linux/fs/ubifs/journal.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS journal.
  25 *
  26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  27 * length and position, while a bud logical eraseblock is any LEB in the main
  28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  29 * contains only references to buds and some other stuff like commit
  30 * start node. The idea is that when we commit the journal, we do
  31 * not copy the data, the buds just become indexed. Since after the commit the
  32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  34 * become leafs in the future.
  35 *
  36 * The journal is multi-headed because we want to write data to the journal as
  37 * optimally as possible. It is nice to have nodes belonging to the same inode
  38 * in one LEB, so we may write data owned by different inodes to different
  39 * journal heads, although at present only one data head is used.
  40 *
  41 * For recovery reasons, the base head contains all inode nodes, all directory
  42 * entry nodes and all truncate nodes. This means that the other heads contain
  43 * only data nodes.
  44 *
  45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  46 * time of commit, the bud is retained to continue to be used in the journal,
  47 * even though the "front" of the LEB is now indexed. In that case, the log
  48 * reference contains the offset where the bud starts for the purposes of the
  49 * journal.
  50 *
  51 * The journal size has to be limited, because the larger is the journal, the
  52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  53 * takes (indexing in the TNC).
  54 *
  55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  58 * all the nodes.
  59 */
  60
  61#include "ubifs.h"
  62
  63/**
  64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  65 * @ino: the inode to zero out
  66 */
  67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  68{
  69        memset(ino->padding1, 0, 4);
  70        memset(ino->padding2, 0, 26);
  71}
  72
  73/**
  74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  75 *                         entry node.
  76 * @dent: the directory entry to zero out
  77 */
  78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  79{
  80        dent->padding1 = 0;
  81}
  82
  83/**
  84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  85 *                         node.
  86 * @trun: the truncation node to zero out
  87 */
  88static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  89{
  90        memset(trun->padding, 0, 12);
  91}
  92
  93/**
  94 * reserve_space - reserve space in the journal.
  95 * @c: UBIFS file-system description object
  96 * @jhead: journal head number
  97 * @len: node length
  98 *
  99 * This function reserves space in journal head @head. If the reservation
 100 * succeeded, the journal head stays locked and later has to be unlocked using
 101 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
 102 * be done, and other negative error codes in case of other failures.
 103 */
 104static int reserve_space(struct ubifs_info *c, int jhead, int len)
 105{
 106        int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 107        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 108
 109        /*
 110         * Typically, the base head has smaller nodes written to it, so it is
 111         * better to try to allocate space at the ends of eraseblocks. This is
 112         * what the squeeze parameter does.
 113         */
 114        ubifs_assert(c, !c->ro_media && !c->ro_mount);
 115        squeeze = (jhead == BASEHD);
 116again:
 117        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 118
 119        if (c->ro_error) {
 120                err = -EROFS;
 121                goto out_unlock;
 122        }
 123
 124        avail = c->leb_size - wbuf->offs - wbuf->used;
 125        if (wbuf->lnum != -1 && avail >= len)
 126                return 0;
 127
 128        /*
 129         * Write buffer wasn't seek'ed or there is no enough space - look for an
 130         * LEB with some empty space.
 131         */
 132        lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 133        if (lnum >= 0)
 134                goto out;
 135
 136        err = lnum;
 137        if (err != -ENOSPC)
 138                goto out_unlock;
 139
 140        /*
 141         * No free space, we have to run garbage collector to make
 142         * some. But the write-buffer mutex has to be unlocked because
 143         * GC also takes it.
 144         */
 145        dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 146        mutex_unlock(&wbuf->io_mutex);
 147
 148        lnum = ubifs_garbage_collect(c, 0);
 149        if (lnum < 0) {
 150                err = lnum;
 151                if (err != -ENOSPC)
 152                        return err;
 153
 154                /*
 155                 * GC could not make a free LEB. But someone else may
 156                 * have allocated new bud for this journal head,
 157                 * because we dropped @wbuf->io_mutex, so try once
 158                 * again.
 159                 */
 160                dbg_jnl("GC couldn't make a free LEB for jhead %s",
 161                        dbg_jhead(jhead));
 162                if (retries++ < 2) {
 163                        dbg_jnl("retry (%d)", retries);
 164                        goto again;
 165                }
 166
 167                dbg_jnl("return -ENOSPC");
 168                return err;
 169        }
 170
 171        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 172        dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 173        avail = c->leb_size - wbuf->offs - wbuf->used;
 174
 175        if (wbuf->lnum != -1 && avail >= len) {
 176                /*
 177                 * Someone else has switched the journal head and we have
 178                 * enough space now. This happens when more than one process is
 179                 * trying to write to the same journal head at the same time.
 180                 */
 181                dbg_jnl("return LEB %d back, already have LEB %d:%d",
 182                        lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 183                err = ubifs_return_leb(c, lnum);
 184                if (err)
 185                        goto out_unlock;
 186                return 0;
 187        }
 188
 189        offs = 0;
 190
 191out:
 192        /*
 193         * Make sure we synchronize the write-buffer before we add the new bud
 194         * to the log. Otherwise we may have a power cut after the log
 195         * reference node for the last bud (@lnum) is written but before the
 196         * write-buffer data are written to the next-to-last bud
 197         * (@wbuf->lnum). And the effect would be that the recovery would see
 198         * that there is corruption in the next-to-last bud.
 199         */
 200        err = ubifs_wbuf_sync_nolock(wbuf);
 201        if (err)
 202                goto out_return;
 203        err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 204        if (err)
 205                goto out_return;
 206        err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
 207        if (err)
 208                goto out_unlock;
 209
 210        return 0;
 211
 212out_unlock:
 213        mutex_unlock(&wbuf->io_mutex);
 214        return err;
 215
 216out_return:
 217        /* An error occurred and the LEB has to be returned to lprops */
 218        ubifs_assert(c, err < 0);
 219        err1 = ubifs_return_leb(c, lnum);
 220        if (err1 && err == -EAGAIN)
 221                /*
 222                 * Return original error code only if it is not %-EAGAIN,
 223                 * which is not really an error. Otherwise, return the error
 224                 * code of 'ubifs_return_leb()'.
 225                 */
 226                err = err1;
 227        mutex_unlock(&wbuf->io_mutex);
 228        return err;
 229}
 230
 231/**
 232 * write_node - write node to a journal head.
 233 * @c: UBIFS file-system description object
 234 * @jhead: journal head
 235 * @node: node to write
 236 * @len: node length
 237 * @lnum: LEB number written is returned here
 238 * @offs: offset written is returned here
 239 *
 240 * This function writes a node to reserved space of journal head @jhead.
 241 * Returns zero in case of success and a negative error code in case of
 242 * failure.
