linux/kernel/rcu/update.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *              http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/debug.h>
  41#include <linux/atomic.h>
  42#include <linux/bitops.h>
  43#include <linux/percpu.h>
  44#include <linux/notifier.h>
  45#include <linux/cpu.h>
  46#include <linux/mutex.h>
  47#include <linux/export.h>
  48#include <linux/hardirq.h>
  49#include <linux/delay.h>
  50#include <linux/moduleparam.h>
  51#include <linux/kthread.h>
  52#include <linux/tick.h>
  53#include <linux/rcupdate_wait.h>
  54#include <linux/sched/isolation.h>
  55
  56#define CREATE_TRACE_POINTS
  57
  58#include "rcu.h"
  59
  60#ifdef MODULE_PARAM_PREFIX
  61#undef MODULE_PARAM_PREFIX
  62#endif
  63#define MODULE_PARAM_PREFIX "rcupdate."
  64
  65#ifndef CONFIG_TINY_RCU
  66extern int rcu_expedited; /* from sysctl */
  67module_param(rcu_expedited, int, 0);
  68extern int rcu_normal; /* from sysctl */
  69module_param(rcu_normal, int, 0);
  70static int rcu_normal_after_boot;
  71module_param(rcu_normal_after_boot, int, 0);
  72#endif /* #ifndef CONFIG_TINY_RCU */
  73
  74#ifdef CONFIG_DEBUG_LOCK_ALLOC
  75/**
  76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  77 *
  78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  79 * RCU-sched read-side critical section.  In absence of
  80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  81 * critical section unless it can prove otherwise.  Note that disabling
  82 * of preemption (including disabling irqs) counts as an RCU-sched
  83 * read-side critical section.  This is useful for debug checks in functions
  84 * that required that they be called within an RCU-sched read-side
  85 * critical section.
  86 *
  87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  88 * and while lockdep is disabled.
  89 *
  90 * Note that if the CPU is in the idle loop from an RCU point of
  91 * view (ie: that we are in the section between rcu_idle_enter() and
  92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  93 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  94 * that are in such a section, considering these as in extended quiescent
  95 * state, so such a CPU is effectively never in an RCU read-side critical
  96 * section regardless of what RCU primitives it invokes.  This state of
  97 * affairs is required --- we need to keep an RCU-free window in idle
  98 * where the CPU may possibly enter into low power mode. This way we can
  99 * notice an extended quiescent state to other CPUs that started a grace
 100 * period. Otherwise we would delay any grace period as long as we run in
 101 * the idle task.
 102 *
 103 * Similarly, we avoid claiming an SRCU read lock held if the current
 104 * CPU is offline.
 105 */
 106int rcu_read_lock_sched_held(void)
 107{
 108        int lockdep_opinion = 0;
 109
 110        if (!debug_lockdep_rcu_enabled())
 111                return 1;
 112        if (!rcu_is_watching())
 113                return 0;
 114        if (!rcu_lockdep_current_cpu_online())
 115                return 0;
 116        if (debug_locks)
 117                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 118        return lockdep_opinion || !preemptible();
 119}
 120EXPORT_SYMBOL(rcu_read_lock_sched_held);
 121#endif
 122
 123#ifndef CONFIG_TINY_RCU
 124
 125/*
 126 * Should expedited grace-period primitives always fall back to their
 127 * non-expedited counterparts?  Intended for use within RCU.  Note
 128 * that if the user specifies both rcu_expedited and rcu_normal, then
 129 * rcu_normal wins.  (Except during the time period during boot from
 130 * when the first task is spawned until the rcu_set_runtime_mode()
 131 * core_initcall() is invoked, at which point everything is expedited.)
 132 */
 133bool rcu_gp_is_normal(void)
 134{
 135        return READ_ONCE(rcu_normal) &&
 136               rcu_scheduler_active != RCU_SCHEDULER_INIT;
 137}
 138EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 139
 140static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 141
 142/*
 143 * Should normal grace-period primitives be expedited?  Intended for
 144 * use within RCU.  Note that this function takes the rcu_expedited
 145 * sysfs/boot variable and rcu_scheduler_active into account as well
 146 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 148 */
 149bool rcu_gp_is_expedited(void)
 150{
 151        return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 152               rcu_scheduler_active == RCU_SCHEDULER_INIT;
 153}
 154EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 155
 156/**
 157 * rcu_expedite_gp - Expedite future RCU grace periods
 158 *
 159 * After a call to this function, future calls to synchronize_rcu() and
 160 * friends act as the corresponding synchronize_rcu_expedited() function
 161 * had instead been called.
