mlog_errno(status);
1676
1677        if (!igrab(inode))
1678                BUG();
1679
1680        jbd2_journal_destroy(journal);
1681
1682        printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1683               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1684               MINOR(osb->sb->s_dev));
1685done:
1686        /* drop the lock on this nodes journal */
1687        if (got_lock)
1688                ocfs2_inode_unlock(inode, 1);
1689
1690        iput(inode);
1691        brelse(bh);
1692
1693        return status;
1694}
1695
1696/*
1697 * Do the most important parts of node recovery:
1698 *  - Replay it's journal
1699 *  - Stamp a clean local allocator file
1700 *  - Stamp a clean truncate log
1701 *  - Mark the node clean
1702 *
1703 * If this function completes without error, a node in OCFS2 can be
1704 * said to have been safely recovered. As a result, failure during the
1705 * second part of a nodes recovery process (local alloc recovery) is
1706 * far less concerning.
1707 */
1708static int ocfs2_recover_node(struct ocfs2_super *osb,
1709                              int node_num, int slot_num)
1710{
1711        int status = 0;
1712        struct ocfs2_dinode *la_copy = NULL;
1713        struct ocfs2_dinode *tl_copy = NULL;
1714
1715        trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1716
1717        /* Should not ever be called to recover ourselves -- in that
1718         * case we should've called ocfs2_journal_load instead. */
1719        BUG_ON(osb->node_num == node_num);
1720
1721        status = ocfs2_replay_journal(osb, node_num, slot_num);
1722        if (status < 0) {
1723                if (status == -EBUSY) {
1724                        trace_ocfs2_recover_node_skip(slot_num, node_num);
1725                        status = 0;
1726                        goto done;
1727                }
1728                mlog_errno(status);
1729                goto done;
1730        }
1731
1732        /* Stamp a clean local alloc file AFTER recovering the journal... */
1733        status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1734        if (status < 0) {
1735                mlog_errno(status);
1736                goto done;
1737        }
1738
1739        /* An error from begin_truncate_log_recovery is not
1740         * serious enough to warrant halting the rest of
1741         * recovery. */
1742        status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1743        if (status < 0)
1744                mlog_errno(status);
1745
1746        /* Likewise, this would be a strange but ultimately not so
1747         * harmful place to get an error... */
1748        status = ocfs2_clear_slot(osb, slot_num);
1749        if (status < 0)
1750                mlog_errno(status);
1751
1752        /* This will kfree the memory pointed to by la_copy and tl_copy */
1753        ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1754                                        tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1755
1756        status = 0;
1757done:
1758
1759        return status;
1760}
1761
1762/* Test node liveness by trylocking his journal. If we get the lock,
1763 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1764 * still alive (we couldn't get the lock) and < 0 on error. */
1765static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1766                                 int slot_num)
1767{
1768        int status, flags;
1769        struct inode *inode = NULL;
1770
1771        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1772                                            slot_num);
1773        if (inode == NULL) {
1774                mlog(ML_ERROR, "access error\n");
1775                status = -EACCES;
1776                goto bail;
1777        }
1778        if (is_bad_inode(inode)) {
1779                mlog(ML_ERROR, "access error (bad inode)\n");
1780                iput(inode);
1781                inode = NULL;
1782                status = -EACCES;
1783                goto bail;
1784        }
1785        SET_INODE_JOURNAL(inode);
1786
1787        flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1788        status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1789        if (status < 0) {
1790                if (status != -EAGAIN)
1791                        mlog_errno(status);
1792                goto bail;
1793        }
1794
1795        ocfs2_inode_unlock(inode, 1);
1796bail:
1797        iput(inode);
1798
1799        return status;
1800}
1801
1802/* Call this underneath ocfs2_super_lock. It also assumes that the
1803 * slot info struct has been updated from disk. */
1804int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1805{
1806        unsigned int node_num;
1807        int status, i;
1808        u32 gen;
1809        struct buffer_head *bh = NULL;
1810        struct ocfs2_dinode *di;
1811
1812        /* This is called with the super block cluster lock, so we
1813         * know that the slot map can't change underneath us. */
1814
1815        for (i = 0; i < osb->max_slots; i++) {
1816                /* Read journal inode to get the recovery generation */
1817                status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1818                if (status) {