 243 */
 244static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
 245                      int *lnum, int *offs)
 246{
 247        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 248
 249        ubifs_assert(c, jhead != GCHD);
 250
 251        *lnum = c->jheads[jhead].wbuf.lnum;
 252        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 253
 254        dbg_jnl("jhead %s, LEB %d:%d, len %d",
 255                dbg_jhead(jhead), *lnum, *offs, len);
 256        ubifs_prepare_node(c, node, len, 0);
 257
 258        return ubifs_wbuf_write_nolock(wbuf, node, len);
 259}
 260
 261/**
 262 * write_head - write data to a journal head.
 263 * @c: UBIFS file-system description object
 264 * @jhead: journal head
 265 * @buf: buffer to write
 266 * @len: length to write
 267 * @lnum: LEB number written is returned here
 268 * @offs: offset written is returned here
 269 * @sync: non-zero if the write-buffer has to by synchronized
 270 *
 271 * This function is the same as 'write_node()' but it does not assume the
 272 * buffer it is writing is a node, so it does not prepare it (which means
 273 * initializing common header and calculating CRC).
 274 */
 275static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 276                      int *lnum, int *offs, int sync)
 277{
 278        int err;
 279        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 280
 281        ubifs_assert(c, jhead != GCHD);
 282
 283        *lnum = c->jheads[jhead].wbuf.lnum;
 284        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 285        dbg_jnl("jhead %s, LEB %d:%d, len %d",
 286                dbg_jhead(jhead), *lnum, *offs, len);
 287
 288        err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 289        if (err)
 290                return err;
 291        if (sync)
 292                err = ubifs_wbuf_sync_nolock(wbuf);
 293        return err;
 294}
 295
 296/**
 297 * make_reservation - reserve journal space.
 298 * @c: UBIFS file-system description object
 299 * @jhead: journal head
 300 * @len: how many bytes to reserve
 301 *
 302 * This function makes space reservation in journal head @jhead. The function
 303 * takes the commit lock and locks the journal head, and the caller has to
 304 * unlock the head and finish the reservation with 'finish_reservation()'.
 305 * Returns zero in case of success and a negative error code in case of
 306 * failure.
 307 *
 308 * Note, the journal head may be unlocked as soon as the data is written, while
 309 * the commit lock has to be released after the data has been added to the
 310 * TNC.
 311 */
 312static int make_reservation(struct ubifs_info *c, int jhead, int len)
 313{
 314        int err, cmt_retries = 0, nospc_retries = 0;
 315
 316again:
 317        down_read(&c->commit_sem);
 318        err = reserve_space(c, jhead, len);
 319        if (!err)
 320                /* c->commit_sem will get released via finish_reservation(). */
 321                return 0;
 322        up_read(&c->commit_sem);
 323
 324        if (err == -ENOSPC) {
 325                /*
 326                 * GC could not make any progress. We should try to commit
 327                 * once because it could make some dirty space and GC would
 328                 * make progress, so make the error -EAGAIN so that the below
 329                 * will commit and re-try.
 330                 */
 331                if (nospc_retries++ < 2) {
 332                        dbg_jnl("no space, retry");
 333                        err = -EAGAIN;
 334                }
 335
 336                /*
 337                 * This means that the budgeting is incorrect. We always have
 338                 * to be able to write to the media, because all operations are
 339                 * budgeted. Deletions are not budgeted, though, but we reserve
 340                 * an extra LEB for them.
 341                 */
 342        }
 343
 344        if (err != -EAGAIN)
 345                goto out;
 346
 347        /*
 348         * -EAGAIN means that the journal is full or too large, or the above
 349         * code wants to do one commit. Do this and re-try.
 350         */
 351        if (cmt_retries > 128) {
 352                /*
 353                 * This should not happen unless the journal size limitations
 354                 * are too tough.
 355                 */
 356                ubifs_err(c, "stuck in space allocation");
 357                err = -ENOSPC;
 358                goto out;
 359        } else if (cmt_retries > 32)
 360                ubifs_warn(c, "too many space allocation re-tries (%d)",
 361                           cmt_retries);
 362
 363        dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 364                cmt_retries);
 365        cmt_retries += 1;
 366
 367        err = ubifs_run_commit(c);
 368        if (err)
 369                return err;
 370        goto again;
 371
 372out:
 373        ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
 374                  len, jhead, err);
 375        if (err == -ENOSPC) {
 376                /* This are some budgeting problems, print useful information */
 377                down_write(&c->commit_sem);
 378                dump_stack();
 379                ubifs_dump_budg(c, &c->bi);
 380                ubifs_dump_lprops(c);
 381                cmt_retries = dbg_check_lprops(c);
 382                up_write(&c->commit_sem);
 383        }
 384        return err;
 385}
 386
 387/**
 388 * release_head - release a journal head.
 389 * @c: UBIFS file-system description object
 390 * @jhead: journal head
 391 *
 392 * This function releases journal head @jhead which was locked by
 393 * the 'make_reservation()' function. It has to be called after each successful
 394 * 'make_reservation()' invocation.
 395 */
 396static inline void release_head(struct ubifs_info *c, int jhead)
 397{
 398        mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 399}
 400
 401/**
 402 * finish_reservation - finish a reservation.
 403 * @c: UBIFS file-system description object
 404 *
 405 * This function finishes journal space reservation. It must be called after
 406 * 'make_reservation()'.
 407 */
 408static void finish_reservation(struct ubifs_info *c)
 409{
 410        up_read(&c->commit_sem);
 411}
 412
 413/**
 414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 415 * @mode: inode mode
 416 */
 417static int get_dent_type(int mode)
 418{
 419        switch (mode & S_IFMT) {
 420        case S_IFREG:
 421                return UBIFS_ITYPE_REG;
 422        case S_IFDIR:
 423                return UBIFS_ITYPE_DIR;
 424        case S_IFLNK:
 425                return UBIFS_ITYPE_LNK;
 426        case S_IFBLK:
 427                return UBIFS_ITYPE_BLK;
 428        case S_IFCHR:
 429                return UBIFS_ITYPE_CHR;
 430        case S_IFIFO:
 431                return UBIFS_ITYPE_FIFO;
 432        case S_IFSOCK:
 433                return UBIFS_ITYPE_SOCK;
 434        default:
 435                BUG();
 436        }
 437        return 0;
 438}
 439
 440/**
 441 * pack_inode - pack an inode node.