 162 */
 163void rcu_expedite_gp(void)
 164{
 165        atomic_inc(&rcu_expedited_nesting);
 166}
 167EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 168
 169/**
 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 171 *
 172 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 175 * subsequent calls to synchronize_rcu() and friends will return to
 176 * their normal non-expedited behavior.
 177 */
 178void rcu_unexpedite_gp(void)
 179{
 180        atomic_dec(&rcu_expedited_nesting);
 181}
 182EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 183
 184/*
 185 * Inform RCU of the end of the in-kernel boot sequence.
 186 */
 187void rcu_end_inkernel_boot(void)
 188{
 189        rcu_unexpedite_gp();
 190        if (rcu_normal_after_boot)
 191                WRITE_ONCE(rcu_normal, 1);
 192}
 193
 194#endif /* #ifndef CONFIG_TINY_RCU */
 195
 196/*
 197 * Test each non-SRCU synchronous grace-period wait API.  This is
 198 * useful just after a change in mode for these primitives, and
 199 * during early boot.
 200 */
 201void rcu_test_sync_prims(void)
 202{
 203        if (!IS_ENABLED(CONFIG_PROVE_RCU))
 204                return;
 205        synchronize_rcu();
 206        synchronize_rcu_bh();
 207        synchronize_sched();
 208        synchronize_rcu_expedited();
 209        synchronize_rcu_bh_expedited();
 210        synchronize_sched_expedited();
 211}
 212
 213#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 214
 215/*
 216 * Switch to run-time mode once RCU has fully initialized.
 217 */
 218static int __init rcu_set_runtime_mode(void)
 219{
 220        rcu_test_sync_prims();
 221        rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 222        rcu_test_sync_prims();
 223        return 0;
 224}
 225core_initcall(rcu_set_runtime_mode);
 226
 227#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 228
 229#ifdef CONFIG_DEBUG_LOCK_ALLOC
 230static struct lock_class_key rcu_lock_key;
 231struct lockdep_map rcu_lock_map =
 232        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 233EXPORT_SYMBOL_GPL(rcu_lock_map);
 234
 235static struct lock_class_key rcu_bh_lock_key;
 236struct lockdep_map rcu_bh_lock_map =
 237        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 238EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 239
 240static struct lock_class_key rcu_sched_lock_key;
 241struct lockdep_map rcu_sched_lock_map =
 242        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 243EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 244
 245static struct lock_class_key rcu_callback_key;
 246struct lockdep_map rcu_callback_map =
 247        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 248EXPORT_SYMBOL_GPL(rcu_callback_map);
 249
 250int notrace debug_lockdep_rcu_enabled(void)
 251{
 252        return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 253               current->lockdep_recursion == 0;
 254}
 255EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 256
 257/**
 258 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 259 *
 260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 261 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 262 * this assumes we are in an RCU read-side critical section unless it can
 263 * prove otherwise.  This is useful for debug checks in functions that
 264 * require that they be called within an RCU read-side critical section.
 265 *
 266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 267 * and while lockdep is disabled.
 268 *
 269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 270 * occur in the same context, for example, it is illegal to invoke
 271 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 272 * was invoked from within an irq handler.
 273 *
 274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 275 * offline from an RCU perspective, so check for those as well.
 276 */
 277int rcu_read_lock_held(void)
 278{
 279        if (!debug_lockdep_rcu_enabled())
 280                return 1;
 281        if (!rcu_is_watching())
 282                return 0;
 283        if (!rcu_lockdep_current_cpu_online())
 284                return 0;
 285        return lock_is_held(&rcu_lock_map);
 286}
 287EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 288
 289/**
 290 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 291 *
 292 * Check for bottom half being disabled, which covers both the
 293 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 294 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 295 * will show the situation.  This is useful for debug checks in functions
 296 * that require that they be called within an RCU read-side critical
 297 * section.
 298 *
 299 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 300 *
 301 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 302 * offline from an RCU perspective, so check for those as well.
