linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Core kernel scheduler code and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 */
   8#include "sched.h"
   9
  10#include <linux/nospec.h>
  11
  12#include <linux/kcov.h>
  13
  14#include <asm/switch_to.h>
  15#include <asm/tlb.h>
  16
  17#include "../workqueue_internal.h"
  18#include "../smpboot.h"
  19
  20#include "pelt.h"
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/sched.h>
  24
  25DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  26
  27#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  28/*
  29 * Debugging: various feature bits
  30 *
  31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  33 * at compile time and compiler optimization based on features default.
  34 */
  35#define SCHED_FEAT(name, enabled)       \
  36        (1UL << __SCHED_FEAT_##name) * enabled |
  37const_debug unsigned int sysctl_sched_features =
  38#include "features.h"
  39        0;
  40#undef SCHED_FEAT
  41#endif
  42
  43/*
  44 * Number of tasks to iterate in a single balance run.
  45 * Limited because this is done with IRQs disabled.
  46 */
  47const_debug unsigned int sysctl_sched_nr_migrate = 32;
  48
  49/*
  50 * period over which we measure -rt task CPU usage in us.
  51 * default: 1s
  52 */
  53unsigned int sysctl_sched_rt_period = 1000000;
  54
  55__read_mostly int scheduler_running;
  56
  57/*
  58 * part of the period that we allow rt tasks to run in us.
  59 * default: 0.95s
  60 */
  61int sysctl_sched_rt_runtime = 950000;
  62
  63/*
  64 * __task_rq_lock - lock the rq @p resides on.
  65 */
  66struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  67        __acquires(rq->lock)
  68{
  69        struct rq *rq;
  70
  71        lockdep_assert_held(&p->pi_lock);
  72
  73        for (;;) {
  74                rq = task_rq(p);
  75                raw_spin_lock(&rq->lock);
  76                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  77                        rq_pin_lock(rq, rf);
  78                        return rq;
  79                }
  80                raw_spin_unlock(&rq->lock);
  81
  82                while (unlikely(task_on_rq_migrating(p)))
  83                        cpu_relax();
  84        }
  85}
  86
  87/*
  88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  89 */
  90struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  91        __acquires(p->pi_lock)
  92        __acquires(rq->lock)
  93{
  94        struct rq *rq;
  95
  96        for (;;) {
  97                raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  98                rq = task_rq(p);
  99                raw_spin_lock(&rq->lock);
 100                /*
 101                 *      move_queued_task()              task_rq_lock()
 102                 *
 103                 *      ACQUIRE (rq->lock)
 104                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
 105                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
 106                 *      [S] ->cpu = new_cpu             [L] task_rq()
 107                 *                                      [L] ->on_rq
 108                 *      RELEASE (rq->lock)
 109                 *
 110                 * If we observe the old CPU in task_rq_lock, the acquire of
 111                 * the old rq->lock will fully serialize against the stores.
 112                 *
 113                 * If we observe the new CPU in task_rq_lock, the acquire will
 114                 * pair with the WMB to ensure we must then also see migrating.
 115                 */
 116                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 117                        rq_pin_lock(rq, rf);
 118                        return rq;
 119                }
 120                raw_spin_unlock(&rq->lock);
 121                raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 122
 123                while (unlikely(task_on_rq_migrating(p)))
 124                        cpu_relax();
 125        }
 126}
 127
 128/*
 129 * RQ-clock updating methods:
 130 */
 131
 132static void update_rq_clock_task(struct rq *rq, s64 delta)
 133{
 134/*
 135 * In theory, the compile should just see 0 here, and optimize out the call
 136 * to sched_rt_avg_update. But I don't trust it...
 137 */
 138#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 139        s64 steal = 0, irq_delta = 0;
 140#endif
 141#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 142        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 143
 144        /*
 145         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 146         * this case when a previous update_rq_clock() happened inside a
 147         * {soft,}irq region.
 148         *
 149         * When this happens, we stop ->clock_task and only update the
 150         * prev_irq_time stamp to account for the part that fit, so that a next
 151         * update will consume the rest. This ensures ->clock_task is
 152         * monotonic.
 153         *
 154         * It does however cause some slight miss-attribution of {soft,}irq
 155         * time, a more accurate solution would be to update the irq_time using
 156         * the current rq->clock timestamp, except that would require using
 157         * atomic ops.
 158         */
 159        if (irq_delta > delta)
 160                irq_delta = delta;
 161
 162        rq->prev_irq_time += irq_delta;
 163        delta -= irq_delta;
 164#endif
 165#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 166        if (static_key_false((&paravirt_steal_rq_enabled))) {
 167                steal = paravirt_steal_clock(cpu_of(rq));
 168                steal -= rq->prev_steal_time_rq;
 169
 170                if (unlikely(steal > delta))
 171                        steal = delta;
 172
 173                rq->prev_steal_time_rq += steal;
 174                delta -= steal;
 175        }
 176#endif
 177
 178        rq->clock_task += delta;
 179
 180#ifdef HAVE_SCHED_AVG_IRQ
 181        if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 182                update_irq_load_avg(rq, irq_delta + steal);
 183#endif
 184}
 185
 186void update_rq_clock(struct rq *rq)
 187{
 188        s64 delta;
 189
 190        lockdep_assert_held(&rq->lock);
 191
 192        if (rq->clock_update_flags & RQCF_ACT_SKIP)
 193                return;
 194
 195#ifdef CONFIG_SCHED_DEBUG
 196        if (sched_feat(WARN_DOUBLE_CLOCK))
 197                SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 198        rq->clock_update_flags |= RQCF_UPDATED;
 199#endif
 200
 201        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 202        if (delta < 0)
 203                return;
 204        rq->clock += delta;
 205        update_rq_clock_task(rq, delta);
 206}
 207
 208
 209#ifdef CONFIG_SCHED_HRTICK
 210/*
 211 * Use HR-timers to deliver accurate preemption points.
 212 */
 213
 214static void hrtick_clear(struct rq *rq)
 215{
 216        if (hrtimer_active(&rq->hrtick_timer))
 217                hrtimer_cancel(&rq->hrtick_timer);
 218}
 219
 220/*
 221 * High-resolution timer tick.
 222 * Runs from hardirq context with interrupts disabled.
 223 */
 224static enum hrtimer_restart hrtick(struct hrtimer *timer)
 225{
 226        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 227        struct rq_flags rf;
 228
 229        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 230
 231        rq_lock(rq, &rf);
 232        update_rq_clock(rq);
 233        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 234        rq_unlock(rq, &rf);
 235
 236        return HRTIMER_NORESTART;
 237}
 238
 239#ifdef CONFIG_SMP
 240
 241static void __hrtick_restart(struct rq *rq)
 242{
 243        struct hrtimer *timer = &rq->hrtick_timer;
 244
 245        hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 246}
 247
 248/*
 249 * called from hardirq (IPI) context
 250 */
 251static void __hrtick_start(void *arg)
 252{
 253        struct rq *rq = arg;
 254        struct rq_flags rf;
 255
 256        rq_lock(rq, &rf);
 257        __hrtick_restart(rq);
 258        rq->hrtick_csd_pending = 0;
 259        rq_unlock(rq, &rf);
 260}
 261
 262/*
 263 * Called to set the hrtick timer state.
 264 *
 265 * called with rq->lock held and irqs disabled
 266 */
 267void hrtick_start(struct rq *rq, u64 delay)
 268{
 269        struct hrtimer *timer = &rq->hrtick_timer;
 270        ktime_t time;
 271        s64 delta;
 272
 273        /*
 274         * Don't schedule slices shorter than 10000ns, that just
 275         * doesn't make sense and can cause timer DoS.
 276         */
 277        delta = max_t(s64, delay, 10000LL);
 278        time = ktime_add_ns(timer->base->get_time(), delta);
 279
 280        hrtimer_set_expires(timer, time);
 281
 282        if (rq == this_rq()) {
 283                __hrtick_restart(rq);
 284        } else if (!rq->hrtick_csd_pending) {
 285                smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 286                rq->hrtick_csd_pending = 1;
 287        }
 288}
 289
 290#else
 291/*
 292 * Called to set the hrtick timer state.
 293 *
 294 * called with rq->lock held and irqs disabled
 295 */
 296void hrtick_start(struct rq *rq, u64 delay)
 297{
 298        /*
 299         * Don't schedule slices shorter than 10000ns, that just
 300         * doesn't make sense. Rely on vruntime for fairness.
 301         */
 302        delay = max_t(u64, delay, 10000LL);
 303        hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 304                      HRTIMER_MODE_REL_PINNED);
 305}
 306#endif /* CONFIG_SMP */
 307
 308static void hrtick_rq_init(struct rq *rq)
 309{
 310#ifdef CONFIG_SMP
 311        rq->hrtick_csd_pending = 0;
 312
 313        rq->hrtick_csd.flags = 0;
 314        rq->hrtick_csd.func = __hrtick_start;
 315        rq->hrtick_csd.info = rq;
 316#endif
 317
 318        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 319        rq->hrtick_timer.function = hrtick;
 320}
 321#else   /* CONFIG_SCHED_HRTICK */
 322static inline void hrtick_clear(struct rq *rq)
 323{
 324}
 325
 326static inline void hrtick_rq_init(struct rq *rq)
 327{
 328}
 329#endif  /* CONFIG_SCHED_HRTICK */
 330
 331/*
 332 * cmpxchg based fetch_or, macro so it works for different integer types
 333 */
 334#define fetch_or(ptr, mask)                                             \
 335        ({                                                              \
 336                typeof(ptr) _ptr = (ptr);                               \
 337                typeof(mask) _mask = (mask);                            \
 338                typeof(*_ptr) _old, _val = *_ptr;                       \
 339                                                                        \
 340                for (;;) {                                              \
 341                        _old = cmpxchg(_ptr, _val, _val | _mask);       \
 342                        if (_old == _val)                               \
 343                                break;                                  \
 344                        _val = _old;                                    \
 345                }                                                       \
 346        _old;                                                           \
 347})
 348
 349#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 350/*
 351 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 352 * this avoids any races wrt polling state changes and thereby avoids
 353 * spurious IPIs.
 354 */
 355static bool set_nr_and_not_polling(struct task_struct *p)
 356{
 357        struct thread_info *ti = task_thread_info(p);
 358        return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 359}
 360
 361/*
 362 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 363 *
 364 * If this returns true, then the idle task promises to call
 365 * sched_ttwu_pending() and reschedule soon.
 366 */
 367static bool set_nr_if_polling(struct task_struct *p)
 368{
 369        struct thread_info *ti = task_thread_info(p);
 370        typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 371
 372        for (;;) {
 373                if (!(val & _TIF_POLLING_NRFLAG))
 374                        return false;
 375                if (val & _TIF_NEED_RESCHED)
 376                        return true;
 377                old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 378                if (old == val)
 379                        break;
 380                val = old;
 381        }
 382        return true;
 383}
 384
 385#else
 386static bool set_nr_and_not_polling(struct task_struct *p)
 387{
 388        set_tsk_need_resched(p);
 389        return true;
 390}
 391
 392#ifdef CONFIG_SMP
 393static bool set_nr_if_polling(struct task_struct *p)
 394{
 395        return false;
 396}
 397#endif
 398#endif
 399
 400void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 401{
 402        struct wake_q_node *node = &task->wake_q;
 403
 404        /*
 405         * Atomically grab the task, if ->wake_q is !nil already it means
 406         * its already queued (either by us or someone else) and will get the
 407         * wakeup due to that.
 408         *
 409         * This cmpxchg() executes a full barrier, which pairs with the full
 410         * barrier executed by the wakeup in wake_up_q().
 411         */
 412        if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 413                return;
 414
 415        get_task_struct(task);
 416
 417        /*
 418         * The head is context local, there can be no concurrency.
 419         */
 420        *head->lastp = node;
 421        head->lastp = &node->next;
 422}
 423
 424void wake_up_q(struct wake_q_head *head)
 425{
 426        struct wake_q_node *node = head->first;
 427
 428        while (node != WAKE_Q_TAIL) {
 429                struct task_struct *task;
 430
 431                task = container_of(node, struct task_struct, wake_q);
 432                BUG_ON(!task);
 433                /* Task can safely be re-inserted now: */
 434                node = node->next;
 435                task->wake_q.next = NULL;
 436
 437                /*
 438                 * wake_up_process() executes a full barrier, which pairs with
 439                 * the queueing in wake_q_add() so as not to miss wakeups.
 440                 */
 441                wake_up_process(task);
 442                put_task_struct(task);
 443        }
 444}
 445
 446/*
 447 * resched_curr - mark rq's current task 'to be rescheduled now'.
 448 *
 449 * On UP this means the setting of the need_resched flag, on SMP it
 450 * might also involve a cross-CPU call to trigger the scheduler on
 451 * the target CPU.
 452 */
 453void resched_curr(struct rq *rq)
 454{
 455        struct task_struct *curr = rq->curr;
 456        int cpu;
 457
 458        lockdep_assert_held(&rq->lock);
 459
 460        if (test_tsk_need_resched(curr))
 461                return;
 462
 463        cpu = cpu_of(rq);
 464
 465        if (cpu == smp_processor_id()) {
 466                set_tsk_need_resched(curr);
 467                set_preempt_need_resched();
 468                return;
 469        }
 470
 471        if (set_nr_and_not_polling(curr))
 472                smp_send_reschedule(cpu);
 473        else
 474                trace_sched_wake_idle_without_ipi(cpu);
 475}
 476
 477void resched_cpu(int cpu)
 478{
 479        struct rq *rq = cpu_rq(cpu);
 480        unsigned long flags;
 481
 482        raw_spin_lock_irqsave(&rq->lock, flags);
 483        if (cpu_online(cpu) || cpu == smp_processor_id())
 484                resched_curr(rq);
 485        raw_spin_unlock_irqrestore(&rq->lock, flags);
 486}
 487
 488#ifdef CONFIG_SMP
 489#ifdef CONFIG_NO_HZ_COMMON
 490/*
 491 * In the semi idle case, use the nearest busy CPU for migrating timers
 492 * from an idle CPU.  This is good for power-savings.
 493 *
 494 * We don't do similar optimization for completely idle system, as
 495 * selecting an idle CPU will add more delays to the timers than intended
 496 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 497 */
 498int get_nohz_timer_target(void)
 499{
 500        int i, cpu = smp_processor_id();
 501        struct sched_domain *sd;
 502
 503        if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
 504                return cpu;
 505
 506        rcu_read_lock();
 507        for_each_domain(cpu, sd) {
 508                for_each_cpu(i, sched_domain_span(sd)) {
 509                        if (cpu == i)
 510                                continue;
 511
 512                        if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
 513                                cpu = i;
 514                                goto unlock;
 515                        }
 516                }
 517        }
 518
 519        if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
 520                cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 521unlock:
 522        rcu_read_unlock();
 523        return cpu;
 524}
 525
 526/*
 527 * When add_timer_on() enqueues a timer into the timer wheel of an
 528 * idle CPU then this timer might expire before the next timer event
 529 * which is scheduled to wake up that CPU. In case of a completely
 530 * idle system the next event might even be infinite time into the
 531 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 532 * leaves the inner idle loop so the newly added timer is taken into
 533 * account when the CPU goes back to idle and evaluates the timer
 534 * wheel for the next timer event.
 535 */
 536static void wake_up_idle_cpu(int cpu)
 537{
 538        struct rq *rq = cpu_rq(cpu);
 539
 540        if (cpu == smp_processor_id())
 541                return;
 542
 543        if (set_nr_and_not_polling(rq->idle))
 544                smp_send_reschedule(cpu);
 545        else
 546                trace_sched_wake_idle_without_ipi(cpu);
 547}
 548
 549static bool wake_up_full_nohz_cpu(int cpu)
 550{
 551        /*
 552         * We just need the target to call irq_exit() and re-evaluate
 553         * the next tick. The nohz full kick at least implies that.
 554         * If needed we can still optimize that later with an
 555         * empty IRQ.
 556         */
 557        if (cpu_is_offline(cpu))
 558                return true;  /* Don't try to wake offline CPUs. */
 559        if (tick_nohz_full_cpu(cpu)) {
 560                if (cpu != smp_processor_id() ||
 561                    tick_nohz_tick_stopped())
 562                        tick_nohz_full_kick_cpu(cpu);
 563                return true;
 564        }
 565
 566        return false;
 567}
 568
 569/*
 570 * Wake up the specified CPU.  If the CPU is going offline, it is the
 571 * caller's responsibility to deal with the lost wakeup, for example,
 572 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 573 */
 574void wake_up_nohz_cpu(int cpu)
 575{
 576        if (!wake_up_full_nohz_cpu(cpu))
 577                wake_up_idle_cpu(cpu);
 578}
 579
 580static inline bool got_nohz_idle_kick(void)
 581{
 582        int cpu = smp_processor_id();
 583
 584        if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
 585                return false;
 586
 587        if (idle_cpu(cpu) && !need_resched())
 588                return true;
 589
 590        /*
 591         * We can't run Idle Load Balance on this CPU for this time so we
 592         * cancel it and clear NOHZ_BALANCE_KICK
 593         */
 594        atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 595        return false;
 596}
 597
 598#else /* CONFIG_NO_HZ_COMMON */
 599
 600static inline bool got_nohz_idle_kick(void)
 601{
 602        return false;
 603}
 604
 605#endif /* CONFIG_NO_HZ_COMMON */
 606
 607#ifdef CONFIG_NO_HZ_FULL
 608bool sched_can_stop_tick(struct rq *rq)
 609{
 610        int fifo_nr_running;
 611
 612        /* Deadline tasks, even if single, need the tick */
 613        if (rq->dl.dl_nr_running)
 614                return false;
 615
 616        /*
 617         * If there are more than one RR tasks, we need the tick to effect the
 618         * actual RR behaviour.
 619         */
 620        if (rq->rt.rr_nr_running) {
 621                if (rq->rt.rr_nr_running == 1)
 622                        return true;
 623                else
 624                        return false;
 625        }
 626
 627        /*
 628         * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 629         * forced preemption between FIFO tasks.
 630         */
 631        fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 632        if (fifo_nr_running)
 633                return true;
 634
 635        /*
 636         * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 637         * if there's more than one we need the tick for involuntary
 638         * preemption.
 639         */
 640        if (rq->nr_running > 1)
 641                return false;
 642
 643        return true;
 644}
 645#endif /* CONFIG_NO_HZ_FULL */
 646#endif /* CONFIG_SMP */
 647
 648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 649                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 650/*
 651 * Iterate task_group tree rooted at *from, calling @down when first entering a
 652 * node and @up when leaving it for the final time.
 653 *
 654 * Caller must hold rcu_lock or sufficient equivalent.
 655 */
 656int walk_tg_tree_from(struct task_group *from,
 657                             tg_visitor down, tg_visitor up, void *data)
 658{
 659        struct task_group *parent, *child;
 660        int ret;
 661
 662        parent = from;
 663
 664down:
 665        ret = (*down)(parent, data);
 666        if (ret)
 667                goto out;
 668        list_for_each_entry_rcu(child, &parent->children, siblings) {
 669                parent = child;
 670                goto down;
 671
 672up:
 673                continue;
 674        }
 675        ret = (*up)(parent, data);
 676        if (ret || parent == from)
 677                goto out;
 678
 679        child = parent;
 680        parent = parent->parent;
 681        if (parent)
 682                goto up;
 683out:
 684        return ret;
 685}
 686
 687int tg_nop(struct task_group *tg, void *data)
 688{
 689        return 0;
 690}
 691#endif
 692
 693static void set_load_weight(struct task_struct *p, bool update_load)
 694{
 695        int prio = p->static_prio - MAX_RT_PRIO;
 696        struct load_weight *load = &p->se.load;
 697
 698        /*
 699         * SCHED_IDLE tasks get minimal weight:
 700         */
 701        if (idle_policy(p->policy)) {
 702                load->weight = scale_load(WEIGHT_IDLEPRIO);
 703                load->inv_weight = WMULT_IDLEPRIO;
 704                return;
 705        }
 706
 707        /*
 708         * SCHED_OTHER tasks have to update their load when changing their
 709         * weight
 710         */
 711        if (update_load && p->sched_class == &fair_sched_class) {
 712                reweight_task(p, prio);
 713        } else {
 714                load->weight = scale_load(sched_prio_to_weight[prio]);
 715                load->inv_weight = sched_prio_to_wmult[prio];
 716        }
 717}
 718
 719static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 720{
 721        if (!(flags & ENQUEUE_NOCLOCK))
 722                update_rq_clock(rq);
 723
 724        if (!(flags & ENQUEUE_RESTORE))
 725                sched_info_queued(rq, p);
 726
 727        p->sched_class->enqueue_task(rq, p, flags);
 728}
 729
 730static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 731{
 732        if (!(flags & DEQUEUE_NOCLOCK))
 733                update_rq_clock(rq);
 734
 735        if (!(flags & DEQUEUE_SAVE))
 736                sched_info_dequeued(rq, p);
 737
 738        p->sched_class->dequeue_task(rq, p, flags);
 739}
 740
 741void activate_task(struct rq *rq, struct task_struct *p, int flags)
 742{
 743        if (task_contributes_to_load(p))
 744                rq->nr_uninterruptible--;
 745
 746        enqueue_task(rq, p, flags);
 747}
 748
 749void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 750{
 751        if (task_contributes_to_load(p))
 752                rq->nr_uninterruptible++;
 753
 754        dequeue_task(rq, p, flags);
 755}
 756
 757/*
 758 * __normal_prio - return the priority that is based on the static prio
 759 */
 760static inline int __normal_prio(struct task_struct *p)
 761{
 762        return p->static_prio;
 763}
 764
 765/*
 766 * Calculate the expected normal priority: i.e. priority
 767 * without taking RT-inheritance into account. Might be
 768 * boosted by interactivity modifiers. Changes upon fork,
 769 * setprio syscalls, and whenever the interactivity
 770 * estimator recalculates.
 771 */
 772static inline int normal_prio(struct task_struct *p)
 773{
 774        int prio;
 775
 776        if (task_has_dl_policy(p))
 777                prio = MAX_DL_PRIO-1;
 778        else if (task_has_rt_policy(p))
 779                prio = MAX_RT_PRIO-1 - p->rt_priority;
 780        else
 781                prio = __normal_prio(p);
 782        return prio;
 783}
 784
 785/*
 786 * Calculate the current priority, i.e. the priority
 787 * taken into account by the scheduler. This value might
 788 * be boosted by RT tasks, or might be boosted by
 789 * interactivity modifiers. Will be RT if the task got
 790 * RT-boosted. If not then it returns p->normal_prio.
 791 */
 792static int effective_prio(struct task_struct *p)
 793{
 794        p->normal_prio = normal_prio(p);
 795        /*
 796         * If we are RT tasks or we were boosted to RT priority,
 797         * keep the priority unchanged. Otherwise, update priority
 798         * to the normal priority:
 799         */
 800        if (!rt_prio(p->prio))
 801                return p->normal_prio;
 802        return p->prio;
 803}
 804
 805/**
 806 * task_curr - is this task currently executing on a CPU?
 807 * @p: the task in question.
 808 *
 809 * Return: 1 if the task is currently executing. 0 otherwise.
 810 */
 811inline int task_curr(const struct task_struct *p)
 812{
 813        return cpu_curr(task_cpu(p)) == p;
 814}
 815
 816/*
 817 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 818 * use the balance_callback list if you want balancing.
 819 *
 820 * this means any call to check_class_changed() must be followed by a call to
 821 * balance_callback().
 822 */
 823static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 824                                       const struct sched_class *prev_class,
 825                                       int oldprio)
 826{
 827        if (prev_class != p->sched_class) {
 828                if (prev_class->switched_from)
 829                        prev_class->switched_from(rq, p);
 830
 831                p->sched_class->switched_to(rq, p);
 832        } else if (oldprio != p->prio || dl_task(p))
 833                p->sched_class->prio_changed(rq, p, oldprio);
 834}
 835
 836void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 837{
 838        const struct sched_class *class;
 839
 840        if (p->sched_class == rq->curr->sched_class) {
 841                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 842        } else {
 843                for_each_class(class) {
 844                        if (class == rq->curr->sched_class)
 845                                break;
 846                        if (class == p->sched_class) {
 847                                resched_curr(rq);
 848                                break;
 849                        }
 850                }
 851        }
 852
 853        /*
 854         * A queue event has occurred, and we're going to schedule.  In
 855         * this case, we can save a useless back to back clock update.
 856         */
 857        if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 858                rq_clock_skip_update(rq);
 859}
 860
 861#ifdef CONFIG_SMP
 862
 863static inline bool is_per_cpu_kthread(struct task_struct *p)
 864{
 865        if (!(p->flags & PF_KTHREAD))
 866                return false;
 867
 868        if (p->nr_cpus_allowed != 1)
 869                return false;
 870
 871        return true;
 872}
 873
 874/*
 875 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 876 * __set_cpus_allowed_ptr() and select_fallback_rq().
 877 */
 878static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 879{
 880        if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
 881                return false;
 882
 883        if (is_per_cpu_kthread(p))
 884                return cpu_online(cpu);
 885
 886        return cpu_active(cpu);
 887}
 888
 889/*
 890 * This is how migration works:
 891 *
 892 * 1) we invoke migration_cpu_stop() on the target CPU using
 893 *    stop_one_cpu().
 894 * 2) stopper starts to run (implicitly forcing the migrated thread
 895 *    off the CPU)
 896 * 3) it checks whether the migrated task is still in the wrong runqueue.
 897 * 4) if it's in the wrong runqueue then the migration thread removes
 898 *    it and puts it into the right queue.
 899 * 5) stopper completes and stop_one_cpu() returns and the migration
 900 *    is done.
 901 */
 902
 903/*
 904 * move_queued_task - move a queued task to new rq.
 905 *
 906 * Returns (locked) new rq. Old rq's lock is released.
 907 */
 908static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 909                                   struct task_struct *p, int new_cpu)
 910{
 911        lockdep_assert_held(&rq->lock);
 912
 913        p->on_rq = TASK_ON_RQ_MIGRATING;
 914        dequeue_task(rq, p, DEQUEUE_NOCLOCK);
 915        set_task_cpu(p, new_cpu);
 916        rq_unlock(rq, rf);
 917
 918        rq = cpu_rq(new_cpu);
 919
 920        rq_lock(rq, rf);
 921        BUG_ON(task_cpu(p) != new_cpu);
 922        enqueue_task(rq, p, 0);
 923        p->on_rq = TASK_ON_RQ_QUEUED;
 924        check_preempt_curr(rq, p, 0);
 925
 926        return rq;
 927}
 928
 929struct migration_arg {
 930        struct task_struct *task;
 931        int dest_cpu;
 932};
 933
 934/*
 935 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 936 * this because either it can't run here any more (set_cpus_allowed()
 937 * away from this CPU, or CPU going down), or because we're
 938 * attempting to rebalance this task on exec (sched_exec).
