linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63#include <linux/rbtree.h>
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
  67
  68#include <linux/atomic.h>
  69#include <linux/refcount.h>
  70#include <net/dst.h>
  71#include <net/checksum.h>
  72#include <net/tcp_states.h>
  73#include <linux/net_tstamp.h>
  74#include <net/smc.h>
  75#include <net/l3mdev.h>
  76
  77/*
  78 * This structure really needs to be cleaned up.
  79 * Most of it is for TCP, and not used by any of
  80 * the other protocols.
  81 */
  82
  83/* Define this to get the SOCK_DBG debugging facility. */
  84#define SOCK_DEBUGGING
  85#ifdef SOCK_DEBUGGING
  86#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  87                                        printk(KERN_DEBUG msg); } while (0)
  88#else
  89/* Validate arguments and do nothing */
  90static inline __printf(2, 3)
  91void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  92{
  93}
  94#endif
  95
  96/* This is the per-socket lock.  The spinlock provides a synchronization
  97 * between user contexts and software interrupt processing, whereas the
  98 * mini-semaphore synchronizes multiple users amongst themselves.
  99 */
 100typedef struct {
 101        spinlock_t              slock;
 102        int                     owned;
 103        wait_queue_head_t       wq;
 104        /*
 105         * We express the mutex-alike socket_lock semantics
 106         * to the lock validator by explicitly managing
 107         * the slock as a lock variant (in addition to
 108         * the slock itself):
 109         */
 110#ifdef CONFIG_DEBUG_LOCK_ALLOC
 111        struct lockdep_map dep_map;
 112#endif
 113} socket_lock_t;
 114
 115struct sock;
 116struct proto;
 117struct net;
 118
 119typedef __u32 __bitwise __portpair;
 120typedef __u64 __bitwise __addrpair;
 121
 122/**
 123 *      struct sock_common - minimal network layer representation of sockets
 124 *      @skc_daddr: Foreign IPv4 addr
 125 *      @skc_rcv_saddr: Bound local IPv4 addr
 126 *      @skc_hash: hash value used with various protocol lookup tables
 127 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 128 *      @skc_dport: placeholder for inet_dport/tw_dport
 129 *      @skc_num: placeholder for inet_num/tw_num
 130 *      @skc_family: network address family
 131 *      @skc_state: Connection state
 132 *      @skc_reuse: %SO_REUSEADDR setting
 133 *      @skc_reuseport: %SO_REUSEPORT setting
 134 *      @skc_bound_dev_if: bound device index if != 0
 135 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 136 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 137 *      @skc_prot: protocol handlers inside a network family
 138 *      @skc_net: reference to the network namespace of this socket
 139 *      @skc_node: main hash linkage for various protocol lookup tables
 140 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 141 *      @skc_tx_queue_mapping: tx queue number for this connection
 142 *      @skc_rx_queue_mapping: rx queue number for this connection
 143 *      @skc_flags: place holder for sk_flags
 144 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 145 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 146 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 147 *      @skc_refcnt: reference count
 148 *
 149 *      This is the minimal network layer representation of sockets, the header
 150 *      for struct sock and struct inet_timewait_sock.
 151 */
 152struct sock_common {
 153        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 154         * address on 64bit arches : cf INET_MATCH()
 155         */
 156        union {
 157                __addrpair      skc_addrpair;
 158                struct {
 159                        __be32  skc_daddr;
 160                        __be32  skc_rcv_saddr;
 161                };
 162        };
 163        union  {
 164                unsigned int    skc_hash;
 165                __u16           skc_u16hashes[2];
 166        };
 167        /* skc_dport && skc_num must be grouped as well */
 168        union {
 169                __portpair      skc_portpair;
 170                struct {
 171                        __be16  skc_dport;
 172                        __u16   skc_num;
 173                };
 174        };
 175
 176        unsigned short          skc_family;
 177        volatile unsigned char  skc_state;
 178        unsigned char           skc_reuse:4;
 179        unsigned char           skc_reuseport:1;
 180        unsigned char           skc_ipv6only:1;
 181        unsigned char           skc_net_refcnt:1;
 182        int                     skc_bound_dev_if;
 183        union {
 184                struct hlist_node       skc_bind_node;
 185                struct hlist_node       skc_portaddr_node;
 186        };
 187        struct proto            *skc_prot;
 188        possible_net_t          skc_net;
 189
 190#if IS_ENABLED(CONFIG_IPV6)
 191        struct in6_addr         skc_v6_daddr;
 192        struct in6_addr         skc_v6_rcv_saddr;
 193#endif
 194
 195        atomic64_t              skc_cookie;
 196
 197        /* following fields are padding to force
 198         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 199         * assuming IPV6 is enabled. We use this padding differently
 200         * for different kind of 'sockets'
 201         */
 202        union {
 203                unsigned long   skc_flags;
 204                struct sock     *skc_listener; /* request_sock */
 205                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 206        };
 207        /*
 208         * fields between dontcopy_begin/dontcopy_end
 209         * are not copied in sock_copy()
 210         */
 211        /* private: */
 212        int                     skc_dontcopy_begin[0];
 213        /* public: */
 214        union {
 215                struct hlist_node       skc_node;
 216                struct hlist_nulls_node skc_nulls_node;
 217        };
 218        unsigned short          skc_tx_queue_mapping;
 219#ifdef CONFIG_XPS
 220        unsigned short          skc_rx_queue_mapping;
 221#endif
 222        union {
 223                int             skc_incoming_cpu;
 224                u32             skc_rcv_wnd;
 225                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 226        };
 227
 228        refcount_t              skc_refcnt;
 229        /* private: */
 230        int                     skc_dontcopy_end[0];
 231        union {
 232                u32             skc_rxhash;
 233                u32             skc_window_clamp;
 234                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 235        };
 236        /* public: */
 237};
 238
 239/**
 240  *     struct sock - network layer representation of sockets
 241  *     @__sk_common: shared layout with inet_timewait_sock
 242  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 243  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 244  *     @sk_lock:       synchronizer
 245  *     @sk_kern_sock: True if sock is using kernel lock classes
 246  *     @sk_rcvbuf: size of receive buffer in bytes
 247  *     @sk_wq: sock wait queue and async head
 248  *     @sk_rx_dst: receive input route used by early demux
 249  *     @sk_dst_cache: destination cache
 250  *     @sk_dst_pending_confirm: need to confirm neighbour
 251  *     @sk_policy: flow policy
 252  *     @sk_receive_queue: incoming packets
 253  *     @sk_wmem_alloc: transmit queue bytes committed
 254  *     @sk_tsq_flags: TCP Small Queues flags
 255  *     @sk_write_queue: Packet sending queue
 256  *     @sk_omem_alloc: "o" is "option" or "other"
 257  *     @sk_wmem_queued: persistent queue size
 258  *     @sk_forward_alloc: space allocated forward
 259  *     @sk_napi_id: id of the last napi context to receive data for sk
 260  *     @sk_ll_usec: usecs to busypoll when there is no data
 261  *     @sk_allocation: allocation mode
 262  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 263  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 264  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 265  *     @sk_sndbuf: size of send buffer in bytes
 266  *     @__sk_flags_offset: empty field used to determine location of bitfield
 267  *     @sk_padding: unused element for alignment
 268  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 269  *     @sk_no_check_rx: allow zero checksum in RX packets
 270  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 271  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 272  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 273  *     @sk_gso_max_size: Maximum GSO segment size to build
 274  *     @sk_gso_max_segs: Maximum number of GSO segments
 275  *     @sk_pacing_shift: scaling factor for TCP Small Queues
 276  *     @sk_lingertime: %SO_LINGER l_linger setting
 277  *     @sk_backlog: always used with the per-socket spinlock held
 278  *     @sk_callback_lock: used with the callbacks in the end of this struct
 279  *     @sk_error_queue: rarely used
 280  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 281  *                       IPV6_ADDRFORM for instance)
 282  *     @sk_err: last error
 283  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 284  *                   persistent failure not just 'timed out'
 285  *     @sk_drops: raw/udp drops counter
 286  *     @sk_ack_backlog: current listen backlog
 287  *     @sk_max_ack_backlog: listen backlog set in listen()
 288  *     @sk_uid: user id of owner
 289  *     @sk_priority: %SO_PRIORITY setting
 290  *     @sk_type: socket type (%SOCK_STREAM, etc)
 291  *     @sk_protocol: which protocol this socket belongs in this network family
 292  *     @sk_peer_pid: &struct pid for this socket's peer
 293  *     @sk_peer_cred: %SO_PEERCRED setting
 294  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 295  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 296  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 297  *     @sk_txhash: computed flow hash for use on transmit
 298  *     @sk_filter: socket filtering instructions
 299  *     @sk_timer: sock cleanup timer
 300  *     @sk_stamp: time stamp of last packet received
 301  *     @sk_tsflags: SO_TIMESTAMPING socket options
 302  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 303  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 304  *     @sk_socket: Identd and reporting IO signals
 305  *     @sk_user_data: RPC layer private data
 306  *     @sk_frag: cached page frag
 307  *     @sk_peek_off: current peek_offset value
 308  *     @sk_send_head: front of stuff to transmit
 309  *     @sk_security: used by security modules
 310  *     @sk_mark: generic packet mark
 311  *     @sk_cgrp_data: cgroup data for this cgroup
 312  *     @sk_memcg: this socket's memory cgroup association
 313  *     @sk_write_pending: a write to stream socket waits to start
 314  *     @sk_state_change: callback to indicate change in the state of the sock
 315  *     @sk_data_ready: callback to indicate there is data to be processed
 316  *     @sk_write_space: callback to indicate there is bf sending space available
 317  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 318  *     @sk_backlog_rcv: callback to process the backlog
 319  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 320  *     @sk_reuseport_cb: reuseport group container
 321  *     @sk_rcu: used during RCU grace period
 322  *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 323  *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 324  *     @sk_txtime_unused: unused txtime flags
 325  */
 326struct sock {
 327        /*
 328         * Now struct inet_timewait_sock also uses sock_common, so please just
 329         * don't add nothing before this first member (__sk_common) --acme
 330         */
 331        struct sock_common      __sk_common;
 332#define sk_node                 __sk_common.skc_node
 333#define sk_nulls_node           __sk_common.skc_nulls_node
 334#define sk_refcnt               __sk_common.skc_refcnt
 335#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 336#ifdef CONFIG_XPS
 337#define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
 338#endif
 339
 340#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 341#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 342#define sk_hash                 __sk_common.skc_hash
 343#define sk_portpair             __sk_common.skc_portpair
 344#define sk_num                  __sk_common.skc_num
 345#define sk_dport                __sk_common.skc_dport
 346#define sk_addrpair             __sk_common.skc_addrpair
 347#define sk_daddr                __sk_common.skc_daddr
 348#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 349#define sk_family               __sk_common.skc_family
 350#define sk_state                __sk_common.skc_state
 351#define sk_reuse                __sk_common.skc_reuse
 352#define sk_reuseport            __sk_common.skc_reuseport
 353#define sk_ipv6only             __sk_common.skc_ipv6only
 354#define sk_net_refcnt           __sk_common.skc_net_refcnt
 355#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 356#define sk_bind_node            __sk_common.skc_bind_node
 357#define sk_prot                 __sk_common.skc_prot
 358#define sk_net                  __sk_common.skc_net
 359#define sk_v6_daddr             __sk_common.skc_v6_daddr
 360#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 361#define sk_cookie               __sk_common.skc_cookie
 362#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 363#define sk_flags                __sk_common.skc_flags
 364#define sk_rxhash               __sk_common.skc_rxhash
 365
 366        socket_lock_t           sk_lock;
 367        atomic_t                sk_drops;
 368        int                     sk_rcvlowat;
 369        struct sk_buff_head     sk_error_queue;
 370        struct sk_buff_head     sk_receive_queue;
 371        /*
 372         * The backlog queue is special, it is always used with
 373         * the per-socket spinlock held and requires low latency
 374         * access. Therefore we special case it's implementation.
