linux/lib/assoc_array.c
<<
>>
Prefs
   1/* Generic associative array implementation.
   2 *
   3 * See Documentation/core-api/assoc_array.rst for information.
   4 *
   5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   6 * Written by David Howells (dhowells@redhat.com)
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public Licence
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the Licence, or (at your option) any later version.
  12 */
  13//#define DEBUG
  14#include <linux/rcupdate.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/assoc_array_priv.h>
  18
  19/*
  20 * Iterate over an associative array.  The caller must hold the RCU read lock
  21 * or better.
  22 */
  23static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
  24                                       const struct assoc_array_ptr *stop,
  25                                       int (*iterator)(const void *leaf,
  26                                                       void *iterator_data),
  27                                       void *iterator_data)
  28{
  29        const struct assoc_array_shortcut *shortcut;
  30        const struct assoc_array_node *node;
  31        const struct assoc_array_ptr *cursor, *ptr, *parent;
  32        unsigned long has_meta;
  33        int slot, ret;
  34
  35        cursor = root;
  36
  37begin_node:
  38        if (assoc_array_ptr_is_shortcut(cursor)) {
  39                /* Descend through a shortcut */
  40                shortcut = assoc_array_ptr_to_shortcut(cursor);
  41                cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
  42        }
  43
  44        node = assoc_array_ptr_to_node(cursor);
  45        slot = 0;
  46
  47        /* We perform two passes of each node.
  48         *
  49         * The first pass does all the leaves in this node.  This means we
  50         * don't miss any leaves if the node is split up by insertion whilst
  51         * we're iterating over the branches rooted here (we may, however, see
  52         * some leaves twice).
  53         */
  54        has_meta = 0;
  55        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  56                ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
  57                has_meta |= (unsigned long)ptr;
  58                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
  59                        /* We need a barrier between the read of the pointer,
  60                         * which is supplied by the above READ_ONCE().
  61                         */
  62                        /* Invoke the callback */
  63                        ret = iterator(assoc_array_ptr_to_leaf(ptr),
  64                                       iterator_data);
  65                        if (ret)
  66                                return ret;
  67                }
  68        }
  69
  70        /* The second pass attends to all the metadata pointers.  If we follow
  71         * one of these we may find that we don't come back here, but rather go
  72         * back to a replacement node with the leaves in a different layout.
  73         *
  74         * We are guaranteed to make progress, however, as the slot number for
  75         * a particular portion of the key space cannot change - and we
  76         * continue at the back pointer + 1.
  77         */
  78        if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
  79                goto finished_node;
  80        slot = 0;
  81
  82continue_node:
  83        node = assoc_array_ptr_to_node(cursor);
  84        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  85                ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
  86                if (assoc_array_ptr_is_meta(ptr)) {
  87                        cursor = ptr;
  88                        goto begin_node;
  89                }
  90        }
  91
  92finished_node:
  93        /* Move up to the parent (may need to skip back over a shortcut) */
  94        parent = READ_ONCE(node->back_pointer); /* Address dependency. */
  95        slot = node->parent_slot;
  96        if (parent == stop)
  97                return 0;
  98
  99        if (assoc_array_ptr_is_shortcut(parent)) {
 100                shortcut = assoc_array_ptr_to_shortcut(parent);
 101                cursor = parent;
 102                parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
 103                slot = shortcut->parent_slot;
 104                if (parent == stop)
 105                        return 0;
 106        }
 107
 108        /* Ascend to next slot in parent node */
 109        cursor = parent;
 110        slot++;
 111        goto continue_node;
 112}
 113
 114/**
 115 * assoc_array_iterate - Pass all objects in the array to a callback
 116 * @array: The array to iterate over.
 117 * @iterator: The callback function.
 118 * @iterator_data: Private data for the callback function.
 119 *
 120 * Iterate over all the objects in an associative array.  Each one will be
 121 * presented to the iterator function.
 122 *
 123 * If the array is being modified concurrently with the iteration then it is
 124 * possible that some objects in the array will be passed to the iterator
 125 * callback more than once - though every object should be passed at least
 126 * once.  If this is undesirable then the caller must lock against modification
 127 * for the duration of this function.