 939 *
 940 * So we race with normal scheduler movements, but that's OK, as long
 941 * as the task is no longer on this CPU.
 942 */
 943static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 944                                 struct task_struct *p, int dest_cpu)
 945{
 946        /* Affinity changed (again). */
 947        if (!is_cpu_allowed(p, dest_cpu))
 948                return rq;
 949
 950        update_rq_clock(rq);
 951        rq = move_queued_task(rq, rf, p, dest_cpu);
 952
 953        return rq;
 954}
 955
 956/*
 957 * migration_cpu_stop - this will be executed by a highprio stopper thread
 958 * and performs thread migration by bumping thread off CPU then
 959 * 'pushing' onto another runqueue.
 960 */
 961static int migration_cpu_stop(void *data)
 962{
 963        struct migration_arg *arg = data;
 964        struct task_struct *p = arg->task;
 965        struct rq *rq = this_rq();
 966        struct rq_flags rf;
 967
 968        /*
 969         * The original target CPU might have gone down and we might
 970         * be on another CPU but it doesn't matter.
 971         */
 972        local_irq_disable();
 973        /*
 974         * We need to explicitly wake pending tasks before running
 975         * __migrate_task() such that we will not miss enforcing cpus_allowed
 976         * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 977         */
 978        sched_ttwu_pending();
 979
 980        raw_spin_lock(&p->pi_lock);
 981        rq_lock(rq, &rf);
 982        /*
 983         * If task_rq(p) != rq, it cannot be migrated here, because we're
 984         * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 985         * we're holding p->pi_lock.
 986         */
 987        if (task_rq(p) == rq) {
 988                if (task_on_rq_queued(p))
 989                        rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 990                else
 991                        p->wake_cpu = arg->dest_cpu;
 992        }
 993        rq_unlock(rq, &rf);
 994        raw_spin_unlock(&p->pi_lock);
 995
 996        local_irq_enable();
 997        return 0;
 998}
 999
1000/*
1001 * sched_class::set_cpus_allowed must do the below, but is not required to
1002 * actually call this function.
1003 */
1004void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1005{
1006        cpumask_copy(&p->cpus_allowed, new_mask);
1007        p->nr_cpus_allowed = cpumask_weight(new_mask);
1008}
1009
1010void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011{
1012        struct rq *rq = task_rq(p);
1013        bool queued, running;
1014
1015        lockdep_assert_held(&p->pi_lock);
1016
1017        queued = task_on_rq_queued(p);
1018        running = task_current(rq, p);
1019
1020        if (queued) {
1021                /*
1022                 * Because __kthread_bind() calls this on blocked tasks without
1023                 * holding rq->lock.
1024                 */
1025                lockdep_assert_held(&rq->lock);
1026                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1027        }
1028        if (running)
1029                put_prev_task(rq, p);
1030
1031        p->sched_class->set_cpus_allowed(p, new_mask);
1032
1033        if (queued)
1034                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1035        if (running)
1036                set_curr_task(rq, p);
1037}
1038
1039/*
1040 * Change a given task's CPU affinity. Migrate the thread to a
1041 * proper CPU and schedule it away if the CPU it's executing on
1042 * is removed from the allowed bitmask.
1043 *
1044 * NOTE: the caller must have a valid reference to the task, the
1045 * task must not exit() & deallocate itself prematurely. The
1046 * call is not atomic; no spinlocks may be held.
1047 */
1048static int __set_cpus_allowed_ptr(struct task_struct *p,
1049                                  const struct cpumask *new_mask, bool check)
1050{
1051        const struct cpumask *cpu_valid_mask = cpu_active_mask;
1052        unsigned int dest_cpu;
1053        struct rq_flags rf;
1054        struct rq *rq;
1055        int ret = 0;
1056
1057        rq = task_rq_lock(p, &rf);
1058        update_rq_clock(rq);
1059
1060        if (p->flags & PF_KTHREAD) {
1061                /*
1062                 * Kernel threads are allowed on online && !active CPUs
1063                 */
1064                cpu_valid_mask = cpu_online_mask;
1065        }
1066
1067        /*
1068         * Must re-check here, to close a race against __kthread_bind(),
1069         * sched_setaffinity() is not guaranteed to observe the flag.
1070         */
1071        if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072                ret = -EINVAL;
1073                goto out;
1074        }
1075
1076        if (cpumask_equal(&p->cpus_allowed, new_mask))
1077                goto out;
1078
1079        if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1080                ret = -EINVAL;
1081                goto out;
1082        }
1083
1084        do_set_cpus_allowed(p, new_mask);
1085
1086        if (p->flags & PF_KTHREAD) {
1087                /*
1088                 * For kernel threads that do indeed end up on online &&
1089                 * !active we want to ensure they are strict per-CPU threads.
1090                 */
1091                WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092                        !cpumask_intersects(new_mask, cpu_active_mask) &&
1093                        p->nr_cpus_allowed != 1);
1094        }
1095
1096        /* Can the task run on the task's current CPU? If so, we're done */
1097        if (cpumask_test_cpu(task_cpu(p), new_mask))
1098                goto out;
1099
1100        dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1101        if (task_running(rq, p) || p->state == TASK_WAKING) {
1102                struct migration_arg arg = { p, dest_cpu };
1103                /* Need help from migration thread: drop lock and wait. */
1104                task_rq_unlock(rq, p, &rf);
1105                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106                tlb_migrate_finish(p->mm);
1107                return 0;
1108        } else if (task_on_rq_queued(p)) {
1109                /*
1110                 * OK, since we're going to drop the lock immediately
1111                 * afterwards anyway.
1112                 */
1113                rq = move_queued_task(rq, &rf, p, dest_cpu);
1114        }
1115out:
1116        task_rq_unlock(rq, p, &rf);
1117
1118        return ret;
1119}
1120
1121int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122{
1123        return __set_cpus_allowed_ptr(p, new_mask, false);
1124}
1125EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126
1127void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1128{
1129#ifdef CONFIG_SCHED_DEBUG
1130        /*
1131         * We should never call set_task_cpu() on a blocked task,
1132         * ttwu() will sort out the placement.
1133         */
1134        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1135                        !p->on_rq);
1136
1137        /*
1138         * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139         * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140         * time relying on p->on_rq.
1141         */
1142        WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143                     p->sched_class == &fair_sched_class &&
1144                     (p->on_rq && !task_on_rq_migrating(p)));
1145
1146#ifdef CONFIG_LOCKDEP
1147        /*
1148         * The caller should hold either p->pi_lock or rq->lock, when changing
1149         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150         *
1151         * sched_move_task() holds both and thus holding either pins the cgroup,
1152         * see task_group().
1153         *
1154         * Furthermore, all task_rq users should acquire both locks, see
1155         * task_rq_lock().
1156         */
1157        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158                                      lockdep_is_held(&task_rq(p)->lock)));
1159#endif
1160        /*
1161         * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162         */
1163        WARN_ON_ONCE(!cpu_online(new_cpu));
1164#endif
1165
1166        trace_sched_migrate_task(p, new_cpu);
1167
1168        if (task_cpu(p) != new_cpu) {
1169                if (p->sched_class->migrate_task_rq)
1170                        p->sched_class->migrate_task_rq(p, new_cpu);
1171                p->se.nr_migrations++;
1172                rseq_migrate(p);
1173                perf_event_task_migrate(p);
1174        }
1175
1176        __set_task_cpu(p, new_cpu);
1177}
1178
1179#ifdef CONFIG_NUMA_BALANCING
1180static void __migrate_swap_task(struct task_struct *p, int cpu)
1181{
1182        if (task_on_rq_queued(p)) {
1183                struct rq *src_rq, *dst_rq;
1184                struct rq_flags srf, drf;
1185
1186                src_rq = task_rq(p);
1187                dst_rq = cpu_rq(cpu);
1188
1189                rq_pin_lock(src_rq, &srf);
1190                rq_pin_lock(dst_rq, &drf);
1191
1192                p->on_rq = TASK_ON_RQ_MIGRATING;
1193                deactivate_task(src_rq, p, 0);
1194                set_task_cpu(p, cpu);
1195                activate_task(dst_rq, p, 0);
1196                p->on_rq = TASK_ON_RQ_QUEUED;
1197                check_preempt_curr(dst_rq, p, 0);
1198
1199                rq_unpin_lock(dst_rq, &drf);
1200                rq_unpin_lock(src_rq, &srf);
1201
1202        } else {
1203                /*
1204                 * Task isn't running anymore; make it appear like we migrated
1205                 * it before it went to sleep. This means on wakeup we make the
1206                 * previous CPU our target instead of where it really is.
1207                 */
1208                p->wake_cpu = cpu;
1209        }
1210}
1211
1212struct migration_swap_arg {
1213        struct task_struct *src_task, *dst_task;
1214        int src_cpu, dst_cpu;
1215};
1216
1217static int migrate_swap_stop(void *data)
1218{
1219        struct migration_swap_arg *arg = data;
1220        struct rq *src_rq, *dst_rq;
1221        int ret = -EAGAIN;
1222
1223        if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1224                return -EAGAIN;
1225
1226        src_rq = cpu_rq(arg->src_cpu);
1227        dst_rq = cpu_rq(arg->dst_cpu);
1228
1229        double_raw_lock(&arg->src_task->pi_lock,
1230                        &arg->dst_task->pi_lock);
1231        double_rq_lock(src_rq, dst_rq);
1232
1233        if (task_cpu(arg->dst_task) != arg->dst_cpu)
1234                goto unlock;
1235
1236        if (task_cpu(arg->src_task) != arg->src_cpu)
1237                goto unlock;
1238
1239        if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1240                goto unlock;
1241
1242        if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1243                goto unlock;
1244
1245        __migrate_swap_task(arg->src_task, arg->dst_cpu);
1246        __migrate_swap_task(arg->dst_task, arg->src_cpu);
1247
1248        ret = 0;
1249
1250unlock:
1251        double_rq_unlock(src_rq, dst_rq);
1252        raw_spin_unlock(&arg->dst_task->pi_lock);
1253        raw_spin_unlock(&arg->src_task->pi_lock);
1254
1255        return ret;
1256}
1257
1258/*
1259 * Cross migrate two tasks
1260 */
1261int migrate_swap(struct task_struct *cur, struct task_struct *p,
1262                int target_cpu, int curr_cpu)
1263{
1264        struct migration_swap_arg arg;
1265        int ret = -EINVAL;
1266
1267        arg = (struct migration_swap_arg){
1268                .src_task = cur,
1269                .src_cpu = curr_cpu,
1270                .dst_task = p,
1271                .dst_cpu = target_cpu,
1272        };
1273
1274        if (arg.src_cpu == arg.dst_cpu)
1275                goto out;
1276
1277        /*
1278         * These three tests are all lockless; this is OK since all of them
1279         * will be re-checked with proper locks held further down the line.
1280         */
1281        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1282                goto out;
1283
1284        if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1285                goto out;
1286
1287        if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1288                goto out;
1289
1290        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1291        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1292
1293out:
1294        return ret;
1295}
1296#endif /* CONFIG_NUMA_BALANCING */
1297
1298/*
1299 * wait_task_inactive - wait for a thread to unschedule.
1300 *
1301 * If @match_state is nonzero, it's the @p->state value just checked and
1302 * not expected to change.  If it changes, i.e. @p might have woken up,
1303 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1304 * we return a positive number (its total switch count).  If a second call
1305 * a short while later returns the same number, the caller can be sure that
1306 * @p has remained unscheduled the whole time.
1307 *
1308 * The caller must ensure that the task *will* unschedule sometime soon,
1309 * else this function might spin for a *long* time. This function can't
1310 * be called with interrupts off, or it may introduce deadlock with
1311 * smp_call_function() if an IPI is sent by the same process we are
1312 * waiting to become inactive.
1313 */
1314unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1315{
1316        int running, queued;
1317        struct rq_flags rf;
1318        unsigned long ncsw;
1319        struct rq *rq;
1320
1321        for (;;) {
1322                /*
1323                 * We do the initial early heuristics without holding
1324                 * any task-queue locks at all. We'll only try to get
1325                 * the runqueue lock when things look like they will
1326                 * work out!
1327                 */
1328                rq = task_rq(p);
1329
1330                /*
1331                 * If the task is actively running on another CPU
1332                 * still, just relax and busy-wait without holding
1333                 * any locks.
1334                 *
1335                 * NOTE! Since we don't hold any locks, it's not
1336                 * even sure that "rq" stays as the right runqueue!
1337                 * But we don't care, since "task_running()" will
1338                 * return false if the runqueue has changed and p
1339                 * is actually now running somewhere else!
1340                 */
1341                while (task_running(rq, p)) {
1342                        if (match_state && unlikely(p->state != match_state))
1343                                return 0;
1344                        cpu_relax();
1345                }
1346
1347                /*
1348                 * Ok, time to look more closely! We need the rq
1349                 * lock now, to be *sure*. If we're wrong, we'll
1350                 * just go back and repeat.
1351                 */
1352                rq = task_rq_lock(p, &rf);
1353                trace_sched_wait_task(p);
1354                running = task_running(rq, p);
1355                queued = task_on_rq_queued(p);
1356                ncsw = 0;
1357                if (!match_state || p->state == match_state)
1358                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1359                task_rq_unlock(rq, p, &rf);
1360
1361                /*
1362                 * If it changed from the expected state, bail out now.
1363                 */
1364                if (unlikely(!ncsw))
1365                        break;
1366
1367                /*
1368                 * Was it really running after all now that we
1369                 * checked with the proper locks actually held?
1370                 *
1371                 * Oops. Go back and try again..
1372                 */
1373                if (unlikely(running)) {
1374                        cpu_relax();
1375                        continue;
1376                }
1377
1378                /*
1379                 * It's not enough that it's not actively running,
1380                 * it must be off the runqueue _entirely_, and not
1381                 * preempted!
1382                 *
1383                 * So if it was still runnable (but just not actively
1384                 * running right now), it's preempted, and we should
1385                 * yield - it could be a while.
1386                 */
1387                if (unlikely(queued)) {
1388                        ktime_t to = NSEC_PER_SEC / HZ;
1389
1390                        set_current_state(TASK_UNINTERRUPTIBLE);
1391                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1392                        continue;
1393                }
1394
1395                /*
1396                 * Ahh, all good. It wasn't running, and it wasn't
1397                 * runnable, which means that it will never become
1398                 * running in the future either. We're all done!
1399                 */
1400                break;
1401        }
1402
1403        return ncsw;
1404}
1405
1406/***
1407 * kick_process - kick a running thread to enter/exit the kernel
1408 * @p: the to-be-kicked thread
1409 *
1410 * Cause a process which is running on another CPU to enter
1411 * kernel-mode, without any delay. (to get signals handled.)
1412 *
1413 * NOTE: this function doesn't have to take the runqueue lock,
1414 * because all it wants to ensure is that the remote task enters
1415 * the kernel. If the IPI races and the task has been migrated
1416 * to another CPU then no harm is done and the purpose has been
1417 * achieved as well.
1418 */
1419void kick_process(struct task_struct *p)
1420{
1421        int cpu;
1422
1423        preempt_disable();
1424        cpu = task_cpu(p);
1425        if ((cpu != smp_processor_id()) && task_curr(p))
1426                smp_send_reschedule(cpu);
1427        preempt_enable();
1428}
1429EXPORT_SYMBOL_GPL(kick_process);
1430
1431/*
1432 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1433 *
1434 * A few notes on cpu_active vs cpu_online:
1435 *
1436 *  - cpu_active must be a subset of cpu_online
1437 *
1438 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1439 *    see __set_cpus_allowed_ptr(). At this point the newly online
1440 *    CPU isn't yet part of the sched domains, and balancing will not
1441 *    see it.
1442 *
1443 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1444 *    avoid the load balancer to place new tasks on the to be removed
1445 *    CPU. Existing tasks will remain running there and will be taken
1446 *    off.
1447 *
1448 * This means that fallback selection must not select !active CPUs.
1449 * And can assume that any active CPU must be online. Conversely
1450 * select_task_rq() below may allow selection of !active CPUs in order
1451 * to satisfy the above rules.
1452 */
1453static int select_fallback_rq(int cpu, struct task_struct *p)
1454{
1455        int nid = cpu_to_node(cpu);
1456        const struct cpumask *nodemask = NULL;
1457        enum { cpuset, possible, fail } state = cpuset;
1458        int dest_cpu;
1459
1460        /*
1461         * If the node that the CPU is on has been offlined, cpu_to_node()
1462         * will return -1. There is no CPU on the node, and we should
1463         * select the CPU on the other node.
1464         */
1465        if (nid != -1) {
1466                nodemask = cpumask_of_node(nid);
1467
1468                /* Look for allowed, online CPU in same node. */
1469                for_each_cpu(dest_cpu, nodemask) {
1470                        if (!cpu_active(dest_cpu))
1471                                continue;
1472                        if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1473                                return dest_cpu;
1474                }
1475        }
1476
1477        for (;;) {
1478                /* Any allowed, online CPU? */
1479                for_each_cpu(dest_cpu, &p->cpus_allowed) {
1480                        if (!is_cpu_allowed(p, dest_cpu))
1481                                continue;
1482
1483                        goto out;
1484                }
1485
1486                /* No more Mr. Nice Guy. */
1487                switch (state) {
1488                case cpuset:
1489                        if (IS_ENABLED(CONFIG_CPUSETS)) {
1490                                cpuset_cpus_allowed_fallback(p);
1491                                state = possible;
1492                                break;
1493                        }
1494                        /* Fall-through */
1495                case possible:
1496                        do_set_cpus_allowed(p, cpu_possible_mask);
1497                        state = fail;
1498                        break;
1499
1500                case fail:
1501                        BUG();
1502                        break;
1503                }
1504        }
1505
1506out:
1507        if (state != cpuset) {
1508                /*
1509                 * Don't tell them about moving exiting tasks or
1510                 * kernel threads (both mm NULL), since they never
1511                 * leave kernel.
1512                 */
1513                if (p->mm && printk_ratelimit()) {
1514                        printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1515                                        task_pid_nr(p), p->comm, cpu);
1516                }
1517        }
1518
1519        return dest_cpu;
1520}
1521
1522/*
1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1524 */
1525static inline
1526int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1527{
1528        lockdep_assert_held(&p->pi_lock);
1529
1530        if (p->nr_cpus_allowed > 1)
1531                cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1532        else
1533                cpu = cpumask_any(&p->cpus_allowed);
1534
1535        /*
1536         * In order not to call set_task_cpu() on a blocking task we need
1537         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1538         * CPU.
1539         *
1540         * Since this is common to all placement strategies, this lives here.
1541         *
1542         * [ this allows ->select_task() to simply return task_cpu(p) and
1543         *   not worry about this generic constraint ]
1544         */
1545        if (unlikely(!is_cpu_allowed(p, cpu)))
1546                cpu = select_fallback_rq(task_cpu(p), p);
1547
1548        return cpu;
1549}
1550
1551static void update_avg(u64 *avg, u64 sample)
1552{
1553        s64 diff = sample - *avg;
1554        *avg += diff >> 3;
1555}
1556
1557void sched_set_stop_task(int cpu, struct task_struct *stop)
1558{
1559        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1560        struct task_struct *old_stop = cpu_rq(cpu)->stop;
1561
1562        if (stop) {
1563                /*
1564                 * Make it appear like a SCHED_FIFO task, its something
1565                 * userspace knows about and won't get confused about.
1566                 *
1567                 * Also, it will make PI more or less work without too
1568                 * much confusion -- but then, stop work should not
1569                 * rely on PI working anyway.
1570                 */
1571                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1572
1573                stop->sched_class = &stop_sched_class;
1574        }
1575
1576        cpu_rq(cpu)->stop = stop;
1577
1578        if (old_stop) {
1579                /*
1580                 * Reset it back to a normal scheduling class so that
1581                 * it can die in pieces.
1582                 */
1583                old_stop->sched_class = &rt_sched_class;
1584        }
1585}
1586
1587#else
1588
1589static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1590                                         const struct cpumask *new_mask, bool check)
1591{
1592        return set_cpus_allowed_ptr(p, new_mask);
1593}
1594
1595#endif /* CONFIG_SMP */
1596
1597static void
1598ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1599{
1600        struct rq *rq;
1601
1602        if (!schedstat_enabled())
1603                return;
1604
1605        rq = this_rq();
1606
1607#ifdef CONFIG_SMP
1608        if (cpu == rq->cpu) {
1609                __schedstat_inc(rq->ttwu_local);
1610                __schedstat_inc(p->se.statistics.nr_wakeups_local);
1611        } else {
1612                struct sched_domain *sd;
1613
1614                __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1615                rcu_read_lock();
1616                for_each_domain(rq->cpu, sd) {
1617                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1618                                __schedstat_inc(sd->ttwu_wake_remote);
1619                                break;
1620                        }
1621                }
1622                rcu_read_unlock();
1623        }
1624
1625        if (wake_flags & WF_MIGRATED)
1626                __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1627#endif /* CONFIG_SMP */
1628
1629        __schedstat_inc(rq->ttwu_count);
1630        __schedstat_inc(p->se.statistics.nr_wakeups);
1631
1632        if (wake_flags & WF_SYNC)
1633                __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1634}
1635
1636static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1637{
1638        activate_task(rq, p, en_flags);
1639        p->on_rq = TASK_ON_RQ_QUEUED;
1640
1641        /* If a worker is waking up, notify the workqueue: */
1642        if (p->flags & PF_WQ_WORKER)
1643                wq_worker_waking_up(p, cpu_of(rq));
1644}
1645
1646/*
1647 * Mark the task runnable and perform wakeup-preemption.
1648 */
1649static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1650                           struct rq_flags *rf)
1651{
1652        check_preempt_curr(rq, p, wake_flags);
1653        p->state = TASK_RUNNING;
1654        trace_sched_wakeup(p);
1655
1656#ifdef CONFIG_SMP
1657        if (p->sched_class->task_woken) {
1658                /*
1659                 * Our task @p is fully woken up and running; so its safe to
1660                 * drop the rq->lock, hereafter rq is only used for statistics.
1661                 */
1662                rq_unpin_lock(rq, rf);
1663                p->sched_class->task_woken(rq, p);
1664                rq_repin_lock(rq, rf);
1665        }
1666
1667        if (rq->idle_stamp) {
1668                u64 delta = rq_clock(rq) - rq->idle_stamp;
1669                u64 max = 2*rq->max_idle_balance_cost;
1670
1671                update_avg(&rq->avg_idle, delta);
1672
1673                if (rq->avg_idle > max)
1674                        rq->avg_idle = max;
1675
1676                rq->idle_stamp = 0;
1677        }
1678#endif
1679}
1680
1681static void
1682ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1683                 struct rq_flags *rf)
1684{
1685        int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1686
1687        lockdep_assert_held(&rq->lock);
1688
1689#ifdef CONFIG_SMP
1690        if (p->sched_contributes_to_load)
1691                rq->nr_uninterruptible--;
1692
1693        if (wake_flags & WF_MIGRATED)
1694                en_flags |= ENQUEUE_MIGRATED;
1695#endif
1696
1697        ttwu_activate(rq, p, en_flags);
1698        ttwu_do_wakeup(rq, p, wake_flags, rf);
1699}
1700
1701/*
1702 * Called in case the task @p isn't fully descheduled from its runqueue,
1703 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1704 * since all we need to do is flip p->state to TASK_RUNNING, since
1705 * the task is still ->on_rq.
1706 */
1707static int ttwu_remote(struct task_struct *p, int wake_flags)
1708{
1709        struct rq_flags rf;
1710        struct rq *rq;
1711        int ret = 0;
1712
1713        rq = __task_rq_lock(p, &rf);
1714        if (task_on_rq_queued(p)) {
1715                /* check_preempt_curr() may use rq clock */
1716                update_rq_clock(rq);
1717                ttwu_do_wakeup(rq, p, wake_flags, &rf);
1718                ret = 1;
1719        }
1720        __task_rq_unlock(rq, &rf);
1721
1722        return ret;
1723}
1724
1725#ifdef CONFIG_SMP
1726void sched_ttwu_pending(void)
1727{
1728        struct rq *rq = this_rq();
1729        struct llist_node *llist = llist_del_all(&rq->wake_list);
1730        struct task_struct *p, *t;
1731        struct rq_flags rf;
1732
1733        if (!llist)
1734                return;
1735
1736        rq_lock_irqsave(rq, &rf);
1737        update_rq_clock(rq);
1738
1739        llist_for_each_entry_safe(p, t, llist, wake_entry)
1740                ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1741
1742        rq_unlock_irqrestore(rq, &rf);
1743}
1744
1745void scheduler_ipi(void)
1746{
1747        /*
1748         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1749         * TIF_NEED_RESCHED remotely (for the first time) will also send
1750         * this IPI.
1751         */
1752        preempt_fold_need_resched();
1753
1754        if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1755                return;
1756
1757        /*
1758         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1759         * traditionally all their work was done from the interrupt return
1760         * path. Now that we actually do some work, we need to make sure
1761         * we do call them.
1762         *
1763         * Some archs already do call them, luckily irq_enter/exit nest
1764         * properly.
1765         *
1766         * Arguably we should visit all archs and update all handlers,
1767         * however a fair share of IPIs are still resched only so this would
1768         * somewhat pessimize the simple resched case.
1769         */
1770        irq_enter();
1771        sched_ttwu_pending();
1772
1773        /*
1774         * Check if someone kicked us for doing the nohz idle load balance.
