linux/kernel/rcu/srcutree.c
<<
>>
Prefs
   1/*
   2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright (C) IBM Corporation, 2006
  19 * Copyright (C) Fujitsu, 2012
  20 *
  21 * Author: Paul McKenney <paulmck@us.ibm.com>
  22 *         Lai Jiangshan <laijs@cn.fujitsu.com>
  23 *
  24 * For detailed explanation of Read-Copy Update mechanism see -
  25 *              Documentation/RCU/ *.txt
  26 *
  27 */
  28
  29#define pr_fmt(fmt) "rcu: " fmt
  30
  31#include <linux/export.h>
  32#include <linux/mutex.h>
  33#include <linux/percpu.h>
  34#include <linux/preempt.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/sched.h>
  37#include <linux/smp.h>
  38#include <linux/delay.h>
  39#include <linux/module.h>
  40#include <linux/srcu.h>
  41
  42#include "rcu.h"
  43#include "rcu_segcblist.h"
  44
  45/* Holdoff in nanoseconds for auto-expediting. */
  46#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  47static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  48module_param(exp_holdoff, ulong, 0444);
  49
  50/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  51static ulong counter_wrap_check = (ULONG_MAX >> 2);
  52module_param(counter_wrap_check, ulong, 0444);
  53
  54static void srcu_invoke_callbacks(struct work_struct *work);
  55static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
  56static void process_srcu(struct work_struct *work);
  57
  58/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
  59#define spin_lock_rcu_node(p)                                   \
  60do {                                                                    \
  61        spin_lock(&ACCESS_PRIVATE(p, lock));                    \
  62        smp_mb__after_unlock_lock();                                    \
  63} while (0)
  64
  65#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
  66
  67#define spin_lock_irq_rcu_node(p)                                       \
  68do {                                                                    \
  69        spin_lock_irq(&ACCESS_PRIVATE(p, lock));                        \
  70        smp_mb__after_unlock_lock();                                    \
  71} while (0)
  72
  73#define spin_unlock_irq_rcu_node(p)                                     \
  74        spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
  75
  76#define spin_lock_irqsave_rcu_node(p, flags)                    \
  77do {                                                                    \
  78        spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);     \
  79        smp_mb__after_unlock_lock();                                    \
  80} while (0)
  81
  82#define spin_unlock_irqrestore_rcu_node(p, flags)                       \
  83        spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
  84
  85/*
  86 * Initialize SRCU combining tree.  Note that statically allocated
  87 * srcu_struct structures might already have srcu_read_lock() and
  88 * srcu_read_unlock() running against them.  So if the is_static parameter
  89 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
  90 */
  91static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
  92{
  93        int cpu;
  94        int i;
  95        int level = 0;
  96        int levelspread[RCU_NUM_LVLS];
  97        struct srcu_data *sdp;
  98        struct srcu_node *snp;
  99        struct srcu_node *snp_first;
 100
 101        /* Work out the overall tree geometry. */
 102        sp->level[0] = &sp->node[0];
 103        for (i = 1; i < rcu_num_lvls; i++)
 104                sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
 105        rcu_init_levelspread(levelspread, num_rcu_lvl);
 106
 107        /* Each pass through this loop initializes one srcu_node structure. */
 108        rcu_for_each_node_breadth_first(sp, snp) {
 109                spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 110                WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
 111                             ARRAY_SIZE(snp->srcu_data_have_cbs));
 112                for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 113                        snp->srcu_have_cbs[i] = 0;
 114                        snp->srcu_data_have_cbs[i] = 0;
 115                }
 116                snp->srcu_gp_seq_needed_exp = 0;
 117                snp->grplo = -1;
 118                snp->grphi = -1;
 119                if (snp == &sp->node[0]) {
 120                        /* Root node, special case. */
 121                        snp->srcu_parent = NULL;
 122                        continue;
 123                }
 124
 125                /* Non-root node. */
 126                if (snp == sp->level[level + 1])
 127                        level++;
 128                snp->srcu_parent = sp->level[level - 1] +
 129                                   (snp - sp->level[level]) /
 130                                   levelspread[level - 1];
 131        }
 132
 133        /*
 134         * Initialize the per-CPU srcu_data array, which feeds into the
 135         * leaves of the srcu_node tree.
 136         */
 137        WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 138                     ARRAY_SIZE(sdp->srcu_unlock_count));
 139        level = rcu_num_lvls - 1;
 140        snp_first = sp->level[level];
 141        for_each_possible_cpu(cpu) {
 142                sdp = per_cpu_ptr(sp->sda, cpu);
 143                spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 144                rcu_segcblist_init(&sdp->srcu_cblist);
 145                sdp->srcu_cblist_invoking = false;
 146                sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
 147                sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
 148                sdp->mynode = &snp_first[cpu / levelspread[level]];
 149                for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 150                        if (snp->grplo < 0)
 151                                snp->grplo = cpu;
 152                        snp->grphi = cpu;
 153                }
 154                sdp->cpu = cpu;
 155                INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
 156                sdp->sp = sp;
 157                sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 158                if (is_static)
 159                        continue;
 160
 161                /* Dynamically allocated, better be no srcu_read_locks()! */
 162                for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
 163                        sdp->srcu_lock_count[i] = 0;
 164                        sdp->srcu_unlock_count[i] = 0;
 165                }
 166        }
 167}
 168
 169/*
 170 * Initialize non-compile-time initialized fields, including the
 171 * associated srcu_node and srcu_data structures.  The is_static
 172 * parameter is passed through to init_srcu_struct_nodes(), and
 173 * also tells us that ->sda has already been wired up to srcu_data.
