1// SPDX-License-Identifier: GPL-2.0 2/* 3 * kernel/sched/loadavg.c 4 * 5 * This file contains the magic bits required to compute the global loadavg 6 * figure. Its a silly number but people think its important. We go through 7 * great pains to make it work on big machines and tickless kernels. 8 */ 9#include "sched.h" 10 11/* 12 * Global load-average calculations 13 * 14 * We take a distributed and async approach to calculating the global load-avg 15 * in order to minimize overhead. 16 * 17 * The global load average is an exponentially decaying average of nr_running + 18 * nr_uninterruptible. 19 * 20 * Once every LOAD_FREQ: 21 * 22 * nr_active = 0; 23 * for_each_possible_cpu(cpu) 24 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 25 * 26 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 27 * 28 * Due to a number of reasons the above turns in the mess below: 29 * 30 * - for_each_possible_cpu() is prohibitively expensive on machines with 31 * serious number of CPUs, therefore we need to take a distributed approach 32 * to calculating nr_active. 33 * 34 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 35 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 36 * 37 * So assuming nr_active := 0 when we start out -- true per definition, we 38 * can simply take per-CPU deltas and fold those into a global accumulate 39 * to obtain the same result. See calc_load_fold_active(). 40 * 41 * Furthermore, in order to avoid synchronizing all per-CPU delta folding 42 * across the machine, we assume 10 ticks is sufficient time for every 43 * CPU to have completed this task. 44 * 45 * This places an upper-bound on the IRQ-off latency of the machine. Then 46 * again, being late doesn't loose the delta, just wrecks the sample. 47 * 48 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because 49 * this would add another cross-CPU cacheline miss and atomic operation 50 * to the wakeup path. Instead we increment on whatever CPU the task ran 51 * when it went into uninterruptible state and decrement on whatever CPU 52 * did the wakeup. This means that only the sum of nr_uninterruptible over 53 * all CPUs yields the correct result. 54 * 55 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 56 */ 57 58/* Variables and functions for calc_load */ 59atomic_long_t calc_load_tasks; 60unsigned long calc_load_update; 61unsigned long avenrun[3]; 62EXPORT_SYMBOL(avenrun); /* should be removed */ 63 64/** 65 * get_avenrun - get the load average array 66 * @loads: pointer to dest load array 67 * @offset: offset to add 68 * @shift: shift count to shift the result left 69 * 70 * These values are estimates at best, so no need for locking. 71 */ 72void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 73{ 74 loads[0] = (avenrun[0] + offset) << shift; 75 loads[1] = (avenrun[1] + offset) << shift; 76 loads[2] = (avenrun[2] + offset) << shift; 77} 78 79long calc_load_fold_active(struct rq *this_rq, long adjust) 80{ 81 long nr_active, delta = 0; 82 83 nr_active = this_rq->nr_running - adjust; 84 nr_active += (long)this_rq->nr_uninterruptible; 85 86 if (nr_active != this_rq->calc_load_active) { 87 delta = nr_active - this_rq->calc_load_active; 88 this_rq->calc_load_active = nr_active; 89 } 90 91 return delta; 92} 93 94/* 95 * a1 = a0 * e + a * (1 - e) 96 */ 97static unsigned long 98calc_load(unsigned long load, unsigned long exp, unsigned long active) 99{ 100 unsigned long newload; 101 102 newload = load * exp + active * (FIXED_1 - exp); 103 if (active >= load) 104 newload += FIXED_1-1; 105 106 return newload / FIXED_1; 107} 108 109#ifdef CONFIG_NO_HZ_COMMON 110/* 111 * Handle NO_HZ for the global load-average. 112 * 113 * Since the above described distributed algorithm to compute the global 114 * load-average relies on per-CPU sampling from the tick, it is affected by 115 * NO_HZ. 116 * 117 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon 118 * entering NO_HZ state such that we can include this as an 'extra' CPU delta 119 * when we read the global state. 