 442 * @c: UBIFS file-system description object
 443 * @ino: buffer in which to pack inode node
 444 * @inode: inode to pack
 445 * @last: indicates the last node of the group
 446 */
 447static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 448                       const struct inode *inode, int last)
 449{
 450        int data_len = 0, last_reference = !inode->i_nlink;
 451        struct ubifs_inode *ui = ubifs_inode(inode);
 452
 453        ino->ch.node_type = UBIFS_INO_NODE;
 454        ino_key_init_flash(c, &ino->key, inode->i_ino);
 455        ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 456        ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 457        ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 458        ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 459        ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 460        ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 461        ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 462        ino->uid   = cpu_to_le32(i_uid_read(inode));
 463        ino->gid   = cpu_to_le32(i_gid_read(inode));
 464        ino->mode  = cpu_to_le32(inode->i_mode);
 465        ino->flags = cpu_to_le32(ui->flags);
 466        ino->size  = cpu_to_le64(ui->ui_size);
 467        ino->nlink = cpu_to_le32(inode->i_nlink);
 468        ino->compr_type  = cpu_to_le16(ui->compr_type);
 469        ino->data_len    = cpu_to_le32(ui->data_len);
 470        ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 471        ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 472        ino->xattr_names = cpu_to_le32(ui->xattr_names);
 473        zero_ino_node_unused(ino);
 474
 475        /*
 476         * Drop the attached data if this is a deletion inode, the data is not
 477         * needed anymore.
 478         */
 479        if (!last_reference) {
 480                memcpy(ino->data, ui->data, ui->data_len);
 481                data_len = ui->data_len;
 482        }
 483
 484        ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 485}
 486
 487/**
 488 * mark_inode_clean - mark UBIFS inode as clean.
 489 * @c: UBIFS file-system description object
 490 * @ui: UBIFS inode to mark as clean
 491 *
 492 * This helper function marks UBIFS inode @ui as clean by cleaning the
 493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 495 * just do nothing.
 496 */
 497static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 498{
 499        if (ui->dirty)
 500                ubifs_release_dirty_inode_budget(c, ui);
 501        ui->dirty = 0;
 502}
 503
 504static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
 505{
 506        if (c->double_hash)
 507                dent->cookie = prandom_u32();
 508        else
 509                dent->cookie = 0;
 510}
 511
 512/**
 513 * ubifs_jnl_update - update inode.
 514 * @c: UBIFS file-system description object
 515 * @dir: parent inode or host inode in case of extended attributes
 516 * @nm: directory entry name
 517 * @inode: inode to update
 518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 519 * @xent: non-zero if the directory entry is an extended attribute entry
 520 *
 521 * This function updates an inode by writing a directory entry (or extended
 522 * attribute entry), the inode itself, and the parent directory inode (or the
 523 * host inode) to the journal.
 524 *
 525 * The function writes the host inode @dir last, which is important in case of
 526 * extended attributes. Indeed, then we guarantee that if the host inode gets
 527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 528 * the extended attribute inode gets flushed too. And this is exactly what the
 529 * user expects - synchronizing the host inode synchronizes its extended
 530 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 531 * directory entry corresponding to @nm gets synchronized too.
 532 *
 533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 534 * function synchronizes the write-buffer.
 535 *
 536 * This function marks the @dir and @inode inodes as clean and returns zero on
 537 * success. In case of failure, a negative error code is returned.
 538 */
 539int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 540                     const struct fscrypt_name *nm, const struct inode *inode,
 541                     int deletion, int xent)
 542{
 543        int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 544        int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 545        int last_reference = !!(deletion && inode->i_nlink == 0);
 546        struct ubifs_inode *ui = ubifs_inode(inode);
 547        struct ubifs_inode *host_ui = ubifs_inode(dir);
 548        struct ubifs_dent_node *dent;
 549        struct ubifs_ino_node *ino;
 550        union ubifs_key dent_key, ino_key;
 551
 552        ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
 553
 554        dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
 555        ilen = UBIFS_INO_NODE_SZ;
 556
 557        /*
 558         * If the last reference to the inode is being deleted, then there is
 559         * no need to attach and write inode data, it is being deleted anyway.
 560         * And if the inode is being deleted, no need to synchronize
 561         * write-buffer even if the inode is synchronous.
 562         */
 563        if (!last_reference) {
 564                ilen += ui->data_len;
 565                sync |= IS_SYNC(inode);
 566        }
 567
 568        aligned_dlen = ALIGN(dlen, 8);
 569        aligned_ilen = ALIGN(ilen, 8);
 570
 571        len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 572        /* Make sure to also account for extended attributes */
 573        len += host_ui->data_len;
 574
 575        dent = kzalloc(len, GFP_NOFS);
 576        if (!dent)
 577                return -ENOMEM;
 578
 579        /* Make reservation before allocating sequence numbers */
 580        err = make_reservation(c, BASEHD, len);
 581        if (err)
 582                goto out_free;
 583
 584        if (!xent) {
 585                dent->ch.node_type = UBIFS_DENT_NODE;
 586                if (nm->hash)
 587                        dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
 588                else
 589                        dent_key_init(c, &dent_key, dir->i_ino, nm);
 590        } else {
 591                dent->ch.node_type = UBIFS_XENT_NODE;
 592                xent_key_init(c, &dent_key, dir->i_ino, nm);
 593        }
 594
 595        key_write(c, &dent_key, dent->key);
 596        dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 597        dent->type = get_dent_type(inode->i_mode);
 598        dent->nlen = cpu_to_le16(fname_len(nm));
 599        memcpy(dent->name, fname_name(nm), fname_len(nm));
 600        dent->name[fname_len(nm)] = '\0';
 601        set_dent_cookie(c, dent);
 602
 603        zero_dent_node_unused(dent);
 604        ubifs_prep_grp_node(c, dent, dlen, 0);
 605
 606        ino = (void *)dent + aligned_dlen;
 607        pack_inode(c, ino, inode, 0);
 608        ino = (void *)ino + aligned_ilen;
 609        pack_inode(c, ino, dir, 1);
 610
 611        if (last_reference) {
 612                err = ubifs_add_orphan(c, inode->i_ino);
 613                if (err) {
 614                        release_head(c, BASEHD);
 615                        goto out_finish;
 616                }
 617                ui->del_cmtno = c->cmt_no;
 618        }
 619
 620        err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 621        if (err)
 622                goto out_release;
 623        if (!sync) {
 624                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 625
 626                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 627                ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 628        }
 629        release_head(c, BASEHD);
 630        kfree(dent);
 631
 632        if (deletion) {
 633                if (nm->hash)
 634                        err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
 635                else
 636                        err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 637                if (err)
 638                        goto out_ro;
 639                err = ubifs_add_dirt(c, lnum, dlen);
 640        } else
 641                err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
 642        if (err)
 643                goto out_ro;
 644
 645        /*
 646         * Note, we do not remove the inode from TNC even if the last reference
 647         * to it has just been deleted, because the inode may still be opened.
 648         * Instead, the inode has been added to orphan lists and the orphan
 649         * subsystem will take further care about it.