 128 *
 129 * The function will return 0 if no objects were in the array or else it will
 130 * return the result of the last iterator function called.  Iteration stops
 131 * immediately if any call to the iteration function results in a non-zero
 132 * return.
 133 *
 134 * The caller should hold the RCU read lock or better if concurrent
 135 * modification is possible.
 136 */
 137int assoc_array_iterate(const struct assoc_array *array,
 138                        int (*iterator)(const void *object,
 139                                        void *iterator_data),
 140                        void *iterator_data)
 141{
 142        struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
 143
 144        if (!root)
 145                return 0;
 146        return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
 147}
 148
 149enum assoc_array_walk_status {
 150        assoc_array_walk_tree_empty,
 151        assoc_array_walk_found_terminal_node,
 152        assoc_array_walk_found_wrong_shortcut,
 153};
 154
 155struct assoc_array_walk_result {
 156        struct {
 157                struct assoc_array_node *node;  /* Node in which leaf might be found */
 158                int             level;
 159                int             slot;
 160        } terminal_node;
 161        struct {
 162                struct assoc_array_shortcut *shortcut;
 163                int             level;
 164                int             sc_level;
 165                unsigned long   sc_segments;
 166                unsigned long   dissimilarity;
 167        } wrong_shortcut;
 168};
 169
 170/*
 171 * Navigate through the internal tree looking for the closest node to the key.
 172 */
 173static enum assoc_array_walk_status
 174assoc_array_walk(const struct assoc_array *array,
 175                 const struct assoc_array_ops *ops,
 176                 const void *index_key,
 177                 struct assoc_array_walk_result *result)
 178{
 179        struct assoc_array_shortcut *shortcut;
 180        struct assoc_array_node *node;
 181        struct assoc_array_ptr *cursor, *ptr;
 182        unsigned long sc_segments, dissimilarity;
 183        unsigned long segments;
 184        int level, sc_level, next_sc_level;
 185        int slot;
 186
 187        pr_devel("-->%s()\n", __func__);
 188
 189        cursor = READ_ONCE(array->root);  /* Address dependency. */
 190        if (!cursor)
 191                return assoc_array_walk_tree_empty;
 192
 193        level = 0;
 194
 195        /* Use segments from the key for the new leaf to navigate through the
 196         * internal tree, skipping through nodes and shortcuts that are on
 197         * route to the destination.  Eventually we'll come to a slot that is
 198         * either empty or contains a leaf at which point we've found a node in
 199         * which the leaf we're looking for might be found or into which it
 200         * should be inserted.
 201         */
 202jumped:
 203        segments = ops->get_key_chunk(index_key, level);
 204        pr_devel("segments[%d]: %lx\n", level, segments);
 205
 206        if (assoc_array_ptr_is_shortcut(cursor))
 207                goto follow_shortcut;
 208
 209consider_node:
 210        node = assoc_array_ptr_to_node(cursor);
 211        slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 212        slot &= ASSOC_ARRAY_FAN_MASK;
 213        ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
 214
 215        pr_devel("consider slot %x [ix=%d type=%lu]\n",
 216                 slot, level, (unsigned long)ptr & 3);
 217
 218        if (!assoc_array_ptr_is_meta(ptr)) {
 219                /* The node doesn't have a node/shortcut pointer in the slot
 220                 * corresponding to the index key that we have to follow.
 221                 */
 222                result->terminal_node.node = node;
 223                result->terminal_node.level = level;
 224                result->terminal_node.slot = slot;
 225                pr_devel("<--%s() = terminal_node\n", __func__);
 226                return assoc_array_walk_found_terminal_node;
 227        }
 228
 229        if (assoc_array_ptr_is_node(ptr)) {
 230                /* There is a pointer to a node in the slot corresponding to
 231                 * this index key segment, so we need to follow it.
 232                 */
 233                cursor = ptr;
 234                level += ASSOC_ARRAY_LEVEL_STEP;
 235                if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
 236                        goto consider_node;
 237                goto jumped;
 238        }
 239
 240        /* There is a shortcut in the slot corresponding to the index key
 241         * segment.  We follow the shortcut if its partial index key matches
 242         * this leaf's.  Otherwise we need to split the shortcut.