 303 */
 304int rcu_read_lock_bh_held(void)
 305{
 306        if (!debug_lockdep_rcu_enabled())
 307                return 1;
 308        if (!rcu_is_watching())
 309                return 0;
 310        if (!rcu_lockdep_current_cpu_online())
 311                return 0;
 312        return in_softirq() || irqs_disabled();
 313}
 314EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 315
 316#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 317
 318/**
 319 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 320 * @head: Pointer to rcu_head member within rcu_synchronize structure
 321 *
 322 * Awaken the corresponding task now that a grace period has elapsed.
 323 */
 324void wakeme_after_rcu(struct rcu_head *head)
 325{
 326        struct rcu_synchronize *rcu;
 327
 328        rcu = container_of(head, struct rcu_synchronize, head);
 329        complete(&rcu->completion);
 330}
 331EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 332
 333void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 334                   struct rcu_synchronize *rs_array)
 335{
 336        int i;
 337        int j;
 338
 339        /* Initialize and register callbacks for each flavor specified. */
 340        for (i = 0; i < n; i++) {
 341                if (checktiny &&
 342                    (crcu_array[i] == call_rcu ||
 343                     crcu_array[i] == call_rcu_bh)) {
 344                        might_sleep();
 345                        continue;
 346                }
 347                init_rcu_head_on_stack(&rs_array[i].head);
 348                init_completion(&rs_array[i].completion);
 349                for (j = 0; j < i; j++)
 350                        if (crcu_array[j] == crcu_array[i])
 351                                break;
 352                if (j == i)
 353                        (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 354        }
 355
 356        /* Wait for all callbacks to be invoked. */
 357        for (i = 0; i < n; i++) {
 358                if (checktiny &&
 359                    (crcu_array[i] == call_rcu ||
 360                     crcu_array[i] == call_rcu_bh))
 361                        continue;
 362                for (j = 0; j < i; j++)
 363                        if (crcu_array[j] == crcu_array[i])
 364                                break;
 365                if (j == i)
 366                        wait_for_completion(&rs_array[i].completion);
 367                destroy_rcu_head_on_stack(&rs_array[i].head);
 368        }
 369}
 370EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 371
 372#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 373void init_rcu_head(struct rcu_head *head)
 374{
 375        debug_object_init(head, &rcuhead_debug_descr);
 376}
 377EXPORT_SYMBOL_GPL(init_rcu_head);
 378
 379void destroy_rcu_head(struct rcu_head *head)
 380{
 381        debug_object_free(head, &rcuhead_debug_descr);
 382}
 383EXPORT_SYMBOL_GPL(destroy_rcu_head);
 384
 385static bool rcuhead_is_static_object(void *addr)
 386{
 387        return true;
 388}
 389
 390/**
 391 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 392 * @head: pointer to rcu_head structure to be initialized
 393 *
 394 * This function informs debugobjects of a new rcu_head structure that
 395 * has been allocated as an auto variable on the stack.  This function
 396 * is not required for rcu_head structures that are statically defined or
 397 * that are dynamically allocated on the heap.  This function has no
 398 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 399 */
 400void init_rcu_head_on_stack(struct rcu_head *head)
 401{
 402        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 403}
 404EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 405
 406/**
 407 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 408 * @head: pointer to rcu_head structure to be initialized
 409 *
 410 * This function informs debugobjects that an on-stack rcu_head structure
 411 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 412 * function is not required for rcu_head structures that are statically
 413 * defined or that are dynamically allocated on the heap.  Also as with
 414 * init_rcu_head_on_stack(), this function has no effect for
 415 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 416 */
 417void destroy_rcu_head_on_stack(struct rcu_head *head)
 418{
 419        debug_object_free(head, &rcuhead_debug_descr);
 420}
 421EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 422
 423struct debug_obj_descr rcuhead_debug_descr = {
 424        .name = "rcu_head",
 425        .is_static_object = rcuhead_is_static_object,
 426};
 427EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 428#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 429
 430#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 431void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 432                               unsigned long secs,
 433                               unsigned long c_old, unsigned long c)
 434{
 435        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 436}
 437EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 438#else
 439#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 440        do { } while (0)
 441#endif
 442
 443#ifdef CONFIG_RCU_STALL_COMMON
 444
 445#ifdef CONFIG_PROVE_RCU
 446#define RCU_STALL_DELAY_DELTA          (5 * HZ)
 447#else
 448#define RCU_STALL_DELAY_DELTA          0
 449#endif
 450