120 * 121 * Obviously reality has to ruin such a delightfully simple scheme: 122 * 123 * - When we go NO_HZ idle during the window, we can negate our sample 124 * contribution, causing under-accounting. 125 * 126 * We avoid this by keeping two NO_HZ-delta counters and flipping them 127 * when the window starts, thus separating old and new NO_HZ load. 128 * 129 * The only trick is the slight shift in index flip for read vs write. 130 * 131 * 0s 5s 10s 15s 132 * +10 +10 +10 +10 133 * |-|-----------|-|-----------|-|-----------|-| 134 * r:0 0 1 1 0 0 1 1 0 135 * w:0 1 1 0 0 1 1 0 0 136 * 137 * This ensures we'll fold the old NO_HZ contribution in this window while 138 * accumlating the new one. 139 * 140 * - When we wake up from NO_HZ during the window, we push up our 141 * contribution, since we effectively move our sample point to a known 142 * busy state. 143 * 144 * This is solved by pushing the window forward, and thus skipping the 145 * sample, for this CPU (effectively using the NO_HZ-delta for this CPU which 146 * was in effect at the time the window opened). This also solves the issue 147 * of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ 148 * intervals. 149 * 150 * When making the ILB scale, we should try to pull this in as well. 151 */ 152static atomic_long_t calc_load_nohz[2]; 153static int calc_load_idx; 154 155static inline int calc_load_write_idx(void) 156{ 157 int idx = calc_load_idx; 158 159 /* 160 * See calc_global_nohz(), if we observe the new index, we also 161 * need to observe the new update time. 162 */ 163 smp_rmb(); 164 165 /* 166 * If the folding window started, make sure we start writing in the 167 * next NO_HZ-delta. 168 */ 169 if (!time_before(jiffies, READ_ONCE(calc_load_update))) 170 idx++; 171 172 return idx & 1; 173} 174 175static inline int calc_load_read_idx(void) 176{ 177 return calc_load_idx & 1; 178} 179 180void calc_load_nohz_start(void) 181{ 182 struct rq *this_rq = this_rq(); 183 long delta; 184 185 /* 186 * We're going into NO_HZ mode, if there's any pending delta, fold it 187 * into the pending NO_HZ delta. 188 */ 189 delta = calc_load_fold_active(this_rq, 0); 190 if (delta) { 191 int idx = calc_load_write_idx(); 192 193 atomic_long_add(delta, &calc_load_nohz[idx]); 194 } 195} 196 197void calc_load_nohz_stop(void) 198{ 199 struct rq *this_rq = this_rq(); 200 201 /* 202 * If we're still before the pending sample window, we're done. 203 */ 204 this_rq->calc_load_update = READ_ONCE(calc_load_update); 205 if (time_before(jiffies, this_rq->calc_load_update)) 206 return; 207 208 /* 209 * We woke inside or after the sample window, this means we're already 210 * accounted through the nohz accounting, so skip the entire deal and 211 * sync up for the next window. 212 */ 213 if (time_before(jiffies, this_rq->calc_load_update + 10)) 214 this_rq->calc_load_update += LOAD_FREQ; 215} 216 217static long calc_load_nohz_fold(void) 218{ 219 int idx = calc_load_read_idx(); 220 long delta = 0; 221 222 if (atomic_long_read(&calc_load_nohz[idx])) 223 delta = atomic_long_xchg(&calc_load_nohz[idx], 0); 224 225 return delta; 226} 227 228/** 229 * fixed_power_int - compute: x^n, in O(log n) time 230 * 231 * @x: base of the power 232 * @frac_bits: fractional bits of @x 233 * @n: power to raise @x to. 234 * 235 * By exploiting the relation between the definition of the natural power 236 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 237 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 238 * (where: n_i \elem {0, 1}, the binary vector representing n), 239 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 240 * of course trivially computable in O(log_2 n), the length of our binary 241 * vector. 