 650         */
 651        ino_key_init(c, &ino_key, inode->i_ino);
 652        ino_offs = dent_offs + aligned_dlen;
 653        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
 654        if (err)
 655                goto out_ro;
 656
 657        ino_key_init(c, &ino_key, dir->i_ino);
 658        ino_offs += aligned_ilen;
 659        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
 660                            UBIFS_INO_NODE_SZ + host_ui->data_len);
 661        if (err)
 662                goto out_ro;
 663
 664        finish_reservation(c);
 665        spin_lock(&ui->ui_lock);
 666        ui->synced_i_size = ui->ui_size;
 667        spin_unlock(&ui->ui_lock);
 668        if (xent) {
 669                spin_lock(&host_ui->ui_lock);
 670                host_ui->synced_i_size = host_ui->ui_size;
 671                spin_unlock(&host_ui->ui_lock);
 672        }
 673        mark_inode_clean(c, ui);
 674        mark_inode_clean(c, host_ui);
 675        return 0;
 676
 677out_finish:
 678        finish_reservation(c);
 679out_free:
 680        kfree(dent);
 681        return err;
 682
 683out_release:
 684        release_head(c, BASEHD);
 685        kfree(dent);
 686out_ro:
 687        ubifs_ro_mode(c, err);
 688        if (last_reference)
 689                ubifs_delete_orphan(c, inode->i_ino);
 690        finish_reservation(c);
 691        return err;
 692}
 693
 694/**
 695 * ubifs_jnl_write_data - write a data node to the journal.
 696 * @c: UBIFS file-system description object
 697 * @inode: inode the data node belongs to
 698 * @key: node key
 699 * @buf: buffer to write
 700 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 701 *
 702 * This function writes a data node to the journal. Returns %0 if the data node
 703 * was successfully written, and a negative error code in case of failure.
 704 */
 705int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 706                         const union ubifs_key *key, const void *buf, int len)
 707{
 708        struct ubifs_data_node *data;
 709        int err, lnum, offs, compr_type, out_len, compr_len;
 710        int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
 711        struct ubifs_inode *ui = ubifs_inode(inode);
 712        bool encrypted = ubifs_crypt_is_encrypted(inode);
 713
 714        dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
 715                (unsigned long)key_inum(c, key), key_block(c, key), len);
 716        ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
 717
 718        if (encrypted)
 719                dlen += UBIFS_CIPHER_BLOCK_SIZE;
 720
 721        data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
 722        if (!data) {
 723                /*
 724                 * Fall-back to the write reserve buffer. Note, we might be
 725                 * currently on the memory reclaim path, when the kernel is
 726                 * trying to free some memory by writing out dirty pages. The
 727                 * write reserve buffer helps us to guarantee that we are
 728                 * always able to write the data.
 729                 */
 730                allocated = 0;
 731                mutex_lock(&c->write_reserve_mutex);
 732                data = c->write_reserve_buf;
 733        }
 734
 735        data->ch.node_type = UBIFS_DATA_NODE;
 736        key_write(c, key, &data->key);
 737        data->size = cpu_to_le32(len);
 738
 739        if (!(ui->flags & UBIFS_COMPR_FL))
 740                /* Compression is disabled for this inode */
 741                compr_type = UBIFS_COMPR_NONE;
 742        else
 743                compr_type = ui->compr_type;
 744
 745        out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
 746        ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
 747        ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
 748
 749        if (encrypted) {
 750                err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
 751                if (err)
 752                        goto out_free;
 753
 754        } else {
 755                data->compr_size = 0;
 756                out_len = compr_len;
 757        }
 758
 759        dlen = UBIFS_DATA_NODE_SZ + out_len;
 760        data->compr_type = cpu_to_le16(compr_type);
 761
 762        /* Make reservation before allocating sequence numbers */
 763        err = make_reservation(c, DATAHD, dlen);
 764        if (err)
 765                goto out_free;
 766
 767        err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
 768        if (err)
 769                goto out_release;
 770        ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 771        release_head(c, DATAHD);
 772
 773        err = ubifs_tnc_add(c, key, lnum, offs, dlen);
 774        if (err)
 775                goto out_ro;
 776
 777        finish_reservation(c);
 778        if (!allocated)
 779                mutex_unlock(&c->write_reserve_mutex);
 780        else
 781                kfree(data);
 782        return 0;
 783
 784out_release:
 785        release_head(c, DATAHD);
 786out_ro:
 787        ubifs_ro_mode(c, err);
 788        finish_reservation(c);
 789out_free:
 790        if (!allocated)
 791                mutex_unlock(&c->write_reserve_mutex);
 792        else
 793                kfree(data);
 794        return err;
 795}
 796
 797/**
 798 * ubifs_jnl_write_inode - flush inode to the journal.
 799 * @c: UBIFS file-system description object
 800 * @inode: inode to flush
 801 *
 802 * This function writes inode @inode to the journal. If the inode is
 803 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 804 * success and a negative error code in case of failure.
 805 */
 806int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 807{
 808        int err, lnum, offs;
 809        struct ubifs_ino_node *ino;
 810        struct ubifs_inode *ui = ubifs_inode(inode);
 811        int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
 812
 813        dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 814
 815        /*
 816         * If the inode is being deleted, do not write the attached data. No
 817         * need to synchronize the write-buffer either.
 818         */
 819        if (!last_reference) {
 820                len += ui->data_len;
 821                sync = IS_SYNC(inode);
 822        }
 823        ino = kmalloc(len, GFP_NOFS);
 824        if (!ino)
 825                return -ENOMEM;
 826
 827        /* Make reservation before allocating sequence numbers */
 828        err = make_reservation(c, BASEHD, len);
 829        if (err)
 830                goto out_free;
 831
 832        pack_inode(c, ino, inode, 1);
 833        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
 834        if (err)
 835                goto out_release;
 836        if (!sync)
 837                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 838                                          inode->i_ino);
 839        release_head(c, BASEHD);
 840
 841        if (last_reference) {
 842                err = ubifs_tnc_remove_ino(c, inode->i_ino);
 843                if (err)
 844                        goto out_ro;
 845                ubifs_delete_orphan(c, inode->i_ino);
 846                err = ubifs_add_dirt(c, lnum, len);
 847        } else {
 848                union ubifs_key key;
 849
 850                ino_key_init(c, &key, inode->i_ino);
 851                err = ubifs_tnc_add(c, &key, lnum, offs, len);
 852        }
 853        if (err)
 854                goto out_ro;
 855
 856        finish_reservation(c);
 857        spin_lock(&ui->ui_lock);
 858        ui->synced_i_size = ui->ui_size;
 859        spin_unlock(&ui->ui_lock);
 860        kfree(ino);
 861        return 0;
 862
 863out_release:
 864        release_head(c, BASEHD);
 865out_ro:
 866        ubifs_ro_mode(c, err);
 867        finish_reservation(c);
 868out_free:
 869        kfree(ino);
 870        return err;
 871}
 872
 873/**
 874 * ubifs_jnl_delete_inode - delete an inode.