1819                        mlog_errno(status);
1820                        goto bail;
1821                }
1822                di = (struct ocfs2_dinode *)bh->b_data;
1823                gen = ocfs2_get_recovery_generation(di);
1824                brelse(bh);
1825                bh = NULL;
1826
1827                spin_lock(&osb->osb_lock);
1828                osb->slot_recovery_generations[i] = gen;
1829
1830                trace_ocfs2_mark_dead_nodes(i,
1831                                            osb->slot_recovery_generations[i]);
1832
1833                if (i == osb->slot_num) {
1834                        spin_unlock(&osb->osb_lock);
1835                        continue;
1836                }
1837
1838                status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1839                if (status == -ENOENT) {
1840                        spin_unlock(&osb->osb_lock);
1841                        continue;
1842                }
1843
1844                if (__ocfs2_recovery_map_test(osb, node_num)) {
1845                        spin_unlock(&osb->osb_lock);
1846                        continue;
1847                }
1848                spin_unlock(&osb->osb_lock);
1849
1850                /* Ok, we have a slot occupied by another node which
1851                 * is not in the recovery map. We trylock his journal
1852                 * file here to test if he's alive. */
1853                status = ocfs2_trylock_journal(osb, i);
1854                if (!status) {
1855                        /* Since we're called from mount, we know that
1856                         * the recovery thread can't race us on
1857                         * setting / checking the recovery bits. */
1858                        ocfs2_recovery_thread(osb, node_num);
1859                } else if ((status < 0) && (status != -EAGAIN)) {
1860                        mlog_errno(status);
1861                        goto bail;
1862                }
1863        }
1864
1865        status = 0;
1866bail:
1867        return status;
1868}
1869
1870/*
1871 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1872 * randomness to the timeout to minimize multple nodes firing the timer at the
1873 * same time.
1874 */
1875static inline unsigned long ocfs2_orphan_scan_timeout(void)
1876{
1877        unsigned long time;
1878
1879        get_random_bytes(&time, sizeof(time));
1880        time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1881        return msecs_to_jiffies(time);
1882}
1883
1884/*
1885 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1886 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1887 * is done to catch any orphans that are left over in orphan directories.
1888 *
1889 * It scans all slots, even ones that are in use. It does so to handle the
1890 * case described below:
1891 *
1892 *   Node 1 has an inode it was using. The dentry went away due to memory
1893 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1894 *   has the open lock.
1895 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1896 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1897 *   open lock, sees that another node has a PR, and does nothing.
1898 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1899 *   open lock, sees the PR still, and does nothing.
1900 *   Basically, we have to trigger an orphan iput on node 1. The only way
1901 *   for this to happen is if node 1 runs node 2's orphan dir.
1902 *
1903 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1904 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1905 * stored in LVB. If the sequence number has changed, it means some other
1906 * node has done the scan.  This node skips the scan and tracks the
1907 * sequence number.  If the sequence number didn't change, it means a scan
1908 * hasn't happened.  The node queues a scan and increments the
1909 * sequence number in the LVB.
1910 */
1911static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1912{
1913        struct ocfs2_orphan_scan *os;
1914        int status, i;
1915        u32 seqno = 0;
1916
1917        os = &osb->osb_orphan_scan;
1918
1919        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1920                goto out;
1921
1922        trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1923                                            atomic_read(&os->os_state));
1924
1925        status = ocfs2_orphan_scan_lock(osb, &seqno);
1926        if (status < 0) {
1927                if (status != -EAGAIN)
1928                        mlog_errno(status);
1929                goto out;
1930        }
1931
1932        /* Do no queue the tasks if the volume is being umounted */
1933        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934                goto unlock;
1935
1936        if (os->os_seqno != seqno) {
1937                os->os_seqno = seqno;
1938                goto unlock;
1939        }
1940
1941        for (i = 0; i < osb->max_slots; i++)
1942                ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1943                                                NULL, ORPHAN_NO_NEED_TRUNCATE);
1944        /*
1945         * We queued a recovery on orphan slots, increment the sequence