 375         * Note : rmem_alloc is in this structure to fill a hole
 376         * on 64bit arches, not because its logically part of
 377         * backlog.
 378         */
 379        struct {
 380                atomic_t        rmem_alloc;
 381                int             len;
 382                struct sk_buff  *head;
 383                struct sk_buff  *tail;
 384        } sk_backlog;
 385#define sk_rmem_alloc sk_backlog.rmem_alloc
 386
 387        int                     sk_forward_alloc;
 388#ifdef CONFIG_NET_RX_BUSY_POLL
 389        unsigned int            sk_ll_usec;
 390        /* ===== mostly read cache line ===== */
 391        unsigned int            sk_napi_id;
 392#endif
 393        int                     sk_rcvbuf;
 394
 395        struct sk_filter __rcu  *sk_filter;
 396        union {
 397                struct socket_wq __rcu  *sk_wq;
 398                struct socket_wq        *sk_wq_raw;
 399        };
 400#ifdef CONFIG_XFRM
 401        struct xfrm_policy __rcu *sk_policy[2];
 402#endif
 403        struct dst_entry        *sk_rx_dst;
 404        struct dst_entry __rcu  *sk_dst_cache;
 405        atomic_t                sk_omem_alloc;
 406        int                     sk_sndbuf;
 407
 408        /* ===== cache line for TX ===== */
 409        int                     sk_wmem_queued;
 410        refcount_t              sk_wmem_alloc;
 411        unsigned long           sk_tsq_flags;
 412        union {
 413                struct sk_buff  *sk_send_head;
 414                struct rb_root  tcp_rtx_queue;
 415        };
 416        struct sk_buff_head     sk_write_queue;
 417        __s32                   sk_peek_off;
 418        int                     sk_write_pending;
 419        __u32                   sk_dst_pending_confirm;
 420        u32                     sk_pacing_status; /* see enum sk_pacing */
 421        long                    sk_sndtimeo;
 422        struct timer_list       sk_timer;
 423        __u32                   sk_priority;
 424        __u32                   sk_mark;
 425        u32                     sk_pacing_rate; /* bytes per second */
 426        u32                     sk_max_pacing_rate;
 427        struct page_frag        sk_frag;
 428        netdev_features_t       sk_route_caps;
 429        netdev_features_t       sk_route_nocaps;
 430        netdev_features_t       sk_route_forced_caps;
 431        int                     sk_gso_type;
 432        unsigned int            sk_gso_max_size;
 433        gfp_t                   sk_allocation;
 434        __u32                   sk_txhash;
 435
 436        /*
 437         * Because of non atomicity rules, all
 438         * changes are protected by socket lock.
 439         */
 440        unsigned int            __sk_flags_offset[0];
 441#ifdef __BIG_ENDIAN_BITFIELD
 442#define SK_FL_PROTO_SHIFT  16
 443#define SK_FL_PROTO_MASK   0x00ff0000
 444
 445#define SK_FL_TYPE_SHIFT   0
 446#define SK_FL_TYPE_MASK    0x0000ffff
 447#else
 448#define SK_FL_PROTO_SHIFT  8
 449#define SK_FL_PROTO_MASK   0x0000ff00
 450
 451#define SK_FL_TYPE_SHIFT   16
 452#define SK_FL_TYPE_MASK    0xffff0000
 453#endif
 454
 455        unsigned int            sk_padding : 1,
 456                                sk_kern_sock : 1,
 457                                sk_no_check_tx : 1,
 458                                sk_no_check_rx : 1,
 459                                sk_userlocks : 4,
 460                                sk_protocol  : 8,
 461                                sk_type      : 16;
 462#define SK_PROTOCOL_MAX U8_MAX
 463        u16                     sk_gso_max_segs;
 464        u8                      sk_pacing_shift;
 465        unsigned long           sk_lingertime;
 466        struct proto            *sk_prot_creator;
 467        rwlock_t                sk_callback_lock;
 468        int                     sk_err,
 469                                sk_err_soft;
 470        u32                     sk_ack_backlog;
 471        u32                     sk_max_ack_backlog;
 472        kuid_t                  sk_uid;
 473        struct pid              *sk_peer_pid;
 474        const struct cred       *sk_peer_cred;
 475        long                    sk_rcvtimeo;
 476        ktime_t                 sk_stamp;
 477        u16                     sk_tsflags;
 478        u8                      sk_shutdown;
 479        u32                     sk_tskey;
 480        atomic_t                sk_zckey;
 481
 482        u8                      sk_clockid;
 483        u8                      sk_txtime_deadline_mode : 1,
 484                                sk_txtime_report_errors : 1,
 485                                sk_txtime_unused : 6;
 486
 487        struct socket           *sk_socket;
 488        void                    *sk_user_data;
 489#ifdef CONFIG_SECURITY
 490        void                    *sk_security;
 491#endif
 492        struct sock_cgroup_data sk_cgrp_data;
 493        struct mem_cgroup       *sk_memcg;
 494        void                    (*sk_state_change)(struct sock *sk);
 495        void                    (*sk_data_ready)(struct sock *sk);
 496        void                    (*sk_write_space)(struct sock *sk);
 497        void                    (*sk_error_report)(struct sock *sk);
 498        int                     (*sk_backlog_rcv)(struct sock *sk,
 499                                                  struct sk_buff *skb);
 500#ifdef CONFIG_SOCK_VALIDATE_XMIT
 501        struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
 502                                                        struct net_device *dev,
 503                                                        struct sk_buff *skb);
 504#endif
 505        void                    (*sk_destruct)(struct sock *sk);
 506        struct sock_reuseport __rcu     *sk_reuseport_cb;
 507        struct rcu_head         sk_rcu;
 508};
 509
 510enum sk_pacing {
 511        SK_PACING_NONE          = 0,
 512        SK_PACING_NEEDED        = 1,
 513        SK_PACING_FQ            = 2,
 514};
 515
 516#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 517
 518#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 519#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 520
 521/*
 522 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 523 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 524 * on a socket means that the socket will reuse everybody else's port
 525 * without looking at the other's sk_reuse value.