 451int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 452EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 453static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 454
 455module_param(rcu_cpu_stall_suppress, int, 0644);
 456module_param(rcu_cpu_stall_timeout, int, 0644);
 457
 458int rcu_jiffies_till_stall_check(void)
 459{
 460        int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 461
 462        /*
 463         * Limit check must be consistent with the Kconfig limits
 464         * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 465         */
 466        if (till_stall_check < 3) {
 467                WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 468                till_stall_check = 3;
 469        } else if (till_stall_check > 300) {
 470                WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 471                till_stall_check = 300;
 472        }
 473        return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 474}
 475
 476void rcu_sysrq_start(void)
 477{
 478        if (!rcu_cpu_stall_suppress)
 479                rcu_cpu_stall_suppress = 2;
 480}
 481
 482void rcu_sysrq_end(void)
 483{
 484        if (rcu_cpu_stall_suppress == 2)
 485                rcu_cpu_stall_suppress = 0;
 486}
 487
 488static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 489{
 490        rcu_cpu_stall_suppress = 1;
 491        return NOTIFY_DONE;
 492}
 493
 494static struct notifier_block rcu_panic_block = {
 495        .notifier_call = rcu_panic,
 496};
 497
 498static int __init check_cpu_stall_init(void)
 499{
 500        atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 501        return 0;
 502}
 503early_initcall(check_cpu_stall_init);
 504
 505#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 506
 507#ifdef CONFIG_TASKS_RCU
 508
 509/*
 510 * Simple variant of RCU whose quiescent states are voluntary context
 511 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
 512 * As such, grace periods can take one good long time.  There are no
 513 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
 514 * because this implementation is intended to get the system into a safe
 515 * state for some of the manipulations involved in tracing and the like.
 516 * Finally, this implementation does not support high call_rcu_tasks()
 517 * rates from multiple CPUs.  If this is required, per-CPU callback lists
 518 * will be needed.
 519 */
 520
 521/* Global list of callbacks and associated lock. */
 522static struct rcu_head *rcu_tasks_cbs_head;
 523static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 524static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 525static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 526
 527/* Track exiting tasks in order to allow them to be waited for. */
 528DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 529
 530/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 531#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 532static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 533module_param(rcu_task_stall_timeout, int, 0644);
 534
 535static struct task_struct *rcu_tasks_kthread_ptr;
 536
 537/**
 538 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 539 * @rhp: structure to be used for queueing the RCU updates.
 540 * @func: actual callback function to be invoked after the grace period
 541 *
 542 * The callback function will be invoked some time after a full grace
 543 * period elapses, in other words after all currently executing RCU
 544 * read-side critical sections have completed. call_rcu_tasks() assumes
 545 * that the read-side critical sections end at a voluntary context
 546 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 547 * or transition to usermode execution.  As such, there are no read-side
 548 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 549 * this primitive is intended to determine that all tasks have passed
 550 * through a safe state, not so much for data-strcuture synchronization.
 551 *
 552 * See the description of call_rcu() for more detailed information on
 553 * memory ordering guarantees.
 554 */
 555void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 556{
 557        unsigned long flags;
 558        bool needwake;
 559
 560        rhp->next = NULL;
 561        rhp->func = func;
 562        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 563        needwake = !rcu_tasks_cbs_head;
 564        *rcu_tasks_cbs_tail = rhp;
 565        rcu_tasks_cbs_tail = &rhp->next;
 566        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 567        /* We can't create the thread unless interrupts are enabled. */
 568        if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 569                wake_up(&rcu_tasks_cbs_wq);
 570}
 571EXPORT_SYMBOL_GPL(call_rcu_tasks);
 572
 573/**
 574 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 575 *
 576 * Control will return to the caller some time after a full rcu-tasks
 577 * grace period has elapsed, in other words after all currently
 578 * executing rcu-tasks read-side critical sections have elapsed.  These
 579 * read-side critical sections are delimited by calls to schedule(),
 580 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 581 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 582 *
 583 * This is a very specialized primitive, intended only for a few uses in
 584 * tracing and other situations requiring manipulation of function
 585 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 586 * is not (yet) intended for heavy use from multiple CPUs.