 174 */
 175static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
 176{
 177        mutex_init(&sp->srcu_cb_mutex);
 178        mutex_init(&sp->srcu_gp_mutex);
 179        sp->srcu_idx = 0;
 180        sp->srcu_gp_seq = 0;
 181        sp->srcu_barrier_seq = 0;
 182        mutex_init(&sp->srcu_barrier_mutex);
 183        atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
 184        INIT_DELAYED_WORK(&sp->work, process_srcu);
 185        if (!is_static)
 186                sp->sda = alloc_percpu(struct srcu_data);
 187        init_srcu_struct_nodes(sp, is_static);
 188        sp->srcu_gp_seq_needed_exp = 0;
 189        sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 190        smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
 191        return sp->sda ? 0 : -ENOMEM;
 192}
 193
 194#ifdef CONFIG_DEBUG_LOCK_ALLOC
 195
 196int __init_srcu_struct(struct srcu_struct *sp, const char *name,
 197                       struct lock_class_key *key)
 198{
 199        /* Don't re-initialize a lock while it is held. */
 200        debug_check_no_locks_freed((void *)sp, sizeof(*sp));
 201        lockdep_init_map(&sp->dep_map, name, key, 0);
 202        spin_lock_init(&ACCESS_PRIVATE(sp, lock));
 203        return init_srcu_struct_fields(sp, false);
 204}
 205EXPORT_SYMBOL_GPL(__init_srcu_struct);
 206
 207#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 208
 209/**
 210 * init_srcu_struct - initialize a sleep-RCU structure
 211 * @sp: structure to initialize.
 212 *
 213 * Must invoke this on a given srcu_struct before passing that srcu_struct
 214 * to any other function.  Each srcu_struct represents a separate domain
 215 * of SRCU protection.
 216 */
 217int init_srcu_struct(struct srcu_struct *sp)
 218{
 219        spin_lock_init(&ACCESS_PRIVATE(sp, lock));
 220        return init_srcu_struct_fields(sp, false);
 221}
 222EXPORT_SYMBOL_GPL(init_srcu_struct);
 223
 224#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 225
 226/*
 227 * First-use initialization of statically allocated srcu_struct
 228 * structure.  Wiring up the combining tree is more than can be
 229 * done with compile-time initialization, so this check is added
 230 * to each update-side SRCU primitive.  Use sp->lock, which -is-
 231 * compile-time initialized, to resolve races involving multiple
 232 * CPUs trying to garner first-use privileges.
 233 */
 234static void check_init_srcu_struct(struct srcu_struct *sp)
 235{
 236        unsigned long flags;
 237
 238        WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
 239        /* The smp_load_acquire() pairs with the smp_store_release(). */
 240        if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
 241                return; /* Already initialized. */
 242        spin_lock_irqsave_rcu_node(sp, flags);
 243        if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
 244                spin_unlock_irqrestore_rcu_node(sp, flags);
 245                return;
 246        }
 247        init_srcu_struct_fields(sp, true);
 248        spin_unlock_irqrestore_rcu_node(sp, flags);
 249}
 250
 251/*
 252 * Returns approximate total of the readers' ->srcu_lock_count[] values
 253 * for the rank of per-CPU counters specified by idx.
 254 */
 255static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
 256{
 257        int cpu;
 258        unsigned long sum = 0;
 259
 260        for_each_possible_cpu(cpu) {
 261                struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 262
 263                sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
 264        }
 265        return sum;
 266}
 267
 268/*
 269 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 270 * for the rank of per-CPU counters specified by idx.
 271 */
 272static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
 273{
 274        int cpu;
 275        unsigned long sum = 0;
 276
 277        for_each_possible_cpu(cpu) {
 278                struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 279
 280                sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
 281        }
 282        return sum;
 283}
 284
 285/*
 286 * Return true if the number of pre-existing readers is determined to
 287 * be zero.
 288 */
 289static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
 290{
 291        unsigned long unlocks;
 292
 293        unlocks = srcu_readers_unlock_idx(sp, idx);
 294
 295        /*
 296         * Make sure that a lock is always counted if the corresponding
 297         * unlock is counted. Needs to be a smp_mb() as the read side may
 298         * contain a read from a variable that is written to before the
 299         * synchronize_srcu() in the write side. In this case smp_mb()s
 300         * A and B act like the store buffering pattern.
 301         *
 302         * This smp_mb() also pairs with smp_mb() C to prevent accesses
 303         * after the synchronize_srcu() from being executed before the
 304         * grace period ends.
 305         */
 306        smp_mb(); /* A */
 307
 308        /*
 309         * If the locks are the same as the unlocks, then there must have
 310         * been no readers on this index at some time in between. This does
 311         * not mean that there are no more readers, as one could have read
 312         * the current index but not have incremented the lock counter yet.
 313         *
 314         * So suppose that the updater is preempted here for so long
 315         * that more than ULONG_MAX non-nested readers come and go in
 316         * the meantime.  It turns out that this cannot result in overflow
 317         * because if a reader modifies its unlock count after we read it
 318         * above, then that reader's next load of ->srcu_idx is guaranteed
 319         * to get the new value, which will cause it to operate on the
 320         * other bank of counters, where it cannot contribute to the
 321         * overflow of these counters.  This means that there is a maximum
 322         * of 2*NR_CPUS increments, which cannot overflow given current
 323         * systems, especially not on 64-bit systems.
 324         *
 325         * OK, how about nesting?  This does impose a limit on nesting
 326         * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 327         * especially on 64-bit systems.
 328         */
 329        return srcu_readers_lock_idx(sp, idx) == unlocks;
 330}
 331
 332/**
 333 * srcu_readers_active - returns true if there are readers. and false
 334 *                       otherwise
 335 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
 336 *
 337 * Note that this is not an atomic primitive, and can therefore suffer
 338 * severe errors when invoked on an active srcu_struct.  That said, it
 339 * can be useful as an error check at cleanup time.
 340 */
 341static bool srcu_readers_active(struct srcu_struct *sp)
 342{
 343        int cpu;
 344        unsigned long sum = 0;
 345
 346        for_each_possible_cpu(cpu) {
 347                struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 348
 349                sum += READ_ONCE(cpuc->srcu_lock_count[0]);
 350                sum += READ_ONCE(cpuc->srcu_lock_count[1]);
 351                sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
 352                sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
 353        }
 354        return sum;
 355}
 356
 357#define SRCU_INTERVAL           1
 358
 359/*
 360 * Return grace-period delay, zero if there are expedited grace
 361 * periods pending, SRCU_INTERVAL otherwise.