1775         */
1776        if (unlikely(got_nohz_idle_kick())) {
1777                this_rq()->idle_balance = 1;
1778                raise_softirq_irqoff(SCHED_SOFTIRQ);
1779        }
1780        irq_exit();
1781}
1782
1783static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1784{
1785        struct rq *rq = cpu_rq(cpu);
1786
1787        p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1788
1789        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1790                if (!set_nr_if_polling(rq->idle))
1791                        smp_send_reschedule(cpu);
1792                else
1793                        trace_sched_wake_idle_without_ipi(cpu);
1794        }
1795}
1796
1797void wake_up_if_idle(int cpu)
1798{
1799        struct rq *rq = cpu_rq(cpu);
1800        struct rq_flags rf;
1801
1802        rcu_read_lock();
1803
1804        if (!is_idle_task(rcu_dereference(rq->curr)))
1805                goto out;
1806
1807        if (set_nr_if_polling(rq->idle)) {
1808                trace_sched_wake_idle_without_ipi(cpu);
1809        } else {
1810                rq_lock_irqsave(rq, &rf);
1811                if (is_idle_task(rq->curr))
1812                        smp_send_reschedule(cpu);
1813                /* Else CPU is not idle, do nothing here: */
1814                rq_unlock_irqrestore(rq, &rf);
1815        }
1816
1817out:
1818        rcu_read_unlock();
1819}
1820
1821bool cpus_share_cache(int this_cpu, int that_cpu)
1822{
1823        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1824}
1825#endif /* CONFIG_SMP */
1826
1827static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1828{
1829        struct rq *rq = cpu_rq(cpu);
1830        struct rq_flags rf;
1831
1832#if defined(CONFIG_SMP)
1833        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1834                sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1835                ttwu_queue_remote(p, cpu, wake_flags);
1836                return;
1837        }
1838#endif
1839
1840        rq_lock(rq, &rf);
1841        update_rq_clock(rq);
1842        ttwu_do_activate(rq, p, wake_flags, &rf);
1843        rq_unlock(rq, &rf);
1844}
1845
1846/*
1847 * Notes on Program-Order guarantees on SMP systems.
1848 *
1849 *  MIGRATION
1850 *
1851 * The basic program-order guarantee on SMP systems is that when a task [t]
1852 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1853 * execution on its new CPU [c1].
1854 *
1855 * For migration (of runnable tasks) this is provided by the following means:
1856 *
1857 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1858 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1859 *     rq(c1)->lock (if not at the same time, then in that order).
1860 *  C) LOCK of the rq(c1)->lock scheduling in task
1861 *
1862 * Release/acquire chaining guarantees that B happens after A and C after B.
1863 * Note: the CPU doing B need not be c0 or c1
1864 *
1865 * Example:
1866 *
1867 *   CPU0            CPU1            CPU2
1868 *
1869 *   LOCK rq(0)->lock
1870 *   sched-out X
1871 *   sched-in Y
1872 *   UNLOCK rq(0)->lock
1873 *
1874 *                                   LOCK rq(0)->lock // orders against CPU0
1875 *                                   dequeue X
1876 *                                   UNLOCK rq(0)->lock
1877 *
1878 *                                   LOCK rq(1)->lock
1879 *                                   enqueue X
1880 *                                   UNLOCK rq(1)->lock
1881 *
1882 *                   LOCK rq(1)->lock // orders against CPU2
1883 *                   sched-out Z
1884 *                   sched-in X
1885 *                   UNLOCK rq(1)->lock
1886 *
1887 *
1888 *  BLOCKING -- aka. SLEEP + WAKEUP
1889 *
1890 * For blocking we (obviously) need to provide the same guarantee as for
1891 * migration. However the means are completely different as there is no lock
1892 * chain to provide order. Instead we do:
1893 *
1894 *   1) smp_store_release(X->on_cpu, 0)
1895 *   2) smp_cond_load_acquire(!X->on_cpu)
1896 *
1897 * Example:
1898 *
1899 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1900 *
1901 *   LOCK rq(0)->lock LOCK X->pi_lock
1902 *   dequeue X
1903 *   sched-out X
1904 *   smp_store_release(X->on_cpu, 0);
1905 *
1906 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1907 *                    X->state = WAKING
1908 *                    set_task_cpu(X,2)
1909 *
1910 *                    LOCK rq(2)->lock
1911 *                    enqueue X
1912 *                    X->state = RUNNING
1913 *                    UNLOCK rq(2)->lock
1914 *
1915 *                                          LOCK rq(2)->lock // orders against CPU1
1916 *                                          sched-out Z
1917 *                                          sched-in X
1918 *                                          UNLOCK rq(2)->lock
1919 *
1920 *                    UNLOCK X->pi_lock
1921 *   UNLOCK rq(0)->lock
1922 *
1923 *
1924 * However, for wakeups there is a second guarantee we must provide, namely we
1925 * must ensure that CONDITION=1 done by the caller can not be reordered with
1926 * accesses to the task state; see try_to_wake_up() and set_current_state().
1927 */
1928
1929/**
1930 * try_to_wake_up - wake up a thread
1931 * @p: the thread to be awakened
1932 * @state: the mask of task states that can be woken
1933 * @wake_flags: wake modifier flags (WF_*)
1934 *
1935 * If (@state & @p->state) @p->state = TASK_RUNNING.
1936 *
1937 * If the task was not queued/runnable, also place it back on a runqueue.
1938 *
1939 * Atomic against schedule() which would dequeue a task, also see
1940 * set_current_state().
1941 *
1942 * This function executes a full memory barrier before accessing the task
1943 * state; see set_current_state().
1944 *
1945 * Return: %true if @p->state changes (an actual wakeup was done),
1946 *         %false otherwise.
1947 */
1948static int
1949try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1950{
1951        unsigned long flags;
1952        int cpu, success = 0;
1953
1954        /*
1955         * If we are going to wake up a thread waiting for CONDITION we
1956         * need to ensure that CONDITION=1 done by the caller can not be
1957         * reordered with p->state check below. This pairs with mb() in
1958         * set_current_state() the waiting thread does.
1959         */
1960        raw_spin_lock_irqsave(&p->pi_lock, flags);
1961        smp_mb__after_spinlock();
1962        if (!(p->state & state))
1963                goto out;
1964
1965        trace_sched_waking(p);
1966
1967        /* We're going to change ->state: */
1968        success = 1;
1969        cpu = task_cpu(p);
1970
1971        /*
1972         * Ensure we load p->on_rq _after_ p->state, otherwise it would
1973         * be possible to, falsely, observe p->on_rq == 0 and get stuck
1974         * in smp_cond_load_acquire() below.
1975         *
1976         * sched_ttwu_pending()                 try_to_wake_up()
1977         *   STORE p->on_rq = 1                   LOAD p->state
1978         *   UNLOCK rq->lock
1979         *
1980         * __schedule() (switch to task 'p')
1981         *   LOCK rq->lock                        smp_rmb();
1982         *   smp_mb__after_spinlock();
1983         *   UNLOCK rq->lock
1984         *
1985         * [task p]
1986         *   STORE p->state = UNINTERRUPTIBLE     LOAD p->on_rq
1987         *
1988         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1989         * __schedule().  See the comment for smp_mb__after_spinlock().
1990         */
1991        smp_rmb();
1992        if (p->on_rq && ttwu_remote(p, wake_flags))
1993                goto stat;
1994
1995#ifdef CONFIG_SMP
1996        /*
1997         * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1998         * possible to, falsely, observe p->on_cpu == 0.
1999         *
2000         * One must be running (->on_cpu == 1) in order to remove oneself
2001         * from the runqueue.
2002         *
2003         * __schedule() (switch to task 'p')    try_to_wake_up()
2004         *   STORE p->on_cpu = 1                  LOAD p->on_rq
2005         *   UNLOCK rq->lock
2006         *
2007         * __schedule() (put 'p' to sleep)
2008         *   LOCK rq->lock                        smp_rmb();
2009         *   smp_mb__after_spinlock();
2010         *   STORE p->on_rq = 0                   LOAD p->on_cpu
2011         *
2012         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2013         * __schedule().  See the comment for smp_mb__after_spinlock().
2014         */
2015        smp_rmb();
2016
2017        /*
2018         * If the owning (remote) CPU is still in the middle of schedule() with
2019         * this task as prev, wait until its done referencing the task.
2020         *
2021         * Pairs with the smp_store_release() in finish_task().
2022         *
2023         * This ensures that tasks getting woken will be fully ordered against
2024         * their previous state and preserve Program Order.
2025         */
2026        smp_cond_load_acquire(&p->on_cpu, !VAL);
2027
2028        p->sched_contributes_to_load = !!task_contributes_to_load(p);
2029        p->state = TASK_WAKING;
2030
2031        if (p->in_iowait) {
2032                delayacct_blkio_end(p);
2033                atomic_dec(&task_rq(p)->nr_iowait);
2034        }
2035
2036        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2037        if (task_cpu(p) != cpu) {
2038                wake_flags |= WF_MIGRATED;
2039                set_task_cpu(p, cpu);
2040        }
2041
2042#else /* CONFIG_SMP */
2043
2044        if (p->in_iowait) {
2045                delayacct_blkio_end(p);
2046                atomic_dec(&task_rq(p)->nr_iowait);
2047        }
2048
2049#endif /* CONFIG_SMP */
2050
2051        ttwu_queue(p, cpu, wake_flags);
2052stat:
2053        ttwu_stat(p, cpu, wake_flags);
2054out:
2055        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2056
2057        return success;
2058}
2059
2060/**
2061 * try_to_wake_up_local - try to wake up a local task with rq lock held
2062 * @p: the thread to be awakened
2063 * @rf: request-queue flags for pinning
2064 *
2065 * Put @p on the run-queue if it's not already there. The caller must
2066 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2067 * the current task.
2068 */
2069static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2070{
2071        struct rq *rq = task_rq(p);
2072
2073        if (WARN_ON_ONCE(rq != this_rq()) ||
2074            WARN_ON_ONCE(p == current))
2075                return;
2076
2077        lockdep_assert_held(&rq->lock);
2078
2079        if (!raw_spin_trylock(&p->pi_lock)) {
2080                /*
2081                 * This is OK, because current is on_cpu, which avoids it being
2082                 * picked for load-balance and preemption/IRQs are still
2083                 * disabled avoiding further scheduler activity on it and we've
2084                 * not yet picked a replacement task.
2085                 */
2086                rq_unlock(rq, rf);
2087                raw_spin_lock(&p->pi_lock);
2088                rq_relock(rq, rf);
2089        }
2090
2091        if (!(p->state & TASK_NORMAL))
2092                goto out;
2093
2094        trace_sched_waking(p);
2095
2096        if (!task_on_rq_queued(p)) {
2097                if (p->in_iowait) {
2098                        delayacct_blkio_end(p);
2099                        atomic_dec(&rq->nr_iowait);
2100                }
2101                ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2102        }
2103
2104        ttwu_do_wakeup(rq, p, 0, rf);
2105        ttwu_stat(p, smp_processor_id(), 0);
2106out:
2107        raw_spin_unlock(&p->pi_lock);
2108}
2109
2110/**
2111 * wake_up_process - Wake up a specific process
2112 * @p: The process to be woken up.
2113 *
2114 * Attempt to wake up the nominated process and move it to the set of runnable
2115 * processes.
2116 *
2117 * Return: 1 if the process was woken up, 0 if it was already running.
2118 *
2119 * This function executes a full memory barrier before accessing the task state.
2120 */
2121int wake_up_process(struct task_struct *p)
2122{
2123        return try_to_wake_up(p, TASK_NORMAL, 0);
2124}
2125EXPORT_SYMBOL(wake_up_process);
2126
2127int wake_up_state(struct task_struct *p, unsigned int state)
2128{
2129        return try_to_wake_up(p, state, 0);
2130}
2131
2132/*
2133 * Perform scheduler related setup for a newly forked process p.
2134 * p is forked by current.
2135 *
2136 * __sched_fork() is basic setup used by init_idle() too:
2137 */
2138static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2139{
2140        p->on_rq                        = 0;
2141
2142        p->se.on_rq                     = 0;
2143        p->se.exec_start                = 0;
2144        p->se.sum_exec_runtime          = 0;
2145        p->se.prev_sum_exec_runtime     = 0;
2146        p->se.nr_migrations             = 0;
2147        p->se.vruntime                  = 0;
2148        INIT_LIST_HEAD(&p->se.group_node);
2149
2150#ifdef CONFIG_FAIR_GROUP_SCHED
2151        p->se.cfs_rq                    = NULL;
2152#endif
2153
2154#ifdef CONFIG_SCHEDSTATS
2155        /* Even if schedstat is disabled, there should not be garbage */
2156        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2157#endif
2158
2159        RB_CLEAR_NODE(&p->dl.rb_node);
2160        init_dl_task_timer(&p->dl);
2161        init_dl_inactive_task_timer(&p->dl);
2162        __dl_clear_params(p);
2163
2164        INIT_LIST_HEAD(&p->rt.run_list);
2165        p->rt.timeout           = 0;
2166        p->rt.time_slice        = sched_rr_timeslice;
2167        p->rt.on_rq             = 0;
2168        p->rt.on_list           = 0;
2169
2170#ifdef CONFIG_PREEMPT_NOTIFIERS
2171        INIT_HLIST_HEAD(&p->preempt_notifiers);
2172#endif
2173
2174        init_numa_balancing(clone_flags, p);
2175}
2176
2177DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2178
2179#ifdef CONFIG_NUMA_BALANCING
2180
2181void set_numabalancing_state(bool enabled)
2182{
2183        if (enabled)
2184                static_branch_enable(&sched_numa_balancing);
2185        else
2186                static_branch_disable(&sched_numa_balancing);
2187}
2188
2189#ifdef CONFIG_PROC_SYSCTL
2190int sysctl_numa_balancing(struct ctl_table *table, int write,
2191                         void __user *buffer, size_t *lenp, loff_t *ppos)
2192{
2193        struct ctl_table t;
2194        int err;
2195        int state = static_branch_likely(&sched_numa_balancing);
2196
2197        if (write && !capable(CAP_SYS_ADMIN))
2198                return -EPERM;
2199
2200        t = *table;
2201        t.data = &state;
2202        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2203        if (err < 0)
2204                return err;
2205        if (write)
2206                set_numabalancing_state(state);
2207        return err;
2208}
2209#endif
2210#endif
2211
2212#ifdef CONFIG_SCHEDSTATS
2213
2214DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2215static bool __initdata __sched_schedstats = false;
2216
2217static void set_schedstats(bool enabled)
2218{
2219        if (enabled)
2220                static_branch_enable(&sched_schedstats);
2221        else
2222                static_branch_disable(&sched_schedstats);
2223}
2224
2225void force_schedstat_enabled(void)
2226{
2227        if (!schedstat_enabled()) {
2228                pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2229                static_branch_enable(&sched_schedstats);
2230        }
2231}
2232
2233static int __init setup_schedstats(char *str)
2234{
2235        int ret = 0;
2236        if (!str)
2237                goto out;
2238
2239        /*
2240         * This code is called before jump labels have been set up, so we can't
2241         * change the static branch directly just yet.  Instead set a temporary
2242         * variable so init_schedstats() can do it later.
2243         */
2244        if (!strcmp(str, "enable")) {
2245                __sched_schedstats = true;
2246                ret = 1;
2247        } else if (!strcmp(str, "disable")) {
2248                __sched_schedstats = false;
2249                ret = 1;
2250        }
2251out:
2252        if (!ret)
2253                pr_warn("Unable to parse schedstats=\n");
2254
2255        return ret;
2256}
2257__setup("schedstats=", setup_schedstats);
2258
2259static void __init init_schedstats(void)
2260{
2261        set_schedstats(__sched_schedstats);
2262}
2263
2264#ifdef CONFIG_PROC_SYSCTL
2265int sysctl_schedstats(struct ctl_table *table, int write,
2266                         void __user *buffer, size_t *lenp, loff_t *ppos)
2267{
2268        struct ctl_table t;
2269        int err;
2270        int state = static_branch_likely(&sched_schedstats);
2271
2272        if (write && !capable(CAP_SYS_ADMIN))
2273                return -EPERM;
2274
2275        t = *table;
2276        t.data = &state;
2277        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2278        if (err < 0)
2279                return err;
2280        if (write)
2281                set_schedstats(state);
2282        return err;
2283}
2284#endif /* CONFIG_PROC_SYSCTL */
2285#else  /* !CONFIG_SCHEDSTATS */
2286static inline void init_schedstats(void) {}
2287#endif /* CONFIG_SCHEDSTATS */
2288
2289/*
2290 * fork()/clone()-time setup:
2291 */
2292int sched_fork(unsigned long clone_flags, struct task_struct *p)
2293{
2294        unsigned long flags;
2295
2296        __sched_fork(clone_flags, p);
2297        /*
2298         * We mark the process as NEW here. This guarantees that
2299         * nobody will actually run it, and a signal or other external
2300         * event cannot wake it up and insert it on the runqueue either.
2301         */
2302        p->state = TASK_NEW;
2303
2304        /*
2305         * Make sure we do not leak PI boosting priority to the child.
2306         */
2307        p->prio = current->normal_prio;
2308
2309        /*
2310         * Revert to default priority/policy on fork if requested.
2311         */
2312        if (unlikely(p->sched_reset_on_fork)) {
2313                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2314                        p->policy = SCHED_NORMAL;
2315                        p->static_prio = NICE_TO_PRIO(0);
2316                        p->rt_priority = 0;
2317                } else if (PRIO_TO_NICE(p->static_prio) < 0)
2318                        p->static_prio = NICE_TO_PRIO(0);
2319
2320                p->prio = p->normal_prio = __normal_prio(p);
2321                set_load_weight(p, false);
2322
2323                /*
2324                 * We don't need the reset flag anymore after the fork. It has
2325                 * fulfilled its duty:
2326                 */
2327                p->sched_reset_on_fork = 0;
2328        }
2329
2330        if (dl_prio(p->prio))
2331                return -EAGAIN;
2332        else if (rt_prio(p->prio))
2333                p->sched_class = &rt_sched_class;
2334        else
2335                p->sched_class = &fair_sched_class;
2336
2337        init_entity_runnable_average(&p->se);
2338
2339        /*
2340         * The child is not yet in the pid-hash so no cgroup attach races,
2341         * and the cgroup is pinned to this child due to cgroup_fork()
2342         * is ran before sched_fork().
2343         *
2344         * Silence PROVE_RCU.
2345         */
2346        raw_spin_lock_irqsave(&p->pi_lock, flags);
2347        /*
2348         * We're setting the CPU for the first time, we don't migrate,
2349         * so use __set_task_cpu().
2350         */
2351        __set_task_cpu(p, smp_processor_id());
2352        if (p->sched_class->task_fork)
2353                p->sched_class->task_fork(p);
2354        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2355
2356#ifdef CONFIG_SCHED_INFO
2357        if (likely(sched_info_on()))
2358                memset(&p->sched_info, 0, sizeof(p->sched_info));
2359#endif
2360#if defined(CONFIG_SMP)
2361        p->on_cpu = 0;
2362#endif
2363        init_task_preempt_count(p);
2364#ifdef CONFIG_SMP
2365        plist_node_init(&p->pushable_tasks, MAX_PRIO);
2366        RB_CLEAR_NODE(&p->pushable_dl_tasks);
2367#endif
2368        return 0;
2369}
2370
2371unsigned long to_ratio(u64 period, u64 runtime)
2372{
2373        if (runtime == RUNTIME_INF)
2374                return BW_UNIT;
2375
2376        /*
2377         * Doing this here saves a lot of checks in all
2378         * the calling paths, and returning zero seems
2379         * safe for them anyway.
2380         */
2381        if (period == 0)
2382                return 0;
2383
2384        return div64_u64(runtime << BW_SHIFT, period);
2385}
2386
2387/*
2388 * wake_up_new_task - wake up a newly created task for the first time.
2389 *
2390 * This function will do some initial scheduler statistics housekeeping
2391 * that must be done for every newly created context, then puts the task
2392 * on the runqueue and wakes it.
2393 */
2394void wake_up_new_task(struct task_struct *p)
2395{
2396        struct rq_flags rf;
2397        struct rq *rq;
2398
2399        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2400        p->state = TASK_RUNNING;
2401#ifdef CONFIG_SMP
2402        /*
2403         * Fork balancing, do it here and not earlier because:
2404         *  - cpus_allowed can change in the fork path
2405         *  - any previously selected CPU might disappear through hotplug
2406         *
2407         * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2408         * as we're not fully set-up yet.
2409         */
2410        p->recent_used_cpu = task_cpu(p);
2411        __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2412#endif
2413        rq = __task_rq_lock(p, &rf);
2414        update_rq_clock(rq);
2415        post_init_entity_util_avg(&p->se);
2416
2417        activate_task(rq, p, ENQUEUE_NOCLOCK);
2418        p->on_rq = TASK_ON_RQ_QUEUED;
2419        trace_sched_wakeup_new(p);
2420        check_preempt_curr(rq, p, WF_FORK);
2421#ifdef CONFIG_SMP
2422        if (p->sched_class->task_woken) {
2423                /*
2424                 * Nothing relies on rq->lock after this, so its fine to
2425                 * drop it.
2426                 */
2427                rq_unpin_lock(rq, &rf);
2428                p->sched_class->task_woken(rq, p);
2429                rq_repin_lock(rq, &rf);
2430        }
2431#endif
2432        task_rq_unlock(rq, p, &rf);
2433}
2434
2435#ifdef CONFIG_PREEMPT_NOTIFIERS
2436
2437static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2438
2439void preempt_notifier_inc(void)
2440{
2441        static_branch_inc(&preempt_notifier_key);
2442}
2443EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444
2445void preempt_notifier_dec(void)
2446{
2447        static_branch_dec(&preempt_notifier_key);
2448}
2449EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2450
2451/**
2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453 * @notifier: notifier struct to register
2454 */
2455void preempt_notifier_register(struct preempt_notifier *notifier)
2456{
2457        if (!static_branch_unlikely(&preempt_notifier_key))
2458                WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459
2460        hlist_add_head(&notifier->link, &current->preempt_notifiers);
2461}
2462EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463
2464/**
2465 * preempt_notifier_unregister - no longer interested in preemption notifications
2466 * @notifier: notifier struct to unregister
2467 *
2468 * This is *not* safe to call from within a preemption notifier.
2469 */
2470void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471{
2472        hlist_del(&notifier->link);
2473}
2474EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475
2476static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477{
2478        struct preempt_notifier *notifier;
2479
2480        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481                notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482}
2483
2484static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485{
2486        if (static_branch_unlikely(&preempt_notifier_key))
2487                __fire_sched_in_preempt_notifiers(curr);
2488}
2489
2490static void
2491__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492                                   struct task_struct *next)
2493{
2494        struct preempt_notifier *notifier;
2495
2496        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497                notifier->ops->sched_out(notifier, next);
2498}
2499
2500static __always_inline void
2501fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502                                 struct task_struct *next)
2503{
2504        if (static_branch_unlikely(&preempt_notifier_key))
2505                __fire_sched_out_preempt_notifiers(curr, next);
2506}
2507
2508#else /* !CONFIG_PREEMPT_NOTIFIERS */
2509
2510static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511{
2512}
2513
2514static inline void
2515fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516                                 struct task_struct *next)
2517{
2518}
2519
2520#endif /* CONFIG_PREEMPT_NOTIFIERS */
2521
2522static inline void prepare_task(struct task_struct *next)
2523{
2524#ifdef CONFIG_SMP
2525        /*
2526         * Claim the task as running, we do this before switching to it
2527         * such that any running task will have this set.
2528         */
2529        next->on_cpu = 1;
2530#endif
2531}
2532
2533static inline void finish_task(struct task_struct *prev)
2534{
2535#ifdef CONFIG_SMP
2536        /*
2537         * After ->on_cpu is cleared, the task can be moved to a different CPU.
2538         * We must ensure this doesn't happen until the switch is completely
2539         * finished.
2540         *
2541         * In particular, the load of prev->state in finish_task_switch() must
2542         * happen before this.
2543         *
2544         * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2545         */
2546        smp_store_release(&prev->on_cpu, 0);
2547#endif
2548}
2549
2550static inline void
2551prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2552{
2553        /*
2554         * Since the runqueue lock will be released by the next
2555         * task (which is an invalid locking op but in the case
2556         * of the scheduler it's an obvious special-case), so we
2557         * do an early lockdep release here:
2558         */
2559        rq_unpin_lock(rq, rf);
2560        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2561#ifdef CONFIG_DEBUG_SPINLOCK
2562        /* this is a valid case when another task releases the spinlock */
2563        rq->lock.owner = next;
2564#endif
2565}
2566
2567static inline void finish_lock_switch(struct rq *rq)
2568{
2569        /*
2570         * If we are tracking spinlock dependencies then we have to
2571         * fix up the runqueue lock - which gets 'carried over' from
2572         * prev into current:
2573         */
2574        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2575        raw_spin_unlock_irq(&rq->lock);
2576}
2577
2578/*
2579 * NOP if the arch has not defined these:
2580 */
2581
2582#ifndef prepare_arch_switch
2583# define prepare_arch_switch(next)      do { } while (0)
2584#endif
2585
2586#ifndef finish_arch_post_lock_switch
2587# define finish_arch_post_lock_switch() do { } while (0)
2588#endif
2589
2590/**
2591 * prepare_task_switch - prepare to switch tasks
2592 * @rq: the runqueue preparing to switch
2593 * @prev: the current task that is being switched out
2594 * @next: the task we are going to switch to.
2595 *
2596 * This is called with the rq lock held and interrupts off. It must
2597 * be paired with a subsequent finish_task_switch after the context
2598 * switch.
2599 *
2600 * prepare_task_switch sets up locking and calls architecture specific
2601 * hooks.
2602 */
2603static inline void
2604prepare_task_switch(struct rq *rq, struct task_struct *prev,
2605                    struct task_struct *next)
2606{
2607        kcov_prepare_switch(prev);
2608        sched_info_switch(rq, prev, next);
2609        perf_event_task_sched_out(prev, next);
2610        rseq_preempt(prev);
2611        fire_sched_out_preempt_notifiers(prev, next);
2612        prepare_task(next);
2613        prepare_arch_switch(next);
2614}
2615
2616/**
2617 * finish_task_switch - clean up after a task-switch
2618 * @prev: the thread we just switched away from.
2619 *
2620 * finish_task_switch must be called after the context switch, paired
2621 * with a prepare_task_switch call before the context switch.
2622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623 * and do any other architecture-specific cleanup actions.
2624 *
2625 * Note that we may have delayed dropping an mm in context_switch(). If
2626 * so, we finish that here outside of the runqueue lock. (Doing it
2627 * with the lock held can cause deadlocks; see schedule() for
2628 * details.)
2629 *
2630 * The context switch have flipped the stack from under us and restored the
2631 * local variables which were saved when this task called schedule() in the
2632 * past. prev == current is still correct but we need to recalculate this_rq
2633 * because prev may have moved to another CPU.
2634 */
2635static struct rq *finish_task_switch(struct task_struct *prev)
2636        __releases(rq->lock)
2637{
2638        struct rq *rq = this_rq();
2639        struct mm_struct *mm = rq->prev_mm;
2640        long prev_state;
2641
2642        /*
2643         * The previous task will have left us with a preempt_count of 2
2644         * because it left us after:
2645         *
2646         *      schedule()
2647         *        preempt_disable();                    // 1
2648         *        __schedule()
2649         *          raw_spin_lock_irq(&rq->lock)        // 2
2650         *
2651         * Also, see FORK_PREEMPT_COUNT.