 526 */
 527
 528#define SK_NO_REUSE     0
 529#define SK_CAN_REUSE    1
 530#define SK_FORCE_REUSE  2
 531
 532int sk_set_peek_off(struct sock *sk, int val);
 533
 534static inline int sk_peek_offset(struct sock *sk, int flags)
 535{
 536        if (unlikely(flags & MSG_PEEK)) {
 537                return READ_ONCE(sk->sk_peek_off);
 538        }
 539
 540        return 0;
 541}
 542
 543static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 544{
 545        s32 off = READ_ONCE(sk->sk_peek_off);
 546
 547        if (unlikely(off >= 0)) {
 548                off = max_t(s32, off - val, 0);
 549                WRITE_ONCE(sk->sk_peek_off, off);
 550        }
 551}
 552
 553static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 554{
 555        sk_peek_offset_bwd(sk, -val);
 556}
 557
 558/*
 559 * Hashed lists helper routines
 560 */
 561static inline struct sock *sk_entry(const struct hlist_node *node)
 562{
 563        return hlist_entry(node, struct sock, sk_node);
 564}
 565
 566static inline struct sock *__sk_head(const struct hlist_head *head)
 567{
 568        return hlist_entry(head->first, struct sock, sk_node);
 569}
 570
 571static inline struct sock *sk_head(const struct hlist_head *head)
 572{
 573        return hlist_empty(head) ? NULL : __sk_head(head);
 574}
 575
 576static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 577{
 578        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 579}
 580
 581static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 582{
 583        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 584}
 585
 586static inline struct sock *sk_next(const struct sock *sk)
 587{
 588        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 589}
 590
 591static inline struct sock *sk_nulls_next(const struct sock *sk)
 592{
 593        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 594                hlist_nulls_entry(sk->sk_nulls_node.next,
 595                                  struct sock, sk_nulls_node) :
 596                NULL;
 597}
 598
 599static inline bool sk_unhashed(const struct sock *sk)
 600{
 601        return hlist_unhashed(&sk->sk_node);
 602}
 603
 604static inline bool sk_hashed(const struct sock *sk)
 605{
 606        return !sk_unhashed(sk);
 607}
 608
 609static inline void sk_node_init(struct hlist_node *node)
 610{
 611        node->pprev = NULL;
 612}
 613
 614static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 615{
 616        node->pprev = NULL;
 617}
 618
 619static inline void __sk_del_node(struct sock *sk)
 620{
 621        __hlist_del(&sk->sk_node);
 622}
 623
 624/* NB: equivalent to hlist_del_init_rcu */
 625static inline bool __sk_del_node_init(struct sock *sk)
 626{
 627        if (sk_hashed(sk)) {
 628                __sk_del_node(sk);
 629                sk_node_init(&sk->sk_node);
 630                return true;
 631        }
 632        return false;
 633}
 634
 635/* Grab socket reference count. This operation is valid only
 636   when sk is ALREADY grabbed f.e. it is found in hash table
 637   or a list and the lookup is made under lock preventing hash table
 638   modifications.
 639 */
 640
 641static __always_inline void sock_hold(struct sock *sk)
 642{
 643        refcount_inc(&sk->sk_refcnt);
 644}
 645
 646/* Ungrab socket in the context, which assumes that socket refcnt
 647   cannot hit zero, f.e. it is true in context of any socketcall.
 648 */
 649static __always_inline void __sock_put(struct sock *sk)
 650{
 651        refcount_dec(&sk->sk_refcnt);
 652}
 653
 654static inline bool sk_del_node_init(struct sock *sk)
 655{
 656        bool rc = __sk_del_node_init(sk);
 657
 658        if (rc) {
 659                /* paranoid for a while -acme */
 660                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 661                __sock_put(sk);
 662        }
 663        return rc;
 664}
 665#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 666
 667static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 668{
 669        if (sk_hashed(sk)) {
 670                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 671                return true;
 672        }
 673        return false;
 674}
 675
 676static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 677{
 678        bool rc = __sk_nulls_del_node_init_rcu(sk);
 679
 680        if (rc) {
 681                /* paranoid for a while -acme */
 682                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 683                __sock_put(sk);
 684        }
 685        return rc;
 686}
 687
 688static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 689{
 690        hlist_add_head(&sk->sk_node, list);
 691}
 692
 693static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 694{
 695        sock_hold(sk);
 696        __sk_add_node(sk, list);
 697}
 698
 699static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 700{
 701        sock_hold(sk);
 702        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 703            sk->sk_family == AF_INET6)
 704                hlist_add_tail_rcu(&sk->sk_node, list);
 705        else
 706                hlist_add_head_rcu(&sk->sk_node, list);
 707}
 708
 709static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 710{
 711        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 712}
 713
 714static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 715{
 716        sock_hold(sk);
 717        __sk_nulls_add_node_rcu(sk, list);
 718}
 719
 720static inline void __sk_del_bind_node(struct sock *sk)
 721{
 722        __hlist_del(&sk->sk_bind_node);
 723}
 724
 725static inline void sk_add_bind_node(struct sock *sk,
 726                                        struct hlist_head *list)
 727{
 728        hlist_add_head(&sk->sk_bind_node, list);
 729}
 730
 731#define sk_for_each(__sk, list) \
 732        hlist_for_each_entry(__sk, list, sk_node)
 733#define sk_for_each_rcu(__sk, list) \
 734        hlist_for_each_entry_rcu(__sk, list, sk_node)
 735#define sk_nulls_for_each(__sk, node, list) \
 736        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 737#define sk_nulls_for_each_rcu(__sk, node, list) \
 738        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 739#define sk_for_each_from(__sk) \
 740        hlist_for_each_entry_from(__sk, sk_node)
 741#define sk_nulls_for_each_from(__sk, node) \
 742        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 743                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 744#define sk_for_each_safe(__sk, tmp, list) \
 745        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 746#define sk_for_each_bound(__sk, list) \
 747        hlist_for_each_entry(__sk, list, sk_bind_node)
 748
 749/**
 750 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 751 * @tpos:       the type * to use as a loop cursor.
 752 * @pos:        the &struct hlist_node to use as a loop cursor.
 753 * @head:       the head for your list.
 754 * @offset:     offset of hlist_node within the struct.
 755 *
 756 */
 757#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 758        for (pos = rcu_dereference(hlist_first_rcu(head));                     \
 759             pos != NULL &&                                                    \
 760                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 761             pos = rcu_dereference(hlist_next_rcu(pos)))
 762
 763static inline struct user_namespace *sk_user_ns(struct sock *sk)
 764{
 765        /* Careful only use this in a context where these parameters
 766         * can not change and must all be valid, such as recvmsg from
 767         * userspace.
 768         */
 769        return sk->sk_socket->file->f_cred->user_ns;
 770}
 771
 772/* Sock flags */
 773enum sock_flags {
 774        SOCK_DEAD,
 775        SOCK_DONE,
 776        SOCK_URGINLINE,
 777        SOCK_KEEPOPEN,
 778        SOCK_LINGER,
 779        SOCK_DESTROY,
 780        SOCK_BROADCAST,
 781        SOCK_TIMESTAMP,
 782        SOCK_ZAPPED,
 783        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 784        SOCK_DBG, /* %SO_DEBUG setting */
 785        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 786        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 787        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 788        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 789        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 790        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 791        SOCK_FASYNC, /* fasync() active */
 792        SOCK_RXQ_OVFL,
 793        SOCK_ZEROCOPY, /* buffers from userspace */
 794        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 795        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 796                     * Will use last 4 bytes of packet sent from
 797                     * user-space instead.
 798                     */
 799        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 800        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 801        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 802        SOCK_TXTIME,
 803};
 804
 805#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 806
 807static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 808{
 809        nsk->sk_flags = osk->sk_flags;
 810}
 811
 812static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 813{
 814        __set_bit(flag, &sk->sk_flags);
 815}
 816
 817static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 818{
 819        __clear_bit(flag, &sk->sk_flags);
 820}
 821
 822static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 823{
 824        return test_bit(flag, &sk->sk_flags);
 825}
 826
 827#ifdef CONFIG_NET
 828DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 829static inline int sk_memalloc_socks(void)
 830{
 831        return static_branch_unlikely(&memalloc_socks_key);
 832}
 833#else
 834
 835static inline int sk_memalloc_socks(void)
 836{
 837        return 0;
 838}
 839
 840#endif
 841
 842static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 843{
 844        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 845}
 846
 847static inline void sk_acceptq_removed(struct sock *sk)
 848{
 849        sk->sk_ack_backlog--;
 850}
 851
 852static inline void sk_acceptq_added(struct sock *sk)
 853{
 854        sk->sk_ack_backlog++;
 855}
 856
 857static inline bool sk_acceptq_is_full(const struct sock *sk)
 858{
 859        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 860}
 861
 862/*
 863 * Compute minimal free write space needed to queue new packets.
 864 */
 865static inline int sk_stream_min_wspace(const struct sock *sk)
 866{
 867        return sk->sk_wmem_queued >> 1;
 868}
 869
 870static inline int sk_stream_wspace(const struct sock *sk)
 871{
 872        return sk->sk_sndbuf - sk->sk_wmem_queued;
 873}
 874
 875void sk_stream_write_space(struct sock *sk);
 876
 877/* OOB backlog add */
 878static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 879{
 880        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 881        skb_dst_force(skb);
 882
 883        if (!sk->sk_backlog.tail)
 884                sk->sk_backlog.head = skb;
 885        else
 886                sk->sk_backlog.tail->next = skb;
 887
 888        sk->sk_backlog.tail = skb;
 889        skb->next = NULL;
 890}
 891
 892/*
 893 * Take into account size of receive queue and backlog queue
 894 * Do not take into account this skb truesize,
 895 * to allow even a single big packet to come.