 362 */
 363static unsigned long srcu_get_delay(struct srcu_struct *sp)
 364{
 365        if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
 366                         READ_ONCE(sp->srcu_gp_seq_needed_exp)))
 367                return 0;
 368        return SRCU_INTERVAL;
 369}
 370
 371/* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */
 372void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced)
 373{
 374        int cpu;
 375
 376        if (WARN_ON(!srcu_get_delay(sp)))
 377                return; /* Just leak it! */
 378        if (WARN_ON(srcu_readers_active(sp)))
 379                return; /* Just leak it! */
 380        if (quiesced) {
 381                if (WARN_ON(delayed_work_pending(&sp->work)))
 382                        return; /* Just leak it! */
 383        } else {
 384                flush_delayed_work(&sp->work);
 385        }
 386        for_each_possible_cpu(cpu)
 387                if (quiesced) {
 388                        if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp->sda, cpu)->work)))
 389                                return; /* Just leak it! */
 390                } else {
 391                        flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
 392                }
 393        if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 394            WARN_ON(srcu_readers_active(sp))) {
 395                pr_info("%s: Active srcu_struct %p state: %d\n",
 396                        __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
 397                return; /* Caller forgot to stop doing call_srcu()? */
 398        }
 399        free_percpu(sp->sda);
 400        sp->sda = NULL;
 401}
 402EXPORT_SYMBOL_GPL(_cleanup_srcu_struct);
 403
 404/*
 405 * Counts the new reader in the appropriate per-CPU element of the
 406 * srcu_struct.
 407 * Returns an index that must be passed to the matching srcu_read_unlock().
 408 */
 409int __srcu_read_lock(struct srcu_struct *sp)
 410{
 411        int idx;
 412
 413        idx = READ_ONCE(sp->srcu_idx) & 0x1;
 414        this_cpu_inc(sp->sda->srcu_lock_count[idx]);
 415        smp_mb(); /* B */  /* Avoid leaking the critical section. */
 416        return idx;
 417}
 418EXPORT_SYMBOL_GPL(__srcu_read_lock);
 419
 420/*
 421 * Removes the count for the old reader from the appropriate per-CPU
 422 * element of the srcu_struct.  Note that this may well be a different
 423 * CPU than that which was incremented by the corresponding srcu_read_lock().
 424 */
 425void __srcu_read_unlock(struct srcu_struct *sp, int idx)
 426{
 427        smp_mb(); /* C */  /* Avoid leaking the critical section. */
 428        this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
 429}
 430EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 431
 432/*
 433 * We use an adaptive strategy for synchronize_srcu() and especially for
 434 * synchronize_srcu_expedited().  We spin for a fixed time period
 435 * (defined below) to allow SRCU readers to exit their read-side critical
 436 * sections.  If there are still some readers after a few microseconds,
 437 * we repeatedly block for 1-millisecond time periods.
 438 */
 439#define SRCU_RETRY_CHECK_DELAY          5
 440
 441/*
 442 * Start an SRCU grace period.
 443 */
 444static void srcu_gp_start(struct srcu_struct *sp)
 445{
 446        struct srcu_data *sdp = this_cpu_ptr(sp->sda);
 447        int state;
 448
 449        lockdep_assert_held(&ACCESS_PRIVATE(sp, lock));
 450        WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
 451        rcu_segcblist_advance(&sdp->srcu_cblist,
 452                              rcu_seq_current(&sp->srcu_gp_seq));
 453        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 454                                       rcu_seq_snap(&sp->srcu_gp_seq));
 455        smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 456        rcu_seq_start(&sp->srcu_gp_seq);
 457        state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
 458        WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 459}
 460
 461/*
 462 * Track online CPUs to guide callback workqueue placement.
 463 */
 464DEFINE_PER_CPU(bool, srcu_online);
 465
 466void srcu_online_cpu(unsigned int cpu)
 467{
 468        WRITE_ONCE(per_cpu(srcu_online, cpu), true);
 469}
 470
 471void srcu_offline_cpu(unsigned int cpu)
 472{
 473        WRITE_ONCE(per_cpu(srcu_online, cpu), false);
 474}
 475
 476/*
 477 * Place the workqueue handler on the specified CPU if online, otherwise
 478 * just run it whereever.  This is useful for placing workqueue handlers
 479 * that are to invoke the specified CPU's callbacks.
 480 */
 481static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 482                                       struct delayed_work *dwork,
 483                                       unsigned long delay)
 484{
 485        bool ret;
 486
 487        preempt_disable();
 488        if (READ_ONCE(per_cpu(srcu_online, cpu)))
 489                ret = queue_delayed_work_on(cpu, wq, dwork, delay);
 490        else
 491                ret = queue_delayed_work(wq, dwork, delay);
 492        preempt_enable();
 493        return ret;
 494}
 495
 496/*
 497 * Schedule callback invocation for the specified srcu_data structure,
 498 * if possible, on the corresponding CPU.
 499 */
 500static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 501{
 502        srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay);
 503}
 504
 505/*
 506 * Schedule callback invocation for all srcu_data structures associated
 507 * with the specified srcu_node structure that have callbacks for the
 508 * just-completed grace period, the one corresponding to idx.  If possible,
 509 * schedule this invocation on the corresponding CPUs.
 510 */
 511static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
 512                                  unsigned long mask, unsigned long delay)
 513{
 514        int cpu;
 515
 516        for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 517                if (!(mask & (1 << (cpu - snp->grplo))))
 518                        continue;
 519                srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
 520        }
 521}
 522
 523/*
 524 * Note the end of an SRCU grace period.  Initiates callback invocation
 525 * and starts a new grace period if needed.