1946         * number and update LVB so other node will skip the scan for a while
1947         */
1948        seqno++;
1949        os->os_count++;
1950        os->os_scantime = ktime_get_seconds();
1951unlock:
1952        ocfs2_orphan_scan_unlock(osb, seqno);
1953out:
1954        trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1955                                          atomic_read(&os->os_state));
1956        return;
1957}
1958
1959/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1960static void ocfs2_orphan_scan_work(struct work_struct *work)
1961{
1962        struct ocfs2_orphan_scan *os;
1963        struct ocfs2_super *osb;
1964
1965        os = container_of(work, struct ocfs2_orphan_scan,
1966                          os_orphan_scan_work.work);
1967        osb = os->os_osb;
1968
1969        mutex_lock(&os->os_lock);
1970        ocfs2_queue_orphan_scan(osb);
1971        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1972                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1973                                      ocfs2_orphan_scan_timeout());
1974        mutex_unlock(&os->os_lock);
1975}
1976
1977void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1978{
1979        struct ocfs2_orphan_scan *os;
1980
1981        os = &osb->osb_orphan_scan;
1982        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1983                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1984                mutex_lock(&os->os_lock);
1985                cancel_delayed_work(&os->os_orphan_scan_work);
1986                mutex_unlock(&os->os_lock);
1987        }
1988}
1989
1990void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1991{
1992        struct ocfs2_orphan_scan *os;
1993
1994        os = &osb->osb_orphan_scan;
1995        os->os_osb = osb;
1996        os->os_count = 0;
1997        os->os_seqno = 0;
1998        mutex_init(&os->os_lock);
1999        INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2000}
2001
2002void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2003{
2004        struct ocfs2_orphan_scan *os;
2005
2006        os = &osb->osb_orphan_scan;
2007        os->os_scantime = ktime_get_seconds();
2008        if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2009                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2010        else {
2011                atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2012                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2013                                   ocfs2_orphan_scan_timeout());
2014        }
2015}
2016
2017struct ocfs2_orphan_filldir_priv {
2018        struct dir_context      ctx;
2019        struct inode            *head;
2020        struct ocfs2_super      *osb;
2021        enum ocfs2_orphan_reco_type orphan_reco_type;
2022};
2023
2024static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2025                                int name_len, loff_t pos, u64 ino,
2026                                unsigned type)
2027{
2028        struct ocfs2_orphan_filldir_priv *p =
2029                container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2030        struct inode *iter;
2031
2032        if (name_len == 1 && !strncmp(".", name, 1))
2033                return 0;
2034        if (name_len == 2 && !strncmp("..", name, 2))
2035                return 0;
2036
2037        /* do not include dio entry in case of orphan scan */
2038        if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2039                        (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2040                        OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2041                return 0;
2042
2043        /* Skip bad inodes so that recovery can continue */
2044        iter = ocfs2_iget(p->osb, ino,
2045                          OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2046        if (IS_ERR(iter))
2047                return 0;
2048
2049        if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050                        OCFS2_DIO_ORPHAN_PREFIX_LEN))
2051                OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2052
2053        /* Skip inodes which are already added to recover list, since dio may
2054         * happen concurrently with unlink/rename */
2055        if (OCFS2_I(iter)->ip_next_orphan) {
2056                iput(iter);
2057                return 0;
2058        }
2059
2060        trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2061        /* No locking is required for the next_orphan queue as there
2062         * is only ever a single process doing orphan recovery. */
2063        OCFS2_I(iter)->ip_next_orphan = p->head;
2064        p->head = iter;
2065
2066        return 0;
2067}
2068
2069static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2070                               int slot,
2071                               struct inode **head,
2072                               enum ocfs2_orphan_reco_type orphan_reco_type)
2073{
2074        int status;
2075        struct inode *orphan_dir_inode = NULL;
2076        struct ocfs2_orphan_filldir_priv priv = {
2077                .ctx.actor = ocfs2_orphan_filldir,