 896 */
 897static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 898{
 899        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 900
 901        return qsize > limit;
 902}
 903
 904/* The per-socket spinlock must be held here. */
 905static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 906                                              unsigned int limit)
 907{
 908        if (sk_rcvqueues_full(sk, limit))
 909                return -ENOBUFS;
 910
 911        /*
 912         * If the skb was allocated from pfmemalloc reserves, only
 913         * allow SOCK_MEMALLOC sockets to use it as this socket is
 914         * helping free memory
 915         */
 916        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 917                return -ENOMEM;
 918
 919        __sk_add_backlog(sk, skb);
 920        sk->sk_backlog.len += skb->truesize;
 921        return 0;
 922}
 923
 924int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 925
 926static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 927{
 928        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 929                return __sk_backlog_rcv(sk, skb);
 930
 931        return sk->sk_backlog_rcv(sk, skb);
 932}
 933
 934static inline void sk_incoming_cpu_update(struct sock *sk)
 935{
 936        int cpu = raw_smp_processor_id();
 937
 938        if (unlikely(sk->sk_incoming_cpu != cpu))
 939                sk->sk_incoming_cpu = cpu;
 940}
 941
 942static inline void sock_rps_record_flow_hash(__u32 hash)
 943{
 944#ifdef CONFIG_RPS
 945        struct rps_sock_flow_table *sock_flow_table;
 946
 947        rcu_read_lock();
 948        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 949        rps_record_sock_flow(sock_flow_table, hash);
 950        rcu_read_unlock();
 951#endif
 952}
 953
 954static inline void sock_rps_record_flow(const struct sock *sk)
 955{
 956#ifdef CONFIG_RPS
 957        if (static_key_false(&rfs_needed)) {
 958                /* Reading sk->sk_rxhash might incur an expensive cache line
 959                 * miss.
 960                 *
 961                 * TCP_ESTABLISHED does cover almost all states where RFS
 962                 * might be useful, and is cheaper [1] than testing :
 963                 *      IPv4: inet_sk(sk)->inet_daddr
 964                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 965                 * OR   an additional socket flag
 966                 * [1] : sk_state and sk_prot are in the same cache line.
 967                 */
 968                if (sk->sk_state == TCP_ESTABLISHED)
 969                        sock_rps_record_flow_hash(sk->sk_rxhash);
 970        }
 971#endif
 972}
 973
 974static inline void sock_rps_save_rxhash(struct sock *sk,
 975                                        const struct sk_buff *skb)
 976{
 977#ifdef CONFIG_RPS
 978        if (unlikely(sk->sk_rxhash != skb->hash))
 979                sk->sk_rxhash = skb->hash;
 980#endif
 981}
 982
 983static inline void sock_rps_reset_rxhash(struct sock *sk)
 984{
 985#ifdef CONFIG_RPS
 986        sk->sk_rxhash = 0;
 987#endif
 988}
 989
 990#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
 991        ({      int __rc;                                               \
 992                release_sock(__sk);                                     \
 993                __rc = __condition;                                     \
 994                if (!__rc) {                                            \
 995                        *(__timeo) = wait_woken(__wait,                 \
 996                                                TASK_INTERRUPTIBLE,     \
 997                                                *(__timeo));            \
 998                }                                                       \
 999                sched_annotate_sleep();                                 \
1000                lock_sock(__sk);                                        \
1001                __rc = __condition;                                     \
1002                __rc;                                                   \
1003        })
1004
1005int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1006int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1007void sk_stream_wait_close(struct sock *sk, long timeo_p);
1008int sk_stream_error(struct sock *sk, int flags, int err);
1009void sk_stream_kill_queues(struct sock *sk);
1010void sk_set_memalloc(struct sock *sk);
1011void sk_clear_memalloc(struct sock *sk);
1012
1013void __sk_flush_backlog(struct sock *sk);
1014
1015static inline bool sk_flush_backlog(struct sock *sk)
1016{
1017        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1018                __sk_flush_backlog(sk);
1019                return true;
1020        }
1021        return false;
1022}
1023
1024int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1025
1026struct request_sock_ops;
1027struct timewait_sock_ops;
1028struct inet_hashinfo;
1029struct raw_hashinfo;
1030struct smc_hashinfo;
1031struct module;
1032
1033/*
1034 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1035 * un-modified. Special care is taken when initializing object to zero.
1036 */
1037static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1038{
1039        if (offsetof(struct sock, sk_node.next) != 0)
1040                memset(sk, 0, offsetof(struct sock, sk_node.next));
1041        memset(&sk->sk_node.pprev, 0,
1042               size - offsetof(struct sock, sk_node.pprev));
1043}
1044
1045/* Networking protocol blocks we attach to sockets.
1046 * socket layer -> transport layer interface
1047 */
1048struct proto {
1049        void                    (*close)(struct sock *sk,
1050                                        long timeout);
1051        int                     (*pre_connect)(struct sock *sk,
1052                                        struct sockaddr *uaddr,
1053                                        int addr_len);
1054        int                     (*connect)(struct sock *sk,
1055                                        struct sockaddr *uaddr,
1056                                        int addr_len);
1057        int                     (*disconnect)(struct sock *sk, int flags);
1058
1059        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1060                                          bool kern);
1061
1062        int                     (*ioctl)(struct sock *sk, int cmd,
1063                                         unsigned long arg);
1064        int                     (*init)(struct sock *sk);
1065        void                    (*destroy)(struct sock *sk);
1066        void                    (*shutdown)(struct sock *sk, int how);
1067        int                     (*setsockopt)(struct sock *sk, int level,
1068                                        int optname, char __user *optval,
1069                                        unsigned int optlen);
1070        int                     (*getsockopt)(struct sock *sk, int level,
1071                                        int optname, char __user *optval,
1072                                        int __user *option);
1073        void                    (*keepalive)(struct sock *sk, int valbool);
1074#ifdef CONFIG_COMPAT
1075        int                     (*compat_setsockopt)(struct sock *sk,
1076                                        int level,
1077                                        int optname, char __user *optval,
1078                                        unsigned int optlen);
1079        int                     (*compat_getsockopt)(struct sock *sk,
1080                                        int level,
1081                                        int optname, char __user *optval,
1082                                        int __user *option);
1083        int                     (*compat_ioctl)(struct sock *sk,
1084                                        unsigned int cmd, unsigned long arg);
1085#endif
1086        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1087                                           size_t len);
1088        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1089                                           size_t len, int noblock, int flags,
1090                                           int *addr_len);
1091        int                     (*sendpage)(struct sock *sk, struct page *page,
1092                                        int offset, size_t size, int flags);
1093        int                     (*bind)(struct sock *sk,
1094                                        struct sockaddr *uaddr, int addr_len);
1095
1096        int                     (*backlog_rcv) (struct sock *sk,
1097                                                struct sk_buff *skb);
1098
1099        void            (*release_cb)(struct sock *sk);
1100
1101        /* Keeping track of sk's, looking them up, and port selection methods. */
1102        int                     (*hash)(struct sock *sk);
1103        void                    (*unhash)(struct sock *sk);
1104        void                    (*rehash)(struct sock *sk);
1105        int                     (*get_port)(struct sock *sk, unsigned short snum);
1106
1107        /* Keeping track of sockets in use */
1108#ifdef CONFIG_PROC_FS
1109        unsigned int            inuse_idx;
1110#endif
1111
1112        bool                    (*stream_memory_free)(const struct sock *sk);
1113        bool                    (*stream_memory_read)(const struct sock *sk);
1114        /* Memory pressure */
1115        void                    (*enter_memory_pressure)(struct sock *sk);
1116        void                    (*leave_memory_pressure)(struct sock *sk);
1117        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1118        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1119        /*
1120         * Pressure flag: try to collapse.
1121         * Technical note: it is used by multiple contexts non atomically.
1122         * All the __sk_mem_schedule() is of this nature: accounting
1123         * is strict, actions are advisory and have some latency.
1124         */
1125        unsigned long           *memory_pressure;
1126        long                    *sysctl_mem;
1127
1128        int                     *sysctl_wmem;
1129        int                     *sysctl_rmem;
1130        u32                     sysctl_wmem_offset;
1131        u32                     sysctl_rmem_offset;
1132
1133        int                     max_header;
1134        bool                    no_autobind;
1135
1136        struct kmem_cache       *slab;
1137        unsigned int            obj_size;
1138        slab_flags_t            slab_flags;
1139        unsigned int            useroffset;     /* Usercopy region offset */
1140        unsigned int            usersize;       /* Usercopy region size */
1141
1142        struct percpu_counter   *orphan_count;
1143
1144        struct request_sock_ops *rsk_prot;
1145        struct timewait_sock_ops *twsk_prot;
1146
1147        union {
1148                struct inet_hashinfo    *hashinfo;
1149                struct udp_table        *udp_table;
1150                struct raw_hashinfo     *raw_hash;
1151                struct smc_hashinfo     *smc_hash;
1152        } h;
1153
1154        struct module           *owner;
1155
1156        char                    name[32];
1157
1158        struct list_head        node;
1159#ifdef SOCK_REFCNT_DEBUG
1160        atomic_t                socks;
1161#endif
1162        int                     (*diag_destroy)(struct sock *sk, int err);
1163} __randomize_layout;
1164
1165int proto_register(struct proto *prot, int alloc_slab);
1166void proto_unregister(struct proto *prot);
1167int sock_load_diag_module(int family, int protocol);
1168
1169#ifdef SOCK_REFCNT_DEBUG
1170static inline void sk_refcnt_debug_inc(struct sock *sk)
1171{
1172        atomic_inc(&sk->sk_prot->socks);
1173}
1174
1175static inline void sk_refcnt_debug_dec(struct sock *sk)
1176{
1177        atomic_dec(&sk->sk_prot->socks);
1178        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1179               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1180}
1181
1182static inline void sk_refcnt_debug_release(const struct sock *sk)
1183{
1184        if (refcount_read(&sk->sk_refcnt) != 1)
1185                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1186                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1187}
1188#else /* SOCK_REFCNT_DEBUG */
1189#define sk_refcnt_debug_inc(sk) do { } while (0)
1190#define sk_refcnt_debug_dec(sk) do { } while (0)
1191#define sk_refcnt_debug_release(sk) do { } while (0)
1192#endif /* SOCK_REFCNT_DEBUG */
1193
1194static inline bool sk_stream_memory_free(const struct sock *sk)
1195{
1196        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1197                return false;
1198
1199        return sk->sk_prot->stream_memory_free ?