 526 *
 527 * The ->srcu_cb_mutex acquisition does not protect any data, but
 528 * instead prevents more than one grace period from starting while we
 529 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 530 * array to have a finite number of elements.
 531 */
 532static void srcu_gp_end(struct srcu_struct *sp)
 533{
 534        unsigned long cbdelay;
 535        bool cbs;
 536        bool last_lvl;
 537        int cpu;
 538        unsigned long flags;
 539        unsigned long gpseq;
 540        int idx;
 541        unsigned long mask;
 542        struct srcu_data *sdp;
 543        struct srcu_node *snp;
 544
 545        /* Prevent more than one additional grace period. */
 546        mutex_lock(&sp->srcu_cb_mutex);
 547
 548        /* End the current grace period. */
 549        spin_lock_irq_rcu_node(sp);
 550        idx = rcu_seq_state(sp->srcu_gp_seq);
 551        WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 552        cbdelay = srcu_get_delay(sp);
 553        sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 554        rcu_seq_end(&sp->srcu_gp_seq);
 555        gpseq = rcu_seq_current(&sp->srcu_gp_seq);
 556        if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
 557                sp->srcu_gp_seq_needed_exp = gpseq;
 558        spin_unlock_irq_rcu_node(sp);
 559        mutex_unlock(&sp->srcu_gp_mutex);
 560        /* A new grace period can start at this point.  But only one. */
 561
 562        /* Initiate callback invocation as needed. */
 563        idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 564        rcu_for_each_node_breadth_first(sp, snp) {
 565                spin_lock_irq_rcu_node(snp);
 566                cbs = false;
 567                last_lvl = snp >= sp->level[rcu_num_lvls - 1];
 568                if (last_lvl)
 569                        cbs = snp->srcu_have_cbs[idx] == gpseq;
 570                snp->srcu_have_cbs[idx] = gpseq;
 571                rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 572                if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
 573                        snp->srcu_gp_seq_needed_exp = gpseq;
 574                mask = snp->srcu_data_have_cbs[idx];
 575                snp->srcu_data_have_cbs[idx] = 0;
 576                spin_unlock_irq_rcu_node(snp);
 577                if (cbs)
 578                        srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
 579
 580                /* Occasionally prevent srcu_data counter wrap. */
 581                if (!(gpseq & counter_wrap_check) && last_lvl)
 582                        for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 583                                sdp = per_cpu_ptr(sp->sda, cpu);
 584                                spin_lock_irqsave_rcu_node(sdp, flags);
 585                                if (ULONG_CMP_GE(gpseq,
 586                                                 sdp->srcu_gp_seq_needed + 100))
 587                                        sdp->srcu_gp_seq_needed = gpseq;
 588                                if (ULONG_CMP_GE(gpseq,
 589                                                 sdp->srcu_gp_seq_needed_exp + 100))
 590                                        sdp->srcu_gp_seq_needed_exp = gpseq;
 591                                spin_unlock_irqrestore_rcu_node(sdp, flags);
 592                        }
 593        }
 594
 595        /* Callback initiation done, allow grace periods after next. */
 596        mutex_unlock(&sp->srcu_cb_mutex);
 597
 598        /* Start a new grace period if needed. */
 599        spin_lock_irq_rcu_node(sp);
 600        gpseq = rcu_seq_current(&sp->srcu_gp_seq);
 601        if (!rcu_seq_state(gpseq) &&
 602            ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
 603                srcu_gp_start(sp);
 604                spin_unlock_irq_rcu_node(sp);
 605                srcu_reschedule(sp, 0);
 606        } else {
 607                spin_unlock_irq_rcu_node(sp);
 608        }
 609}
 610
 611/*
 612 * Funnel-locking scheme to scalably mediate many concurrent expedited
 613 * grace-period requests.  This function is invoked for the first known
 614 * expedited request for a grace period that has already been requested,
 615 * but without expediting.  To start a completely new grace period,
 616 * whether expedited or not, use srcu_funnel_gp_start() instead.
 617 */
 618static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
 619                                  unsigned long s)
 620{
 621        unsigned long flags;
 622
 623        for (; snp != NULL; snp = snp->srcu_parent) {
 624                if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
 625                    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
 626                        return;
 627                spin_lock_irqsave_rcu_node(snp, flags);
 628                if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
 629                        spin_unlock_irqrestore_rcu_node(snp, flags);
 630                        return;
 631                }
 632                WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 633                spin_unlock_irqrestore_rcu_node(snp, flags);
 634        }
 635        spin_lock_irqsave_rcu_node(sp, flags);
 636        if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
 637                sp->srcu_gp_seq_needed_exp = s;
 638        spin_unlock_irqrestore_rcu_node(sp, flags);
 639}
 640
 641/*
 642 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 643 * requests.  The winner has to do the work of actually starting grace
 644 * period s.  Losers must either ensure that their desired grace-period
 645 * number is recorded on at least their leaf srcu_node structure, or they
 646 * must take steps to invoke their own callbacks.
 647 *
 648 * Note that this function also does the work of srcu_funnel_exp_start(),
 649 * in some cases by directly invoking it.
 650 */
 651static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
 652                                 unsigned long s, bool do_norm)
 653{
 654        unsigned long flags;
 655        int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 656        struct srcu_node *snp = sdp->mynode;
 657        unsigned long snp_seq;
 658
 659        /* Each pass through the loop does one level of the srcu_node tree. */
 660        for (; snp != NULL; snp = snp->srcu_parent) {
 661                if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
 662                        return; /* GP already done and CBs recorded. */
 663                spin_lock_irqsave_rcu_node(snp, flags);
 664                if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
 665                        snp_seq = snp->srcu_have_cbs[idx];
 666                        if (snp == sdp->mynode && snp_seq == s)
 667                                snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 668                        spin_unlock_irqrestore_rcu_node(snp, flags);
 669                        if (snp == sdp->mynode && snp_seq != s) {
 670                                srcu_schedule_cbs_sdp(sdp, do_norm
 671                                                           ? SRCU_INTERVAL
 672                                                           : 0);
 673                                return;
 674                        }
 675                        if (!do_norm)
 676                                srcu_funnel_exp_start(sp, snp, s);
 677                        return;
 678                }
 679                snp->srcu_have_cbs[idx] = s;
 680                if (snp == sdp->mynode)
 681                        snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 682                if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
 683                        snp->srcu_gp_seq_needed_exp = s;
 684                spin_unlock_irqrestore_rcu_node(snp, flags);
 685        }
 686
 687        /* Top of tree, must ensure the grace period will be started. */
 688        spin_lock_irqsave_rcu_node(sp, flags);
 689        if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
 690                /*
 691                 * Record need for grace period s.  Pair with load
 692                 * acquire setting up for initialization.