2652         */
2653        if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2654                      "corrupted preempt_count: %s/%d/0x%x\n",
2655                      current->comm, current->pid, preempt_count()))
2656                preempt_count_set(FORK_PREEMPT_COUNT);
2657
2658        rq->prev_mm = NULL;
2659
2660        /*
2661         * A task struct has one reference for the use as "current".
2662         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2663         * schedule one last time. The schedule call will never return, and
2664         * the scheduled task must drop that reference.
2665         *
2666         * We must observe prev->state before clearing prev->on_cpu (in
2667         * finish_task), otherwise a concurrent wakeup can get prev
2668         * running on another CPU and we could rave with its RUNNING -> DEAD
2669         * transition, resulting in a double drop.
2670         */
2671        prev_state = prev->state;
2672        vtime_task_switch(prev);
2673        perf_event_task_sched_in(prev, current);
2674        finish_task(prev);
2675        finish_lock_switch(rq);
2676        finish_arch_post_lock_switch();
2677        kcov_finish_switch(current);
2678
2679        fire_sched_in_preempt_notifiers(current);
2680        /*
2681         * When switching through a kernel thread, the loop in
2682         * membarrier_{private,global}_expedited() may have observed that
2683         * kernel thread and not issued an IPI. It is therefore possible to
2684         * schedule between user->kernel->user threads without passing though
2685         * switch_mm(). Membarrier requires a barrier after storing to
2686         * rq->curr, before returning to userspace, so provide them here:
2687         *
2688         * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2689         *   provided by mmdrop(),
2690         * - a sync_core for SYNC_CORE.
2691         */
2692        if (mm) {
2693                membarrier_mm_sync_core_before_usermode(mm);
2694                mmdrop(mm);
2695        }
2696        if (unlikely(prev_state == TASK_DEAD)) {
2697                if (prev->sched_class->task_dead)
2698                        prev->sched_class->task_dead(prev);
2699
2700                /*
2701                 * Remove function-return probe instances associated with this
2702                 * task and put them back on the free list.
2703                 */
2704                kprobe_flush_task(prev);
2705
2706                /* Task is done with its stack. */
2707                put_task_stack(prev);
2708
2709                put_task_struct(prev);
2710        }
2711
2712        tick_nohz_task_switch();
2713        return rq;
2714}
2715
2716#ifdef CONFIG_SMP
2717
2718/* rq->lock is NOT held, but preemption is disabled */
2719static void __balance_callback(struct rq *rq)
2720{
2721        struct callback_head *head, *next;
2722        void (*func)(struct rq *rq);
2723        unsigned long flags;
2724
2725        raw_spin_lock_irqsave(&rq->lock, flags);
2726        head = rq->balance_callback;
2727        rq->balance_callback = NULL;
2728        while (head) {
2729                func = (void (*)(struct rq *))head->func;
2730                next = head->next;
2731                head->next = NULL;
2732                head = next;
2733
2734                func(rq);
2735        }
2736        raw_spin_unlock_irqrestore(&rq->lock, flags);
2737}
2738
2739static inline void balance_callback(struct rq *rq)
2740{
2741        if (unlikely(rq->balance_callback))
2742                __balance_callback(rq);
2743}
2744
2745#else
2746
2747static inline void balance_callback(struct rq *rq)
2748{
2749}
2750
2751#endif
2752
2753/**
2754 * schedule_tail - first thing a freshly forked thread must call.
2755 * @prev: the thread we just switched away from.
2756 */
2757asmlinkage __visible void schedule_tail(struct task_struct *prev)
2758        __releases(rq->lock)
2759{
2760        struct rq *rq;
2761
2762        /*
2763         * New tasks start with FORK_PREEMPT_COUNT, see there and
2764         * finish_task_switch() for details.
2765         *
2766         * finish_task_switch() will drop rq->lock() and lower preempt_count
2767         * and the preempt_enable() will end up enabling preemption (on
2768         * PREEMPT_COUNT kernels).
2769         */
2770
2771        rq = finish_task_switch(prev);
2772        balance_callback(rq);
2773        preempt_enable();
2774
2775        if (current->set_child_tid)
2776                put_user(task_pid_vnr(current), current->set_child_tid);
2777
2778        calculate_sigpending();
2779}
2780
2781/*
2782 * context_switch - switch to the new MM and the new thread's register state.
2783 */
2784static __always_inline struct rq *
2785context_switch(struct rq *rq, struct task_struct *prev,
2786               struct task_struct *next, struct rq_flags *rf)
2787{
2788        struct mm_struct *mm, *oldmm;
2789
2790        prepare_task_switch(rq, prev, next);
2791
2792        mm = next->mm;
2793        oldmm = prev->active_mm;
2794        /*
2795         * For paravirt, this is coupled with an exit in switch_to to
2796         * combine the page table reload and the switch backend into
2797         * one hypercall.
2798         */
2799        arch_start_context_switch(prev);
2800
2801        /*
2802         * If mm is non-NULL, we pass through switch_mm(). If mm is
2803         * NULL, we will pass through mmdrop() in finish_task_switch().
2804         * Both of these contain the full memory barrier required by
2805         * membarrier after storing to rq->curr, before returning to
2806         * user-space.
2807         */
2808        if (!mm) {
2809                next->active_mm = oldmm;
2810                mmgrab(oldmm);
2811                enter_lazy_tlb(oldmm, next);
2812        } else
2813                switch_mm_irqs_off(oldmm, mm, next);
2814
2815        if (!prev->mm) {
2816                prev->active_mm = NULL;
2817                rq->prev_mm = oldmm;
2818        }
2819
2820        rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2821
2822        prepare_lock_switch(rq, next, rf);
2823
2824        /* Here we just switch the register state and the stack. */
2825        switch_to(prev, next, prev);
2826        barrier();
2827
2828        return finish_task_switch(prev);
2829}
2830
2831/*
2832 * nr_running and nr_context_switches:
2833 *
2834 * externally visible scheduler statistics: current number of runnable
2835 * threads, total number of context switches performed since bootup.
2836 */
2837unsigned long nr_running(void)
2838{
2839        unsigned long i, sum = 0;
2840
2841        for_each_online_cpu(i)
2842                sum += cpu_rq(i)->nr_running;
2843
2844        return sum;
2845}
2846
2847/*
2848 * Check if only the current task is running on the CPU.
2849 *
2850 * Caution: this function does not check that the caller has disabled
2851 * preemption, thus the result might have a time-of-check-to-time-of-use
2852 * race.  The caller is responsible to use it correctly, for example:
2853 *
2854 * - from a non-preemptable section (of course)
2855 *
2856 * - from a thread that is bound to a single CPU
2857 *
2858 * - in a loop with very short iterations (e.g. a polling loop)
2859 */
2860bool single_task_running(void)
2861{
2862        return raw_rq()->nr_running == 1;
2863}
2864EXPORT_SYMBOL(single_task_running);
2865
2866unsigned long long nr_context_switches(void)
2867{
2868        int i;
2869        unsigned long long sum = 0;
2870
2871        for_each_possible_cpu(i)
2872                sum += cpu_rq(i)->nr_switches;
2873
2874        return sum;
2875}
2876
2877/*
2878 * IO-wait accounting, and how its mostly bollocks (on SMP).
2879 *
2880 * The idea behind IO-wait account is to account the idle time that we could
2881 * have spend running if it were not for IO. That is, if we were to improve the
2882 * storage performance, we'd have a proportional reduction in IO-wait time.
2883 *
2884 * This all works nicely on UP, where, when a task blocks on IO, we account
2885 * idle time as IO-wait, because if the storage were faster, it could've been
2886 * running and we'd not be idle.
2887 *
2888 * This has been extended to SMP, by doing the same for each CPU. This however
2889 * is broken.
2890 *
2891 * Imagine for instance the case where two tasks block on one CPU, only the one
2892 * CPU will have IO-wait accounted, while the other has regular idle. Even
2893 * though, if the storage were faster, both could've ran at the same time,
2894 * utilising both CPUs.
2895 *
2896 * This means, that when looking globally, the current IO-wait accounting on
2897 * SMP is a lower bound, by reason of under accounting.
2898 *
2899 * Worse, since the numbers are provided per CPU, they are sometimes
2900 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2901 * associated with any one particular CPU, it can wake to another CPU than it
2902 * blocked on. This means the per CPU IO-wait number is meaningless.
2903 *
2904 * Task CPU affinities can make all that even more 'interesting'.
2905 */
2906
2907unsigned long nr_iowait(void)
2908{
2909        unsigned long i, sum = 0;
2910
2911        for_each_possible_cpu(i)
2912                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913
2914        return sum;
2915}
2916
2917/*
2918 * Consumers of these two interfaces, like for example the cpufreq menu
2919 * governor are using nonsensical data. Boosting frequency for a CPU that has
2920 * IO-wait which might not even end up running the task when it does become
2921 * runnable.
2922 */
2923
2924unsigned long nr_iowait_cpu(int cpu)
2925{
2926        struct rq *this = cpu_rq(cpu);
2927        return atomic_read(&this->nr_iowait);
2928}
2929
2930void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2931{
2932        struct rq *rq = this_rq();
2933        *nr_waiters = atomic_read(&rq->nr_iowait);
2934        *load = rq->load.weight;
2935}
2936
2937#ifdef CONFIG_SMP
2938
2939/*
2940 * sched_exec - execve() is a valuable balancing opportunity, because at
2941 * this point the task has the smallest effective memory and cache footprint.
2942 */
2943void sched_exec(void)
2944{
2945        struct task_struct *p = current;
2946        unsigned long flags;
2947        int dest_cpu;
2948
2949        raw_spin_lock_irqsave(&p->pi_lock, flags);
2950        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2951        if (dest_cpu == smp_processor_id())
2952                goto unlock;
2953
2954        if (likely(cpu_active(dest_cpu))) {
2955                struct migration_arg arg = { p, dest_cpu };
2956
2957                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2958                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2959                return;
2960        }
2961unlock:
2962        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2963}
2964
2965#endif
2966
2967DEFINE_PER_CPU(struct kernel_stat, kstat);
2968DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2969
2970EXPORT_PER_CPU_SYMBOL(kstat);
2971EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2972
2973/*
2974 * The function fair_sched_class.update_curr accesses the struct curr
2975 * and its field curr->exec_start; when called from task_sched_runtime(),
2976 * we observe a high rate of cache misses in practice.
2977 * Prefetching this data results in improved performance.
2978 */
2979static inline void prefetch_curr_exec_start(struct task_struct *p)
2980{
2981#ifdef CONFIG_FAIR_GROUP_SCHED
2982        struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2983#else
2984        struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2985#endif
2986        prefetch(curr);
2987        prefetch(&curr->exec_start);
2988}
2989
2990/*
2991 * Return accounted runtime for the task.
2992 * In case the task is currently running, return the runtime plus current's
2993 * pending runtime that have not been accounted yet.
2994 */
2995unsigned long long task_sched_runtime(struct task_struct *p)
2996{
2997        struct rq_flags rf;
2998        struct rq *rq;
2999        u64 ns;
3000
3001#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3002        /*
3003         * 64-bit doesn't need locks to atomically read a 64-bit value.
3004         * So we have a optimization chance when the task's delta_exec is 0.
3005         * Reading ->on_cpu is racy, but this is ok.
3006         *
3007         * If we race with it leaving CPU, we'll take a lock. So we're correct.
3008         * If we race with it entering CPU, unaccounted time is 0. This is
3009         * indistinguishable from the read occurring a few cycles earlier.
3010         * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3011         * been accounted, so we're correct here as well.
3012         */
3013        if (!p->on_cpu || !task_on_rq_queued(p))
3014                return p->se.sum_exec_runtime;
3015#endif
3016
3017        rq = task_rq_lock(p, &rf);
3018        /*
3019         * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3020         * project cycles that may never be accounted to this
3021         * thread, breaking clock_gettime().
3022         */
3023        if (task_current(rq, p) && task_on_rq_queued(p)) {
3024                prefetch_curr_exec_start(p);
3025                update_rq_clock(rq);
3026                p->sched_class->update_curr(rq);
3027        }
3028        ns = p->se.sum_exec_runtime;
3029        task_rq_unlock(rq, p, &rf);
3030
3031        return ns;
3032}
3033
3034/*
3035 * This function gets called by the timer code, with HZ frequency.
3036 * We call it with interrupts disabled.
3037 */
3038void scheduler_tick(void)
3039{
3040        int cpu = smp_processor_id();
3041        struct rq *rq = cpu_rq(cpu);
3042        struct task_struct *curr = rq->curr;
3043        struct rq_flags rf;
3044
3045        sched_clock_tick();
3046
3047        rq_lock(rq, &rf);
3048
3049        update_rq_clock(rq);
3050        curr->sched_class->task_tick(rq, curr, 0);
3051        cpu_load_update_active(rq);
3052        calc_global_load_tick(rq);
3053
3054        rq_unlock(rq, &rf);
3055
3056        perf_event_task_tick();
3057
3058#ifdef CONFIG_SMP
3059        rq->idle_balance = idle_cpu(cpu);
3060        trigger_load_balance(rq);
3061#endif
3062}
3063
3064#ifdef CONFIG_NO_HZ_FULL
3065
3066struct tick_work {
3067        int                     cpu;
3068        struct delayed_work     work;
3069};
3070
3071static struct tick_work __percpu *tick_work_cpu;
3072
3073static void sched_tick_remote(struct work_struct *work)
3074{
3075        struct delayed_work *dwork = to_delayed_work(work);
3076        struct tick_work *twork = container_of(dwork, struct tick_work, work);
3077        int cpu = twork->cpu;
3078        struct rq *rq = cpu_rq(cpu);
3079        struct task_struct *curr;
3080        struct rq_flags rf;
3081        u64 delta;
3082
3083        /*
3084         * Handle the tick only if it appears the remote CPU is running in full
3085         * dynticks mode. The check is racy by nature, but missing a tick or
3086         * having one too much is no big deal because the scheduler tick updates
3087         * statistics and checks timeslices in a time-independent way, regardless
3088         * of when exactly it is running.
3089         */
3090        if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3091                goto out_requeue;
3092
3093        rq_lock_irq(rq, &rf);
3094        curr = rq->curr;
3095        if (is_idle_task(curr))
3096                goto out_unlock;
3097
3098        update_rq_clock(rq);
3099        delta = rq_clock_task(rq) - curr->se.exec_start;
3100
3101        /*
3102         * Make sure the next tick runs within a reasonable
3103         * amount of time.
3104         */
3105        WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3106        curr->sched_class->task_tick(rq, curr, 0);
3107
3108out_unlock:
3109        rq_unlock_irq(rq, &rf);
3110
3111out_requeue:
3112        /*
3113         * Run the remote tick once per second (1Hz). This arbitrary
3114         * frequency is large enough to avoid overload but short enough
3115         * to keep scheduler internal stats reasonably up to date.
3116         */
3117        queue_delayed_work(system_unbound_wq, dwork, HZ);
3118}
3119
3120static void sched_tick_start(int cpu)
3121{
3122        struct tick_work *twork;
3123
3124        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3125                return;
3126
3127        WARN_ON_ONCE(!tick_work_cpu);
3128
3129        twork = per_cpu_ptr(tick_work_cpu, cpu);
3130        twork->cpu = cpu;
3131        INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3132        queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3133}
3134
3135#ifdef CONFIG_HOTPLUG_CPU
3136static void sched_tick_stop(int cpu)
3137{
3138        struct tick_work *twork;
3139
3140        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3141                return;
3142
3143        WARN_ON_ONCE(!tick_work_cpu);
3144
3145        twork = per_cpu_ptr(tick_work_cpu, cpu);
3146        cancel_delayed_work_sync(&twork->work);
3147}
3148#endif /* CONFIG_HOTPLUG_CPU */
3149
3150int __init sched_tick_offload_init(void)
3151{
3152        tick_work_cpu = alloc_percpu(struct tick_work);
3153        BUG_ON(!tick_work_cpu);
3154
3155        return 0;
3156}
3157
3158#else /* !CONFIG_NO_HZ_FULL */
3159static inline void sched_tick_start(int cpu) { }
3160static inline void sched_tick_stop(int cpu) { }
3161#endif
3162
3163#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3164                                defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3165/*
3166 * If the value passed in is equal to the current preempt count
3167 * then we just disabled preemption. Start timing the latency.
3168 */
3169static inline void preempt_latency_start(int val)
3170{
3171        if (preempt_count() == val) {
3172                unsigned long ip = get_lock_parent_ip();
3173#ifdef CONFIG_DEBUG_PREEMPT
3174                current->preempt_disable_ip = ip;
3175#endif
3176                trace_preempt_off(CALLER_ADDR0, ip);
3177        }
3178}
3179
3180void preempt_count_add(int val)
3181{
3182#ifdef CONFIG_DEBUG_PREEMPT
3183        /*
3184         * Underflow?
3185         */
3186        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3187                return;
3188#endif
3189        __preempt_count_add(val);
3190#ifdef CONFIG_DEBUG_PREEMPT
3191        /*
3192         * Spinlock count overflowing soon?
3193         */
3194        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3195                                PREEMPT_MASK - 10);
3196#endif
3197        preempt_latency_start(val);
3198}
3199EXPORT_SYMBOL(preempt_count_add);
3200NOKPROBE_SYMBOL(preempt_count_add);
3201
3202/*
3203 * If the value passed in equals to the current preempt count
3204 * then we just enabled preemption. Stop timing the latency.
3205 */
3206static inline void preempt_latency_stop(int val)
3207{
3208        if (preempt_count() == val)
3209                trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3210}
3211
3212void preempt_count_sub(int val)
3213{
3214#ifdef CONFIG_DEBUG_PREEMPT
3215        /*
3216         * Underflow?
3217         */
3218        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3219                return;
3220        /*
3221         * Is the spinlock portion underflowing?
3222         */
3223        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3224                        !(preempt_count() & PREEMPT_MASK)))
3225                return;
3226#endif
3227
3228        preempt_latency_stop(val);
3229        __preempt_count_sub(val);
3230}
3231EXPORT_SYMBOL(preempt_count_sub);
3232NOKPROBE_SYMBOL(preempt_count_sub);
3233
3234#else
3235static inline void preempt_latency_start(int val) { }
3236static inline void preempt_latency_stop(int val) { }
3237#endif
3238
3239static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3240{
3241#ifdef CONFIG_DEBUG_PREEMPT
3242        return p->preempt_disable_ip;
3243#else
3244        return 0;
3245#endif
3246}
3247
3248/*
3249 * Print scheduling while atomic bug:
3250 */
3251static noinline void __schedule_bug(struct task_struct *prev)
3252{
3253        /* Save this before calling printk(), since that will clobber it */
3254        unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3255
3256        if (oops_in_progress)
3257                return;
3258
3259        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3260                prev->comm, prev->pid, preempt_count());
3261
3262        debug_show_held_locks(prev);
3263        print_modules();
3264        if (irqs_disabled())
3265                print_irqtrace_events(prev);
3266        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3267            && in_atomic_preempt_off()) {
3268                pr_err("Preemption disabled at:");
3269                print_ip_sym(preempt_disable_ip);
3270                pr_cont("\n");
3271        }
3272        if (panic_on_warn)
3273                panic("scheduling while atomic\n");
3274
3275        dump_stack();
3276        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3277}
3278
3279/*
3280 * Various schedule()-time debugging checks and statistics:
3281 */
3282static inline void schedule_debug(struct task_struct *prev)
3283{
3284#ifdef CONFIG_SCHED_STACK_END_CHECK
3285        if (task_stack_end_corrupted(prev))
3286                panic("corrupted stack end detected inside scheduler\n");
3287#endif
3288
3289        if (unlikely(in_atomic_preempt_off())) {
3290                __schedule_bug(prev);
3291                preempt_count_set(PREEMPT_DISABLED);
3292        }
3293        rcu_sleep_check();
3294
3295        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3296
3297        schedstat_inc(this_rq()->sched_count);
3298}
3299
3300/*
3301 * Pick up the highest-prio task:
3302 */
3303static inline struct task_struct *
3304pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3305{
3306        const struct sched_class *class;
3307        struct task_struct *p;
3308
3309        /*
3310         * Optimization: we know that if all tasks are in the fair class we can
3311         * call that function directly, but only if the @prev task wasn't of a
3312         * higher scheduling class, because otherwise those loose the
3313         * opportunity to pull in more work from other CPUs.
3314         */
3315        if (likely((prev->sched_class == &idle_sched_class ||
3316                    prev->sched_class == &fair_sched_class) &&
3317                   rq->nr_running == rq->cfs.h_nr_running)) {
3318
3319                p = fair_sched_class.pick_next_task(rq, prev, rf);
3320                if (unlikely(p == RETRY_TASK))
3321                        goto again;
3322
3323                /* Assumes fair_sched_class->next == idle_sched_class */
3324                if (unlikely(!p))
3325                        p = idle_sched_class.pick_next_task(rq, prev, rf);
3326
3327                return p;
3328        }
3329
3330again:
3331        for_each_class(class) {
3332                p = class->pick_next_task(rq, prev, rf);
3333                if (p) {
3334                        if (unlikely(p == RETRY_TASK))
3335                                goto again;
3336                        return p;
3337                }
3338        }
3339
3340        /* The idle class should always have a runnable task: */
3341        BUG();
3342}
3343
3344/*
3345 * __schedule() is the main scheduler function.
3346 *
3347 * The main means of driving the scheduler and thus entering this function are:
3348 *
3349 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3350 *
3351 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3352 *      paths. For example, see arch/x86/entry_64.S.
3353 *
3354 *      To drive preemption between tasks, the scheduler sets the flag in timer
3355 *      interrupt handler scheduler_tick().
3356 *
3357 *   3. Wakeups don't really cause entry into schedule(). They add a
3358 *      task to the run-queue and that's it.
3359 *
3360 *      Now, if the new task added to the run-queue preempts the current
3361 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3362 *      called on the nearest possible occasion:
3363 *
3364 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3365 *
3366 *         - in syscall or exception context, at the next outmost
3367 *           preempt_enable(). (this might be as soon as the wake_up()'s
3368 *           spin_unlock()!)
3369 *
3370 *         - in IRQ context, return from interrupt-handler to
3371 *           preemptible context
3372 *
3373 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3374 *         then at the next:
3375 *
3376 *          - cond_resched() call
3377 *          - explicit schedule() call
3378 *          - return from syscall or exception to user-space
3379 *          - return from interrupt-handler to user-space
3380 *
3381 * WARNING: must be called with preemption disabled!
3382 */
3383static void __sched notrace __schedule(bool preempt)
3384{
3385        struct task_struct *prev, *next;
3386        unsigned long *switch_count;
3387        struct rq_flags rf;
3388        struct rq *rq;
3389        int cpu;
3390
3391        cpu = smp_processor_id();
3392        rq = cpu_rq(cpu);
3393        prev = rq->curr;
3394
3395        schedule_debug(prev);
3396
3397        if (sched_feat(HRTICK))
3398                hrtick_clear(rq);
3399
3400        local_irq_disable();
3401        rcu_note_context_switch(preempt);
3402
3403        /*
3404         * Make sure that signal_pending_state()->signal_pending() below
3405         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3406         * done by the caller to avoid the race with signal_wake_up().
3407         *
3408         * The membarrier system call requires a full memory barrier
3409         * after coming from user-space, before storing to rq->curr.
3410         */
3411        rq_lock(rq, &rf);
3412        smp_mb__after_spinlock();
3413
3414        /* Promote REQ to ACT */
3415        rq->clock_update_flags <<= 1;
3416        update_rq_clock(rq);
3417
3418        switch_count = &prev->nivcsw;
3419        if (!preempt && prev->state) {
3420                if (unlikely(signal_pending_state(prev->state, prev))) {
3421                        prev->state = TASK_RUNNING;
3422                } else {
3423                        deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3424                        prev->on_rq = 0;
3425
3426                        if (prev->in_iowait) {
3427                                atomic_inc(&rq->nr_iowait);
3428                                delayacct_blkio_start();
3429                        }
3430
3431                        /*
3432                         * If a worker went to sleep, notify and ask workqueue
3433                         * whether it wants to wake up a task to maintain
3434                         * concurrency.
3435                         */
3436                        if (prev->flags & PF_WQ_WORKER) {
3437                                struct task_struct *to_wakeup;
3438
3439                                to_wakeup = wq_worker_sleeping(prev);
3440                                if (to_wakeup)
3441                                        try_to_wake_up_local(to_wakeup, &rf);
3442                        }
3443                }
3444                switch_count = &prev->nvcsw;
3445        }
3446
3447        next = pick_next_task(rq, prev, &rf);
3448        clear_tsk_need_resched(prev);
3449        clear_preempt_need_resched();
3450
3451        if (likely(prev != next)) {
3452                rq->nr_switches++;
3453                rq->curr = next;
3454                /*
3455                 * The membarrier system call requires each architecture
3456                 * to have a full memory barrier after updating
3457                 * rq->curr, before returning to user-space.
3458                 *
3459                 * Here are the schemes providing that barrier on the
3460                 * various architectures:
3461                 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3462                 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3463                 * - finish_lock_switch() for weakly-ordered
3464                 *   architectures where spin_unlock is a full barrier,
3465                 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3466                 *   is a RELEASE barrier),
3467                 */
3468                ++*switch_count;
3469
3470                trace_sched_switch(preempt, prev, next);
3471
3472                /* Also unlocks the rq: */
3473                rq = context_switch(rq, prev, next, &rf);
3474        } else {
3475                rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3476                rq_unlock_irq(rq, &rf);
3477        }
3478
3479        balance_callback(rq);
3480}
3481
3482void __noreturn do_task_dead(void)
3483{
3484        /* Causes final put_task_struct in finish_task_switch(): */
3485        set_special_state(TASK_DEAD);
3486
3487        /* Tell freezer to ignore us: */
3488        current->flags |= PF_NOFREEZE;
3489
3490        __schedule(false);
3491        BUG();
3492
3493        /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3494        for (;;)
3495                cpu_relax();
3496}
3497
3498static inline void sched_submit_work(struct task_struct *tsk)
3499{
3500        if (!tsk->state || tsk_is_pi_blocked(tsk))
3501                return;
3502        /*
3503         * If we are going to sleep and we have plugged IO queued,
3504         * make sure to submit it to avoid deadlocks.
3505         */
3506        if (blk_needs_flush_plug(tsk))
3507                blk_schedule_flush_plug(tsk);
3508}
3509
3510asmlinkage __visible void __sched schedule(void)
3511{
3512        struct task_struct *tsk = current;
3513
3514        sched_submit_work(tsk);
3515        do {
3516                preempt_disable();
3517                __schedule(false);
3518                sched_preempt_enable_no_resched();
3519        } while (need_resched());
3520}
3521EXPORT_SYMBOL(schedule);
3522
3523/*
3524 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3525 * state (have scheduled out non-voluntarily) by making sure that all
3526 * tasks have either left the run queue or have gone into user space.