1200                sk->sk_prot->stream_memory_free(sk) : true;
1201}
1202
1203static inline bool sk_stream_is_writeable(const struct sock *sk)
1204{
1205        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1206               sk_stream_memory_free(sk);
1207}
1208
1209static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1210                                            struct cgroup *ancestor)
1211{
1212#ifdef CONFIG_SOCK_CGROUP_DATA
1213        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1214                                    ancestor);
1215#else
1216        return -ENOTSUPP;
1217#endif
1218}
1219
1220static inline bool sk_has_memory_pressure(const struct sock *sk)
1221{
1222        return sk->sk_prot->memory_pressure != NULL;
1223}
1224
1225static inline bool sk_under_memory_pressure(const struct sock *sk)
1226{
1227        if (!sk->sk_prot->memory_pressure)
1228                return false;
1229
1230        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1231            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1232                return true;
1233
1234        return !!*sk->sk_prot->memory_pressure;
1235}
1236
1237static inline long
1238sk_memory_allocated(const struct sock *sk)
1239{
1240        return atomic_long_read(sk->sk_prot->memory_allocated);
1241}
1242
1243static inline long
1244sk_memory_allocated_add(struct sock *sk, int amt)
1245{
1246        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1247}
1248
1249static inline void
1250sk_memory_allocated_sub(struct sock *sk, int amt)
1251{
1252        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1253}
1254
1255static inline void sk_sockets_allocated_dec(struct sock *sk)
1256{
1257        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1258}
1259
1260static inline void sk_sockets_allocated_inc(struct sock *sk)
1261{
1262        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1263}
1264
1265static inline int
1266sk_sockets_allocated_read_positive(struct sock *sk)
1267{
1268        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1269}
1270
1271static inline int
1272proto_sockets_allocated_sum_positive(struct proto *prot)
1273{
1274        return percpu_counter_sum_positive(prot->sockets_allocated);
1275}
1276
1277static inline long
1278proto_memory_allocated(struct proto *prot)
1279{
1280        return atomic_long_read(prot->memory_allocated);
1281}
1282
1283static inline bool
1284proto_memory_pressure(struct proto *prot)
1285{
1286        if (!prot->memory_pressure)
1287                return false;
1288        return !!*prot->memory_pressure;
1289}
1290
1291
1292#ifdef CONFIG_PROC_FS
1293/* Called with local bh disabled */
1294void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1295int sock_prot_inuse_get(struct net *net, struct proto *proto);
1296int sock_inuse_get(struct net *net);
1297#else
1298static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1299                int inc)
1300{
1301}
1302#endif
1303
1304
1305/* With per-bucket locks this operation is not-atomic, so that
1306 * this version is not worse.
1307 */
1308static inline int __sk_prot_rehash(struct sock *sk)
1309{
1310        sk->sk_prot->unhash(sk);
1311        return sk->sk_prot->hash(sk);
1312}
1313
1314/* About 10 seconds */
1315#define SOCK_DESTROY_TIME (10*HZ)
1316
1317/* Sockets 0-1023 can't be bound to unless you are superuser */
1318#define PROT_SOCK       1024
1319
1320#define SHUTDOWN_MASK   3
1321#define RCV_SHUTDOWN    1
1322#define SEND_SHUTDOWN   2
1323
1324#define SOCK_SNDBUF_LOCK        1
1325#define SOCK_RCVBUF_LOCK        2
1326#define SOCK_BINDADDR_LOCK      4
1327#define SOCK_BINDPORT_LOCK      8
1328
1329struct socket_alloc {
1330        struct socket socket;
1331        struct inode vfs_inode;
1332};
1333
1334static inline struct socket *SOCKET_I(struct inode *inode)
1335{
1336        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1337}
1338
1339static inline struct inode *SOCK_INODE(struct socket *socket)
1340{
1341        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1342}
1343
1344/*
1345 * Functions for memory accounting
1346 */
1347int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1348int __sk_mem_schedule(struct sock *sk, int size, int kind);
1349void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1350void __sk_mem_reclaim(struct sock *sk, int amount);
1351
1352/* We used to have PAGE_SIZE here, but systems with 64KB pages
1353 * do not necessarily have 16x time more memory than 4KB ones.
1354 */
1355#define SK_MEM_QUANTUM 4096
1356#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1357#define SK_MEM_SEND     0
1358#define SK_MEM_RECV     1
1359
1360/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1361static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1362{
1363        long val = sk->sk_prot->sysctl_mem[index];
1364
1365#if PAGE_SIZE > SK_MEM_QUANTUM
1366        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1367#elif PAGE_SIZE < SK_MEM_QUANTUM
1368        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1369#endif
1370        return val;
1371}
1372
1373static inline int sk_mem_pages(int amt)
1374{
1375        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1376}
1377
1378static inline bool sk_has_account(struct sock *sk)
1379{
1380        /* return true if protocol supports memory accounting */
1381        return !!sk->sk_prot->memory_allocated;
1382}
1383
1384static inline bool sk_wmem_schedule(struct sock *sk, int size)
1385{
1386        if (!sk_has_account(sk))
1387                return true;
1388        return size <= sk->sk_forward_alloc ||
1389                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1390}
1391
1392static inline bool
1393sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1394{
1395        if (!sk_has_account(sk))
1396                return true;
1397        return size<= sk->sk_forward_alloc ||
1398                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1399                skb_pfmemalloc(skb);
1400}
1401
1402static inline void sk_mem_reclaim(struct sock *sk)
1403{
1404        if (!sk_has_account(sk))
1405                return;
1406        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1407                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1408}
1409
1410static inline void sk_mem_reclaim_partial(struct sock *sk)
1411{
1412        if (!sk_has_account(sk))
1413                return;
1414        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1415                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1416}
1417
1418static inline void sk_mem_charge(struct sock *sk, int size)
1419{
1420        if (!sk_has_account(sk))
1421                return;
1422        sk->sk_forward_alloc -= size;
1423}
1424
1425static inline void sk_mem_uncharge(struct sock *sk, int size)
1426{
1427        if (!sk_has_account(sk))
1428                return;
1429        sk->sk_forward_alloc += size;
1430
1431        /* Avoid a possible overflow.
1432         * TCP send queues can make this happen, if sk_mem_reclaim()
1433         * is not called and more than 2 GBytes are released at once.
1434         *
1435         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1436         * no need to hold that much forward allocation anyway.
1437         */
1438        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1439                __sk_mem_reclaim(sk, 1 << 20);
1440}
1441
1442static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1443{
1444        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1445        sk->sk_wmem_queued -= skb->truesize;
1446        sk_mem_uncharge(sk, skb->truesize);
1447        __kfree_skb(skb);
1448}
1449
1450static inline void sock_release_ownership(struct sock *sk)
1451{
1452        if (sk->sk_lock.owned) {
1453                sk->sk_lock.owned = 0;
1454
1455                /* The sk_lock has mutex_unlock() semantics: */
1456                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1457        }
1458}
1459
1460/*
1461 * Macro so as to not evaluate some arguments when
1462 * lockdep is not enabled.
1463 *
1464 * Mark both the sk_lock and the sk_lock.slock as a
1465 * per-address-family lock class.
1466 */
1467#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1468do {                                                                    \
1469        sk->sk_lock.owned = 0;                                          \
1470        init_waitqueue_head(&sk->sk_lock.wq);                           \
1471        spin_lock_init(&(sk)->sk_lock.slock);                           \
1472        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1473                        sizeof((sk)->sk_lock));                         \
1474        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1475                                (skey), (sname));                               \
1476        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1477} while (0)
1478
1479#ifdef CONFIG_LOCKDEP
1480static inline bool lockdep_sock_is_held(const struct sock *sk)
1481{
1482        return lockdep_is_held(&sk->sk_lock) ||
1483               lockdep_is_held(&sk->sk_lock.slock);
1484}
1485#endif
1486
1487void lock_sock_nested(struct sock *sk, int subclass);
1488
1489static inline void lock_sock(struct sock *sk)
1490{
1491        lock_sock_nested(sk, 0);
1492}
1493
1494void release_sock(struct sock *sk);
1495
1496/* BH context may only use the following locking interface. */
1497#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1498#define bh_lock_sock_nested(__sk) \
1499                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1500                                SINGLE_DEPTH_NESTING)
1501#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1502
1503bool lock_sock_fast(struct sock *sk);
1504/**
1505 * unlock_sock_fast - complement of lock_sock_fast
1506 * @sk: socket
1507 * @slow: slow mode
1508 *
1509 * fast unlock socket for user context.