 693                 */
 694                smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
 695        }
 696        if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
 697                sp->srcu_gp_seq_needed_exp = s;
 698
 699        /* If grace period not already done and none in progress, start it. */
 700        if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
 701            rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
 702                WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
 703                srcu_gp_start(sp);
 704                queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp));
 705        }
 706        spin_unlock_irqrestore_rcu_node(sp, flags);
 707}
 708
 709/*
 710 * Wait until all readers counted by array index idx complete, but
 711 * loop an additional time if there is an expedited grace period pending.
 712 * The caller must ensure that ->srcu_idx is not changed while checking.
 713 */
 714static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
 715{
 716        for (;;) {
 717                if (srcu_readers_active_idx_check(sp, idx))
 718                        return true;
 719                if (--trycount + !srcu_get_delay(sp) <= 0)
 720                        return false;
 721                udelay(SRCU_RETRY_CHECK_DELAY);
 722        }
 723}
 724
 725/*
 726 * Increment the ->srcu_idx counter so that future SRCU readers will
 727 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 728 * us to wait for pre-existing readers in a starvation-free manner.
 729 */
 730static void srcu_flip(struct srcu_struct *sp)
 731{
 732        /*
 733         * Ensure that if this updater saw a given reader's increment
 734         * from __srcu_read_lock(), that reader was using an old value
 735         * of ->srcu_idx.  Also ensure that if a given reader sees the
 736         * new value of ->srcu_idx, this updater's earlier scans cannot
 737         * have seen that reader's increments (which is OK, because this
 738         * grace period need not wait on that reader).
 739         */
 740        smp_mb(); /* E */  /* Pairs with B and C. */
 741
 742        WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
 743
 744        /*
 745         * Ensure that if the updater misses an __srcu_read_unlock()
 746         * increment, that task's next __srcu_read_lock() will see the
 747         * above counter update.  Note that both this memory barrier
 748         * and the one in srcu_readers_active_idx_check() provide the
 749         * guarantee for __srcu_read_lock().
 750         */
 751        smp_mb(); /* D */  /* Pairs with C. */
 752}
 753
 754/*
 755 * If SRCU is likely idle, return true, otherwise return false.
 756 *
 757 * Note that it is OK for several current from-idle requests for a new
 758 * grace period from idle to specify expediting because they will all end
 759 * up requesting the same grace period anyhow.  So no loss.
 760 *
 761 * Note also that if any CPU (including the current one) is still invoking
 762 * callbacks, this function will nevertheless say "idle".  This is not
 763 * ideal, but the overhead of checking all CPUs' callback lists is even
 764 * less ideal, especially on large systems.  Furthermore, the wakeup
 765 * can happen before the callback is fully removed, so we have no choice
 766 * but to accept this type of error.
 767 *
 768 * This function is also subject to counter-wrap errors, but let's face
 769 * it, if this function was preempted for enough time for the counters
 770 * to wrap, it really doesn't matter whether or not we expedite the grace
 771 * period.  The extra overhead of a needlessly expedited grace period is
 772 * negligible when amoritized over that time period, and the extra latency
 773 * of a needlessly non-expedited grace period is similarly negligible.
 774 */
 775static bool srcu_might_be_idle(struct srcu_struct *sp)
 776{
 777        unsigned long curseq;
 778        unsigned long flags;
 779        struct srcu_data *sdp;
 780        unsigned long t;
 781
 782        /* If the local srcu_data structure has callbacks, not idle.  */
 783        local_irq_save(flags);
 784        sdp = this_cpu_ptr(sp->sda);
 785        if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
 786                local_irq_restore(flags);
 787                return false; /* Callbacks already present, so not idle. */
 788        }
 789        local_irq_restore(flags);
 790
 791        /*
 792         * No local callbacks, so probabalistically probe global state.
 793         * Exact information would require acquiring locks, which would
 794         * kill scalability, hence the probabalistic nature of the probe.
 795         */
 796
 797        /* First, see if enough time has passed since the last GP. */
 798        t = ktime_get_mono_fast_ns();
 799        if (exp_holdoff == 0 ||
 800            time_in_range_open(t, sp->srcu_last_gp_end,
 801                               sp->srcu_last_gp_end + exp_holdoff))
 802                return false; /* Too soon after last GP. */
 803
 804        /* Next, check for probable idleness. */
 805        curseq = rcu_seq_current(&sp->srcu_gp_seq);
 806        smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
 807        if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
 808                return false; /* Grace period in progress, so not idle. */
 809        smp_mb(); /* Order ->srcu_gp_seq with prior access. */
 810        if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
 811                return false; /* GP # changed, so not idle. */
 812        return true; /* With reasonable probability, idle! */
 813}
 814
 815/*
 816 * SRCU callback function to leak a callback.
 817 */
 818static void srcu_leak_callback(struct rcu_head *rhp)
 819{
 820}
 821
 822/*
 823 * Enqueue an SRCU callback on the srcu_data structure associated with
 824 * the current CPU and the specified srcu_struct structure, initiating
 825 * grace-period processing if it is not already running.