2078                .osb = osb,
2079                .head = *head,
2080                .orphan_reco_type = orphan_reco_type
2081        };
2082
2083        orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2084                                                       ORPHAN_DIR_SYSTEM_INODE,
2085                                                       slot);
2086        if  (!orphan_dir_inode) {
2087                status = -ENOENT;
2088                mlog_errno(status);
2089                return status;
2090        }
2091
2092        inode_lock(orphan_dir_inode);
2093        status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2094        if (status < 0) {
2095                mlog_errno(status);
2096                goto out;
2097        }
2098
2099        status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2100        if (status) {
2101                mlog_errno(status);
2102                goto out_cluster;
2103        }
2104
2105        *head = priv.head;
2106
2107out_cluster:
2108        ocfs2_inode_unlock(orphan_dir_inode, 0);
2109out:
2110        inode_unlock(orphan_dir_inode);
2111        iput(orphan_dir_inode);
2112        return status;
2113}
2114
2115static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2116                                              int slot)
2117{
2118        int ret;
2119
2120        spin_lock(&osb->osb_lock);
2121        ret = !osb->osb_orphan_wipes[slot];
2122        spin_unlock(&osb->osb_lock);
2123        return ret;
2124}
2125
2126static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2127                                             int slot)
2128{
2129        spin_lock(&osb->osb_lock);
2130        /* Mark ourselves such that new processes in delete_inode()
2131         * know to quit early. */
2132        ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2133        while (osb->osb_orphan_wipes[slot]) {
2134                /* If any processes are already in the middle of an
2135                 * orphan wipe on this dir, then we need to wait for
2136                 * them. */
2137                spin_unlock(&osb->osb_lock);
2138                wait_event_interruptible(osb->osb_wipe_event,
2139                                         ocfs2_orphan_recovery_can_continue(osb, slot));
2140                spin_lock(&osb->osb_lock);
2141        }
2142        spin_unlock(&osb->osb_lock);
2143}
2144
2145static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2146                                              int slot)
2147{
2148        ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2149}
2150
2151/*
2152 * Orphan recovery. Each mounted node has it's own orphan dir which we
2153 * must run during recovery. Our strategy here is to build a list of
2154 * the inodes in the orphan dir and iget/iput them. The VFS does
2155 * (most) of the rest of the work.
2156 *
2157 * Orphan recovery can happen at any time, not just mount so we have a
2158 * couple of extra considerations.
2159 *
2160 * - We grab as many inodes as we can under the orphan dir lock -
2161 *   doing iget() outside the orphan dir risks getting a reference on
2162 *   an invalid inode.
2163 * - We must be sure not to deadlock with other processes on the
2164 *   system wanting to run delete_inode(). This can happen when they go
2165 *   to lock the orphan dir and the orphan recovery process attempts to
2166 *   iget() inside the orphan dir lock. This can be avoided by
2167 *   advertising our state to ocfs2_delete_inode().
2168 */
2169static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2170                                 int slot,
2171                                 enum ocfs2_orphan_reco_type orphan_reco_type)
2172{
2173        int ret = 0;
2174        struct inode *inode = NULL;
2175        struct inode *iter;
2176        struct ocfs2_inode_info *oi;
2177        struct buffer_head *di_bh = NULL;
2178        struct ocfs2_dinode *di = NULL;
2179
2180        trace_ocfs2_recover_orphans(slot);
2181
2182        ocfs2_mark_recovering_orphan_dir(osb, slot);
2183        ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2184        ocfs2_clear_recovering_orphan_dir(osb, slot);
2185
2186        /* Error here should be noted, but we want to continue with as
2187         * many queued inodes as we've got. */
2188        if (ret)
2189                mlog_errno(ret);
2190
2191        while (inode) {
2192                oi = OCFS2_I(inode);
2193                trace_ocfs2_recover_orphans_iput(
2194                                        (unsigned long long)oi->ip_blkno);
2195
2196                iter = oi->ip_next_orphan;
2197                oi->ip_next_orphan = NULL;
2198
2199                if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2200                        inode_lock(inode);
2201                        ret = ocfs2_rw_lock(inode, 1);
2202                        if (ret < 0) {
2203                                mlog_errno(ret);
2204                                goto unlock_mutex;
2205                        }
2206                        /*
2207                         * We need to take and drop the inode lock to
2208                         * force read inode from disk.