1510 * If slow mode is on, we call regular release_sock()
1511 */
1512static inline void unlock_sock_fast(struct sock *sk, bool slow)
1513{
1514        if (slow)
1515                release_sock(sk);
1516        else
1517                spin_unlock_bh(&sk->sk_lock.slock);
1518}
1519
1520/* Used by processes to "lock" a socket state, so that
1521 * interrupts and bottom half handlers won't change it
1522 * from under us. It essentially blocks any incoming
1523 * packets, so that we won't get any new data or any
1524 * packets that change the state of the socket.
1525 *
1526 * While locked, BH processing will add new packets to
1527 * the backlog queue.  This queue is processed by the
1528 * owner of the socket lock right before it is released.
1529 *
1530 * Since ~2.3.5 it is also exclusive sleep lock serializing
1531 * accesses from user process context.
1532 */
1533
1534static inline void sock_owned_by_me(const struct sock *sk)
1535{
1536#ifdef CONFIG_LOCKDEP
1537        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1538#endif
1539}
1540
1541static inline bool sock_owned_by_user(const struct sock *sk)
1542{
1543        sock_owned_by_me(sk);
1544        return sk->sk_lock.owned;
1545}
1546
1547static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1548{
1549        return sk->sk_lock.owned;
1550}
1551
1552/* no reclassification while locks are held */
1553static inline bool sock_allow_reclassification(const struct sock *csk)
1554{
1555        struct sock *sk = (struct sock *)csk;
1556
1557        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1558}
1559
1560struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1561                      struct proto *prot, int kern);
1562void sk_free(struct sock *sk);
1563void sk_destruct(struct sock *sk);
1564struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1565void sk_free_unlock_clone(struct sock *sk);
1566
1567struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1568                             gfp_t priority);
1569void __sock_wfree(struct sk_buff *skb);
1570void sock_wfree(struct sk_buff *skb);
1571struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1572                             gfp_t priority);
1573void skb_orphan_partial(struct sk_buff *skb);
1574void sock_rfree(struct sk_buff *skb);
1575void sock_efree(struct sk_buff *skb);
1576#ifdef CONFIG_INET
1577void sock_edemux(struct sk_buff *skb);
1578#else
1579#define sock_edemux sock_efree
1580#endif
1581
1582int sock_setsockopt(struct socket *sock, int level, int op,
1583                    char __user *optval, unsigned int optlen);
1584
1585int sock_getsockopt(struct socket *sock, int level, int op,
1586                    char __user *optval, int __user *optlen);
1587struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1588                                    int noblock, int *errcode);
1589struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1590                                     unsigned long data_len, int noblock,
1591                                     int *errcode, int max_page_order);
1592void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1593void sock_kfree_s(struct sock *sk, void *mem, int size);
1594void sock_kzfree_s(struct sock *sk, void *mem, int size);
1595void sk_send_sigurg(struct sock *sk);
1596
1597struct sockcm_cookie {
1598        u64 transmit_time;
1599        u32 mark;
1600        u16 tsflags;
1601};
1602
1603static inline void sockcm_init(struct sockcm_cookie *sockc,
1604                               const struct sock *sk)
1605{
1606        *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1607}
1608
1609int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1610                     struct sockcm_cookie *sockc);
1611int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1612                   struct sockcm_cookie *sockc);
1613
1614/*
1615 * Functions to fill in entries in struct proto_ops when a protocol
1616 * does not implement a particular function.
1617 */
1618int sock_no_bind(struct socket *, struct sockaddr *, int);
1619int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1620int sock_no_socketpair(struct socket *, struct socket *);
1621int sock_no_accept(struct socket *, struct socket *, int, bool);
1622int sock_no_getname(struct socket *, struct sockaddr *, int);
1623int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1624int sock_no_listen(struct socket *, int);
1625int sock_no_shutdown(struct socket *, int);
1626int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1627int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1628int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1629int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1630int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1631int sock_no_mmap(struct file *file, struct socket *sock,
1632                 struct vm_area_struct *vma);
1633ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1634                         size_t size, int flags);
1635ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1636                                int offset, size_t size, int flags);
1637
1638/*
1639 * Functions to fill in entries in struct proto_ops when a protocol
1640 * uses the inet style.
1641 */
1642int sock_common_getsockopt(struct socket *sock, int level, int optname,
1643                                  char __user *optval, int __user *optlen);
1644int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1645                        int flags);
1646int sock_common_setsockopt(struct socket *sock, int level, int optname,
1647                                  char __user *optval, unsigned int optlen);
1648int compat_sock_common_getsockopt(struct socket *sock, int level,
1649                int optname, char __user *optval, int __user *optlen);
1650int compat_sock_common_setsockopt(struct socket *sock, int level,
1651                int optname, char __user *optval, unsigned int optlen);
1652
1653void sk_common_release(struct sock *sk);
1654
1655/*
1656 *      Default socket callbacks and setup code
1657 */
1658
1659/* Initialise core socket variables */
1660void sock_init_data(struct socket *sock, struct sock *sk);
1661
1662/*
1663 * Socket reference counting postulates.
1664 *
1665 * * Each user of socket SHOULD hold a reference count.
1666 * * Each access point to socket (an hash table bucket, reference from a list,
1667 *   running timer, skb in flight MUST hold a reference count.
1668 * * When reference count hits 0, it means it will never increase back.
1669 * * When reference count hits 0, it means that no references from
1670 *   outside exist to this socket and current process on current CPU
1671 *   is last user and may/should destroy this socket.
1672 * * sk_free is called from any context: process, BH, IRQ. When
1673 *   it is called, socket has no references from outside -> sk_free
1674 *   may release descendant resources allocated by the socket, but
1675 *   to the time when it is called, socket is NOT referenced by any
1676 *   hash tables, lists etc.
1677 * * Packets, delivered from outside (from network or from another process)
1678 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1679 *   when they sit in queue. Otherwise, packets will leak to hole, when
1680 *   socket is looked up by one cpu and unhasing is made by another CPU.
1681 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1682 *   (leak to backlog). Packet socket does all the processing inside
1683 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1684 *   use separate SMP lock, so that they are prone too.
1685 */
1686
1687/* Ungrab socket and destroy it, if it was the last reference. */
1688static inline void sock_put(struct sock *sk)
1689{
1690        if (refcount_dec_and_test(&sk->sk_refcnt))
1691                sk_free(sk);
1692}
1693/* Generic version of sock_put(), dealing with all sockets
1694 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1695 */
1696void sock_gen_put(struct sock *sk);
1697
1698int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1699                     unsigned int trim_cap, bool refcounted);
1700static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1701                                 const int nested)
1702{
1703        return __sk_receive_skb(sk, skb, nested, 1, true);
1704}
1705
1706static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1707{
1708        /* sk_tx_queue_mapping accept only upto a 16-bit value */
1709        if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1710                return;
1711        sk->sk_tx_queue_mapping = tx_queue;
1712}
1713
1714#define NO_QUEUE_MAPPING        USHRT_MAX
1715
1716static inline void sk_tx_queue_clear(struct sock *sk)
1717{
1718        sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1719}
1720
1721static inline int sk_tx_queue_get(const struct sock *sk)
1722{
1723        if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1724                return sk->sk_tx_queue_mapping;
1725
1726        return -1;
1727}
1728
1729static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1730{
1731#ifdef CONFIG_XPS
1732        if (skb_rx_queue_recorded(skb)) {
1733                u16 rx_queue = skb_get_rx_queue(skb);
1734
1735                if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1736                        return;
1737
1738                sk->sk_rx_queue_mapping = rx_queue;
1739        }
1740#endif
1741}
1742
1743static inline void sk_rx_queue_clear(struct sock *sk)
1744{
1745#ifdef CONFIG_XPS
1746        sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1747#endif
1748}
1749
1750#ifdef CONFIG_XPS
1751static inline int sk_rx_queue_get(const struct sock *sk)
1752{
1753        if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1754                return sk->sk_rx_queue_mapping;
1755
1756        return -1;
1757}
1758#endif
1759
1760static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1761{
1762        sk_tx_queue_clear(sk);
1763        sk->sk_socket = sock;
1764}
1765
1766static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1767{
1768        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1769        return &rcu_dereference_raw(sk->sk_wq)->wait;
1770}
1771/* Detach socket from process context.
1772 * Announce socket dead, detach it from wait queue and inode.
1773 * Note that parent inode held reference count on this struct sock,
1774 * we do not release it in this function, because protocol
1775 * probably wants some additional cleanups or even continuing
1776 * to work with this socket (TCP).