 826 *
 827 * Note that all CPUs must agree that the grace period extended beyond
 828 * all pre-existing SRCU read-side critical section.  On systems with
 829 * more than one CPU, this means that when "func()" is invoked, each CPU
 830 * is guaranteed to have executed a full memory barrier since the end of
 831 * its last corresponding SRCU read-side critical section whose beginning
 832 * preceded the call to call_srcu().  It also means that each CPU executing
 833 * an SRCU read-side critical section that continues beyond the start of
 834 * "func()" must have executed a memory barrier after the call_srcu()
 835 * but before the beginning of that SRCU read-side critical section.
 836 * Note that these guarantees include CPUs that are offline, idle, or
 837 * executing in user mode, as well as CPUs that are executing in the kernel.
 838 *
 839 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
 840 * resulting SRCU callback function "func()", then both CPU A and CPU
 841 * B are guaranteed to execute a full memory barrier during the time
 842 * interval between the call to call_srcu() and the invocation of "func()".
 843 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 844 * again only if the system has more than one CPU).
 845 *
 846 * Of course, these guarantees apply only for invocations of call_srcu(),
 847 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 848 * srcu_struct structure.
 849 */
 850void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
 851                 rcu_callback_t func, bool do_norm)
 852{
 853        unsigned long flags;
 854        bool needexp = false;
 855        bool needgp = false;
 856        unsigned long s;
 857        struct srcu_data *sdp;
 858
 859        check_init_srcu_struct(sp);
 860        if (debug_rcu_head_queue(rhp)) {
 861                /* Probable double call_srcu(), so leak the callback. */
 862                WRITE_ONCE(rhp->func, srcu_leak_callback);
 863                WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
 864                return;
 865        }
 866        rhp->func = func;
 867        local_irq_save(flags);
 868        sdp = this_cpu_ptr(sp->sda);
 869        spin_lock_rcu_node(sdp);
 870        rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
 871        rcu_segcblist_advance(&sdp->srcu_cblist,
 872                              rcu_seq_current(&sp->srcu_gp_seq));
 873        s = rcu_seq_snap(&sp->srcu_gp_seq);
 874        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
 875        if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
 876                sdp->srcu_gp_seq_needed = s;
 877                needgp = true;
 878        }
 879        if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
 880                sdp->srcu_gp_seq_needed_exp = s;
 881                needexp = true;
 882        }
 883        spin_unlock_irqrestore_rcu_node(sdp, flags);
 884        if (needgp)
 885                srcu_funnel_gp_start(sp, sdp, s, do_norm);
 886        else if (needexp)
 887                srcu_funnel_exp_start(sp, sdp->mynode, s);
 888}
 889
 890/**
 891 * call_srcu() - Queue a callback for invocation after an SRCU grace period
 892 * @sp: srcu_struct in queue the callback
 893 * @rhp: structure to be used for queueing the SRCU callback.
 894 * @func: function to be invoked after the SRCU grace period
 895 *
 896 * The callback function will be invoked some time after a full SRCU
 897 * grace period elapses, in other words after all pre-existing SRCU
 898 * read-side critical sections have completed.  However, the callback
 899 * function might well execute concurrently with other SRCU read-side
 900 * critical sections that started after call_srcu() was invoked.  SRCU
 901 * read-side critical sections are delimited by srcu_read_lock() and
 902 * srcu_read_unlock(), and may be nested.
 903 *
 904 * The callback will be invoked from process context, but must nevertheless
 905 * be fast and must not block.
 906 */
 907void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
 908               rcu_callback_t func)
 909{
 910        __call_srcu(sp, rhp, func, true);
 911}
 912EXPORT_SYMBOL_GPL(call_srcu);
 913
 914/*
 915 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 916 */
 917static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
 918{
 919        struct rcu_synchronize rcu;
 920
 921        RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
 922                         lock_is_held(&rcu_bh_lock_map) ||
 923                         lock_is_held(&rcu_lock_map) ||
 924                         lock_is_held(&rcu_sched_lock_map),
 925                         "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
 926
 927        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 928                return;
 929        might_sleep();
 930        check_init_srcu_struct(sp);
 931        init_completion(&rcu.completion);
 932        init_rcu_head_on_stack(&rcu.head);
 933        __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
 934        wait_for_completion(&rcu.completion);
 935        destroy_rcu_head_on_stack(&rcu.head);
 936
 937        /*
 938         * Make sure that later code is ordered after the SRCU grace
 939         * period.  This pairs with the spin_lock_irq_rcu_node()
 940         * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
 941         * because the current CPU might have been totally uninvolved with
 942         * (and thus unordered against) that grace period.
 943         */
 944        smp_mb();
 945}
 946
 947/**
 948 * synchronize_srcu_expedited - Brute-force SRCU grace period
 949 * @sp: srcu_struct with which to synchronize.
 950 *
 951 * Wait for an SRCU grace period to elapse, but be more aggressive about
 952 * spinning rather than blocking when waiting.
 953 *
 954 * Note that synchronize_srcu_expedited() has the same deadlock and
 955 * memory-ordering properties as does synchronize_srcu().
 956 */
 957void synchronize_srcu_expedited(struct srcu_struct *sp)
 958{
 959        __synchronize_srcu(sp, rcu_gp_is_normal());
 960}
 961EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 962
 963/**
 964 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 965 * @sp: srcu_struct with which to synchronize.
 966 *
 967 * Wait for the count to drain to zero of both indexes. To avoid the
 968 * possible starvation of synchronize_srcu(), it waits for the count of
 969 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
 970 * and then flip the srcu_idx and wait for the count of the other index.
 971 *
 972 * Can block; must be called from process context.
 973 *
 974 * Note that it is illegal to call synchronize_srcu() from the corresponding
 975 * SRCU read-side critical section; doing so will result in deadlock.
 976 * However, it is perfectly legal to call synchronize_srcu() on one
 977 * srcu_struct from some other srcu_struct's read-side critical section,
 978 * as long as the resulting graph of srcu_structs is acyclic.