2209                         */
2210                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2211                        if (ret) {
2212                                mlog_errno(ret);
2213                                goto unlock_rw;
2214                        }
2215
2216                        di = (struct ocfs2_dinode *)di_bh->b_data;
2217
2218                        if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2219                                ret = ocfs2_truncate_file(inode, di_bh,
2220                                                i_size_read(inode));
2221                                if (ret < 0) {
2222                                        if (ret != -ENOSPC)
2223                                                mlog_errno(ret);
2224                                        goto unlock_inode;
2225                                }
2226
2227                                ret = ocfs2_del_inode_from_orphan(osb, inode,
2228                                                di_bh, 0, 0);
2229                                if (ret)
2230                                        mlog_errno(ret);
2231                        }
2232unlock_inode:
2233                        ocfs2_inode_unlock(inode, 1);
2234                        brelse(di_bh);
2235                        di_bh = NULL;
2236unlock_rw:
2237                        ocfs2_rw_unlock(inode, 1);
2238unlock_mutex:
2239                        inode_unlock(inode);
2240
2241                        /* clear dio flag in ocfs2_inode_info */
2242                        oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2243                } else {
2244                        spin_lock(&oi->ip_lock);
2245                        /* Set the proper information to get us going into
2246                         * ocfs2_delete_inode. */
2247                        oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2248                        spin_unlock(&oi->ip_lock);
2249                }
2250
2251                iput(inode);
2252                inode = iter;
2253        }
2254
2255        return ret;
2256}
2257
2258static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2259{
2260        /* This check is good because ocfs2 will wait on our recovery
2261         * thread before changing it to something other than MOUNTED
2262         * or DISABLED. */
2263        wait_event(osb->osb_mount_event,
2264                  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2265                   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2266                   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2267
2268        /* If there's an error on mount, then we may never get to the
2269         * MOUNTED flag, but this is set right before
2270         * dismount_volume() so we can trust it. */
2271        if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2272                trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2273                mlog(0, "mount error, exiting!\n");
2274                return -EBUSY;
2275        }
2276
2277        return 0;
2278}
2279
2280static int ocfs2_commit_thread(void *arg)
2281{
2282        int status;
2283        struct ocfs2_super *osb = arg;
2284        struct ocfs2_journal *journal = osb->journal;
2285
2286        /* we can trust j_num_trans here because _should_stop() is only set in
2287         * shutdown and nobody other than ourselves should be able to start
2288         * transactions.  committing on shutdown might take a few iterations
2289         * as final transactions put deleted inodes on the list */
2290        while (!(kthread_should_stop() &&
2291                 atomic_read(&journal->j_num_trans) == 0)) {
2292
2293                wait_event_interruptible(osb->checkpoint_event,
2294                                         atomic_read(&journal->j_num_trans)
2295                                         || kthread_should_stop());
2296
2297                status = ocfs2_commit_cache(osb);
2298                if (status < 0) {
2299                        static unsigned long abort_warn_time;
2300
2301                        /* Warn about this once per minute */
2302                        if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2303                                mlog(ML_ERROR, "status = %d, journal is "
2304                                                "already aborted.\n", status);
2305                        /*
2306                         * After ocfs2_commit_cache() fails, j_num_trans has a
2307                         * non-zero value.  Sleep here to avoid a busy-wait
2308                         * loop.
2309                         */
2310                        msleep_interruptible(1000);
2311                }
2312
2313                if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2314                        mlog(ML_KTHREAD,
2315                             "commit_thread: %u transactions pending on "
2316                             "shutdown\n",
2317                             atomic_read(&journal->j_num_trans));
2318                }
2319        }
2320
2321        return 0;
2322}
2323
2324/* Reads all the journal inodes without taking any cluster locks. Used
2325 * for hard readonly access to determine whether any journal requires
2326 * recovery. Also used to refresh the recovery generation numbers after
2327 * a journal has been recovered by another node.
2328 */
2329int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2330{
2331        int ret = 0;
2332        unsigned int slot;
2333        struct buffer_head *di_bh = NULL;
2334        struct ocfs2_dinode *di;
2335        int journal_dirty = 0;
2336
2337        for(slot = 0; slot < osb->max_slots; slot++) {
2338                ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2339                if (ret) {
2340                        mlog_errno(ret);
2341                        goto out;
2342                }
2343
2344                di = (struct ocfs2_dinode *) di_bh->b_data;
2345
2346                osb->slot_recovery_generations[slot] =
2347                                        ocfs2_get_recovery_generation(di);
2348
2349                if (le32_to_cpu(di->id1.journal1.ij_flags) &
2350                    OCFS2_JOURNAL_DIRTY_FL)
2351                        journal_dirty = 1;
2352
2353                brelse(di_bh);
2354                di_bh = NULL;
2355        }
2356
2357out:
2358        if (journal_dirty)
2359                ret = -EROFS;
2360        return ret;
2361}
2362