1777 */
1778static inline void sock_orphan(struct sock *sk)
1779{
1780        write_lock_bh(&sk->sk_callback_lock);
1781        sock_set_flag(sk, SOCK_DEAD);
1782        sk_set_socket(sk, NULL);
1783        sk->sk_wq  = NULL;
1784        write_unlock_bh(&sk->sk_callback_lock);
1785}
1786
1787static inline void sock_graft(struct sock *sk, struct socket *parent)
1788{
1789        WARN_ON(parent->sk);
1790        write_lock_bh(&sk->sk_callback_lock);
1791        rcu_assign_pointer(sk->sk_wq, parent->wq);
1792        parent->sk = sk;
1793        sk_set_socket(sk, parent);
1794        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1795        security_sock_graft(sk, parent);
1796        write_unlock_bh(&sk->sk_callback_lock);
1797}
1798
1799kuid_t sock_i_uid(struct sock *sk);
1800unsigned long sock_i_ino(struct sock *sk);
1801
1802static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1803{
1804        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1805}
1806
1807static inline u32 net_tx_rndhash(void)
1808{
1809        u32 v = prandom_u32();
1810
1811        return v ?: 1;
1812}
1813
1814static inline void sk_set_txhash(struct sock *sk)
1815{
1816        sk->sk_txhash = net_tx_rndhash();
1817}
1818
1819static inline void sk_rethink_txhash(struct sock *sk)
1820{
1821        if (sk->sk_txhash)
1822                sk_set_txhash(sk);
1823}
1824
1825static inline struct dst_entry *
1826__sk_dst_get(struct sock *sk)
1827{
1828        return rcu_dereference_check(sk->sk_dst_cache,
1829                                     lockdep_sock_is_held(sk));
1830}
1831
1832static inline struct dst_entry *
1833sk_dst_get(struct sock *sk)
1834{
1835        struct dst_entry *dst;
1836
1837        rcu_read_lock();
1838        dst = rcu_dereference(sk->sk_dst_cache);
1839        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1840                dst = NULL;
1841        rcu_read_unlock();
1842        return dst;
1843}
1844
1845static inline void dst_negative_advice(struct sock *sk)
1846{
1847        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1848
1849        sk_rethink_txhash(sk);
1850
1851        if (dst && dst->ops->negative_advice) {
1852                ndst = dst->ops->negative_advice(dst);
1853
1854                if (ndst != dst) {
1855                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1856                        sk_tx_queue_clear(sk);
1857                        sk->sk_dst_pending_confirm = 0;
1858                }
1859        }
1860}
1861
1862static inline void
1863__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1864{
1865        struct dst_entry *old_dst;
1866
1867        sk_tx_queue_clear(sk);
1868        sk->sk_dst_pending_confirm = 0;
1869        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1870                                            lockdep_sock_is_held(sk));
1871        rcu_assign_pointer(sk->sk_dst_cache, dst);
1872        dst_release(old_dst);
1873}
1874
1875static inline void
1876sk_dst_set(struct sock *sk, struct dst_entry *dst)
1877{
1878        struct dst_entry *old_dst;
1879
1880        sk_tx_queue_clear(sk);
1881        sk->sk_dst_pending_confirm = 0;
1882        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1883        dst_release(old_dst);
1884}
1885
1886static inline void
1887__sk_dst_reset(struct sock *sk)
1888{
1889        __sk_dst_set(sk, NULL);
1890}
1891
1892static inline void
1893sk_dst_reset(struct sock *sk)
1894{
1895        sk_dst_set(sk, NULL);
1896}
1897
1898struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1899
1900struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1901
1902static inline void sk_dst_confirm(struct sock *sk)
1903{
1904        if (!sk->sk_dst_pending_confirm)
1905                sk->sk_dst_pending_confirm = 1;
1906}
1907
1908static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1909{
1910        if (skb_get_dst_pending_confirm(skb)) {
1911                struct sock *sk = skb->sk;
1912                unsigned long now = jiffies;
1913
1914                /* avoid dirtying neighbour */
1915                if (n->confirmed != now)
1916                        n->confirmed = now;
1917                if (sk && sk->sk_dst_pending_confirm)
1918                        sk->sk_dst_pending_confirm = 0;
1919        }
1920}
1921
1922bool sk_mc_loop(struct sock *sk);
1923
1924static inline bool sk_can_gso(const struct sock *sk)
1925{
1926        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1927}
1928
1929void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1930
1931static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1932{
1933        sk->sk_route_nocaps |= flags;
1934        sk->sk_route_caps &= ~flags;
1935}
1936
1937static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1938                                           struct iov_iter *from, char *to,
1939                                           int copy, int offset)
1940{
1941        if (skb->ip_summed == CHECKSUM_NONE) {
1942                __wsum csum = 0;
1943                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1944                        return -EFAULT;
1945                skb->csum = csum_block_add(skb->csum, csum, offset);
1946        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1947                if (!copy_from_iter_full_nocache(to, copy, from))
1948                        return -EFAULT;
1949        } else if (!copy_from_iter_full(to, copy, from))
1950                return -EFAULT;
1951
1952        return 0;
1953}
1954
1955static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1956                                       struct iov_iter *from, int copy)
1957{
1958        int err, offset = skb->len;
1959
1960        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1961                                       copy, offset);
1962        if (err)
1963                __skb_trim(skb, offset);
1964
1965        return err;
1966}
1967
1968static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1969                                           struct sk_buff *skb,
1970                                           struct page *page,
1971                                           int off, int copy)
1972{
1973        int err;
1974
1975        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1976                                       copy, skb->len);
1977        if (err)
1978                return err;
1979
1980        skb->len             += copy;
1981        skb->data_len        += copy;
1982        skb->truesize        += copy;
1983        sk->sk_wmem_queued   += copy;
1984        sk_mem_charge(sk, copy);
1985        return 0;
1986}
1987
1988/**
1989 * sk_wmem_alloc_get - returns write allocations
1990 * @sk: socket
1991 *
1992 * Returns sk_wmem_alloc minus initial offset of one
1993 */
1994static inline int sk_wmem_alloc_get(const struct sock *sk)
1995{
1996        return refcount_read(&sk->sk_wmem_alloc) - 1;
1997}
1998
1999/**
2000 * sk_rmem_alloc_get - returns read allocations
2001 * @sk: socket
2002 *
2003 * Returns sk_rmem_alloc
2004 */
2005static inline int sk_rmem_alloc_get(const struct sock *sk)
2006{
2007        return atomic_read(&sk->sk_rmem_alloc);
2008}
2009
2010/**
2011 * sk_has_allocations - check if allocations are outstanding
2012 * @sk: socket
2013 *
2014 * Returns true if socket has write or read allocations
2015 */
2016static inline bool sk_has_allocations(const struct sock *sk)
2017{
2018        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2019}
2020
2021/**
2022 * skwq_has_sleeper - check if there are any waiting processes
2023 * @wq: struct socket_wq
2024 *
2025 * Returns true if socket_wq has waiting processes
2026 *
2027 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2028 * barrier call. They were added due to the race found within the tcp code.
2029 *
2030 * Consider following tcp code paths::
2031 *
2032 *   CPU1                CPU2
2033 *   sys_select          receive packet
2034 *   ...                 ...
2035 *   __add_wait_queue    update tp->rcv_nxt
2036 *   ...                 ...
2037 *   tp->rcv_nxt check   sock_def_readable
2038 *   ...                 {
2039 *   schedule               rcu_read_lock();
2040 *                          wq = rcu_dereference(sk->sk_wq);
2041 *                          if (wq && waitqueue_active(&wq->wait))
2042 *                              wake_up_interruptible(&wq->wait)
2043 *                          ...
2044 *                       }
2045 *
2046 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2047 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2048 * could then endup calling schedule and sleep forever if there are no more
2049 * data on the socket.
2050 *
2051 */
2052static inline bool skwq_has_sleeper(struct socket_wq *wq)
2053{
2054        return wq && wq_has_sleeper(&wq->wait);
2055}
2056
2057/**
2058 * sock_poll_wait - place memory barrier behind the poll_wait call.
2059 * @filp:           file
2060 * @p:              poll_table
2061 *
2062 * See the comments in the wq_has_sleeper function.
2063 */
2064static inline void sock_poll_wait(struct file *filp, poll_table *p)
2065{
2066        struct socket *sock = filp->private_data;
2067
2068        if (!poll_does_not_wait(p)) {
2069                poll_wait(filp, &sock->wq->wait, p);
2070                /* We need to be sure we are in sync with the
2071                 * socket flags modification.
2072                 *
2073                 * This memory barrier is paired in the wq_has_sleeper.
2074                 */
2075                smp_mb();
2076        }
2077}
2078
2079static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2080{
2081        if (sk->sk_txhash) {
2082                skb->l4_hash = 1;
2083                skb->hash = sk->sk_txhash;
2084        }
2085}
2086
2087void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2088
2089/*
2090 *      Queue a received datagram if it will fit. Stream and sequenced
2091 *      protocols can't normally use this as they need to fit buffers in
2092 *      and play with them.
2093 *
2094 *      Inlined as it's very short and called for pretty much every
2095 *      packet ever received.
2096 */
2097static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2098{
2099        skb_orphan(skb);
2100        skb->sk = sk;
2101        skb->destructor = sock_rfree;
2102        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2103        sk_mem_charge(sk, skb->truesize);
2104}
2105
2106void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2107                    unsigned long expires);
2108
2109void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2110
2111int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2112                        struct sk_buff *skb, unsigned int flags,
2113                        void (*destructor)(struct sock *sk,
2114                                           struct sk_buff *skb));
2115int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2116int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2117
2118int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2119struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2120
2121/*
2122 *      Recover an error report and clear atomically
2123 */
2124
2125static inline int sock_error(struct sock *sk)
2126{
2127        int err;
2128        if (likely(!sk->sk_err))
2129                return 0;
2130        err = xchg(&sk->sk_err, 0);
2131        return -err;
2132}
2133
2134static inline unsigned long sock_wspace(struct sock *sk)
2135{
2136        int amt = 0;
2137
2138        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2139                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2140                if (amt < 0)
2141                        amt = 0;
2142        }
2143        return amt;
2144}
2145
2146/* Note:
2147 *  We use sk->sk_wq_raw, from contexts knowing this
2148 *  pointer is not NULL and cannot disappear/change.