 979 *
 980 * There are memory-ordering constraints implied by synchronize_srcu().
 981 * On systems with more than one CPU, when synchronize_srcu() returns,
 982 * each CPU is guaranteed to have executed a full memory barrier since
 983 * the end of its last corresponding SRCU-sched read-side critical section
 984 * whose beginning preceded the call to synchronize_srcu().  In addition,
 985 * each CPU having an SRCU read-side critical section that extends beyond
 986 * the return from synchronize_srcu() is guaranteed to have executed a
 987 * full memory barrier after the beginning of synchronize_srcu() and before
 988 * the beginning of that SRCU read-side critical section.  Note that these
 989 * guarantees include CPUs that are offline, idle, or executing in user mode,
 990 * as well as CPUs that are executing in the kernel.
 991 *
 992 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 993 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 994 * to have executed a full memory barrier during the execution of
 995 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 996 * are the same CPU, but again only if the system has more than one CPU.
 997 *
 998 * Of course, these memory-ordering guarantees apply only when
 999 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1000 * passed the same srcu_struct structure.
1001 *
1002 * If SRCU is likely idle, expedite the first request.  This semantic
1003 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1004 * SRCU must also provide it.  Note that detecting idleness is heuristic
1005 * and subject to both false positives and negatives.
1006 */
1007void synchronize_srcu(struct srcu_struct *sp)
1008{
1009        if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
1010                synchronize_srcu_expedited(sp);
1011        else
1012                __synchronize_srcu(sp, true);
1013}
1014EXPORT_SYMBOL_GPL(synchronize_srcu);
1015
1016/*
1017 * Callback function for srcu_barrier() use.
1018 */
1019static void srcu_barrier_cb(struct rcu_head *rhp)
1020{
1021        struct srcu_data *sdp;
1022        struct srcu_struct *sp;
1023
1024        sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1025        sp = sdp->sp;
1026        if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1027                complete(&sp->srcu_barrier_completion);
1028}
1029
1030/**
1031 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1032 * @sp: srcu_struct on which to wait for in-flight callbacks.
1033 */
1034void srcu_barrier(struct srcu_struct *sp)
1035{
1036        int cpu;
1037        struct srcu_data *sdp;
1038        unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
1039
1040        check_init_srcu_struct(sp);
1041        mutex_lock(&sp->srcu_barrier_mutex);
1042        if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
1043                smp_mb(); /* Force ordering following return. */
1044                mutex_unlock(&sp->srcu_barrier_mutex);
1045                return; /* Someone else did our work for us. */
1046        }
1047        rcu_seq_start(&sp->srcu_barrier_seq);
1048        init_completion(&sp->srcu_barrier_completion);
1049
1050        /* Initial count prevents reaching zero until all CBs are posted. */
1051        atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1052
1053        /*
1054         * Each pass through this loop enqueues a callback, but only
1055         * on CPUs already having callbacks enqueued.  Note that if
1056         * a CPU already has callbacks enqueue, it must have already
1057         * registered the need for a future grace period, so all we
1058         * need do is enqueue a callback that will use the same
1059         * grace period as the last callback already in the queue.
1060         */
1061        for_each_possible_cpu(cpu) {
1062                sdp = per_cpu_ptr(sp->sda, cpu);
1063                spin_lock_irq_rcu_node(sdp);
1064                atomic_inc(&sp->srcu_barrier_cpu_cnt);
1065                sdp->srcu_barrier_head.func = srcu_barrier_cb;
1066                debug_rcu_head_queue(&sdp->srcu_barrier_head);
1067                if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1068                                           &sdp->srcu_barrier_head, 0)) {
1069                        debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1070                        atomic_dec(&sp->srcu_barrier_cpu_cnt);
1071                }
1072                spin_unlock_irq_rcu_node(sdp);
1073        }
1074
1075        /* Remove the initial count, at which point reaching zero can happen. */
1076        if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1077                complete(&sp->srcu_barrier_completion);
1078        wait_for_completion(&sp->srcu_barrier_completion);
1079
1080        rcu_seq_end(&sp->srcu_barrier_seq);
1081        mutex_unlock(&sp->srcu_barrier_mutex);
1082}
1083EXPORT_SYMBOL_GPL(srcu_barrier);
1084
1085/**
1086 * srcu_batches_completed - return batches completed.
1087 * @sp: srcu_struct on which to report batch completion.
1088 *
1089 * Report the number of batches, correlated with, but not necessarily
1090 * precisely the same as, the number of grace periods that have elapsed.
1091 */
1092unsigned long srcu_batches_completed(struct srcu_struct *sp)
1093{
1094        return sp->srcu_idx;
1095}
1096EXPORT_SYMBOL_GPL(srcu_batches_completed);
1097
1098/*
1099 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1100 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1101 * completed in that state.
1102 */
1103static void srcu_advance_state(struct srcu_struct *sp)
1104{
1105        int idx;
1106
1107        mutex_lock(&sp->srcu_gp_mutex);
1108
1109        /*
1110         * Because readers might be delayed for an extended period after
1111         * fetching ->srcu_idx for their index, at any point in time there
1112         * might well be readers using both idx=0 and idx=1.  We therefore
1113         * need to wait for readers to clear from both index values before
1114         * invoking a callback.
1115         *
1116         * The load-acquire ensures that we see the accesses performed
1117         * by the prior grace period.
1118         */
1119        idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1120        if (idx == SRCU_STATE_IDLE) {
1121                spin_lock_irq_rcu_node(sp);
1122                if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1123                        WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1124                        spin_unlock_irq_rcu_node(sp);
1125                        mutex_unlock(&sp->srcu_gp_mutex);
1126                        return;
1127                }
1128                idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1129                if (idx == SRCU_STATE_IDLE)
1130                        srcu_gp_start(sp);
1131                spin_unlock_irq_rcu_node(sp);
1132                if (idx != SRCU_STATE_IDLE) {
1133                        mutex_unlock(&sp->srcu_gp_mutex);
1134                        return; /* Someone else started the grace period. */
1135                }
1136        }
1137
1138        if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1139                idx = 1 ^ (sp->srcu_idx & 1);
1140                if (!try_check_zero(sp, idx, 1)) {
1141                        mutex_unlock(&sp->srcu_gp_mutex);
1142                        return; /* readers present, retry later. */
1143                }
1144                srcu_flip(sp);
1145                rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1146        }
1147
1148        if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1149
1150                /*
1151                 * SRCU read-side critical sections are normally short,
1152                 * so check at least twice in quick succession after a flip.