 875 * @c: UBIFS file-system description object
 876 * @inode: inode to delete
 877 *
 878 * This function deletes inode @inode which includes removing it from orphans,
 879 * deleting it from TNC and, in some cases, writing a deletion inode to the
 880 * journal.
 881 *
 882 * When regular file inodes are unlinked or a directory inode is removed, the
 883 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 884 * direntry to the media, and adds the inode to orphans. After this, when the
 885 * last reference to this inode has been dropped, this function is called. In
 886 * general, it has to write one more deletion inode to the media, because if
 887 * a commit happened between 'ubifs_jnl_update()' and
 888 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 889 * anymore, and in fact it might not be on the flash anymore, because it might
 890 * have been garbage-collected already. And for optimization reasons UBIFS does
 891 * not read the orphan area if it has been unmounted cleanly, so it would have
 892 * no indication in the journal that there is a deleted inode which has to be
 893 * removed from TNC.
 894 *
 895 * However, if there was no commit between 'ubifs_jnl_update()' and
 896 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 897 * inode to the media for the second time. And this is quite a typical case.
 898 *
 899 * This function returns zero in case of success and a negative error code in
 900 * case of failure.
 901 */
 902int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
 903{
 904        int err;
 905        struct ubifs_inode *ui = ubifs_inode(inode);
 906
 907        ubifs_assert(c, inode->i_nlink == 0);
 908
 909        if (ui->del_cmtno != c->cmt_no)
 910                /* A commit happened for sure */
 911                return ubifs_jnl_write_inode(c, inode);
 912
 913        down_read(&c->commit_sem);
 914        /*
 915         * Check commit number again, because the first test has been done
 916         * without @c->commit_sem, so a commit might have happened.
 917         */
 918        if (ui->del_cmtno != c->cmt_no) {
 919                up_read(&c->commit_sem);
 920                return ubifs_jnl_write_inode(c, inode);
 921        }
 922
 923        err = ubifs_tnc_remove_ino(c, inode->i_ino);
 924        if (err)
 925                ubifs_ro_mode(c, err);
 926        else
 927                ubifs_delete_orphan(c, inode->i_ino);
 928        up_read(&c->commit_sem);
 929        return err;
 930}
 931
 932/**
 933 * ubifs_jnl_xrename - cross rename two directory entries.
 934 * @c: UBIFS file-system description object
 935 * @fst_dir: parent inode of 1st directory entry to exchange
 936 * @fst_inode: 1st inode to exchange
 937 * @fst_nm: name of 1st inode to exchange
 938 * @snd_dir: parent inode of 2nd directory entry to exchange
 939 * @snd_inode: 2nd inode to exchange
 940 * @snd_nm: name of 2nd inode to exchange
 941 * @sync: non-zero if the write-buffer has to be synchronized
 942 *
 943 * This function implements the cross rename operation which may involve
 944 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
 945 * and returns zero on success. In case of failure, a negative error code is
 946 * returned.
 947 */
 948int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
 949                      const struct inode *fst_inode,
 950                      const struct fscrypt_name *fst_nm,
 951                      const struct inode *snd_dir,
 952                      const struct inode *snd_inode,
 953                      const struct fscrypt_name *snd_nm, int sync)
 954{
 955        union ubifs_key key;
 956        struct ubifs_dent_node *dent1, *dent2;
 957        int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
 958        int aligned_dlen1, aligned_dlen2;
 959        int twoparents = (fst_dir != snd_dir);
 960        void *p;
 961
 962        ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
 963        ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
 964        ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
 965        ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
 966
 967        dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
 968        dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
 969        aligned_dlen1 = ALIGN(dlen1, 8);
 970        aligned_dlen2 = ALIGN(dlen2, 8);
 971
 972        len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
 973        if (twoparents)
 974                len += plen;
 975
 976        dent1 = kzalloc(len, GFP_NOFS);
 977        if (!dent1)
 978                return -ENOMEM;
 979
 980        /* Make reservation before allocating sequence numbers */
 981        err = make_reservation(c, BASEHD, len);
 982        if (err)
 983                goto out_free;
 984
 985        /* Make new dent for 1st entry */
 986        dent1->ch.node_type = UBIFS_DENT_NODE;
 987        dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
 988        dent1->inum = cpu_to_le64(fst_inode->i_ino);
 989        dent1->type = get_dent_type(fst_inode->i_mode);
 990        dent1->nlen = cpu_to_le16(fname_len(snd_nm));
 991        memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
 992        dent1->name[fname_len(snd_nm)] = '\0';
 993        set_dent_cookie(c, dent1);
 994        zero_dent_node_unused(dent1);
 995        ubifs_prep_grp_node(c, dent1, dlen1, 0);
 996
 997        /* Make new dent for 2nd entry */
 998        dent2 = (void *)dent1 + aligned_dlen1;
 999        dent2->ch.node_type = UBIFS_DENT_NODE;
1000        dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1001        dent2->inum = cpu_to_le64(snd_inode->i_ino);
1002        dent2->type = get_dent_type(snd_inode->i_mode);
1003        dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1004        memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1005        dent2->name[fname_len(fst_nm)] = '\0';
1006        set_dent_cookie(c, dent2);
1007        zero_dent_node_unused(dent2);
1008        ubifs_prep_grp_node(c, dent2, dlen2, 0);
1009
1010        p = (void *)dent2 + aligned_dlen2;
1011        if (!twoparents)
1012                pack_inode(c, p, fst_dir, 1);
1013        else {
1014                pack_inode(c, p, fst_dir, 0);
1015                p += ALIGN(plen, 8);
1016                pack_inode(c, p, snd_dir, 1);
1017        }
1018
1019        err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1020        if (err)
1021                goto out_release;
1022        if (!sync) {
1023                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1024
1025                ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1026                ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1027        }
1028        release_head(c, BASEHD);
1029
1030        dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1031        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1032        if (err)
1033                goto out_ro;
1034
1035        offs += aligned_dlen1;
1036        dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1037        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1038        if (err)
1039                goto out_ro;
1040
1041        offs += aligned_dlen2;
1042
1043        ino_key_init(c, &key, fst_dir->i_ino);
1044        err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1045        if (err)
1046                goto out_ro;
1047
1048        if (twoparents) {
1049                offs += ALIGN(plen, 8);
1050                ino_key_init(c, &key, snd_dir->i_ino);
1051                err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1052                if (err)
1053                        goto out_ro;
1054        }
1055
1056        finish_reservation(c);
1057
1058        mark_inode_clean(c, ubifs_inode(fst_dir));
1059        if (twoparents)
1060                mark_inode_clean(c, ubifs_inode(snd_dir));
1061        kfree(dent1);
1062        return 0;
1063
1064out_release:
1065        release_head(c, BASEHD);
1066out_ro:
1067        ubifs_ro_mode(c, err);
1068        finish_reservation(c);
1069out_free:
1070        kfree(dent1);
1071        return err;
1072}
1073
1074/**
1075 * ubifs_jnl_rename - rename a directory entry.