3527 * As idle tasks do not do either, they must not ever be preempted
3528 * (schedule out non-voluntarily).
3529 *
3530 * schedule_idle() is similar to schedule_preempt_disable() except that it
3531 * never enables preemption because it does not call sched_submit_work().
3532 */
3533void __sched schedule_idle(void)
3534{
3535        /*
3536         * As this skips calling sched_submit_work(), which the idle task does
3537         * regardless because that function is a nop when the task is in a
3538         * TASK_RUNNING state, make sure this isn't used someplace that the
3539         * current task can be in any other state. Note, idle is always in the
3540         * TASK_RUNNING state.
3541         */
3542        WARN_ON_ONCE(current->state);
3543        do {
3544                __schedule(false);
3545        } while (need_resched());
3546}
3547
3548#ifdef CONFIG_CONTEXT_TRACKING
3549asmlinkage __visible void __sched schedule_user(void)
3550{
3551        /*
3552         * If we come here after a random call to set_need_resched(),
3553         * or we have been woken up remotely but the IPI has not yet arrived,
3554         * we haven't yet exited the RCU idle mode. Do it here manually until
3555         * we find a better solution.
3556         *
3557         * NB: There are buggy callers of this function.  Ideally we
3558         * should warn if prev_state != CONTEXT_USER, but that will trigger
3559         * too frequently to make sense yet.
3560         */
3561        enum ctx_state prev_state = exception_enter();
3562        schedule();
3563        exception_exit(prev_state);
3564}
3565#endif
3566
3567/**
3568 * schedule_preempt_disabled - called with preemption disabled
3569 *
3570 * Returns with preemption disabled. Note: preempt_count must be 1
3571 */
3572void __sched schedule_preempt_disabled(void)
3573{
3574        sched_preempt_enable_no_resched();
3575        schedule();
3576        preempt_disable();
3577}
3578
3579static void __sched notrace preempt_schedule_common(void)
3580{
3581        do {
3582                /*
3583                 * Because the function tracer can trace preempt_count_sub()
3584                 * and it also uses preempt_enable/disable_notrace(), if
3585                 * NEED_RESCHED is set, the preempt_enable_notrace() called
3586                 * by the function tracer will call this function again and
3587                 * cause infinite recursion.
3588                 *
3589                 * Preemption must be disabled here before the function
3590                 * tracer can trace. Break up preempt_disable() into two
3591                 * calls. One to disable preemption without fear of being
3592                 * traced. The other to still record the preemption latency,
3593                 * which can also be traced by the function tracer.
3594                 */
3595                preempt_disable_notrace();
3596                preempt_latency_start(1);
3597                __schedule(true);
3598                preempt_latency_stop(1);
3599                preempt_enable_no_resched_notrace();
3600
3601                /*
3602                 * Check again in case we missed a preemption opportunity
3603                 * between schedule and now.
3604                 */
3605        } while (need_resched());
3606}
3607
3608#ifdef CONFIG_PREEMPT
3609/*
3610 * this is the entry point to schedule() from in-kernel preemption
3611 * off of preempt_enable. Kernel preemptions off return from interrupt
3612 * occur there and call schedule directly.
3613 */
3614asmlinkage __visible void __sched notrace preempt_schedule(void)
3615{
3616        /*
3617         * If there is a non-zero preempt_count or interrupts are disabled,
3618         * we do not want to preempt the current task. Just return..
3619         */
3620        if (likely(!preemptible()))
3621                return;
3622
3623        preempt_schedule_common();
3624}
3625NOKPROBE_SYMBOL(preempt_schedule);
3626EXPORT_SYMBOL(preempt_schedule);
3627
3628/**
3629 * preempt_schedule_notrace - preempt_schedule called by tracing
3630 *
3631 * The tracing infrastructure uses preempt_enable_notrace to prevent
3632 * recursion and tracing preempt enabling caused by the tracing
3633 * infrastructure itself. But as tracing can happen in areas coming
3634 * from userspace or just about to enter userspace, a preempt enable
3635 * can occur before user_exit() is called. This will cause the scheduler
3636 * to be called when the system is still in usermode.
3637 *
3638 * To prevent this, the preempt_enable_notrace will use this function
3639 * instead of preempt_schedule() to exit user context if needed before
3640 * calling the scheduler.
3641 */
3642asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3643{
3644        enum ctx_state prev_ctx;
3645
3646        if (likely(!preemptible()))
3647                return;
3648
3649        do {
3650                /*
3651                 * Because the function tracer can trace preempt_count_sub()
3652                 * and it also uses preempt_enable/disable_notrace(), if
3653                 * NEED_RESCHED is set, the preempt_enable_notrace() called
3654                 * by the function tracer will call this function again and
3655                 * cause infinite recursion.
3656                 *
3657                 * Preemption must be disabled here before the function
3658                 * tracer can trace. Break up preempt_disable() into two
3659                 * calls. One to disable preemption without fear of being
3660                 * traced. The other to still record the preemption latency,
3661                 * which can also be traced by the function tracer.
3662                 */
3663                preempt_disable_notrace();
3664                preempt_latency_start(1);
3665                /*
3666                 * Needs preempt disabled in case user_exit() is traced
3667                 * and the tracer calls preempt_enable_notrace() causing
3668                 * an infinite recursion.
3669                 */
3670                prev_ctx = exception_enter();
3671                __schedule(true);
3672                exception_exit(prev_ctx);
3673
3674                preempt_latency_stop(1);
3675                preempt_enable_no_resched_notrace();
3676        } while (need_resched());
3677}
3678EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3679
3680#endif /* CONFIG_PREEMPT */
3681
3682/*
3683 * this is the entry point to schedule() from kernel preemption
3684 * off of irq context.
3685 * Note, that this is called and return with irqs disabled. This will
3686 * protect us against recursive calling from irq.
3687 */
3688asmlinkage __visible void __sched preempt_schedule_irq(void)
3689{
3690        enum ctx_state prev_state;
3691
3692        /* Catch callers which need to be fixed */
3693        BUG_ON(preempt_count() || !irqs_disabled());
3694
3695        prev_state = exception_enter();
3696
3697        do {
3698                preempt_disable();
3699                local_irq_enable();
3700                __schedule(true);
3701                local_irq_disable();
3702                sched_preempt_enable_no_resched();
3703        } while (need_resched());
3704
3705        exception_exit(prev_state);
3706}
3707
3708int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3709                          void *key)
3710{
3711        return try_to_wake_up(curr->private, mode, wake_flags);
3712}
3713EXPORT_SYMBOL(default_wake_function);
3714
3715#ifdef CONFIG_RT_MUTEXES
3716
3717static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3718{
3719        if (pi_task)
3720                prio = min(prio, pi_task->prio);
3721
3722        return prio;
3723}
3724
3725static inline int rt_effective_prio(struct task_struct *p, int prio)
3726{
3727        struct task_struct *pi_task = rt_mutex_get_top_task(p);
3728
3729        return __rt_effective_prio(pi_task, prio);
3730}
3731
3732/*
3733 * rt_mutex_setprio - set the current priority of a task
3734 * @p: task to boost
3735 * @pi_task: donor task
3736 *
3737 * This function changes the 'effective' priority of a task. It does
3738 * not touch ->normal_prio like __setscheduler().
3739 *
3740 * Used by the rt_mutex code to implement priority inheritance
3741 * logic. Call site only calls if the priority of the task changed.
3742 */
3743void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3744{
3745        int prio, oldprio, queued, running, queue_flag =
3746                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3747        const struct sched_class *prev_class;
3748        struct rq_flags rf;
3749        struct rq *rq;
3750
3751        /* XXX used to be waiter->prio, not waiter->task->prio */
3752        prio = __rt_effective_prio(pi_task, p->normal_prio);
3753
3754        /*
3755         * If nothing changed; bail early.
3756         */
3757        if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3758                return;
3759
3760        rq = __task_rq_lock(p, &rf);
3761        update_rq_clock(rq);
3762        /*
3763         * Set under pi_lock && rq->lock, such that the value can be used under
3764         * either lock.
3765         *
3766         * Note that there is loads of tricky to make this pointer cache work
3767         * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3768         * ensure a task is de-boosted (pi_task is set to NULL) before the
3769         * task is allowed to run again (and can exit). This ensures the pointer
3770         * points to a blocked task -- which guaratees the task is present.
3771         */
3772        p->pi_top_task = pi_task;
3773
3774        /*
3775         * For FIFO/RR we only need to set prio, if that matches we're done.
3776         */
3777        if (prio == p->prio && !dl_prio(prio))
3778                goto out_unlock;
3779
3780        /*
3781         * Idle task boosting is a nono in general. There is one
3782         * exception, when PREEMPT_RT and NOHZ is active:
3783         *
3784         * The idle task calls get_next_timer_interrupt() and holds
3785         * the timer wheel base->lock on the CPU and another CPU wants
3786         * to access the timer (probably to cancel it). We can safely
3787         * ignore the boosting request, as the idle CPU runs this code
3788         * with interrupts disabled and will complete the lock
3789         * protected section without being interrupted. So there is no
3790         * real need to boost.
3791         */
3792        if (unlikely(p == rq->idle)) {
3793                WARN_ON(p != rq->curr);
3794                WARN_ON(p->pi_blocked_on);
3795                goto out_unlock;
3796        }
3797
3798        trace_sched_pi_setprio(p, pi_task);
3799        oldprio = p->prio;
3800
3801        if (oldprio == prio)
3802                queue_flag &= ~DEQUEUE_MOVE;
3803
3804        prev_class = p->sched_class;
3805        queued = task_on_rq_queued(p);
3806        running = task_current(rq, p);
3807        if (queued)
3808                dequeue_task(rq, p, queue_flag);
3809        if (running)
3810                put_prev_task(rq, p);
3811
3812        /*
3813         * Boosting condition are:
3814         * 1. -rt task is running and holds mutex A
3815         *      --> -dl task blocks on mutex A
3816         *
3817         * 2. -dl task is running and holds mutex A
3818         *      --> -dl task blocks on mutex A and could preempt the
3819         *          running task
3820         */
3821        if (dl_prio(prio)) {
3822                if (!dl_prio(p->normal_prio) ||
3823                    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3824                        p->dl.dl_boosted = 1;
3825                        queue_flag |= ENQUEUE_REPLENISH;
3826                } else
3827                        p->dl.dl_boosted = 0;
3828                p->sched_class = &dl_sched_class;
3829        } else if (rt_prio(prio)) {
3830                if (dl_prio(oldprio))
3831                        p->dl.dl_boosted = 0;
3832                if (oldprio < prio)
3833                        queue_flag |= ENQUEUE_HEAD;
3834                p->sched_class = &rt_sched_class;
3835        } else {
3836                if (dl_prio(oldprio))
3837                        p->dl.dl_boosted = 0;
3838                if (rt_prio(oldprio))
3839                        p->rt.timeout = 0;
3840                p->sched_class = &fair_sched_class;
3841        }
3842
3843        p->prio = prio;
3844
3845        if (queued)
3846                enqueue_task(rq, p, queue_flag);
3847        if (running)
3848                set_curr_task(rq, p);
3849
3850        check_class_changed(rq, p, prev_class, oldprio);
3851out_unlock:
3852        /* Avoid rq from going away on us: */
3853        preempt_disable();
3854        __task_rq_unlock(rq, &rf);
3855
3856        balance_callback(rq);
3857        preempt_enable();
3858}
3859#else
3860static inline int rt_effective_prio(struct task_struct *p, int prio)
3861{
3862        return prio;
3863}
3864#endif
3865
3866void set_user_nice(struct task_struct *p, long nice)
3867{
3868        bool queued, running;
3869        int old_prio, delta;
3870        struct rq_flags rf;
3871        struct rq *rq;
3872
3873        if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3874                return;
3875        /*
3876         * We have to be careful, if called from sys_setpriority(),
3877         * the task might be in the middle of scheduling on another CPU.
3878         */
3879        rq = task_rq_lock(p, &rf);
3880        update_rq_clock(rq);
3881
3882        /*
3883         * The RT priorities are set via sched_setscheduler(), but we still
3884         * allow the 'normal' nice value to be set - but as expected
3885         * it wont have any effect on scheduling until the task is
3886         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3887         */
3888        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3889                p->static_prio = NICE_TO_PRIO(nice);
3890                goto out_unlock;
3891        }
3892        queued = task_on_rq_queued(p);
3893        running = task_current(rq, p);
3894        if (queued)
3895                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3896        if (running)
3897                put_prev_task(rq, p);
3898
3899        p->static_prio = NICE_TO_PRIO(nice);
3900        set_load_weight(p, true);
3901        old_prio = p->prio;
3902        p->prio = effective_prio(p);
3903        delta = p->prio - old_prio;
3904
3905        if (queued) {
3906                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3907                /*
3908                 * If the task increased its priority or is running and
3909                 * lowered its priority, then reschedule its CPU:
3910                 */
3911                if (delta < 0 || (delta > 0 && task_running(rq, p)))
3912                        resched_curr(rq);
3913        }
3914        if (running)
3915                set_curr_task(rq, p);
3916out_unlock:
3917        task_rq_unlock(rq, p, &rf);
3918}
3919EXPORT_SYMBOL(set_user_nice);
3920
3921/*
3922 * can_nice - check if a task can reduce its nice value
3923 * @p: task
3924 * @nice: nice value
3925 */
3926int can_nice(const struct task_struct *p, const int nice)
3927{
3928        /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3929        int nice_rlim = nice_to_rlimit(nice);
3930
3931        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3932                capable(CAP_SYS_NICE));
3933}
3934
3935#ifdef __ARCH_WANT_SYS_NICE
3936
3937/*
3938 * sys_nice - change the priority of the current process.
3939 * @increment: priority increment
3940 *
3941 * sys_setpriority is a more generic, but much slower function that
3942 * does similar things.
3943 */
3944SYSCALL_DEFINE1(nice, int, increment)
3945{
3946        long nice, retval;
3947
3948        /*
3949         * Setpriority might change our priority at the same moment.
3950         * We don't have to worry. Conceptually one call occurs first
3951         * and we have a single winner.
3952         */
3953        increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3954        nice = task_nice(current) + increment;
3955
3956        nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3957        if (increment < 0 && !can_nice(current, nice))
3958                return -EPERM;
3959
3960        retval = security_task_setnice(current, nice);
3961        if (retval)
3962                return retval;
3963
3964        set_user_nice(current, nice);
3965        return 0;
3966}
3967
3968#endif
3969
3970/**
3971 * task_prio - return the priority value of a given task.
3972 * @p: the task in question.
3973 *
3974 * Return: The priority value as seen by users in /proc.
3975 * RT tasks are offset by -200. Normal tasks are centered
3976 * around 0, value goes from -16 to +15.
3977 */
3978int task_prio(const struct task_struct *p)
3979{
3980        return p->prio - MAX_RT_PRIO;
3981}
3982
3983/**
3984 * idle_cpu - is a given CPU idle currently?
3985 * @cpu: the processor in question.
3986 *
3987 * Return: 1 if the CPU is currently idle. 0 otherwise.
3988 */
3989int idle_cpu(int cpu)
3990{
3991        struct rq *rq = cpu_rq(cpu);
3992
3993        if (rq->curr != rq->idle)
3994                return 0;
3995
3996        if (rq->nr_running)
3997                return 0;
3998
3999#ifdef CONFIG_SMP
4000        if (!llist_empty(&rq->wake_list))
4001                return 0;
4002#endif
4003
4004        return 1;
4005}
4006
4007/**
4008 * available_idle_cpu - is a given CPU idle for enqueuing work.
4009 * @cpu: the CPU in question.
4010 *
4011 * Return: 1 if the CPU is currently idle. 0 otherwise.
4012 */
4013int available_idle_cpu(int cpu)
4014{
4015        if (!idle_cpu(cpu))
4016                return 0;
4017
4018        if (vcpu_is_preempted(cpu))
4019                return 0;
4020
4021        return 1;
4022}
4023
4024/**
4025 * idle_task - return the idle task for a given CPU.
4026 * @cpu: the processor in question.
4027 *
4028 * Return: The idle task for the CPU @cpu.
4029 */
4030struct task_struct *idle_task(int cpu)
4031{
4032        return cpu_rq(cpu)->idle;
4033}
4034
4035/**
4036 * find_process_by_pid - find a process with a matching PID value.
4037 * @pid: the pid in question.
4038 *
4039 * The task of @pid, if found. %NULL otherwise.
4040 */
4041static struct task_struct *find_process_by_pid(pid_t pid)
4042{
4043        return pid ? find_task_by_vpid(pid) : current;
4044}
4045
4046/*
4047 * sched_setparam() passes in -1 for its policy, to let the functions
4048 * it calls know not to change it.
4049 */
4050#define SETPARAM_POLICY -1
4051
4052static void __setscheduler_params(struct task_struct *p,
4053                const struct sched_attr *attr)
4054{
4055        int policy = attr->sched_policy;
4056
4057        if (policy == SETPARAM_POLICY)
4058                policy = p->policy;
4059
4060        p->policy = policy;
4061
4062        if (dl_policy(policy))
4063                __setparam_dl(p, attr);
4064        else if (fair_policy(policy))
4065                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4066
4067        /*
4068         * __sched_setscheduler() ensures attr->sched_priority == 0 when
4069         * !rt_policy. Always setting this ensures that things like
4070         * getparam()/getattr() don't report silly values for !rt tasks.
4071         */
4072        p->rt_priority = attr->sched_priority;
4073        p->normal_prio = normal_prio(p);
4074        set_load_weight(p, true);
4075}
4076
4077/* Actually do priority change: must hold pi & rq lock. */
4078static void __setscheduler(struct rq *rq, struct task_struct *p,
4079                           const struct sched_attr *attr, bool keep_boost)
4080{
4081        __setscheduler_params(p, attr);
4082
4083        /*
4084         * Keep a potential priority boosting if called from
4085         * sched_setscheduler().
4086         */
4087        p->prio = normal_prio(p);
4088        if (keep_boost)
4089                p->prio = rt_effective_prio(p, p->prio);
4090
4091        if (dl_prio(p->prio))
4092                p->sched_class = &dl_sched_class;
4093        else if (rt_prio(p->prio))
4094                p->sched_class = &rt_sched_class;
4095        else
4096                p->sched_class = &fair_sched_class;
4097}
4098
4099/*
4100 * Check the target process has a UID that matches the current process's:
4101 */
4102static bool check_same_owner(struct task_struct *p)
4103{
4104        const struct cred *cred = current_cred(), *pcred;
4105        bool match;
4106
4107        rcu_read_lock();
4108        pcred = __task_cred(p);
4109        match = (uid_eq(cred->euid, pcred->euid) ||
4110                 uid_eq(cred->euid, pcred->uid));
4111        rcu_read_unlock();
4112        return match;
4113}
4114
4115static int __sched_setscheduler(struct task_struct *p,
4116                                const struct sched_attr *attr,
4117                                bool user, bool pi)
4118{
4119        int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4120                      MAX_RT_PRIO - 1 - attr->sched_priority;
4121        int retval, oldprio, oldpolicy = -1, queued, running;
4122        int new_effective_prio, policy = attr->sched_policy;
4123        const struct sched_class *prev_class;
4124        struct rq_flags rf;
4125        int reset_on_fork;
4126        int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4127        struct rq *rq;
4128
4129        /* The pi code expects interrupts enabled */
4130        BUG_ON(pi && in_interrupt());
4131recheck:
4132        /* Double check policy once rq lock held: */
4133        if (policy < 0) {
4134                reset_on_fork = p->sched_reset_on_fork;
4135                policy = oldpolicy = p->policy;
4136        } else {
4137                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4138
4139                if (!valid_policy(policy))
4140                        return -EINVAL;
4141        }
4142
4143        if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4144                return -EINVAL;
4145
4146        /*
4147         * Valid priorities for SCHED_FIFO and SCHED_RR are
4148         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4149         * SCHED_BATCH and SCHED_IDLE is 0.
4150         */
4151        if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4152            (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4153                return -EINVAL;
4154        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4155            (rt_policy(policy) != (attr->sched_priority != 0)))
4156                return -EINVAL;
4157
4158        /*
4159         * Allow unprivileged RT tasks to decrease priority:
4160         */
4161        if (user && !capable(CAP_SYS_NICE)) {
4162                if (fair_policy(policy)) {
4163                        if (attr->sched_nice < task_nice(p) &&
4164                            !can_nice(p, attr->sched_nice))
4165                                return -EPERM;
4166                }
4167
4168                if (rt_policy(policy)) {
4169                        unsigned long rlim_rtprio =
4170                                        task_rlimit(p, RLIMIT_RTPRIO);
4171
4172                        /* Can't set/change the rt policy: */
4173                        if (policy != p->policy && !rlim_rtprio)
4174                                return -EPERM;
4175
4176                        /* Can't increase priority: */
4177                        if (attr->sched_priority > p->rt_priority &&
4178                            attr->sched_priority > rlim_rtprio)
4179                                return -EPERM;
4180                }
4181
4182                 /*
4183                  * Can't set/change SCHED_DEADLINE policy at all for now
4184                  * (safest behavior); in the future we would like to allow
4185                  * unprivileged DL tasks to increase their relative deadline
4186                  * or reduce their runtime (both ways reducing utilization)
4187                  */
4188                if (dl_policy(policy))
4189                        return -EPERM;
4190
4191                /*
4192                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4193                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4194                 */
4195                if (idle_policy(p->policy) && !idle_policy(policy)) {
4196                        if (!can_nice(p, task_nice(p)))
4197                                return -EPERM;
4198                }
4199
4200                /* Can't change other user's priorities: */
4201                if (!check_same_owner(p))
4202                        return -EPERM;
4203
4204                /* Normal users shall not reset the sched_reset_on_fork flag: */
4205                if (p->sched_reset_on_fork && !reset_on_fork)
4206                        return -EPERM;
4207        }
4208
4209        if (user) {
4210                if (attr->sched_flags & SCHED_FLAG_SUGOV)
4211                        return -EINVAL;
4212
4213                retval = security_task_setscheduler(p);
4214                if (retval)
4215                        return retval;
4216        }
4217
4218        /*
4219         * Make sure no PI-waiters arrive (or leave) while we are
4220         * changing the priority of the task:
4221         *
4222         * To be able to change p->policy safely, the appropriate
4223         * runqueue lock must be held.
4224         */
4225        rq = task_rq_lock(p, &rf);
4226        update_rq_clock(rq);
4227
4228        /*
4229         * Changing the policy of the stop threads its a very bad idea:
4230         */
4231        if (p == rq->stop) {
4232                task_rq_unlock(rq, p, &rf);
4233                return -EINVAL;
4234        }
4235
4236        /*
4237         * If not changing anything there's no need to proceed further,
4238         * but store a possible modification of reset_on_fork.
4239         */
4240        if (unlikely(policy == p->policy)) {
4241                if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4242                        goto change;
4243                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4244                        goto change;
4245                if (dl_policy(policy) && dl_param_changed(p, attr))
4246                        goto change;
4247
4248                p->sched_reset_on_fork = reset_on_fork;
4249                task_rq_unlock(rq, p, &rf);
4250                return 0;
4251        }
4252change:
4253
4254        if (user) {
4255#ifdef CONFIG_RT_GROUP_SCHED
4256                /*
4257                 * Do not allow realtime tasks into groups that have no runtime
4258                 * assigned.
4259                 */
4260                if (rt_bandwidth_enabled() && rt_policy(policy) &&
4261                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4262                                !task_group_is_autogroup(task_group(p))) {
4263                        task_rq_unlock(rq, p, &rf);
4264                        return -EPERM;
4265                }
4266#endif
4267#ifdef CONFIG_SMP
4268                if (dl_bandwidth_enabled() && dl_policy(policy) &&
4269                                !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4270                        cpumask_t *span = rq->rd->span;
4271
4272                        /*
4273                         * Don't allow tasks with an affinity mask smaller than
4274                         * the entire root_domain to become SCHED_DEADLINE. We
4275                         * will also fail if there's no bandwidth available.
4276                         */
4277                        if (!cpumask_subset(span, &p->cpus_allowed) ||
4278                            rq->rd->dl_bw.bw == 0) {
4279                                task_rq_unlock(rq, p, &rf);
4280                                return -EPERM;
4281                        }
4282                }
4283#endif
4284        }
4285
4286        /* Re-check policy now with rq lock held: */
4287        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4288                policy = oldpolicy = -1;
4289                task_rq_unlock(rq, p, &rf);
4290                goto recheck;
4291        }
4292
4293        /*
4294         * If setscheduling to SCHED_DEADLINE (or changing the parameters
4295         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4296         * is available.
4297         */
4298        if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4299                task_rq_unlock(rq, p, &rf);
4300                return -EBUSY;
4301        }
4302
4303        p->sched_reset_on_fork = reset_on_fork;
4304        oldprio = p->prio;
4305
4306        if (pi) {
4307                /*
4308                 * Take priority boosted tasks into account. If the new
4309                 * effective priority is unchanged, we just store the new
4310                 * normal parameters and do not touch the scheduler class and
4311                 * the runqueue. This will be done when the task deboost
4312                 * itself.
4313                 */
4314                new_effective_prio = rt_effective_prio(p, newprio);
4315                if (new_effective_prio == oldprio)
4316                        queue_flags &= ~DEQUEUE_MOVE;
4317        }
4318
4319        queued = task_on_rq_queued(p);
4320        running = task_current(rq, p);
4321        if (queued)
4322                dequeue_task(rq, p, queue_flags);
4323        if (running)
4324                put_prev_task(rq, p);
4325
4326        prev_class = p->sched_class;
4327        __setscheduler(rq, p, attr, pi);
4328
4329        if (queued) {
4330                /*
4331                 * We enqueue to tail when the priority of a task is
4332                 * increased (user space view).