 587 *
 588 * Note that this guarantee implies further memory-ordering guarantees.
 589 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 590 * each CPU is guaranteed to have executed a full memory barrier since the
 591 * end of its last RCU-tasks read-side critical section whose beginning
 592 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 593 * having an RCU-tasks read-side critical section that extends beyond
 594 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 595 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 596 * and before the beginning of that RCU-tasks read-side critical section.
 597 * Note that these guarantees include CPUs that are offline, idle, or
 598 * executing in user mode, as well as CPUs that are executing in the kernel.
 599 *
 600 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 601 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 602 * to have executed a full memory barrier during the execution of
 603 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 604 * (but again only if the system has more than one CPU).
 605 */
 606void synchronize_rcu_tasks(void)
 607{
 608        /* Complain if the scheduler has not started.  */
 609        RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 610                         "synchronize_rcu_tasks called too soon");
 611
 612        /* Wait for the grace period. */
 613        wait_rcu_gp(call_rcu_tasks);
 614}
 615EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 616
 617/**
 618 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 619 *
 620 * Although the current implementation is guaranteed to wait, it is not
 621 * obligated to, for example, if there are no pending callbacks.
 622 */
 623void rcu_barrier_tasks(void)
 624{
 625        /* There is only one callback queue, so this is easy.  ;-) */
 626        synchronize_rcu_tasks();
 627}
 628EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 629
 630/* See if tasks are still holding out, complain if so. */
 631static void check_holdout_task(struct task_struct *t,
 632                               bool needreport, bool *firstreport)
 633{
 634        int cpu;
 635
 636        if (!READ_ONCE(t->rcu_tasks_holdout) ||
 637            t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 638            !READ_ONCE(t->on_rq) ||
 639            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 640             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 641                WRITE_ONCE(t->rcu_tasks_holdout, false);
 642                list_del_init(&t->rcu_tasks_holdout_list);
 643                put_task_struct(t);
 644                return;
 645        }
 646        rcu_request_urgent_qs_task(t);
 647        if (!needreport)
 648                return;
 649        if (*firstreport) {
 650                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 651                *firstreport = false;
 652        }
 653        cpu = task_cpu(t);
 654        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 655                 t, ".I"[is_idle_task(t)],
 656                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 657                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 658                 t->rcu_tasks_idle_cpu, cpu);
 659        sched_show_task(t);
 660}
 661
 662/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 663static int __noreturn rcu_tasks_kthread(void *arg)
 664{
 665        unsigned long flags;
 666        struct task_struct *g, *t;
 667        unsigned long lastreport;
 668        struct rcu_head *list;
 669        struct rcu_head *next;
 670        LIST_HEAD(rcu_tasks_holdouts);
 671        int fract;
 672
 673        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 674        housekeeping_affine(current, HK_FLAG_RCU);
 675
 676        /*
 677         * Each pass through the following loop makes one check for
 678         * newly arrived callbacks, and, if there are some, waits for
 679         * one RCU-tasks grace period and then invokes the callbacks.
 680         * This loop is terminated by the system going down.  ;-)
 681         */
 682        for (;;) {
 683
 684                /* Pick up any new callbacks. */
 685                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 686                list = rcu_tasks_cbs_head;
 687                rcu_tasks_cbs_head = NULL;
 688                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 689                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 690
 691                /* If there were none, wait a bit and start over. */
 692                if (!list) {
 693                        wait_event_interruptible(rcu_tasks_cbs_wq,
 694                                                 rcu_tasks_cbs_head);
 695                        if (!rcu_tasks_cbs_head) {
 696                                WARN_ON(signal_pending(current));
 697                                schedule_timeout_interruptible(HZ/10);
 698                        }
 699                        continue;
 700                }
 701
 702                /*
 703                 * Wait for all pre-existing t->on_rq and t->nvcsw
 704                 * transitions to complete.  Invoking synchronize_sched()
 705                 * suffices because all these transitions occur with
 706                 * interrupts disabled.  Without this synchronize_sched(),
 707                 * a read-side critical section that started before the
 708                 * grace period might be incorrectly seen as having started
 709                 * after the grace period.