1076 * @c: UBIFS file-system description object
1077 * @old_dir: parent inode of directory entry to rename
1078 * @old_dentry: directory entry to rename
1079 * @new_dir: parent inode of directory entry to rename
1080 * @new_dentry: new directory entry (or directory entry to replace)
1081 * @sync: non-zero if the write-buffer has to be synchronized
1082 *
1083 * This function implements the re-name operation which may involve writing up
1084 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1085 * and returns zero on success. In case of failure, a negative error code is
1086 * returned.
1087 */
1088int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1089                     const struct inode *old_inode,
1090                     const struct fscrypt_name *old_nm,
1091                     const struct inode *new_dir,
1092                     const struct inode *new_inode,
1093                     const struct fscrypt_name *new_nm,
1094                     const struct inode *whiteout, int sync)
1095{
1096        void *p;
1097        union ubifs_key key;
1098        struct ubifs_dent_node *dent, *dent2;
1099        int err, dlen1, dlen2, ilen, lnum, offs, len;
1100        int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1101        int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1102        int move = (old_dir != new_dir);
1103        struct ubifs_inode *uninitialized_var(new_ui);
1104
1105        ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1106        ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1107        ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1108        ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1109
1110        dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1111        dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1112        if (new_inode) {
1113                new_ui = ubifs_inode(new_inode);
1114                ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1115                ilen = UBIFS_INO_NODE_SZ;
1116                if (!last_reference)
1117                        ilen += new_ui->data_len;
1118        } else
1119                ilen = 0;
1120
1121        aligned_dlen1 = ALIGN(dlen1, 8);
1122        aligned_dlen2 = ALIGN(dlen2, 8);
1123        len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1124        if (move)
1125                len += plen;
1126        dent = kzalloc(len, GFP_NOFS);
1127        if (!dent)
1128                return -ENOMEM;
1129
1130        /* Make reservation before allocating sequence numbers */
1131        err = make_reservation(c, BASEHD, len);
1132        if (err)
1133                goto out_free;
1134
1135        /* Make new dent */
1136        dent->ch.node_type = UBIFS_DENT_NODE;
1137        dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1138        dent->inum = cpu_to_le64(old_inode->i_ino);
1139        dent->type = get_dent_type(old_inode->i_mode);
1140        dent->nlen = cpu_to_le16(fname_len(new_nm));
1141        memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1142        dent->name[fname_len(new_nm)] = '\0';
1143        set_dent_cookie(c, dent);
1144        zero_dent_node_unused(dent);
1145        ubifs_prep_grp_node(c, dent, dlen1, 0);
1146
1147        dent2 = (void *)dent + aligned_dlen1;
1148        dent2->ch.node_type = UBIFS_DENT_NODE;
1149        dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1150
1151        if (whiteout) {
1152                dent2->inum = cpu_to_le64(whiteout->i_ino);
1153                dent2->type = get_dent_type(whiteout->i_mode);
1154        } else {
1155                /* Make deletion dent */
1156                dent2->inum = 0;
1157                dent2->type = DT_UNKNOWN;
1158        }
1159        dent2->nlen = cpu_to_le16(fname_len(old_nm));
1160        memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1161        dent2->name[fname_len(old_nm)] = '\0';
1162        set_dent_cookie(c, dent2);
1163        zero_dent_node_unused(dent2);
1164        ubifs_prep_grp_node(c, dent2, dlen2, 0);
1165
1166        p = (void *)dent2 + aligned_dlen2;
1167        if (new_inode) {
1168                pack_inode(c, p, new_inode, 0);
1169                p += ALIGN(ilen, 8);
1170        }
1171
1172        if (!move)
1173                pack_inode(c, p, old_dir, 1);
1174        else {
1175                pack_inode(c, p, old_dir, 0);
1176                p += ALIGN(plen, 8);
1177                pack_inode(c, p, new_dir, 1);
1178        }
1179
1180        if (last_reference) {
1181                err = ubifs_add_orphan(c, new_inode->i_ino);
1182                if (err) {
1183                        release_head(c, BASEHD);
1184                        goto out_finish;
1185                }
1186                new_ui->del_cmtno = c->cmt_no;
1187        }
1188
1189        err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1190        if (err)
1191                goto out_release;
1192        if (!sync) {
1193                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1194
1195                ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1196                ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1197                if (new_inode)
1198                        ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1199                                                  new_inode->i_ino);
1200        }
1201        release_head(c, BASEHD);
1202
1203        dent_key_init(c, &key, new_dir->i_ino, new_nm);
1204        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1205        if (err)
1206                goto out_ro;
1207
1208        offs += aligned_dlen1;
1209        if (whiteout) {
1210                dent_key_init(c, &key, old_dir->i_ino, old_nm);
1211                err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1212                if (err)
1213                        goto out_ro;
1214
1215                ubifs_delete_orphan(c, whiteout->i_ino);
1216        } else {
1217                err = ubifs_add_dirt(c, lnum, dlen2);
1218                if (err)
1219                        goto out_ro;
1220
1221                dent_key_init(c, &key, old_dir->i_ino, old_nm);
1222                err = ubifs_tnc_remove_nm(c, &key, old_nm);
1223                if (err)
1224                        goto out_ro;
1225        }
1226
1227        offs += aligned_dlen2;
1228        if (new_inode) {
1229                ino_key_init(c, &key, new_inode->i_ino);
1230                err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1231                if (err)
1232                        goto out_ro;
1233                offs += ALIGN(ilen, 8);
1234        }
1235
1236        ino_key_init(c, &key, old_dir->i_ino);
1237        err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1238        if (err)
1239                goto out_ro;
1240
1241        if (move) {
1242                offs += ALIGN(plen, 8);
1243                ino_key_init(c, &key, new_dir->i_ino);
1244                err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1245                if (err)
1246                        goto out_ro;
1247        }
1248
1249        finish_reservation(c);
1250        if (new_inode) {
1251                mark_inode_clean(c, new_ui);
1252                spin_lock(&new_ui->ui_lock);
1253                new_ui->synced_i_size = new_ui->ui_size;
1254                spin_unlock(&new_ui->ui_lock);
1255        }
1256        mark_inode_clean(c, ubifs_inode(old_dir));
1257        if (move)
1258                mark_inode_clean(c, ubifs_inode(new_dir));
1259        kfree(dent);
1260        return 0;
1261
1262out_release:
1263        release_head(c, BASEHD);
1264out_ro:
1265        ubifs_ro_mode(c, err);
1266        if (last_reference)
1267                ubifs_delete_orphan(c, new_inode->i_ino);
1268out_finish:
1269        finish_reservation(c);
1270out_free:
1271        kfree(dent);
1272        return err;
1273}
1274
1275/**
1276 * truncate_data_node - re-compress/encrypt a truncated data node.