4333                 */
4334                if (oldprio < p->prio)
4335                        queue_flags |= ENQUEUE_HEAD;
4336
4337                enqueue_task(rq, p, queue_flags);
4338        }
4339        if (running)
4340                set_curr_task(rq, p);
4341
4342        check_class_changed(rq, p, prev_class, oldprio);
4343
4344        /* Avoid rq from going away on us: */
4345        preempt_disable();
4346        task_rq_unlock(rq, p, &rf);
4347
4348        if (pi)
4349                rt_mutex_adjust_pi(p);
4350
4351        /* Run balance callbacks after we've adjusted the PI chain: */
4352        balance_callback(rq);
4353        preempt_enable();
4354
4355        return 0;
4356}
4357
4358static int _sched_setscheduler(struct task_struct *p, int policy,
4359                               const struct sched_param *param, bool check)
4360{
4361        struct sched_attr attr = {
4362                .sched_policy   = policy,
4363                .sched_priority = param->sched_priority,
4364                .sched_nice     = PRIO_TO_NICE(p->static_prio),
4365        };
4366
4367        /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4368        if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4369                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4370                policy &= ~SCHED_RESET_ON_FORK;
4371                attr.sched_policy = policy;
4372        }
4373
4374        return __sched_setscheduler(p, &attr, check, true);
4375}
4376/**
4377 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4378 * @p: the task in question.
4379 * @policy: new policy.
4380 * @param: structure containing the new RT priority.
4381 *
4382 * Return: 0 on success. An error code otherwise.
4383 *
4384 * NOTE that the task may be already dead.
4385 */
4386int sched_setscheduler(struct task_struct *p, int policy,
4387                       const struct sched_param *param)
4388{
4389        return _sched_setscheduler(p, policy, param, true);
4390}
4391EXPORT_SYMBOL_GPL(sched_setscheduler);
4392
4393int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4394{
4395        return __sched_setscheduler(p, attr, true, true);
4396}
4397EXPORT_SYMBOL_GPL(sched_setattr);
4398
4399int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4400{
4401        return __sched_setscheduler(p, attr, false, true);
4402}
4403
4404/**
4405 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4406 * @p: the task in question.
4407 * @policy: new policy.
4408 * @param: structure containing the new RT priority.
4409 *
4410 * Just like sched_setscheduler, only don't bother checking if the
4411 * current context has permission.  For example, this is needed in
4412 * stop_machine(): we create temporary high priority worker threads,
4413 * but our caller might not have that capability.
4414 *
4415 * Return: 0 on success. An error code otherwise.
4416 */
4417int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4418                               const struct sched_param *param)
4419{
4420        return _sched_setscheduler(p, policy, param, false);
4421}
4422EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4423
4424static int
4425do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4426{
4427        struct sched_param lparam;
4428        struct task_struct *p;
4429        int retval;
4430
4431        if (!param || pid < 0)
4432                return -EINVAL;
4433        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4434                return -EFAULT;
4435
4436        rcu_read_lock();
4437        retval = -ESRCH;
4438        p = find_process_by_pid(pid);
4439        if (p != NULL)
4440                retval = sched_setscheduler(p, policy, &lparam);
4441        rcu_read_unlock();
4442
4443        return retval;
4444}
4445
4446/*
4447 * Mimics kernel/events/core.c perf_copy_attr().
4448 */
4449static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4450{
4451        u32 size;
4452        int ret;
4453
4454        if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4455                return -EFAULT;
4456
4457        /* Zero the full structure, so that a short copy will be nice: */
4458        memset(attr, 0, sizeof(*attr));
4459
4460        ret = get_user(size, &uattr->size);
4461        if (ret)
4462                return ret;
4463
4464        /* Bail out on silly large: */
4465        if (size > PAGE_SIZE)
4466                goto err_size;
4467
4468        /* ABI compatibility quirk: */
4469        if (!size)
4470                size = SCHED_ATTR_SIZE_VER0;
4471
4472        if (size < SCHED_ATTR_SIZE_VER0)
4473                goto err_size;
4474
4475        /*
4476         * If we're handed a bigger struct than we know of,
4477         * ensure all the unknown bits are 0 - i.e. new
4478         * user-space does not rely on any kernel feature
4479         * extensions we dont know about yet.
4480         */
4481        if (size > sizeof(*attr)) {
4482                unsigned char __user *addr;
4483                unsigned char __user *end;
4484                unsigned char val;
4485
4486                addr = (void __user *)uattr + sizeof(*attr);
4487                end  = (void __user *)uattr + size;
4488
4489                for (; addr < end; addr++) {
4490                        ret = get_user(val, addr);
4491                        if (ret)
4492                                return ret;
4493                        if (val)
4494                                goto err_size;
4495                }
4496                size = sizeof(*attr);
4497        }
4498
4499        ret = copy_from_user(attr, uattr, size);
4500        if (ret)
4501                return -EFAULT;
4502
4503        /*
4504         * XXX: Do we want to be lenient like existing syscalls; or do we want
4505         * to be strict and return an error on out-of-bounds values?
4506         */
4507        attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4508
4509        return 0;
4510
4511err_size:
4512        put_user(sizeof(*attr), &uattr->size);
4513        return -E2BIG;
4514}
4515
4516/**
4517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4518 * @pid: the pid in question.
4519 * @policy: new policy.
4520 * @param: structure containing the new RT priority.
4521 *
4522 * Return: 0 on success. An error code otherwise.
4523 */
4524SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4525{
4526        if (policy < 0)
4527                return -EINVAL;
4528
4529        return do_sched_setscheduler(pid, policy, param);
4530}
4531
4532/**
4533 * sys_sched_setparam - set/change the RT priority of a thread
4534 * @pid: the pid in question.
4535 * @param: structure containing the new RT priority.
4536 *
4537 * Return: 0 on success. An error code otherwise.
4538 */
4539SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4540{
4541        return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4542}
4543
4544/**
4545 * sys_sched_setattr - same as above, but with extended sched_attr
4546 * @pid: the pid in question.
4547 * @uattr: structure containing the extended parameters.
4548 * @flags: for future extension.
4549 */
4550SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4551                               unsigned int, flags)
4552{
4553        struct sched_attr attr;
4554        struct task_struct *p;
4555        int retval;
4556
4557        if (!uattr || pid < 0 || flags)
4558                return -EINVAL;
4559
4560        retval = sched_copy_attr(uattr, &attr);
4561        if (retval)
4562                return retval;
4563
4564        if ((int)attr.sched_policy < 0)
4565                return -EINVAL;
4566
4567        rcu_read_lock();
4568        retval = -ESRCH;
4569        p = find_process_by_pid(pid);
4570        if (p != NULL)
4571                retval = sched_setattr(p, &attr);
4572        rcu_read_unlock();
4573
4574        return retval;
4575}
4576
4577/**
4578 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4579 * @pid: the pid in question.
4580 *
4581 * Return: On success, the policy of the thread. Otherwise, a negative error
4582 * code.
4583 */
4584SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4585{
4586        struct task_struct *p;
4587        int retval;
4588
4589        if (pid < 0)
4590                return -EINVAL;
4591
4592        retval = -ESRCH;
4593        rcu_read_lock();
4594        p = find_process_by_pid(pid);
4595        if (p) {
4596                retval = security_task_getscheduler(p);
4597                if (!retval)
4598                        retval = p->policy
4599                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4600        }
4601        rcu_read_unlock();
4602        return retval;
4603}
4604
4605/**
4606 * sys_sched_getparam - get the RT priority of a thread
4607 * @pid: the pid in question.
4608 * @param: structure containing the RT priority.
4609 *
4610 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4611 * code.
4612 */
4613SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4614{
4615        struct sched_param lp = { .sched_priority = 0 };
4616        struct task_struct *p;
4617        int retval;
4618
4619        if (!param || pid < 0)
4620                return -EINVAL;
4621
4622        rcu_read_lock();
4623        p = find_process_by_pid(pid);
4624        retval = -ESRCH;
4625        if (!p)
4626                goto out_unlock;
4627
4628        retval = security_task_getscheduler(p);
4629        if (retval)
4630                goto out_unlock;
4631
4632        if (task_has_rt_policy(p))
4633                lp.sched_priority = p->rt_priority;
4634        rcu_read_unlock();
4635
4636        /*
4637         * This one might sleep, we cannot do it with a spinlock held ...
4638         */
4639        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4640
4641        return retval;
4642
4643out_unlock:
4644        rcu_read_unlock();
4645        return retval;
4646}
4647
4648static int sched_read_attr(struct sched_attr __user *uattr,
4649                           struct sched_attr *attr,
4650                           unsigned int usize)
4651{
4652        int ret;
4653
4654        if (!access_ok(VERIFY_WRITE, uattr, usize))
4655                return -EFAULT;
4656
4657        /*
4658         * If we're handed a smaller struct than we know of,
4659         * ensure all the unknown bits are 0 - i.e. old
4660         * user-space does not get uncomplete information.
4661         */
4662        if (usize < sizeof(*attr)) {
4663                unsigned char *addr;
4664                unsigned char *end;
4665
4666                addr = (void *)attr + usize;
4667                end  = (void *)attr + sizeof(*attr);
4668
4669                for (; addr < end; addr++) {
4670                        if (*addr)
4671                                return -EFBIG;
4672                }
4673
4674                attr->size = usize;
4675        }
4676
4677        ret = copy_to_user(uattr, attr, attr->size);
4678        if (ret)
4679                return -EFAULT;
4680
4681        return 0;
4682}
4683
4684/**
4685 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4686 * @pid: the pid in question.
4687 * @uattr: structure containing the extended parameters.
4688 * @size: sizeof(attr) for fwd/bwd comp.
4689 * @flags: for future extension.
4690 */
4691SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4692                unsigned int, size, unsigned int, flags)
4693{
4694        struct sched_attr attr = {
4695                .size = sizeof(struct sched_attr),
4696        };
4697        struct task_struct *p;
4698        int retval;
4699
4700        if (!uattr || pid < 0 || size > PAGE_SIZE ||
4701            size < SCHED_ATTR_SIZE_VER0 || flags)
4702                return -EINVAL;
4703
4704        rcu_read_lock();
4705        p = find_process_by_pid(pid);
4706        retval = -ESRCH;
4707        if (!p)
4708                goto out_unlock;
4709
4710        retval = security_task_getscheduler(p);
4711        if (retval)
4712                goto out_unlock;
4713
4714        attr.sched_policy = p->policy;
4715        if (p->sched_reset_on_fork)
4716                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4717        if (task_has_dl_policy(p))
4718                __getparam_dl(p, &attr);
4719        else if (task_has_rt_policy(p))
4720                attr.sched_priority = p->rt_priority;
4721        else
4722                attr.sched_nice = task_nice(p);
4723
4724        rcu_read_unlock();
4725
4726        retval = sched_read_attr(uattr, &attr, size);
4727        return retval;
4728
4729out_unlock:
4730        rcu_read_unlock();
4731        return retval;
4732}
4733
4734long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4735{
4736        cpumask_var_t cpus_allowed, new_mask;
4737        struct task_struct *p;
4738        int retval;
4739
4740        rcu_read_lock();
4741
4742        p = find_process_by_pid(pid);
4743        if (!p) {
4744                rcu_read_unlock();
4745                return -ESRCH;
4746        }
4747
4748        /* Prevent p going away */
4749        get_task_struct(p);
4750        rcu_read_unlock();
4751
4752        if (p->flags & PF_NO_SETAFFINITY) {
4753                retval = -EINVAL;
4754                goto out_put_task;
4755        }
4756        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4757                retval = -ENOMEM;
4758                goto out_put_task;
4759        }
4760        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4761                retval = -ENOMEM;
4762                goto out_free_cpus_allowed;
4763        }
4764        retval = -EPERM;
4765        if (!check_same_owner(p)) {
4766                rcu_read_lock();
4767                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4768                        rcu_read_unlock();
4769                        goto out_free_new_mask;
4770                }
4771                rcu_read_unlock();
4772        }
4773
4774        retval = security_task_setscheduler(p);
4775        if (retval)
4776                goto out_free_new_mask;
4777
4778
4779        cpuset_cpus_allowed(p, cpus_allowed);
4780        cpumask_and(new_mask, in_mask, cpus_allowed);
4781
4782        /*
4783         * Since bandwidth control happens on root_domain basis,
4784         * if admission test is enabled, we only admit -deadline
4785         * tasks allowed to run on all the CPUs in the task's
4786         * root_domain.
4787         */
4788#ifdef CONFIG_SMP
4789        if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4790                rcu_read_lock();
4791                if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4792                        retval = -EBUSY;
4793                        rcu_read_unlock();
4794                        goto out_free_new_mask;
4795                }
4796                rcu_read_unlock();
4797        }
4798#endif
4799again:
4800        retval = __set_cpus_allowed_ptr(p, new_mask, true);
4801
4802        if (!retval) {
4803                cpuset_cpus_allowed(p, cpus_allowed);
4804                if (!cpumask_subset(new_mask, cpus_allowed)) {
4805                        /*
4806                         * We must have raced with a concurrent cpuset
4807                         * update. Just reset the cpus_allowed to the
4808                         * cpuset's cpus_allowed
4809                         */
4810                        cpumask_copy(new_mask, cpus_allowed);
4811                        goto again;
4812                }
4813        }
4814out_free_new_mask:
4815        free_cpumask_var(new_mask);
4816out_free_cpus_allowed:
4817        free_cpumask_var(cpus_allowed);
4818out_put_task:
4819        put_task_struct(p);
4820        return retval;
4821}
4822
4823static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4824                             struct cpumask *new_mask)
4825{
4826        if (len < cpumask_size())
4827                cpumask_clear(new_mask);
4828        else if (len > cpumask_size())
4829                len = cpumask_size();
4830
4831        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4832}
4833
4834/**
4835 * sys_sched_setaffinity - set the CPU affinity of a process
4836 * @pid: pid of the process
4837 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4838 * @user_mask_ptr: user-space pointer to the new CPU mask
4839 *
4840 * Return: 0 on success. An error code otherwise.
4841 */
4842SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4843                unsigned long __user *, user_mask_ptr)
4844{
4845        cpumask_var_t new_mask;
4846        int retval;
4847
4848        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4849                return -ENOMEM;
4850
4851        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4852        if (retval == 0)
4853                retval = sched_setaffinity(pid, new_mask);
4854        free_cpumask_var(new_mask);
4855        return retval;
4856}
4857
4858long sched_getaffinity(pid_t pid, struct cpumask *mask)
4859{
4860        struct task_struct *p;
4861        unsigned long flags;
4862        int retval;
4863
4864        rcu_read_lock();
4865
4866        retval = -ESRCH;
4867        p = find_process_by_pid(pid);
4868        if (!p)
4869                goto out_unlock;
4870
4871        retval = security_task_getscheduler(p);
4872        if (retval)
4873                goto out_unlock;
4874
4875        raw_spin_lock_irqsave(&p->pi_lock, flags);
4876        cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4877        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4878
4879out_unlock:
4880        rcu_read_unlock();
4881
4882        return retval;
4883}
4884
4885/**
4886 * sys_sched_getaffinity - get the CPU affinity of a process
4887 * @pid: pid of the process
4888 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4889 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4890 *
4891 * Return: size of CPU mask copied to user_mask_ptr on success. An
4892 * error code otherwise.
4893 */
4894SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4895                unsigned long __user *, user_mask_ptr)
4896{
4897        int ret;
4898        cpumask_var_t mask;
4899
4900        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4901                return -EINVAL;
4902        if (len & (sizeof(unsigned long)-1))
4903                return -EINVAL;
4904
4905        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4906                return -ENOMEM;
4907
4908        ret = sched_getaffinity(pid, mask);
4909        if (ret == 0) {
4910                unsigned int retlen = min(len, cpumask_size());
4911
4912                if (copy_to_user(user_mask_ptr, mask, retlen))
4913                        ret = -EFAULT;
4914                else
4915                        ret = retlen;
4916        }
4917        free_cpumask_var(mask);
4918
4919        return ret;
4920}
4921
4922/**
4923 * sys_sched_yield - yield the current processor to other threads.
4924 *
4925 * This function yields the current CPU to other tasks. If there are no
4926 * other threads running on this CPU then this function will return.
4927 *
4928 * Return: 0.
4929 */
4930static void do_sched_yield(void)
4931{
4932        struct rq_flags rf;
4933        struct rq *rq;
4934
4935        local_irq_disable();
4936        rq = this_rq();
4937        rq_lock(rq, &rf);
4938
4939        schedstat_inc(rq->yld_count);
4940        current->sched_class->yield_task(rq);
4941
4942        /*
4943         * Since we are going to call schedule() anyway, there's
4944         * no need to preempt or enable interrupts:
4945         */
4946        preempt_disable();
4947        rq_unlock(rq, &rf);
4948        sched_preempt_enable_no_resched();
4949
4950        schedule();
4951}
4952
4953SYSCALL_DEFINE0(sched_yield)
4954{
4955        do_sched_yield();
4956        return 0;
4957}
4958
4959#ifndef CONFIG_PREEMPT
4960int __sched _cond_resched(void)
4961{
4962        if (should_resched(0)) {
4963                preempt_schedule_common();
4964                return 1;
4965        }
4966        rcu_all_qs();
4967        return 0;
4968}
4969EXPORT_SYMBOL(_cond_resched);
4970#endif
4971
4972/*
4973 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4974 * call schedule, and on return reacquire the lock.
4975 *
4976 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4977 * operations here to prevent schedule() from being called twice (once via
4978 * spin_unlock(), once by hand).
4979 */
4980int __cond_resched_lock(spinlock_t *lock)
4981{
4982        int resched = should_resched(PREEMPT_LOCK_OFFSET);
4983        int ret = 0;
4984
4985        lockdep_assert_held(lock);
4986
4987        if (spin_needbreak(lock) || resched) {
4988                spin_unlock(lock);
4989                if (resched)
4990                        preempt_schedule_common();
4991                else
4992                        cpu_relax();
4993                ret = 1;
4994                spin_lock(lock);
4995        }
4996        return ret;
4997}
4998EXPORT_SYMBOL(__cond_resched_lock);
4999
5000/**
5001 * yield - yield the current processor to other threads.
5002 *
5003 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5004 *
5005 * The scheduler is at all times free to pick the calling task as the most
5006 * eligible task to run, if removing the yield() call from your code breaks
5007 * it, its already broken.
5008 *
5009 * Typical broken usage is:
5010 *
5011 * while (!event)
5012 *      yield();
5013 *
5014 * where one assumes that yield() will let 'the other' process run that will
5015 * make event true. If the current task is a SCHED_FIFO task that will never
5016 * happen. Never use yield() as a progress guarantee!!
5017 *
5018 * If you want to use yield() to wait for something, use wait_event().
5019 * If you want to use yield() to be 'nice' for others, use cond_resched().
5020 * If you still want to use yield(), do not!
5021 */
5022void __sched yield(void)
5023{
5024        set_current_state(TASK_RUNNING);
5025        do_sched_yield();
5026}
5027EXPORT_SYMBOL(yield);
5028
5029/**
5030 * yield_to - yield the current processor to another thread in
5031 * your thread group, or accelerate that thread toward the
5032 * processor it's on.
5033 * @p: target task
5034 * @preempt: whether task preemption is allowed or not
5035 *
5036 * It's the caller's job to ensure that the target task struct
5037 * can't go away on us before we can do any checks.
5038 *
5039 * Return:
5040 *      true (>0) if we indeed boosted the target task.
5041 *      false (0) if we failed to boost the target.
5042 *      -ESRCH if there's no task to yield to.
5043 */
5044int __sched yield_to(struct task_struct *p, bool preempt)
5045{
5046        struct task_struct *curr = current;
5047        struct rq *rq, *p_rq;
5048        unsigned long flags;
5049        int yielded = 0;
5050
5051        local_irq_save(flags);
5052        rq = this_rq();
5053
5054again:
5055        p_rq = task_rq(p);
5056        /*
5057         * If we're the only runnable task on the rq and target rq also
5058         * has only one task, there's absolutely no point in yielding.
5059         */
5060        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5061                yielded = -ESRCH;
5062                goto out_irq;
5063        }
5064
5065        double_rq_lock(rq, p_rq);
5066        if (task_rq(p) != p_rq) {
5067                double_rq_unlock(rq, p_rq);
5068                goto again;
5069        }
5070
5071        if (!curr->sched_class->yield_to_task)
5072                goto out_unlock;
5073
5074        if (curr->sched_class != p->sched_class)
5075                goto out_unlock;
5076
5077        if (task_running(p_rq, p) || p->state)
5078                goto out_unlock;
5079
5080        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5081        if (yielded) {
5082                schedstat_inc(rq->yld_count);
5083                /*
5084                 * Make p's CPU reschedule; pick_next_entity takes care of
5085                 * fairness.
5086                 */
5087                if (preempt && rq != p_rq)
5088                        resched_curr(p_rq);
5089        }
5090
5091out_unlock:
5092        double_rq_unlock(rq, p_rq);
5093out_irq:
5094        local_irq_restore(flags);
5095
5096        if (yielded > 0)
5097                schedule();
5098
5099        return yielded;
5100}
5101EXPORT_SYMBOL_GPL(yield_to);
5102
5103int io_schedule_prepare(void)
5104{
5105        int old_iowait = current->in_iowait;
5106
5107        current->in_iowait = 1;
5108        blk_schedule_flush_plug(current);
5109
5110        return old_iowait;
5111}
5112
5113void io_schedule_finish(int token)
5114{
5115        current->in_iowait = token;
5116}
5117
5118/*
5119 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5120 * that process accounting knows that this is a task in IO wait state.
5121 */
5122long __sched io_schedule_timeout(long timeout)
5123{
5124        int token;
5125        long ret;
5126
5127        token = io_schedule_prepare();
5128        ret = schedule_timeout(timeout);
5129        io_schedule_finish(token);
5130
5131        return ret;
5132}
5133EXPORT_SYMBOL(io_schedule_timeout);
5134
5135void io_schedule(void)
5136{
5137        int token;
5138
5139        token = io_schedule_prepare();
5140        schedule();
5141        io_schedule_finish(token);
5142}
5143EXPORT_SYMBOL(io_schedule);
5144
5145/**
5146 * sys_sched_get_priority_max - return maximum RT priority.
5147 * @policy: scheduling class.
5148 *
5149 * Return: On success, this syscall returns the maximum
5150 * rt_priority that can be used by a given scheduling class.
5151 * On failure, a negative error code is returned.
5152 */
5153SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5154{
5155        int ret = -EINVAL;
5156
5157        switch (policy) {
5158        case SCHED_FIFO:
5159        case SCHED_RR:
5160                ret = MAX_USER_RT_PRIO-1;
5161                break;
5162        case SCHED_DEADLINE:
5163        case SCHED_NORMAL:
5164        case SCHED_BATCH:
5165        case SCHED_IDLE:
5166                ret = 0;
5167                break;
5168        }
5169        return ret;
5170}
5171
5172/**
5173 * sys_sched_get_priority_min - return minimum RT priority.
5174 * @policy: scheduling class.
5175 *
5176 * Return: On success, this syscall returns the minimum
5177 * rt_priority that can be used by a given scheduling class.
5178 * On failure, a negative error code is returned.
5179 */
5180SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5181{
5182        int ret = -EINVAL;
5183
5184        switch (policy) {
5185        case SCHED_FIFO:
5186        case SCHED_RR:
5187                ret = 1;
5188                break;
5189        case SCHED_DEADLINE:
5190        case SCHED_NORMAL:
5191        case SCHED_BATCH:
5192        case SCHED_IDLE:
5193                ret = 0;
5194        }
5195        return ret;
5196}
5197
5198static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5199{
5200        struct task_struct *p;
5201        unsigned int time_slice;
5202        struct rq_flags rf;
5203        struct rq *rq;
5204        int retval;
5205
5206        if (pid < 0)
5207                return -EINVAL;
5208
5209        retval = -ESRCH;
5210        rcu_read_lock();
5211        p = find_process_by_pid(pid);
5212        if (!p)
5213                goto out_unlock;
5214
5215        retval = security_task_getscheduler(p);
5216        if (retval)
5217                goto out_unlock;
5218
5219        rq = task_rq_lock(p, &rf);
5220        time_slice = 0;
5221        if (p->sched_class->get_rr_interval)
5222                time_slice = p->sched_class->get_rr_interval(rq, p);
5223        task_rq_unlock(rq, p, &rf);
5224
5225        rcu_read_unlock();
5226        jiffies_to_timespec64(time_slice, t);
5227        return 0;
5228
5229out_unlock:
5230        rcu_read_unlock();
5231        return retval;
5232}
5233
5234/**
5235 * sys_sched_rr_get_interval - return the default timeslice of a process.
5236 * @pid: pid of the process.
5237 * @interval: userspace pointer to the timeslice value.
5238 *
5239 * this syscall writes the default timeslice value of a given process
5240 * into the user-space timespec buffer. A value of '0' means infinity.
5241 *
5242 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5243 * an error code.
5244 */
5245SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5246                struct timespec __user *, interval)
5247{
5248        struct timespec64 t;
5249        int retval = sched_rr_get_interval(pid, &t);
5250
5251        if (retval == 0)
5252                retval = put_timespec64(&t, interval);
5253
5254        return retval;
5255}
5256
5257#ifdef CONFIG_COMPAT
5258COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5259                       compat_pid_t, pid,
5260                       struct compat_timespec __user *, interval)
5261{
5262        struct timespec64 t;
5263        int retval = sched_rr_get_interval(pid, &t);
5264
5265        if (retval == 0)
5266                retval = compat_put_timespec64(&t, interval);
5267        return retval;
5268}
5269#endif
5270
5271void sched_show_task(struct task_struct *p)
5272{
5273        unsigned long free = 0;
5274        int ppid;
5275
5276        if (!try_get_task_stack(p))
5277                return;
5278
5279        printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5280
5281        if (p->state == TASK_RUNNING)
5282                printk(KERN_CONT "  running task    ");
5283#ifdef CONFIG_DEBUG_STACK_USAGE
5284        free = stack_not_used(p);
5285#endif
5286        ppid = 0;
5287        rcu_read_lock();
5288        if (pid_alive(p))
5289                ppid = task_pid_nr(rcu_dereference(p->real_parent));
5290        rcu_read_unlock();
5291        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5292                task_pid_nr(p), ppid,
5293                (unsigned long)task_thread_info(p)->flags);
5294
5295        print_worker_info(KERN_INFO, p);
5296        show_stack(p, NULL);
5297        put_task_stack(p);
5298}
5299EXPORT_SYMBOL_GPL(sched_show_task);
5300
5301static inline bool
5302state_filter_match(unsigned long state_filter, struct task_struct *p)
5303{
5304        /* no filter, everything matches */
5305        if (!state_filter)
5306                return true;
5307
5308        /* filter, but doesn't match */
5309        if (!(p->state & state_filter))
5310                return false;
5311
5312        /*
5313         * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5314         * TASK_KILLABLE).