 710                 *
 711                 * This synchronize_sched() also dispenses with the
 712                 * need for a memory barrier on the first store to
 713                 * ->rcu_tasks_holdout, as it forces the store to happen
 714                 * after the beginning of the grace period.
 715                 */
 716                synchronize_sched();
 717
 718                /*
 719                 * There were callbacks, so we need to wait for an
 720                 * RCU-tasks grace period.  Start off by scanning
 721                 * the task list for tasks that are not already
 722                 * voluntarily blocked.  Mark these tasks and make
 723                 * a list of them in rcu_tasks_holdouts.
 724                 */
 725                rcu_read_lock();
 726                for_each_process_thread(g, t) {
 727                        if (t != current && READ_ONCE(t->on_rq) &&
 728                            !is_idle_task(t)) {
 729                                get_task_struct(t);
 730                                t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 731                                WRITE_ONCE(t->rcu_tasks_holdout, true);
 732                                list_add(&t->rcu_tasks_holdout_list,
 733                                         &rcu_tasks_holdouts);
 734                        }
 735                }
 736                rcu_read_unlock();
 737
 738                /*
 739                 * Wait for tasks that are in the process of exiting.
 740                 * This does only part of the job, ensuring that all
 741                 * tasks that were previously exiting reach the point
 742                 * where they have disabled preemption, allowing the
 743                 * later synchronize_sched() to finish the job.
 744                 */
 745                synchronize_srcu(&tasks_rcu_exit_srcu);
 746
 747                /*
 748                 * Each pass through the following loop scans the list
 749                 * of holdout tasks, removing any that are no longer
 750                 * holdouts.  When the list is empty, we are done.
 751                 */
 752                lastreport = jiffies;
 753
 754                /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
 755                fract = 10;
 756
 757                for (;;) {
 758                        bool firstreport;
 759                        bool needreport;
 760                        int rtst;
 761                        struct task_struct *t1;
 762
 763                        if (list_empty(&rcu_tasks_holdouts))
 764                                break;
 765
 766                        /* Slowly back off waiting for holdouts */
 767                        schedule_timeout_interruptible(HZ/fract);
 768
 769                        if (fract > 1)
 770                                fract--;
 771
 772                        rtst = READ_ONCE(rcu_task_stall_timeout);
 773                        needreport = rtst > 0 &&
 774                                     time_after(jiffies, lastreport + rtst);
 775                        if (needreport)
 776                                lastreport = jiffies;
 777                        firstreport = true;
 778                        WARN_ON(signal_pending(current));
 779                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 780                                                rcu_tasks_holdout_list) {
 781                                check_holdout_task(t, needreport, &firstreport);
 782                                cond_resched();
 783                        }
 784                }
 785
 786                /*
 787                 * Because ->on_rq and ->nvcsw are not guaranteed
 788                 * to have a full memory barriers prior to them in the
 789                 * schedule() path, memory reordering on other CPUs could
 790                 * cause their RCU-tasks read-side critical sections to
 791                 * extend past the end of the grace period.  However,
 792                 * because these ->nvcsw updates are carried out with
 793                 * interrupts disabled, we can use synchronize_sched()
 794                 * to force the needed ordering on all such CPUs.
 795                 *
 796                 * This synchronize_sched() also confines all
 797                 * ->rcu_tasks_holdout accesses to be within the grace
 798                 * period, avoiding the need for memory barriers for
 799                 * ->rcu_tasks_holdout accesses.
 800                 *
 801                 * In addition, this synchronize_sched() waits for exiting
 802                 * tasks to complete their final preempt_disable() region
 803                 * of execution, cleaning up after the synchronize_srcu()
 804                 * above.
 805                 */
 806                synchronize_sched();
 807
 808                /* Invoke the callbacks. */
 809                while (list) {
 810                        next = list->next;
 811                        local_bh_disable();
 812                        list->func(list);
 813                        local_bh_enable();
 814                        list = next;
 815                        cond_resched();
 816                }
 817                /* Paranoid sleep to keep this from entering a tight loop */
 818                schedule_timeout_uninterruptible(HZ/10);
 819        }
 820}
 821
 822/* Spawn rcu_tasks_kthread() at core_initcall() time. */
 823static int __init rcu_spawn_tasks_kthread(void)
 824{
 825        struct task_struct *t;
 826
 827        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 828        BUG_ON(IS_ERR(t));
 829        smp_mb(); /* Ensure others see full kthread. */
 830        WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 831        return 0;
 832}
 833core_initcall(rcu_spawn_tasks_kthread);
 834
 835/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 836void exit_tasks_rcu_start(void)
 837{
 838        preempt_disable();
 839        current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 840        preempt_enable();
 841}
 842
 843/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 844void exit_tasks_rcu_finish(void)
 845{
 846        preempt_disable();
 847        __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 848        preempt_enable();
 849}
 850
 851#endif /* #ifdef CONFIG_TASKS_RCU */
 852
 853#ifndef CONFIG_TINY_RCU
 854
 855/*
 856 * Print any non-default Tasks RCU settings.