1277 * @c: UBIFS file-system description object
1278 * @inode: inode which referes to the data node
1279 * @block: data block number
1280 * @dn: data node to re-compress
1281 * @new_len: new length
1282 *
1283 * This function is used when an inode is truncated and the last data node of
1284 * the inode has to be re-compressed/encrypted and re-written.
1285 */
1286static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1287                              unsigned int block, struct ubifs_data_node *dn,
1288                              int *new_len)
1289{
1290        void *buf;
1291        int err, dlen, compr_type, out_len, old_dlen;
1292
1293        out_len = le32_to_cpu(dn->size);
1294        buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1295        if (!buf)
1296                return -ENOMEM;
1297
1298        dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1299        compr_type = le16_to_cpu(dn->compr_type);
1300
1301        if (ubifs_crypt_is_encrypted(inode)) {
1302                err = ubifs_decrypt(inode, dn, &dlen, block);
1303                if (err)
1304                        goto out;
1305        }
1306
1307        if (compr_type == UBIFS_COMPR_NONE) {
1308                out_len = *new_len;
1309        } else {
1310                err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1311                if (err)
1312                        goto out;
1313
1314                ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1315        }
1316
1317        if (ubifs_crypt_is_encrypted(inode)) {
1318                err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1319                if (err)
1320                        goto out;
1321
1322                out_len = old_dlen;
1323        } else {
1324                dn->compr_size = 0;
1325        }
1326
1327        ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1328        dn->compr_type = cpu_to_le16(compr_type);
1329        dn->size = cpu_to_le32(*new_len);
1330        *new_len = UBIFS_DATA_NODE_SZ + out_len;
1331        err = 0;
1332out:
1333        kfree(buf);
1334        return err;
1335}
1336
1337/**
1338 * ubifs_jnl_truncate - update the journal for a truncation.
1339 * @c: UBIFS file-system description object
1340 * @inode: inode to truncate
1341 * @old_size: old size
1342 * @new_size: new size
1343 *
1344 * When the size of a file decreases due to truncation, a truncation node is
1345 * written, the journal tree is updated, and the last data block is re-written
1346 * if it has been affected. The inode is also updated in order to synchronize
1347 * the new inode size.
1348 *
1349 * This function marks the inode as clean and returns zero on success. In case
1350 * of failure, a negative error code is returned.
1351 */
1352int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1353                       loff_t old_size, loff_t new_size)
1354{
1355        union ubifs_key key, to_key;
1356        struct ubifs_ino_node *ino;
1357        struct ubifs_trun_node *trun;
1358        struct ubifs_data_node *uninitialized_var(dn);
1359        int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1360        struct ubifs_inode *ui = ubifs_inode(inode);
1361        ino_t inum = inode->i_ino;
1362        unsigned int blk;
1363
1364        dbg_jnl("ino %lu, size %lld -> %lld",
1365                (unsigned long)inum, old_size, new_size);
1366        ubifs_assert(c, !ui->data_len);
1367        ubifs_assert(c, S_ISREG(inode->i_mode));
1368        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1369
1370        sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1371             UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1372        ino = kmalloc(sz, GFP_NOFS);
1373        if (!ino)
1374                return -ENOMEM;
1375
1376        trun = (void *)ino + UBIFS_INO_NODE_SZ;
1377        trun->ch.node_type = UBIFS_TRUN_NODE;
1378        trun->inum = cpu_to_le32(inum);
1379        trun->old_size = cpu_to_le64(old_size);
1380        trun->new_size = cpu_to_le64(new_size);
1381        zero_trun_node_unused(trun);
1382
1383        dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1384        if (dlen) {
1385                /* Get last data block so it can be truncated */
1386                dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1387                blk = new_size >> UBIFS_BLOCK_SHIFT;
1388                data_key_init(c, &key, inum, blk);
1389                dbg_jnlk(&key, "last block key ");
1390                err = ubifs_tnc_lookup(c, &key, dn);
1391                if (err == -ENOENT)
1392                        dlen = 0; /* Not found (so it is a hole) */
1393                else if (err)
1394                        goto out_free;
1395                else {
1396                        int dn_len = le32_to_cpu(dn->size);
1397
1398                        if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1399                                ubifs_err(c, "bad data node (block %u, inode %lu)",
1400                                          blk, inode->i_ino);
1401                                ubifs_dump_node(c, dn);
1402                                goto out_free;
1403                        }
1404
1405                        if (dn_len <= dlen)
1406                                dlen = 0; /* Nothing to do */
1407                        else {
1408                                err = truncate_data_node(c, inode, blk, dn, &dlen);
1409                                if (err)
1410                                        goto out_free;
1411                        }
1412                }
1413        }
1414
1415        /* Must make reservation before allocating sequence numbers */
1416        len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1417        if (dlen)
1418                len += dlen;
1419        err = make_reservation(c, BASEHD, len);
1420        if (err)
1421                goto out_free;
1422
1423        pack_inode(c, ino, inode, 0);
1424        ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1425        if (dlen)
1426                ubifs_prep_grp_node(c, dn, dlen, 1);
1427
1428        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1429        if (err)
1430                goto out_release;
1431        if (!sync)
1432                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1433        release_head(c, BASEHD);
1434
1435        if (dlen) {
1436                sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1437                err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1438                if (err)
1439                        goto out_ro;
1440        }
1441
1442        ino_key_init(c, &key, inum);
1443        err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1444        if (err)
1445                goto out_ro;
1446
1447        err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1448        if (err)
1449                goto out_ro;
1450
1451        bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1452        blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1453        data_key_init(c, &key, inum, blk);
1454
1455        bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1456        blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1457        data_key_init(c, &to_key, inum, blk);
1458
1459        err = ubifs_tnc_remove_range(c, &key, &to_key);
1460        if (err)
1461                goto out_ro;
1462
1463        finish_reservation(c);
1464        spin_lock(&ui->ui_lock);
1465        ui->synced_i_size = ui->ui_size;
1466        spin_unlock(&ui->ui_lock);
1467        mark_inode_clean(c, ui);
1468        kfree(ino);
1469        return 0;
1470
1471out_release:
1472        release_head(c, BASEHD);
1473out_ro:
1474        ubifs_ro_mode(c, err);
1475        finish_reservation(c);
1476out_free:
1477        kfree(ino);
1478        return err;
1479}
1480
1481
1482/**
1483 * ubifs_jnl_delete_xattr - delete an extended attribute.