5315         */
5316        if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5317                return false;
5318
5319        return true;
5320}
5321
5322
5323void show_state_filter(unsigned long state_filter)
5324{
5325        struct task_struct *g, *p;
5326
5327#if BITS_PER_LONG == 32
5328        printk(KERN_INFO
5329                "  task                PC stack   pid father\n");
5330#else
5331        printk(KERN_INFO
5332                "  task                        PC stack   pid father\n");
5333#endif
5334        rcu_read_lock();
5335        for_each_process_thread(g, p) {
5336                /*
5337                 * reset the NMI-timeout, listing all files on a slow
5338                 * console might take a lot of time:
5339                 * Also, reset softlockup watchdogs on all CPUs, because
5340                 * another CPU might be blocked waiting for us to process
5341                 * an IPI.
5342                 */
5343                touch_nmi_watchdog();
5344                touch_all_softlockup_watchdogs();
5345                if (state_filter_match(state_filter, p))
5346                        sched_show_task(p);
5347        }
5348
5349#ifdef CONFIG_SCHED_DEBUG
5350        if (!state_filter)
5351                sysrq_sched_debug_show();
5352#endif
5353        rcu_read_unlock();
5354        /*
5355         * Only show locks if all tasks are dumped:
5356         */
5357        if (!state_filter)
5358                debug_show_all_locks();
5359}
5360
5361/**
5362 * init_idle - set up an idle thread for a given CPU
5363 * @idle: task in question
5364 * @cpu: CPU the idle task belongs to
5365 *
5366 * NOTE: this function does not set the idle thread's NEED_RESCHED
5367 * flag, to make booting more robust.
5368 */
5369void init_idle(struct task_struct *idle, int cpu)
5370{
5371        struct rq *rq = cpu_rq(cpu);
5372        unsigned long flags;
5373
5374        raw_spin_lock_irqsave(&idle->pi_lock, flags);
5375        raw_spin_lock(&rq->lock);
5376
5377        __sched_fork(0, idle);
5378        idle->state = TASK_RUNNING;
5379        idle->se.exec_start = sched_clock();
5380        idle->flags |= PF_IDLE;
5381
5382        kasan_unpoison_task_stack(idle);
5383
5384#ifdef CONFIG_SMP
5385        /*
5386         * Its possible that init_idle() gets called multiple times on a task,
5387         * in that case do_set_cpus_allowed() will not do the right thing.
5388         *
5389         * And since this is boot we can forgo the serialization.
5390         */
5391        set_cpus_allowed_common(idle, cpumask_of(cpu));
5392#endif
5393        /*
5394         * We're having a chicken and egg problem, even though we are
5395         * holding rq->lock, the CPU isn't yet set to this CPU so the
5396         * lockdep check in task_group() will fail.
5397         *
5398         * Similar case to sched_fork(). / Alternatively we could
5399         * use task_rq_lock() here and obtain the other rq->lock.
5400         *
5401         * Silence PROVE_RCU
5402         */
5403        rcu_read_lock();
5404        __set_task_cpu(idle, cpu);
5405        rcu_read_unlock();
5406
5407        rq->curr = rq->idle = idle;
5408        idle->on_rq = TASK_ON_RQ_QUEUED;
5409#ifdef CONFIG_SMP
5410        idle->on_cpu = 1;
5411#endif
5412        raw_spin_unlock(&rq->lock);
5413        raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5414
5415        /* Set the preempt count _outside_ the spinlocks! */
5416        init_idle_preempt_count(idle, cpu);
5417
5418        /*
5419         * The idle tasks have their own, simple scheduling class:
5420         */
5421        idle->sched_class = &idle_sched_class;
5422        ftrace_graph_init_idle_task(idle, cpu);
5423        vtime_init_idle(idle, cpu);
5424#ifdef CONFIG_SMP
5425        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5426#endif
5427}
5428
5429#ifdef CONFIG_SMP
5430
5431int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5432                              const struct cpumask *trial)
5433{
5434        int ret = 1;
5435
5436        if (!cpumask_weight(cur))
5437                return ret;
5438
5439        ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5440
5441        return ret;
5442}
5443
5444int task_can_attach(struct task_struct *p,
5445                    const struct cpumask *cs_cpus_allowed)
5446{
5447        int ret = 0;
5448
5449        /*
5450         * Kthreads which disallow setaffinity shouldn't be moved
5451         * to a new cpuset; we don't want to change their CPU
5452         * affinity and isolating such threads by their set of
5453         * allowed nodes is unnecessary.  Thus, cpusets are not
5454         * applicable for such threads.  This prevents checking for
5455         * success of set_cpus_allowed_ptr() on all attached tasks
5456         * before cpus_allowed may be changed.
5457         */
5458        if (p->flags & PF_NO_SETAFFINITY) {
5459                ret = -EINVAL;
5460                goto out;
5461        }
5462
5463        if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5464                                              cs_cpus_allowed))
5465                ret = dl_task_can_attach(p, cs_cpus_allowed);
5466
5467out:
5468        return ret;
5469}
5470
5471bool sched_smp_initialized __read_mostly;
5472
5473#ifdef CONFIG_NUMA_BALANCING
5474/* Migrate current task p to target_cpu */
5475int migrate_task_to(struct task_struct *p, int target_cpu)
5476{
5477        struct migration_arg arg = { p, target_cpu };
5478        int curr_cpu = task_cpu(p);
5479
5480        if (curr_cpu == target_cpu)
5481                return 0;
5482
5483        if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5484                return -EINVAL;
5485
5486        /* TODO: This is not properly updating schedstats */
5487
5488        trace_sched_move_numa(p, curr_cpu, target_cpu);
5489        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5490}
5491
5492/*
5493 * Requeue a task on a given node and accurately track the number of NUMA
5494 * tasks on the runqueues
5495 */
5496void sched_setnuma(struct task_struct *p, int nid)
5497{
5498        bool queued, running;
5499        struct rq_flags rf;
5500        struct rq *rq;
5501
5502        rq = task_rq_lock(p, &rf);
5503        queued = task_on_rq_queued(p);
5504        running = task_current(rq, p);
5505
5506        if (queued)
5507                dequeue_task(rq, p, DEQUEUE_SAVE);
5508        if (running)
5509                put_prev_task(rq, p);
5510
5511        p->numa_preferred_nid = nid;
5512
5513        if (queued)
5514                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5515        if (running)
5516                set_curr_task(rq, p);
5517        task_rq_unlock(rq, p, &rf);
5518}
5519#endif /* CONFIG_NUMA_BALANCING */
5520
5521#ifdef CONFIG_HOTPLUG_CPU
5522/*
5523 * Ensure that the idle task is using init_mm right before its CPU goes
5524 * offline.
5525 */
5526void idle_task_exit(void)
5527{
5528        struct mm_struct *mm = current->active_mm;
5529
5530        BUG_ON(cpu_online(smp_processor_id()));
5531
5532        if (mm != &init_mm) {
5533                switch_mm(mm, &init_mm, current);
5534                current->active_mm = &init_mm;
5535                finish_arch_post_lock_switch();
5536        }
5537        mmdrop(mm);
5538}
5539
5540/*
5541 * Since this CPU is going 'away' for a while, fold any nr_active delta
5542 * we might have. Assumes we're called after migrate_tasks() so that the
5543 * nr_active count is stable. We need to take the teardown thread which
5544 * is calling this into account, so we hand in adjust = 1 to the load
5545 * calculation.
5546 *
5547 * Also see the comment "Global load-average calculations".
5548 */
5549static void calc_load_migrate(struct rq *rq)
5550{
5551        long delta = calc_load_fold_active(rq, 1);
5552        if (delta)
5553                atomic_long_add(delta, &calc_load_tasks);
5554}
5555
5556static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5557{
5558}
5559
5560static const struct sched_class fake_sched_class = {
5561        .put_prev_task = put_prev_task_fake,
5562};
5563
5564static struct task_struct fake_task = {
5565        /*
5566         * Avoid pull_{rt,dl}_task()
5567         */
5568        .prio = MAX_PRIO + 1,
5569        .sched_class = &fake_sched_class,
5570};
5571
5572/*
5573 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5574 * try_to_wake_up()->select_task_rq().
5575 *
5576 * Called with rq->lock held even though we'er in stop_machine() and
5577 * there's no concurrency possible, we hold the required locks anyway
5578 * because of lock validation efforts.
5579 */
5580static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5581{
5582        struct rq *rq = dead_rq;
5583        struct task_struct *next, *stop = rq->stop;
5584        struct rq_flags orf = *rf;
5585        int dest_cpu;
5586
5587        /*
5588         * Fudge the rq selection such that the below task selection loop
5589         * doesn't get stuck on the currently eligible stop task.
5590         *
5591         * We're currently inside stop_machine() and the rq is either stuck
5592         * in the stop_machine_cpu_stop() loop, or we're executing this code,
5593         * either way we should never end up calling schedule() until we're
5594         * done here.
5595         */
5596        rq->stop = NULL;
5597
5598        /*
5599         * put_prev_task() and pick_next_task() sched
5600         * class method both need to have an up-to-date
5601         * value of rq->clock[_task]
5602         */
5603        update_rq_clock(rq);
5604
5605        for (;;) {
5606                /*
5607                 * There's this thread running, bail when that's the only
5608                 * remaining thread:
5609                 */
5610                if (rq->nr_running == 1)
5611                        break;
5612
5613                /*
5614                 * pick_next_task() assumes pinned rq->lock:
5615                 */
5616                next = pick_next_task(rq, &fake_task, rf);
5617                BUG_ON(!next);
5618                put_prev_task(rq, next);
5619
5620                /*
5621                 * Rules for changing task_struct::cpus_allowed are holding
5622                 * both pi_lock and rq->lock, such that holding either
5623                 * stabilizes the mask.
5624                 *
5625                 * Drop rq->lock is not quite as disastrous as it usually is
5626                 * because !cpu_active at this point, which means load-balance
5627                 * will not interfere. Also, stop-machine.
5628                 */
5629                rq_unlock(rq, rf);
5630                raw_spin_lock(&next->pi_lock);
5631                rq_relock(rq, rf);
5632
5633                /*
5634                 * Since we're inside stop-machine, _nothing_ should have
5635                 * changed the task, WARN if weird stuff happened, because in
5636                 * that case the above rq->lock drop is a fail too.
5637                 */
5638                if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5639                        raw_spin_unlock(&next->pi_lock);
5640                        continue;
5641                }
5642
5643                /* Find suitable destination for @next, with force if needed. */
5644                dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5645                rq = __migrate_task(rq, rf, next, dest_cpu);
5646                if (rq != dead_rq) {
5647                        rq_unlock(rq, rf);
5648                        rq = dead_rq;
5649                        *rf = orf;
5650                        rq_relock(rq, rf);
5651                }
5652                raw_spin_unlock(&next->pi_lock);
5653        }
5654
5655        rq->stop = stop;
5656}
5657#endif /* CONFIG_HOTPLUG_CPU */
5658
5659void set_rq_online(struct rq *rq)
5660{
5661        if (!rq->online) {
5662                const struct sched_class *class;
5663
5664                cpumask_set_cpu(rq->cpu, rq->rd->online);
5665                rq->online = 1;
5666
5667                for_each_class(class) {
5668                        if (class->rq_online)
5669                                class->rq_online(rq);
5670                }
5671        }
5672}
5673
5674void set_rq_offline(struct rq *rq)
5675{
5676        if (rq->online) {
5677                const struct sched_class *class;
5678
5679                for_each_class(class) {
5680                        if (class->rq_offline)
5681                                class->rq_offline(rq);
5682                }
5683
5684                cpumask_clear_cpu(rq->cpu, rq->rd->online);
5685                rq->online = 0;
5686        }
5687}
5688
5689/*
5690 * used to mark begin/end of suspend/resume:
5691 */
5692static int num_cpus_frozen;
5693
5694/*
5695 * Update cpusets according to cpu_active mask.  If cpusets are
5696 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5697 * around partition_sched_domains().
5698 *
5699 * If we come here as part of a suspend/resume, don't touch cpusets because we
5700 * want to restore it back to its original state upon resume anyway.
5701 */
5702static void cpuset_cpu_active(void)
5703{
5704        if (cpuhp_tasks_frozen) {
5705                /*
5706                 * num_cpus_frozen tracks how many CPUs are involved in suspend
5707                 * resume sequence. As long as this is not the last online
5708                 * operation in the resume sequence, just build a single sched
5709                 * domain, ignoring cpusets.
5710                 */
5711                partition_sched_domains(1, NULL, NULL);
5712                if (--num_cpus_frozen)
5713                        return;
5714                /*
5715                 * This is the last CPU online operation. So fall through and
5716                 * restore the original sched domains by considering the
5717                 * cpuset configurations.
5718                 */
5719                cpuset_force_rebuild();
5720        }
5721        cpuset_update_active_cpus();
5722}
5723
5724static int cpuset_cpu_inactive(unsigned int cpu)
5725{
5726        if (!cpuhp_tasks_frozen) {
5727                if (dl_cpu_busy(cpu))
5728                        return -EBUSY;
5729                cpuset_update_active_cpus();
5730        } else {
5731                num_cpus_frozen++;
5732                partition_sched_domains(1, NULL, NULL);
5733        }
5734        return 0;
5735}
5736
5737int sched_cpu_activate(unsigned int cpu)
5738{
5739        struct rq *rq = cpu_rq(cpu);
5740        struct rq_flags rf;
5741
5742#ifdef CONFIG_SCHED_SMT
5743        /*
5744         * The sched_smt_present static key needs to be evaluated on every
5745         * hotplug event because at boot time SMT might be disabled when
5746         * the number of booted CPUs is limited.
5747         *
5748         * If then later a sibling gets hotplugged, then the key would stay
5749         * off and SMT scheduling would never be functional.
5750         */
5751        if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5752                static_branch_enable_cpuslocked(&sched_smt_present);
5753#endif
5754        set_cpu_active(cpu, true);
5755
5756        if (sched_smp_initialized) {
5757                sched_domains_numa_masks_set(cpu);
5758                cpuset_cpu_active();
5759        }
5760
5761        /*
5762         * Put the rq online, if not already. This happens:
5763         *
5764         * 1) In the early boot process, because we build the real domains
5765         *    after all CPUs have been brought up.
5766         *
5767         * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5768         *    domains.
5769         */
5770        rq_lock_irqsave(rq, &rf);
5771        if (rq->rd) {
5772                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773                set_rq_online(rq);
5774        }
5775        rq_unlock_irqrestore(rq, &rf);
5776
5777        update_max_interval();
5778
5779        return 0;
5780}
5781
5782int sched_cpu_deactivate(unsigned int cpu)
5783{
5784        int ret;
5785
5786        set_cpu_active(cpu, false);
5787        /*
5788         * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5789         * users of this state to go away such that all new such users will
5790         * observe it.
5791         *
5792         * Do sync before park smpboot threads to take care the rcu boost case.
5793         */
5794        synchronize_rcu_mult(call_rcu, call_rcu_sched);
5795
5796        if (!sched_smp_initialized)
5797                return 0;
5798
5799        ret = cpuset_cpu_inactive(cpu);
5800        if (ret) {
5801                set_cpu_active(cpu, true);
5802                return ret;
5803        }
5804        sched_domains_numa_masks_clear(cpu);
5805        return 0;
5806}
5807
5808static void sched_rq_cpu_starting(unsigned int cpu)
5809{
5810        struct rq *rq = cpu_rq(cpu);
5811
5812        rq->calc_load_update = calc_load_update;
5813        update_max_interval();
5814}
5815
5816int sched_cpu_starting(unsigned int cpu)
5817{
5818        sched_rq_cpu_starting(cpu);
5819        sched_tick_start(cpu);
5820        return 0;
5821}
5822
5823#ifdef CONFIG_HOTPLUG_CPU
5824int sched_cpu_dying(unsigned int cpu)
5825{
5826        struct rq *rq = cpu_rq(cpu);
5827        struct rq_flags rf;
5828
5829        /* Handle pending wakeups and then migrate everything off */
5830        sched_ttwu_pending();
5831        sched_tick_stop(cpu);
5832
5833        rq_lock_irqsave(rq, &rf);
5834        if (rq->rd) {
5835                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5836                set_rq_offline(rq);
5837        }
5838        migrate_tasks(rq, &rf);
5839        BUG_ON(rq->nr_running != 1);
5840        rq_unlock_irqrestore(rq, &rf);
5841
5842        calc_load_migrate(rq);
5843        update_max_interval();
5844        nohz_balance_exit_idle(rq);
5845        hrtick_clear(rq);
5846        return 0;
5847}
5848#endif
5849
5850void __init sched_init_smp(void)
5851{
5852        sched_init_numa();
5853
5854        /*
5855         * There's no userspace yet to cause hotplug operations; hence all the
5856         * CPU masks are stable and all blatant races in the below code cannot
5857         * happen.
5858         */
5859        mutex_lock(&sched_domains_mutex);
5860        sched_init_domains(cpu_active_mask);
5861        mutex_unlock(&sched_domains_mutex);
5862
5863        /* Move init over to a non-isolated CPU */
5864        if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5865                BUG();
5866        sched_init_granularity();
5867
5868        init_sched_rt_class();
5869        init_sched_dl_class();
5870
5871        sched_smp_initialized = true;
5872}
5873
5874static int __init migration_init(void)
5875{
5876        sched_rq_cpu_starting(smp_processor_id());
5877        return 0;
5878}
5879early_initcall(migration_init);
5880
5881#else
5882void __init sched_init_smp(void)
5883{
5884        sched_init_granularity();
5885}
5886#endif /* CONFIG_SMP */
5887
5888int in_sched_functions(unsigned long addr)
5889{
5890        return in_lock_functions(addr) ||
5891                (addr >= (unsigned long)__sched_text_start
5892                && addr < (unsigned long)__sched_text_end);
5893}
5894
5895#ifdef CONFIG_CGROUP_SCHED
5896/*
5897 * Default task group.
5898 * Every task in system belongs to this group at bootup.
5899 */
5900struct task_group root_task_group;
5901LIST_HEAD(task_groups);
5902
5903/* Cacheline aligned slab cache for task_group */
5904static struct kmem_cache *task_group_cache __read_mostly;
5905#endif
5906
5907DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5908DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5909
5910void __init sched_init(void)
5911{
5912        int i, j;
5913        unsigned long alloc_size = 0, ptr;
5914
5915        wait_bit_init();
5916
5917#ifdef CONFIG_FAIR_GROUP_SCHED
5918        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5919#endif
5920#ifdef CONFIG_RT_GROUP_SCHED
5921        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5922#endif
5923        if (alloc_size) {
5924                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5925
5926#ifdef CONFIG_FAIR_GROUP_SCHED
5927                root_task_group.se = (struct sched_entity **)ptr;
5928                ptr += nr_cpu_ids * sizeof(void **);
5929
5930                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5931                ptr += nr_cpu_ids * sizeof(void **);
5932
5933#endif /* CONFIG_FAIR_GROUP_SCHED */
5934#ifdef CONFIG_RT_GROUP_SCHED
5935                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5936                ptr += nr_cpu_ids * sizeof(void **);
5937
5938                root_task_group.rt_rq = (struct rt_rq **)ptr;
5939                ptr += nr_cpu_ids * sizeof(void **);
5940
5941#endif /* CONFIG_RT_GROUP_SCHED */
5942        }
5943#ifdef CONFIG_CPUMASK_OFFSTACK
5944        for_each_possible_cpu(i) {
5945                per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5946                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5947                per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5948                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5949        }
5950#endif /* CONFIG_CPUMASK_OFFSTACK */
5951
5952        init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5953        init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5954
5955#ifdef CONFIG_SMP
5956        init_defrootdomain();
5957#endif
5958
5959#ifdef CONFIG_RT_GROUP_SCHED
5960        init_rt_bandwidth(&root_task_group.rt_bandwidth,
5961                        global_rt_period(), global_rt_runtime());
5962#endif /* CONFIG_RT_GROUP_SCHED */
5963
5964#ifdef CONFIG_CGROUP_SCHED
5965        task_group_cache = KMEM_CACHE(task_group, 0);
5966
5967        list_add(&root_task_group.list, &task_groups);
5968        INIT_LIST_HEAD(&root_task_group.children);
5969        INIT_LIST_HEAD(&root_task_group.siblings);
5970        autogroup_init(&init_task);
5971#endif /* CONFIG_CGROUP_SCHED */
5972
5973        for_each_possible_cpu(i) {
5974                struct rq *rq;
5975
5976                rq = cpu_rq(i);
5977                raw_spin_lock_init(&rq->lock);
5978                rq->nr_running = 0;
5979                rq->calc_load_active = 0;
5980                rq->calc_load_update = jiffies + LOAD_FREQ;
5981                init_cfs_rq(&rq->cfs);
5982                init_rt_rq(&rq->rt);
5983                init_dl_rq(&rq->dl);
5984#ifdef CONFIG_FAIR_GROUP_SCHED
5985                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5986                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5987                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5988                /*
5989                 * How much CPU bandwidth does root_task_group get?
5990                 *
5991                 * In case of task-groups formed thr' the cgroup filesystem, it
5992                 * gets 100% of the CPU resources in the system. This overall
5993                 * system CPU resource is divided among the tasks of
5994                 * root_task_group and its child task-groups in a fair manner,
5995                 * based on each entity's (task or task-group's) weight
5996                 * (se->load.weight).
5997                 *
5998                 * In other words, if root_task_group has 10 tasks of weight
5999                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6000                 * then A0's share of the CPU resource is:
6001                 *
6002                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6003                 *
6004                 * We achieve this by letting root_task_group's tasks sit
6005                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6006                 */
6007                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6008                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6009#endif /* CONFIG_FAIR_GROUP_SCHED */
6010
6011                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6012#ifdef CONFIG_RT_GROUP_SCHED
6013                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6014#endif
6015
6016                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6017                        rq->cpu_load[j] = 0;
6018
6019#ifdef CONFIG_SMP
6020                rq->sd = NULL;
6021                rq->rd = NULL;
6022                rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6023                rq->balance_callback = NULL;
6024                rq->active_balance = 0;
6025                rq->next_balance = jiffies;
6026                rq->push_cpu = 0;
6027                rq->cpu = i;
6028                rq->online = 0;
6029                rq->idle_stamp = 0;
6030                rq->avg_idle = 2*sysctl_sched_migration_cost;
6031                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6032
6033                INIT_LIST_HEAD(&rq->cfs_tasks);
6034
6035                rq_attach_root(rq, &def_root_domain);
6036#ifdef CONFIG_NO_HZ_COMMON
6037                rq->last_load_update_tick = jiffies;
6038                rq->last_blocked_load_update_tick = jiffies;
6039                atomic_set(&rq->nohz_flags, 0);
6040#endif
6041#endif /* CONFIG_SMP */
6042                hrtick_rq_init(rq);
6043                atomic_set(&rq->nr_iowait, 0);
6044        }
6045
6046        set_load_weight(&init_task, false);
6047
6048        /*
6049         * The boot idle thread does lazy MMU switching as well:
6050         */
6051        mmgrab(&init_mm);
6052        enter_lazy_tlb(&init_mm, current);
6053
6054        /*
6055         * Make us the idle thread. Technically, schedule() should not be
6056         * called from this thread, however somewhere below it might be,
6057         * but because we are the idle thread, we just pick up running again
6058         * when this runqueue becomes "idle".
6059         */
6060        init_idle(current, smp_processor_id());
6061
6062        calc_load_update = jiffies + LOAD_FREQ;
6063
6064#ifdef CONFIG_SMP
6065        idle_thread_set_boot_cpu();
6066#endif
6067        init_sched_fair_class();
6068
6069        init_schedstats();
6070
6071        scheduler_running = 1;
6072}
6073
6074#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6075static inline int preempt_count_equals(int preempt_offset)
6076{
6077        int nested = preempt_count() + rcu_preempt_depth();
6078
6079        return (nested == preempt_offset);
6080}
6081
6082void __might_sleep(const char *file, int line, int preempt_offset)
6083{
6084        /*
6085         * Blocking primitives will set (and therefore destroy) current->state,
6086         * since we will exit with TASK_RUNNING make sure we enter with it,
6087         * otherwise we will destroy state.
6088         */
6089        WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6090                        "do not call blocking ops when !TASK_RUNNING; "
6091                        "state=%lx set at [<%p>] %pS\n",
6092                        current->state,
6093                        (void *)current->task_state_change,
6094                        (void *)current->task_state_change);
6095
6096        ___might_sleep(file, line, preempt_offset);
6097}
6098EXPORT_SYMBOL(__might_sleep);
6099
6100void ___might_sleep(const char *file, int line, int preempt_offset)
6101{
6102        /* Ratelimiting timestamp: */
6103        static unsigned long prev_jiffy;
6104
6105        unsigned long preempt_disable_ip;
6106
6107        /* WARN_ON_ONCE() by default, no rate limit required: */
6108        rcu_sleep_check();
6109
6110        if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6111             !is_idle_task(current)) ||
6112            system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6113            oops_in_progress)
6114                return;
6115
6116        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6117                return;
6118        prev_jiffy = jiffies;
6119
6120        /* Save this before calling printk(), since that will clobber it: */
6121        preempt_disable_ip = get_preempt_disable_ip(current);
6122
6123        printk(KERN_ERR
6124                "BUG: sleeping function called from invalid context at %s:%d\n",
6125                        file, line);
6126        printk(KERN_ERR
6127                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6128                        in_atomic(), irqs_disabled(),
6129                        current->pid, current->comm);
6130
6131        if (task_stack_end_corrupted(current))
6132                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6133
6134        debug_show_held_locks(current);
6135        if (irqs_disabled())
6136                print_irqtrace_events(current);
6137        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6138            && !preempt_count_equals(preempt_offset)) {
6139                pr_err("Preemption disabled at:");
6140                print_ip_sym(preempt_disable_ip);
6141                pr_cont("\n");
6142        }
6143        dump_stack();
6144        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6145}
6146EXPORT_SYMBOL(___might_sleep);
6147#endif
6148
6149#ifdef CONFIG_MAGIC_SYSRQ
6150void normalize_rt_tasks(void)
6151{
6152        struct task_struct *g, *p;
6153        struct sched_attr attr = {
6154                .sched_policy = SCHED_NORMAL,
6155        };
6156
6157        read_lock(&tasklist_lock);
6158        for_each_process_thread(g, p) {
6159                /*
6160                 * Only normalize user tasks:
6161                 */
6162                if (p->flags & PF_KTHREAD)
6163                        continue;
6164
6165                p->se.exec_start = 0;
6166                schedstat_set(p->se.statistics.wait_start,  0);
6167                schedstat_set(p->se.statistics.sleep_start, 0);
6168                schedstat_set(p->se.statistics.block_start, 0);
6169
6170                if (!dl_task(p) && !rt_task(p)) {
6171                        /*
6172                         * Renice negative nice level userspace
6173                         * tasks back to 0:
6174                         */
6175                        if (task_nice(p) < 0)
6176                                set_user_nice(p, 0);
6177                        continue;
6178                }
6179
6180                __sched_setscheduler(p, &attr, false, false);
6181        }
6182        read_unlock(&tasklist_lock);
6183}
6184
6185#endif /* CONFIG_MAGIC_SYSRQ */
6186
6187#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6188/*
6189 * These functions are only useful for the IA64 MCA handling, or kdb.