 857 */
 858static void __init rcu_tasks_bootup_oddness(void)
 859{
 860#ifdef CONFIG_TASKS_RCU
 861        if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 862                pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 863        else
 864                pr_info("\tTasks RCU enabled.\n");
 865#endif /* #ifdef CONFIG_TASKS_RCU */
 866}
 867
 868#endif /* #ifndef CONFIG_TINY_RCU */
 869
 870#ifdef CONFIG_PROVE_RCU
 871
 872/*
 873 * Early boot self test parameters, one for each flavor
 874 */
 875static bool rcu_self_test;
 876static bool rcu_self_test_bh;
 877static bool rcu_self_test_sched;
 878
 879module_param(rcu_self_test, bool, 0444);
 880module_param(rcu_self_test_bh, bool, 0444);
 881module_param(rcu_self_test_sched, bool, 0444);
 882
 883static int rcu_self_test_counter;
 884
 885static void test_callback(struct rcu_head *r)
 886{
 887        rcu_self_test_counter++;
 888        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 889}
 890
 891static void early_boot_test_call_rcu(void)
 892{
 893        static struct rcu_head head;
 894
 895        call_rcu(&head, test_callback);
 896}
 897
 898static void early_boot_test_call_rcu_bh(void)
 899{
 900        static struct rcu_head head;
 901
 902        call_rcu_bh(&head, test_callback);
 903}
 904
 905static void early_boot_test_call_rcu_sched(void)
 906{
 907        static struct rcu_head head;
 908
 909        call_rcu_sched(&head, test_callback);
 910}
 911
 912void rcu_early_boot_tests(void)
 913{
 914        pr_info("Running RCU self tests\n");
 915
 916        if (rcu_self_test)
 917                early_boot_test_call_rcu();
 918        if (rcu_self_test_bh)
 919                early_boot_test_call_rcu_bh();
 920        if (rcu_self_test_sched)
 921                early_boot_test_call_rcu_sched();
 922        rcu_test_sync_prims();
 923}
 924
 925static int rcu_verify_early_boot_tests(void)
 926{
 927        int ret = 0;
 928        int early_boot_test_counter = 0;
 929
 930        if (rcu_self_test) {
 931                early_boot_test_counter++;
 932                rcu_barrier();
 933        }
 934        if (rcu_self_test_bh) {
 935                early_boot_test_counter++;
 936                rcu_barrier_bh();
 937        }
 938        if (rcu_self_test_sched) {
 939                early_boot_test_counter++;
 940                rcu_barrier_sched();
 941        }
 942
 943        if (rcu_self_test_counter != early_boot_test_counter) {
 944                WARN_ON(1);
 945                ret = -1;
 946        }
 947
 948        return ret;
 949}
 950late_initcall(rcu_verify_early_boot_tests);
 951#else
 952void rcu_early_boot_tests(void) {}
 953#endif /* CONFIG_PROVE_RCU */
 954
 955#ifndef CONFIG_TINY_RCU
 956
 957/*
 958 * Print any significant non-default boot-time settings.
 959 */
 960void __init rcupdate_announce_bootup_oddness(void)
 961{
 962        if (rcu_normal)
 963                pr_info("\tNo expedited grace period (rcu_normal).\n");
 964        else if (rcu_normal_after_boot)
 965                pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 966        else if (rcu_expedited)
 967                pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
 968        if (rcu_cpu_stall_suppress)
 969                pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
 970        if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
 971                pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
 972        rcu_tasks_bootup_oddness();
 973}
 974
 975#endif /* #ifndef CONFIG_TINY_RCU */
 976