1484 * @c: UBIFS file-system description object
1485 * @host: host inode
1486 * @inode: extended attribute inode
1487 * @nm: extended attribute entry name
1488 *
1489 * This function delete an extended attribute which is very similar to
1490 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1491 * updates the target inode. Returns zero in case of success and a negative
1492 * error code in case of failure.
1493 */
1494int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1495                           const struct inode *inode,
1496                           const struct fscrypt_name *nm)
1497{
1498        int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1499        struct ubifs_dent_node *xent;
1500        struct ubifs_ino_node *ino;
1501        union ubifs_key xent_key, key1, key2;
1502        int sync = IS_DIRSYNC(host);
1503        struct ubifs_inode *host_ui = ubifs_inode(host);
1504
1505        ubifs_assert(c, inode->i_nlink == 0);
1506        ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1507
1508        /*
1509         * Since we are deleting the inode, we do not bother to attach any data
1510         * to it and assume its length is %UBIFS_INO_NODE_SZ.
1511         */
1512        xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1513        aligned_xlen = ALIGN(xlen, 8);
1514        hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1515        len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1516
1517        xent = kzalloc(len, GFP_NOFS);
1518        if (!xent)
1519                return -ENOMEM;
1520
1521        /* Make reservation before allocating sequence numbers */
1522        err = make_reservation(c, BASEHD, len);
1523        if (err) {
1524                kfree(xent);
1525                return err;
1526        }
1527
1528        xent->ch.node_type = UBIFS_XENT_NODE;
1529        xent_key_init(c, &xent_key, host->i_ino, nm);
1530        key_write(c, &xent_key, xent->key);
1531        xent->inum = 0;
1532        xent->type = get_dent_type(inode->i_mode);
1533        xent->nlen = cpu_to_le16(fname_len(nm));
1534        memcpy(xent->name, fname_name(nm), fname_len(nm));
1535        xent->name[fname_len(nm)] = '\0';
1536        zero_dent_node_unused(xent);
1537        ubifs_prep_grp_node(c, xent, xlen, 0);
1538
1539        ino = (void *)xent + aligned_xlen;
1540        pack_inode(c, ino, inode, 0);
1541        ino = (void *)ino + UBIFS_INO_NODE_SZ;
1542        pack_inode(c, ino, host, 1);
1543
1544        err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1545        if (!sync && !err)
1546                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1547        release_head(c, BASEHD);
1548        kfree(xent);
1549        if (err)
1550                goto out_ro;
1551
1552        /* Remove the extended attribute entry from TNC */
1553        err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1554        if (err)
1555                goto out_ro;
1556        err = ubifs_add_dirt(c, lnum, xlen);
1557        if (err)
1558                goto out_ro;
1559
1560        /*
1561         * Remove all nodes belonging to the extended attribute inode from TNC.
1562         * Well, there actually must be only one node - the inode itself.
1563         */
1564        lowest_ino_key(c, &key1, inode->i_ino);
1565        highest_ino_key(c, &key2, inode->i_ino);
1566        err = ubifs_tnc_remove_range(c, &key1, &key2);
1567        if (err)
1568                goto out_ro;
1569        err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1570        if (err)
1571                goto out_ro;
1572
1573        /* And update TNC with the new host inode position */
1574        ino_key_init(c, &key1, host->i_ino);
1575        err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1576        if (err)
1577                goto out_ro;
1578
1579        finish_reservation(c);
1580        spin_lock(&host_ui->ui_lock);
1581        host_ui->synced_i_size = host_ui->ui_size;
1582        spin_unlock(&host_ui->ui_lock);
1583        mark_inode_clean(c, host_ui);
1584        return 0;
1585
1586out_ro:
1587        ubifs_ro_mode(c, err);
1588        finish_reservation(c);
1589        return err;
1590}
1591
1592/**
1593 * ubifs_jnl_change_xattr - change an extended attribute.
1594 * @c: UBIFS file-system description object
1595 * @inode: extended attribute inode
1596 * @host: host inode
1597 *
1598 * This function writes the updated version of an extended attribute inode and
1599 * the host inode to the journal (to the base head). The host inode is written
1600 * after the extended attribute inode in order to guarantee that the extended
1601 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1602 * consequently, the write-buffer is synchronized. This function returns zero
1603 * in case of success and a negative error code in case of failure.
1604 */
1605int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1606                           const struct inode *host)
1607{
1608        int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1609        struct ubifs_inode *host_ui = ubifs_inode(host);
1610        struct ubifs_ino_node *ino;
1611        union ubifs_key key;
1612        int sync = IS_DIRSYNC(host);
1613
1614        dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1615        ubifs_assert(c, host->i_nlink > 0);
1616        ubifs_assert(c, inode->i_nlink > 0);
1617        ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1618
1619        len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1620        len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1621        aligned_len1 = ALIGN(len1, 8);
1622        aligned_len = aligned_len1 + ALIGN(len2, 8);
1623
1624        ino = kzalloc(aligned_len, GFP_NOFS);
1625        if (!ino)
1626                return -ENOMEM;
1627
1628        /* Make reservation before allocating sequence numbers */
1629        err = make_reservation(c, BASEHD, aligned_len);
1630        if (err)
1631                goto out_free;
1632
1633        pack_inode(c, ino, host, 0);
1634        pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1635
1636        err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1637        if (!sync && !err) {
1638                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1639
1640                ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1641                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1642        }
1643        release_head(c, BASEHD);
1644        if (err)
1645                goto out_ro;
1646
1647        ino_key_init(c, &key, host->i_ino);
1648        err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1649        if (err)
1650                goto out_ro;
1651
1652        ino_key_init(c, &key, inode->i_ino);
1653        err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1654        if (err)
1655                goto out_ro;
1656
1657        finish_reservation(c);
1658        spin_lock(&host_ui->ui_lock);
1659        host_ui->synced_i_size = host_ui->ui_size;
1660        spin_unlock(&host_ui->ui_lock);
1661        mark_inode_clean(c, host_ui);
1662        kfree(ino);
1663        return 0;
1664
1665out_ro:
1666        ubifs_ro_mode(c, err);
1667        finish_reservation(c);
1668out_free:
1669        kfree(ino);
1670        return err;
1671}
1672
1673