1153                 */
1154                idx = 1 ^ (sp->srcu_idx & 1);
1155                if (!try_check_zero(sp, idx, 2)) {
1156                        mutex_unlock(&sp->srcu_gp_mutex);
1157                        return; /* readers present, retry later. */
1158                }
1159                srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1160        }
1161}
1162
1163/*
1164 * Invoke a limited number of SRCU callbacks that have passed through
1165 * their grace period.  If there are more to do, SRCU will reschedule
1166 * the workqueue.  Note that needed memory barriers have been executed
1167 * in this task's context by srcu_readers_active_idx_check().
1168 */
1169static void srcu_invoke_callbacks(struct work_struct *work)
1170{
1171        bool more;
1172        struct rcu_cblist ready_cbs;
1173        struct rcu_head *rhp;
1174        struct srcu_data *sdp;
1175        struct srcu_struct *sp;
1176
1177        sdp = container_of(work, struct srcu_data, work.work);
1178        sp = sdp->sp;
1179        rcu_cblist_init(&ready_cbs);
1180        spin_lock_irq_rcu_node(sdp);
1181        rcu_segcblist_advance(&sdp->srcu_cblist,
1182                              rcu_seq_current(&sp->srcu_gp_seq));
1183        if (sdp->srcu_cblist_invoking ||
1184            !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1185                spin_unlock_irq_rcu_node(sdp);
1186                return;  /* Someone else on the job or nothing to do. */
1187        }
1188
1189        /* We are on the job!  Extract and invoke ready callbacks. */
1190        sdp->srcu_cblist_invoking = true;
1191        rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1192        spin_unlock_irq_rcu_node(sdp);
1193        rhp = rcu_cblist_dequeue(&ready_cbs);
1194        for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1195                debug_rcu_head_unqueue(rhp);
1196                local_bh_disable();
1197                rhp->func(rhp);
1198                local_bh_enable();
1199        }
1200
1201        /*
1202         * Update counts, accelerate new callbacks, and if needed,
1203         * schedule another round of callback invocation.
1204         */
1205        spin_lock_irq_rcu_node(sdp);
1206        rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1207        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1208                                       rcu_seq_snap(&sp->srcu_gp_seq));
1209        sdp->srcu_cblist_invoking = false;
1210        more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1211        spin_unlock_irq_rcu_node(sdp);
1212        if (more)
1213                srcu_schedule_cbs_sdp(sdp, 0);
1214}
1215
1216/*
1217 * Finished one round of SRCU grace period.  Start another if there are
1218 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1219 */
1220static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1221{
1222        bool pushgp = true;
1223
1224        spin_lock_irq_rcu_node(sp);
1225        if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1226                if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1227                        /* All requests fulfilled, time to go idle. */
1228                        pushgp = false;
1229                }
1230        } else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1231                /* Outstanding request and no GP.  Start one. */
1232                srcu_gp_start(sp);
1233        }
1234        spin_unlock_irq_rcu_node(sp);
1235
1236        if (pushgp)
1237                queue_delayed_work(rcu_gp_wq, &sp->work, delay);
1238}
1239
1240/*
1241 * This is the work-queue function that handles SRCU grace periods.
1242 */
1243static void process_srcu(struct work_struct *work)
1244{
1245        struct srcu_struct *sp;
1246
1247        sp = container_of(work, struct srcu_struct, work.work);
1248
1249        srcu_advance_state(sp);
1250        srcu_reschedule(sp, srcu_get_delay(sp));
1251}
1252
1253void srcutorture_get_gp_data(enum rcutorture_type test_type,
1254                             struct srcu_struct *sp, int *flags,
1255                             unsigned long *gp_seq)
1256{
1257        if (test_type != SRCU_FLAVOR)
1258                return;
1259        *flags = 0;
1260        *gp_seq = rcu_seq_current(&sp->srcu_gp_seq);
1261}
1262EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1263
1264void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf)
1265{
1266        int cpu;
1267        int idx;
1268        unsigned long s0 = 0, s1 = 0;
1269
1270        idx = sp->srcu_idx & 0x1;
1271        pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1272                 tt, tf, rcu_seq_current(&sp->srcu_gp_seq), idx);
1273        for_each_possible_cpu(cpu) {
1274                unsigned long l0, l1;
1275                unsigned long u0, u1;
1276                long c0, c1;
1277                struct srcu_data *sdp;
1278
1279                sdp = per_cpu_ptr(sp->sda, cpu);
1280                u0 = sdp->srcu_unlock_count[!idx];
1281                u1 = sdp->srcu_unlock_count[idx];
1282
1283                /*
1284                 * Make sure that a lock is always counted if the corresponding
1285                 * unlock is counted.
1286                 */
1287                smp_rmb();
1288
1289                l0 = sdp->srcu_lock_count[!idx];
1290                l1 = sdp->srcu_lock_count[idx];
1291
1292                c0 = l0 - u0;
1293                c1 = l1 - u1;
1294                pr_cont(" %d(%ld,%ld %1p)",
1295                        cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist));
1296                s0 += c0;
1297                s1 += c1;
1298        }
1299        pr_cont(" T(%ld,%ld)\n", s0, s1);
1300}
1301EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1302
1303static int __init srcu_bootup_announce(void)
1304{
1305        pr_info("Hierarchical SRCU implementation.\n");
1306        if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1307                pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1308        return 0;
1309}
1310early_initcall(srcu_bootup_announce);
1311