242 */ 243static unsigned long 244fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 245{ 246 unsigned long result = 1UL << frac_bits; 247 248 if (n) { 249 for (;;) { 250 if (n & 1) { 251 result *= x; 252 result += 1UL << (frac_bits - 1); 253 result >>= frac_bits; 254 } 255 n >>= 1; 256 if (!n) 257 break; 258 x *= x; 259 x += 1UL << (frac_bits - 1); 260 x >>= frac_bits; 261 } 262 } 263 264 return result; 265} 266 267/* 268 * a1 = a0 * e + a * (1 - e) 269 * 270 * a2 = a1 * e + a * (1 - e) 271 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 272 * = a0 * e^2 + a * (1 - e) * (1 + e) 273 * 274 * a3 = a2 * e + a * (1 - e) 275 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 276 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 277 * 278 * ... 279 * 280 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 281 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 282 * = a0 * e^n + a * (1 - e^n) 283 * 284 * [1] application of the geometric series: 285 * 286 * n 1 - x^(n+1) 287 * S_n := \Sum x^i = ------------- 288 * i=0 1 - x 289 */ 290static unsigned long 291calc_load_n(unsigned long load, unsigned long exp, 292 unsigned long active, unsigned int n) 293{ 294 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 295} 296 297/* 298 * NO_HZ can leave us missing all per-CPU ticks calling 299 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into 300 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold 301 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary. 302 * 303 * Once we've updated the global active value, we need to apply the exponential 304 * weights adjusted to the number of cycles missed. 305 */ 306static void calc_global_nohz(void) 307{ 308 unsigned long sample_window; 309 long delta, active, n; 310 311 sample_window = READ_ONCE(calc_load_update); 312 if (!time_before(jiffies, sample_window + 10)) { 313 /* 314 * Catch-up, fold however many we are behind still 315 */ 316 delta = jiffies - sample_window - 10; 317 n = 1 + (delta / LOAD_FREQ); 318 319 active = atomic_long_read(&calc_load_tasks); 320 active = active > 0 ? active * FIXED_1 : 0; 321 322 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 323 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 324 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 325 326 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ); 327 } 328 329 /* 330 * Flip the NO_HZ index... 331 * 332 * Make sure we first write the new time then flip the index, so that 333 * calc_load_write_idx() will see the new time when it reads the new 334 * index, this avoids a double flip messing things up. 335 */ 336 smp_wmb(); 337 calc_load_idx++; 338} 339#else /* !CONFIG_NO_HZ_COMMON */ 340 341static inline long calc_load_nohz_fold(void) { return 0; } 342static inline void calc_global_nohz(void) { } 343 344#endif /* CONFIG_NO_HZ_COMMON */ 345 346/* 347 * calc_load - update the avenrun load estimates 10 ticks after the 348 * CPUs have updated calc_load_tasks. 349 * 350 * Called from the global timer code. 351 */ 352void calc_global_load(unsigned long ticks) 353{ 354 unsigned long sample_window; 355 long active, delta; 356 357 sample_window = READ_ONCE(calc_load_update); 358 if (time_before(jiffies, sample_window + 10)) 359 return; 360 361 /* 362 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs. 363 */ 364 delta = calc_load_nohz_fold(); 365 if (delta) 366 atomic_long_add(delta, &calc_load_tasks); 367 368 active = atomic_long_read(&calc_load_tasks); 369 active = active > 0 ? active * FIXED_1 : 0; 370 371 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 372 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 373 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 374 375 WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ); 376 377 /* 378 * In case we went to NO_HZ for multiple LOAD_FREQ intervals 379 * catch up in bulk. 380 */ 381 calc_global_nohz(); 382} 383 384/* 385 * Called from scheduler_tick() to periodically update this CPU's 386 * active count. 387 */ 388void calc_global_load_tick(struct rq *this_rq) 389{ 390 long delta; 391 392 if (time_before(jiffies, this_rq->calc_load_update)) 393 return; 394 395 delta = calc_load_fold_active(this_rq, 0); 396 if (delta) 397 atomic_long_add(delta, &calc_load_tasks); 398 399 this_rq->calc_load_update += LOAD_FREQ; 400} 401