6190 *
6191 * They can only be called when the whole system has been
6192 * stopped - every CPU needs to be quiescent, and no scheduling
6193 * activity can take place. Using them for anything else would
6194 * be a serious bug, and as a result, they aren't even visible
6195 * under any other configuration.
6196 */
6197
6198/**
6199 * curr_task - return the current task for a given CPU.
6200 * @cpu: the processor in question.
6201 *
6202 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6203 *
6204 * Return: The current task for @cpu.
6205 */
6206struct task_struct *curr_task(int cpu)
6207{
6208        return cpu_curr(cpu);
6209}
6210
6211#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6212
6213#ifdef CONFIG_IA64
6214/**
6215 * set_curr_task - set the current task for a given CPU.
6216 * @cpu: the processor in question.
6217 * @p: the task pointer to set.
6218 *
6219 * Description: This function must only be used when non-maskable interrupts
6220 * are serviced on a separate stack. It allows the architecture to switch the
6221 * notion of the current task on a CPU in a non-blocking manner. This function
6222 * must be called with all CPU's synchronized, and interrupts disabled, the
6223 * and caller must save the original value of the current task (see
6224 * curr_task() above) and restore that value before reenabling interrupts and
6225 * re-starting the system.
6226 *
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6228 */
6229void ia64_set_curr_task(int cpu, struct task_struct *p)
6230{
6231        cpu_curr(cpu) = p;
6232}
6233
6234#endif
6235
6236#ifdef CONFIG_CGROUP_SCHED
6237/* task_group_lock serializes the addition/removal of task groups */
6238static DEFINE_SPINLOCK(task_group_lock);
6239
6240static void sched_free_group(struct task_group *tg)
6241{
6242        free_fair_sched_group(tg);
6243        free_rt_sched_group(tg);
6244        autogroup_free(tg);
6245        kmem_cache_free(task_group_cache, tg);
6246}
6247
6248/* allocate runqueue etc for a new task group */
6249struct task_group *sched_create_group(struct task_group *parent)
6250{
6251        struct task_group *tg;
6252
6253        tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6254        if (!tg)
6255                return ERR_PTR(-ENOMEM);
6256
6257        if (!alloc_fair_sched_group(tg, parent))
6258                goto err;
6259
6260        if (!alloc_rt_sched_group(tg, parent))
6261                goto err;
6262
6263        return tg;
6264
6265err:
6266        sched_free_group(tg);
6267        return ERR_PTR(-ENOMEM);
6268}
6269
6270void sched_online_group(struct task_group *tg, struct task_group *parent)
6271{
6272        unsigned long flags;
6273
6274        spin_lock_irqsave(&task_group_lock, flags);
6275        list_add_rcu(&tg->list, &task_groups);
6276
6277        /* Root should already exist: */
6278        WARN_ON(!parent);
6279
6280        tg->parent = parent;
6281        INIT_LIST_HEAD(&tg->children);
6282        list_add_rcu(&tg->siblings, &parent->children);
6283        spin_unlock_irqrestore(&task_group_lock, flags);
6284
6285        online_fair_sched_group(tg);
6286}
6287
6288/* rcu callback to free various structures associated with a task group */
6289static void sched_free_group_rcu(struct rcu_head *rhp)
6290{
6291        /* Now it should be safe to free those cfs_rqs: */
6292        sched_free_group(container_of(rhp, struct task_group, rcu));
6293}
6294
6295void sched_destroy_group(struct task_group *tg)
6296{
6297        /* Wait for possible concurrent references to cfs_rqs complete: */
6298        call_rcu(&tg->rcu, sched_free_group_rcu);
6299}
6300
6301void sched_offline_group(struct task_group *tg)
6302{
6303        unsigned long flags;
6304
6305        /* End participation in shares distribution: */
6306        unregister_fair_sched_group(tg);
6307
6308        spin_lock_irqsave(&task_group_lock, flags);
6309        list_del_rcu(&tg->list);
6310        list_del_rcu(&tg->siblings);
6311        spin_unlock_irqrestore(&task_group_lock, flags);
6312}
6313
6314static void sched_change_group(struct task_struct *tsk, int type)
6315{
6316        struct task_group *tg;
6317
6318        /*
6319         * All callers are synchronized by task_rq_lock(); we do not use RCU
6320         * which is pointless here. Thus, we pass "true" to task_css_check()
6321         * to prevent lockdep warnings.
6322         */
6323        tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6324                          struct task_group, css);
6325        tg = autogroup_task_group(tsk, tg);
6326        tsk->sched_task_group = tg;
6327
6328#ifdef CONFIG_FAIR_GROUP_SCHED
6329        if (tsk->sched_class->task_change_group)
6330                tsk->sched_class->task_change_group(tsk, type);
6331        else
6332#endif
6333                set_task_rq(tsk, task_cpu(tsk));
6334}
6335
6336/*
6337 * Change task's runqueue when it moves between groups.
6338 *
6339 * The caller of this function should have put the task in its new group by
6340 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6341 * its new group.
6342 */
6343void sched_move_task(struct task_struct *tsk)
6344{
6345        int queued, running, queue_flags =
6346                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6347        struct rq_flags rf;
6348        struct rq *rq;
6349
6350        rq = task_rq_lock(tsk, &rf);
6351        update_rq_clock(rq);
6352
6353        running = task_current(rq, tsk);
6354        queued = task_on_rq_queued(tsk);
6355
6356        if (queued)
6357                dequeue_task(rq, tsk, queue_flags);
6358        if (running)
6359                put_prev_task(rq, tsk);
6360
6361        sched_change_group(tsk, TASK_MOVE_GROUP);
6362
6363        if (queued)
6364                enqueue_task(rq, tsk, queue_flags);
6365        if (running)
6366                set_curr_task(rq, tsk);
6367
6368        task_rq_unlock(rq, tsk, &rf);
6369}
6370
6371static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6372{
6373        return css ? container_of(css, struct task_group, css) : NULL;
6374}
6375
6376static struct cgroup_subsys_state *
6377cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6378{
6379        struct task_group *parent = css_tg(parent_css);
6380        struct task_group *tg;
6381
6382        if (!parent) {
6383                /* This is early initialization for the top cgroup */
6384                return &root_task_group.css;
6385        }
6386
6387        tg = sched_create_group(parent);
6388        if (IS_ERR(tg))
6389                return ERR_PTR(-ENOMEM);
6390
6391        return &tg->css;
6392}
6393
6394/* Expose task group only after completing cgroup initialization */
6395static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6396{
6397        struct task_group *tg = css_tg(css);
6398        struct task_group *parent = css_tg(css->parent);
6399
6400        if (parent)
6401                sched_online_group(tg, parent);
6402        return 0;
6403}
6404
6405static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6406{
6407        struct task_group *tg = css_tg(css);
6408
6409        sched_offline_group(tg);
6410}
6411
6412static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6413{
6414        struct task_group *tg = css_tg(css);
6415
6416        /*
6417         * Relies on the RCU grace period between css_released() and this.
6418         */
6419        sched_free_group(tg);
6420}
6421
6422/*
6423 * This is called before wake_up_new_task(), therefore we really only
6424 * have to set its group bits, all the other stuff does not apply.
6425 */
6426static void cpu_cgroup_fork(struct task_struct *task)
6427{
6428        struct rq_flags rf;
6429        struct rq *rq;
6430
6431        rq = task_rq_lock(task, &rf);
6432
6433        update_rq_clock(rq);
6434        sched_change_group(task, TASK_SET_GROUP);
6435
6436        task_rq_unlock(rq, task, &rf);
6437}
6438
6439static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6440{
6441        struct task_struct *task;
6442        struct cgroup_subsys_state *css;
6443        int ret = 0;
6444
6445        cgroup_taskset_for_each(task, css, tset) {
6446#ifdef CONFIG_RT_GROUP_SCHED
6447                if (!sched_rt_can_attach(css_tg(css), task))
6448                        return -EINVAL;
6449#else
6450                /* We don't support RT-tasks being in separate groups */
6451                if (task->sched_class != &fair_sched_class)
6452                        return -EINVAL;
6453#endif
6454                /*
6455                 * Serialize against wake_up_new_task() such that if its
6456                 * running, we're sure to observe its full state.
6457                 */
6458                raw_spin_lock_irq(&task->pi_lock);
6459                /*
6460                 * Avoid calling sched_move_task() before wake_up_new_task()
6461                 * has happened. This would lead to problems with PELT, due to
6462                 * move wanting to detach+attach while we're not attached yet.
6463                 */
6464                if (task->state == TASK_NEW)
6465                        ret = -EINVAL;
6466                raw_spin_unlock_irq(&task->pi_lock);
6467
6468                if (ret)
6469                        break;
6470        }
6471        return ret;
6472}
6473
6474static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6475{
6476        struct task_struct *task;
6477        struct cgroup_subsys_state *css;
6478
6479        cgroup_taskset_for_each(task, css, tset)
6480                sched_move_task(task);
6481}
6482
6483#ifdef CONFIG_FAIR_GROUP_SCHED
6484static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6485                                struct cftype *cftype, u64 shareval)
6486{
6487        return sched_group_set_shares(css_tg(css), scale_load(shareval));
6488}
6489
6490static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6491                               struct cftype *cft)
6492{
6493        struct task_group *tg = css_tg(css);
6494
6495        return (u64) scale_load_down(tg->shares);
6496}
6497
6498#ifdef CONFIG_CFS_BANDWIDTH
6499static DEFINE_MUTEX(cfs_constraints_mutex);
6500
6501const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6502const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6503
6504static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6505
6506static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6507{
6508        int i, ret = 0, runtime_enabled, runtime_was_enabled;
6509        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6510
6511        if (tg == &root_task_group)
6512                return -EINVAL;
6513
6514        /*
6515         * Ensure we have at some amount of bandwidth every period.  This is
6516         * to prevent reaching a state of large arrears when throttled via
6517         * entity_tick() resulting in prolonged exit starvation.
6518         */
6519        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6520                return -EINVAL;
6521
6522        /*
6523         * Likewise, bound things on the otherside by preventing insane quota
6524         * periods.  This also allows us to normalize in computing quota
6525         * feasibility.
6526         */
6527        if (period > max_cfs_quota_period)
6528                return -EINVAL;
6529
6530        /*
6531         * Prevent race between setting of cfs_rq->runtime_enabled and
6532         * unthrottle_offline_cfs_rqs().
6533         */
6534        get_online_cpus();
6535        mutex_lock(&cfs_constraints_mutex);
6536        ret = __cfs_schedulable(tg, period, quota);
6537        if (ret)
6538                goto out_unlock;
6539
6540        runtime_enabled = quota != RUNTIME_INF;
6541        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6542        /*
6543         * If we need to toggle cfs_bandwidth_used, off->on must occur
6544         * before making related changes, and on->off must occur afterwards
6545         */
6546        if (runtime_enabled && !runtime_was_enabled)
6547                cfs_bandwidth_usage_inc();
6548        raw_spin_lock_irq(&cfs_b->lock);
6549        cfs_b->period = ns_to_ktime(period);
6550        cfs_b->quota = quota;
6551
6552        __refill_cfs_bandwidth_runtime(cfs_b);
6553
6554        /* Restart the period timer (if active) to handle new period expiry: */
6555        if (runtime_enabled)
6556                start_cfs_bandwidth(cfs_b);
6557
6558        raw_spin_unlock_irq(&cfs_b->lock);
6559
6560        for_each_online_cpu(i) {
6561                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6562                struct rq *rq = cfs_rq->rq;
6563                struct rq_flags rf;
6564
6565                rq_lock_irq(rq, &rf);
6566                cfs_rq->runtime_enabled = runtime_enabled;
6567                cfs_rq->runtime_remaining = 0;
6568
6569                if (cfs_rq->throttled)
6570                        unthrottle_cfs_rq(cfs_rq);
6571                rq_unlock_irq(rq, &rf);
6572        }
6573        if (runtime_was_enabled && !runtime_enabled)
6574                cfs_bandwidth_usage_dec();
6575out_unlock:
6576        mutex_unlock(&cfs_constraints_mutex);
6577        put_online_cpus();
6578
6579        return ret;
6580}
6581
6582int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6583{
6584        u64 quota, period;
6585
6586        period = ktime_to_ns(tg->cfs_bandwidth.period);
6587        if (cfs_quota_us < 0)
6588                quota = RUNTIME_INF;
6589        else
6590                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6591
6592        return tg_set_cfs_bandwidth(tg, period, quota);
6593}
6594
6595long tg_get_cfs_quota(struct task_group *tg)
6596{
6597        u64 quota_us;
6598
6599        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6600                return -1;
6601
6602        quota_us = tg->cfs_bandwidth.quota;
6603        do_div(quota_us, NSEC_PER_USEC);
6604
6605        return quota_us;
6606}
6607
6608int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6609{
6610        u64 quota, period;
6611
6612        period = (u64)cfs_period_us * NSEC_PER_USEC;
6613        quota = tg->cfs_bandwidth.quota;
6614
6615        return tg_set_cfs_bandwidth(tg, period, quota);
6616}
6617
6618long tg_get_cfs_period(struct task_group *tg)
6619{
6620        u64 cfs_period_us;
6621
6622        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6623        do_div(cfs_period_us, NSEC_PER_USEC);
6624
6625        return cfs_period_us;
6626}
6627
6628static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6629                                  struct cftype *cft)
6630{
6631        return tg_get_cfs_quota(css_tg(css));
6632}
6633
6634static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6635                                   struct cftype *cftype, s64 cfs_quota_us)
6636{
6637        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6638}
6639
6640static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6641                                   struct cftype *cft)
6642{
6643        return tg_get_cfs_period(css_tg(css));
6644}
6645
6646static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6647                                    struct cftype *cftype, u64 cfs_period_us)
6648{
6649        return tg_set_cfs_period(css_tg(css), cfs_period_us);
6650}
6651
6652struct cfs_schedulable_data {
6653        struct task_group *tg;
6654        u64 period, quota;
6655};
6656
6657/*
6658 * normalize group quota/period to be quota/max_period
6659 * note: units are usecs
6660 */
6661static u64 normalize_cfs_quota(struct task_group *tg,
6662                               struct cfs_schedulable_data *d)
6663{
6664        u64 quota, period;
6665
6666        if (tg == d->tg) {
6667                period = d->period;
6668                quota = d->quota;
6669        } else {
6670                period = tg_get_cfs_period(tg);
6671                quota = tg_get_cfs_quota(tg);
6672        }
6673
6674        /* note: these should typically be equivalent */
6675        if (quota == RUNTIME_INF || quota == -1)
6676                return RUNTIME_INF;
6677
6678        return to_ratio(period, quota);
6679}
6680
6681static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6682{
6683        struct cfs_schedulable_data *d = data;
6684        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6685        s64 quota = 0, parent_quota = -1;
6686
6687        if (!tg->parent) {
6688                quota = RUNTIME_INF;
6689        } else {
6690                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6691
6692                quota = normalize_cfs_quota(tg, d);
6693                parent_quota = parent_b->hierarchical_quota;
6694
6695                /*
6696                 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6697                 * always take the min.  On cgroup1, only inherit when no
6698                 * limit is set:
6699                 */
6700                if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6701                        quota = min(quota, parent_quota);
6702                } else {
6703                        if (quota == RUNTIME_INF)
6704                                quota = parent_quota;
6705                        else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6706                                return -EINVAL;
6707                }
6708        }
6709        cfs_b->hierarchical_quota = quota;
6710
6711        return 0;
6712}
6713
6714static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6715{
6716        int ret;
6717        struct cfs_schedulable_data data = {
6718                .tg = tg,
6719                .period = period,
6720                .quota = quota,
6721        };
6722
6723        if (quota != RUNTIME_INF) {
6724                do_div(data.period, NSEC_PER_USEC);
6725                do_div(data.quota, NSEC_PER_USEC);
6726        }
6727
6728        rcu_read_lock();
6729        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6730        rcu_read_unlock();
6731
6732        return ret;
6733}
6734
6735static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6736{
6737        struct task_group *tg = css_tg(seq_css(sf));
6738        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6739
6740        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6741        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6742        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6743
6744        if (schedstat_enabled() && tg != &root_task_group) {
6745                u64 ws = 0;
6746                int i;
6747
6748                for_each_possible_cpu(i)
6749                        ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6750
6751                seq_printf(sf, "wait_sum %llu\n", ws);
6752        }
6753
6754        return 0;
6755}
6756#endif /* CONFIG_CFS_BANDWIDTH */
6757#endif /* CONFIG_FAIR_GROUP_SCHED */
6758
6759#ifdef CONFIG_RT_GROUP_SCHED
6760static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6761                                struct cftype *cft, s64 val)
6762{
6763        return sched_group_set_rt_runtime(css_tg(css), val);
6764}
6765
6766static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6767                               struct cftype *cft)
6768{
6769        return sched_group_rt_runtime(css_tg(css));
6770}
6771
6772static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6773                                    struct cftype *cftype, u64 rt_period_us)
6774{
6775        return sched_group_set_rt_period(css_tg(css), rt_period_us);
6776}
6777
6778static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6779                                   struct cftype *cft)
6780{
6781        return sched_group_rt_period(css_tg(css));
6782}
6783#endif /* CONFIG_RT_GROUP_SCHED */
6784
6785static struct cftype cpu_legacy_files[] = {
6786#ifdef CONFIG_FAIR_GROUP_SCHED
6787        {
6788                .name = "shares",
6789                .read_u64 = cpu_shares_read_u64,
6790                .write_u64 = cpu_shares_write_u64,
6791        },
6792#endif
6793#ifdef CONFIG_CFS_BANDWIDTH
6794        {
6795                .name = "cfs_quota_us",
6796                .read_s64 = cpu_cfs_quota_read_s64,
6797                .write_s64 = cpu_cfs_quota_write_s64,
6798        },
6799        {
6800                .name = "cfs_period_us",
6801                .read_u64 = cpu_cfs_period_read_u64,
6802                .write_u64 = cpu_cfs_period_write_u64,
6803        },
6804        {
6805                .name = "stat",
6806                .seq_show = cpu_cfs_stat_show,
6807        },
6808#endif
6809#ifdef CONFIG_RT_GROUP_SCHED
6810        {
6811                .name = "rt_runtime_us",
6812                .read_s64 = cpu_rt_runtime_read,
6813                .write_s64 = cpu_rt_runtime_write,
6814        },
6815        {
6816                .name = "rt_period_us",
6817                .read_u64 = cpu_rt_period_read_uint,
6818                .write_u64 = cpu_rt_period_write_uint,
6819        },
6820#endif
6821        { }     /* Terminate */
6822};
6823
6824static int cpu_extra_stat_show(struct seq_file *sf,
6825                               struct cgroup_subsys_state *css)
6826{
6827#ifdef CONFIG_CFS_BANDWIDTH
6828        {
6829                struct task_group *tg = css_tg(css);
6830                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6831                u64 throttled_usec;
6832
6833                throttled_usec = cfs_b->throttled_time;
6834                do_div(throttled_usec, NSEC_PER_USEC);
6835
6836                seq_printf(sf, "nr_periods %d\n"
6837                           "nr_throttled %d\n"
6838                           "throttled_usec %llu\n",
6839                           cfs_b->nr_periods, cfs_b->nr_throttled,
6840                           throttled_usec);
6841        }
6842#endif
6843        return 0;
6844}
6845
6846#ifdef CONFIG_FAIR_GROUP_SCHED
6847static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6848                               struct cftype *cft)
6849{
6850        struct task_group *tg = css_tg(css);
6851        u64 weight = scale_load_down(tg->shares);
6852
6853        return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6854}
6855
6856static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6857                                struct cftype *cft, u64 weight)
6858{
6859        /*
6860         * cgroup weight knobs should use the common MIN, DFL and MAX
6861         * values which are 1, 100 and 10000 respectively.  While it loses
6862         * a bit of range on both ends, it maps pretty well onto the shares
6863         * value used by scheduler and the round-trip conversions preserve
6864         * the original value over the entire range.
6865         */
6866        if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6867                return -ERANGE;
6868
6869        weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6870
6871        return sched_group_set_shares(css_tg(css), scale_load(weight));
6872}
6873
6874static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6875                                    struct cftype *cft)
6876{
6877        unsigned long weight = scale_load_down(css_tg(css)->shares);
6878        int last_delta = INT_MAX;
6879        int prio, delta;
6880
6881        /* find the closest nice value to the current weight */
6882        for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6883                delta = abs(sched_prio_to_weight[prio] - weight);
6884                if (delta >= last_delta)
6885                        break;
6886                last_delta = delta;
6887        }
6888
6889        return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6890}
6891
6892static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6893                                     struct cftype *cft, s64 nice)
6894{
6895        unsigned long weight;
6896        int idx;
6897
6898        if (nice < MIN_NICE || nice > MAX_NICE)
6899                return -ERANGE;
6900
6901        idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6902        idx = array_index_nospec(idx, 40);
6903        weight = sched_prio_to_weight[idx];
6904
6905        return sched_group_set_shares(css_tg(css), scale_load(weight));
6906}
6907#endif
6908
6909static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6910                                                  long period, long quota)
6911{
6912        if (quota < 0)
6913                seq_puts(sf, "max");
6914        else
6915                seq_printf(sf, "%ld", quota);
6916
6917        seq_printf(sf, " %ld\n", period);
6918}
6919
6920/* caller should put the current value in *@periodp before calling */
6921static int __maybe_unused cpu_period_quota_parse(char *buf,
6922                                                 u64 *periodp, u64 *quotap)
6923{
6924        char tok[21];   /* U64_MAX */
6925
6926        if (!sscanf(buf, "%s %llu", tok, periodp))
6927                return -EINVAL;
6928
6929        *periodp *= NSEC_PER_USEC;
6930
6931        if (sscanf(tok, "%llu", quotap))
6932                *quotap *= NSEC_PER_USEC;
6933        else if (!strcmp(tok, "max"))
6934                *quotap = RUNTIME_INF;
6935        else
6936                return -EINVAL;
6937
6938        return 0;
6939}
6940
6941#ifdef CONFIG_CFS_BANDWIDTH
6942static int cpu_max_show(struct seq_file *sf, void *v)
6943{
6944        struct task_group *tg = css_tg(seq_css(sf));
6945
6946        cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6947        return 0;
6948}
6949
6950static ssize_t cpu_max_write(struct kernfs_open_file *of,
6951                             char *buf, size_t nbytes, loff_t off)
6952{
6953        struct task_group *tg = css_tg(of_css(of));
6954        u64 period = tg_get_cfs_period(tg);
6955        u64 quota;
6956        int ret;
6957
6958        ret = cpu_period_quota_parse(buf, &period, &quota);
6959        if (!ret)
6960                ret = tg_set_cfs_bandwidth(tg, period, quota);
6961        return ret ?: nbytes;
6962}
6963#endif
6964
6965static struct cftype cpu_files[] = {
6966#ifdef CONFIG_FAIR_GROUP_SCHED
6967        {
6968                .name = "weight",
6969                .flags = CFTYPE_NOT_ON_ROOT,
6970                .read_u64 = cpu_weight_read_u64,
6971                .write_u64 = cpu_weight_write_u64,
6972        },
6973        {
6974                .name = "weight.nice",
6975                .flags = CFTYPE_NOT_ON_ROOT,
6976                .read_s64 = cpu_weight_nice_read_s64,
6977                .write_s64 = cpu_weight_nice_write_s64,
6978        },
6979#endif
6980#ifdef CONFIG_CFS_BANDWIDTH
6981        {
6982                .name = "max",
6983                .flags = CFTYPE_NOT_ON_ROOT,
6984                .seq_show = cpu_max_show,
6985                .write = cpu_max_write,
6986        },
6987#endif
6988        { }     /* terminate */
6989};
6990
6991struct cgroup_subsys cpu_cgrp_subsys = {
6992        .css_alloc      = cpu_cgroup_css_alloc,
6993        .css_online     = cpu_cgroup_css_online,
6994        .css_released   = cpu_cgroup_css_released,
6995        .css_free       = cpu_cgroup_css_free,
6996        .css_extra_stat_show = cpu_extra_stat_show,
6997        .fork           = cpu_cgroup_fork,
6998        .can_attach     = cpu_cgroup_can_attach,
6999        .attach         = cpu_cgroup_attach,
7000        .legacy_cftypes = cpu_legacy_files,
7001        .dfl_cftypes    = cpu_files,
7002        .early_init     = true,
7003        .threaded       = true,
7004};
7005
7006#endif  /* CONFIG_CGROUP_SCHED */
7007
7008void dump_cpu_task(int cpu)
7009{
7010        pr_info("Task dump for CPU %d:\n", cpu);
7011        sched_show_task(cpu_curr(cpu));
7012}
7013
7014/*
7015 * Nice levels are multiplicative, with a gentle 10% change for every
7016 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7017 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7018 * that remained on nice 0.
7019 *
7020 * The "10% effect" is relative and cumulative: from _any_ nice level,
7021 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7022 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7023 * If a task goes up by ~10% and another task goes down by ~10% then
7024 * the relative distance between them is ~25%.)
7025 */
7026const int sched_prio_to_weight[40] = {
7027 /* -20 */     88761,     71755,     56483,     46273,     36291,
7028 /* -15 */     29154,     23254,     18705,     14949,     11916,
7029 /* -10 */      9548,      7620,      6100,      4904,      3906,
7030 /*  -5 */      3121,      2501,      1991,      1586,      1277,
7031 /*   0 */      1024,       820,       655,       526,       423,
7032 /*   5 */       335,       272,       215,       172,       137,
7033 /*  10 */       110,        87,        70,        56,        45,
7034 /*  15 */        36,        29,        23,        18,        15,
7035};
7036
7037/*
7038 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7039 *
7040 * In cases where the weight does not change often, we can use the
7041 * precalculated inverse to speed up arithmetics by turning divisions
7042 * into multiplications:
7043 */
7044const u32 sched_prio_to_wmult[40] = {
7045 /* -20 */     48388,     59856,     76040,     92818,    118348,
7046 /* -15 */    147320,    184698,    229616,    287308,    360437,
7047 /* -10 */    449829,    563644,    704093,    875809,   1099582,
7048 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7049 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7050 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7051 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7052 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7053};
7054
7055#undef CREATE_TRACE_POINTS
7056