2149 */
2150static inline void sk_set_bit(int nr, struct sock *sk)
2151{
2152        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2153            !sock_flag(sk, SOCK_FASYNC))
2154                return;
2155
2156        set_bit(nr, &sk->sk_wq_raw->flags);
2157}
2158
2159static inline void sk_clear_bit(int nr, struct sock *sk)
2160{
2161        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2162            !sock_flag(sk, SOCK_FASYNC))
2163                return;
2164
2165        clear_bit(nr, &sk->sk_wq_raw->flags);
2166}
2167
2168static inline void sk_wake_async(const struct sock *sk, int how, int band)
2169{
2170        if (sock_flag(sk, SOCK_FASYNC)) {
2171                rcu_read_lock();
2172                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2173                rcu_read_unlock();
2174        }
2175}
2176
2177/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2178 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2179 * Note: for send buffers, TCP works better if we can build two skbs at
2180 * minimum.
2181 */
2182#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2183
2184#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2185#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2186
2187static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2188{
2189        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2190                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2191                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2192        }
2193}
2194
2195struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2196                                    bool force_schedule);
2197
2198/**
2199 * sk_page_frag - return an appropriate page_frag
2200 * @sk: socket
2201 *
2202 * If socket allocation mode allows current thread to sleep, it means its
2203 * safe to use the per task page_frag instead of the per socket one.
2204 */
2205static inline struct page_frag *sk_page_frag(struct sock *sk)
2206{
2207        if (gfpflags_allow_blocking(sk->sk_allocation))
2208                return &current->task_frag;
2209
2210        return &sk->sk_frag;
2211}
2212
2213bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2214
2215int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2216                int sg_start, int *sg_curr, unsigned int *sg_size,
2217                int first_coalesce);
2218
2219/*
2220 *      Default write policy as shown to user space via poll/select/SIGIO
2221 */
2222static inline bool sock_writeable(const struct sock *sk)
2223{
2224        return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2225}
2226
2227static inline gfp_t gfp_any(void)
2228{
2229        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2230}
2231
2232static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2233{
2234        return noblock ? 0 : sk->sk_rcvtimeo;
2235}
2236
2237static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2238{
2239        return noblock ? 0 : sk->sk_sndtimeo;
2240}
2241
2242static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2243{
2244        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2245}
2246
2247/* Alas, with timeout socket operations are not restartable.
2248 * Compare this to poll().
2249 */
2250static inline int sock_intr_errno(long timeo)
2251{
2252        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2253}
2254
2255struct sock_skb_cb {
2256        u32 dropcount;
2257};
2258
2259/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2260 * using skb->cb[] would keep using it directly and utilize its
2261 * alignement guarantee.
2262 */
2263#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2264                            sizeof(struct sock_skb_cb)))
2265
2266#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2267                            SOCK_SKB_CB_OFFSET))
2268
2269#define sock_skb_cb_check_size(size) \
2270        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2271
2272static inline void
2273sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2274{
2275        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2276                                                atomic_read(&sk->sk_drops) : 0;
2277}
2278
2279static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2280{
2281        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2282
2283        atomic_add(segs, &sk->sk_drops);
2284}
2285
2286void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2287                           struct sk_buff *skb);
2288void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2289                             struct sk_buff *skb);
2290
2291static inline void
2292sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2293{
2294        ktime_t kt = skb->tstamp;
2295        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2296
2297        /*
2298         * generate control messages if
2299         * - receive time stamping in software requested
2300         * - software time stamp available and wanted
2301         * - hardware time stamps available and wanted
2302         */
2303        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2304            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2305            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2306            (hwtstamps->hwtstamp &&
2307             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2308                __sock_recv_timestamp(msg, sk, skb);
2309        else
2310                sk->sk_stamp = kt;
2311
2312        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2313                __sock_recv_wifi_status(msg, sk, skb);
2314}
2315
2316void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2317                              struct sk_buff *skb);
2318
2319#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2320static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2321                                          struct sk_buff *skb)
2322{
2323#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2324                           (1UL << SOCK_RCVTSTAMP))
2325#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2326                           SOF_TIMESTAMPING_RAW_HARDWARE)
2327
2328        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2329                __sock_recv_ts_and_drops(msg, sk, skb);
2330        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2331                sk->sk_stamp = skb->tstamp;
2332        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2333                sk->sk_stamp = 0;
2334}
2335
2336void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2337
2338/**
2339 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2340 * @sk:         socket sending this packet
2341 * @tsflags:    timestamping flags to use
2342 * @tx_flags:   completed with instructions for time stamping
2343 *
2344 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2345 */
2346static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2347                                     __u8 *tx_flags)
2348{
2349        if (unlikely(tsflags))
2350                __sock_tx_timestamp(tsflags, tx_flags);
2351        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2352                *tx_flags |= SKBTX_WIFI_STATUS;
2353}
2354
2355/**
2356 * sk_eat_skb - Release a skb if it is no longer needed
2357 * @sk: socket to eat this skb from
2358 * @skb: socket buffer to eat
2359 *
2360 * This routine must be called with interrupts disabled or with the socket
2361 * locked so that the sk_buff queue operation is ok.
2362*/
2363static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2364{
2365        __skb_unlink(skb, &sk->sk_receive_queue);
2366        __kfree_skb(skb);
2367}
2368
2369static inline
2370struct net *sock_net(const struct sock *sk)
2371{
2372        return read_pnet(&sk->sk_net);
2373}
2374
2375static inline
2376void sock_net_set(struct sock *sk, struct net *net)
2377{
2378        write_pnet(&sk->sk_net, net);
2379}
2380
2381static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2382{
2383        if (skb->sk) {
2384                struct sock *sk = skb->sk;
2385
2386                skb->destructor = NULL;
2387                skb->sk = NULL;
2388                return sk;
2389        }
2390        return NULL;
2391}
2392
2393/* This helper checks if a socket is a full socket,
2394 * ie _not_ a timewait or request socket.
2395 */
2396static inline bool sk_fullsock(const struct sock *sk)
2397{
2398        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2399}
2400
2401/* Checks if this SKB belongs to an HW offloaded socket
2402 * and whether any SW fallbacks are required based on dev.
2403 */
2404static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2405                                                   struct net_device *dev)
2406{
2407#ifdef CONFIG_SOCK_VALIDATE_XMIT
2408        struct sock *sk = skb->sk;
2409
2410        if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2411                skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2412#endif
2413
2414        return skb;
2415}
2416
2417/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2418 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2419 */
2420static inline bool sk_listener(const struct sock *sk)
2421{
2422        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2423}
2424
2425void sock_enable_timestamp(struct sock *sk, int flag);
2426int sock_get_timestamp(struct sock *, struct timeval __user *);
2427int sock_get_timestampns(struct sock *, struct timespec __user *);
2428int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2429                       int type);
2430
2431bool sk_ns_capable(const struct sock *sk,
2432                   struct user_namespace *user_ns, int cap);
2433bool sk_capable(const struct sock *sk, int cap);
2434bool sk_net_capable(const struct sock *sk, int cap);
2435
2436void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2437
2438/* Take into consideration the size of the struct sk_buff overhead in the
2439 * determination of these values, since that is non-constant across
2440 * platforms.  This makes socket queueing behavior and performance
2441 * not depend upon such differences.
2442 */
2443#define _SK_MEM_PACKETS         256
2444#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2445#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2446#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2447
2448extern __u32 sysctl_wmem_max;
2449extern __u32 sysctl_rmem_max;
2450
2451extern int sysctl_tstamp_allow_data;
2452extern int sysctl_optmem_max;
2453
2454extern __u32 sysctl_wmem_default;
2455extern __u32 sysctl_rmem_default;
2456
2457static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2458{
2459        /* Does this proto have per netns sysctl_wmem ? */
2460        if (proto->sysctl_wmem_offset)
2461                return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2462
2463        return *proto->sysctl_wmem;
2464}
2465
2466static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2467{
2468        /* Does this proto have per netns sysctl_rmem ? */
2469        if (proto->sysctl_rmem_offset)
2470                return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2471
2472        return *proto->sysctl_rmem;
2473}
2474
2475/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2476 * Some wifi drivers need to tweak it to get more chunks.
2477 * They can use this helper from their ndo_start_xmit()
2478 */
2479static inline void sk_pacing_shift_update(struct sock *sk, int val)
2480{
2481        if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2482                return;
2483        sk->sk_pacing_shift = val;
2484}
2485
2486/* if a socket is bound to a device, check that the given device
2487 * index is either the same or that the socket is bound to an L3
2488 * master device and the given device index is also enslaved to
2489 * that L3 master
2490 */
2491static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2492{
2493        int mdif;
2494
2495        if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2496                return true;
2497
2498        mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2499        if (mdif && mdif == sk->sk_bound_dev_if)
2500                return true;
2501
2502        return false;
2503}
2504
2505#endif  /* _SOCK_H */
2506