 243         */
 244        cursor = ptr;
 245follow_shortcut:
 246        shortcut = assoc_array_ptr_to_shortcut(cursor);
 247        pr_devel("shortcut to %d\n", shortcut->skip_to_level);
 248        sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
 249        BUG_ON(sc_level > shortcut->skip_to_level);
 250
 251        do {
 252                /* Check the leaf against the shortcut's index key a word at a
 253                 * time, trimming the final word (the shortcut stores the index
 254                 * key completely from the root to the shortcut's target).
 255                 */
 256                if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
 257                        segments = ops->get_key_chunk(index_key, sc_level);
 258
 259                sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
 260                dissimilarity = segments ^ sc_segments;
 261
 262                if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
 263                        /* Trim segments that are beyond the shortcut */
 264                        int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 265                        dissimilarity &= ~(ULONG_MAX << shift);
 266                        next_sc_level = shortcut->skip_to_level;
 267                } else {
 268                        next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
 269                        next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 270                }
 271
 272                if (dissimilarity != 0) {
 273                        /* This shortcut points elsewhere */
 274                        result->wrong_shortcut.shortcut = shortcut;
 275                        result->wrong_shortcut.level = level;
 276                        result->wrong_shortcut.sc_level = sc_level;
 277                        result->wrong_shortcut.sc_segments = sc_segments;
 278                        result->wrong_shortcut.dissimilarity = dissimilarity;
 279                        return assoc_array_walk_found_wrong_shortcut;
 280                }
 281
 282                sc_level = next_sc_level;
 283        } while (sc_level < shortcut->skip_to_level);
 284
 285        /* The shortcut matches the leaf's index to this point. */
 286        cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
 287        if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
 288                level = sc_level;
 289                goto jumped;
 290        } else {
 291                level = sc_level;
 292                goto consider_node;
 293        }
 294}
 295
 296/**
 297 * assoc_array_find - Find an object by index key
 298 * @array: The associative array to search.
 299 * @ops: The operations to use.
 300 * @index_key: The key to the object.
 301 *
 302 * Find an object in an associative array by walking through the internal tree
 303 * to the node that should contain the object and then searching the leaves
 304 * there.  NULL is returned if the requested object was not found in the array.
 305 *
 306 * The caller must hold the RCU read lock or better.
 307 */
 308void *assoc_array_find(const struct assoc_array *array,
 309                       const struct assoc_array_ops *ops,
 310                       const void *index_key)
 311{
 312        struct assoc_array_walk_result result;
 313        const struct assoc_array_node *node;
 314        const struct assoc_array_ptr *ptr;
 315        const void *leaf;
 316        int slot;
 317
 318        if (assoc_array_walk(array, ops, index_key, &result) !=
 319            assoc_array_walk_found_terminal_node)
 320                return NULL;
 321
 322        node = result.terminal_node.node;
 323
 324        /* If the target key is available to us, it's has to be pointed to by
 325         * the terminal node.
 326         */
 327        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 328                ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
 329                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
 330                        /* We need a barrier between the read of the pointer
 331                         * and dereferencing the pointer - but only if we are
 332                         * actually going to dereference it.
 333                         */
 334                        leaf = assoc_array_ptr_to_leaf(ptr);
 335                        if (ops->compare_object(leaf, index_key))
 336                                return (void *)leaf;
 337                }
 338        }
 339
 340        return NULL;
 341}
 342
 343/*
 344 * Destructively iterate over an associative array.  The caller must prevent
 345 * other simultaneous accesses.
 346 */
 347static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
 348                                        const struct assoc_array_ops *ops)
 349{
 350        struct assoc_array_shortcut *shortcut;
 351        struct assoc_array_node *node;
 352        struct assoc_array_ptr *cursor, *parent = NULL;
 353        int slot = -1;
 354
 355        pr_devel("-->%s()\n", __func__);
 356
 357        cursor = root;
 358        if (!cursor) {
 359                pr_devel("empty\n");
 360                return;
 361        }
 362
 363move_to_meta:
 364        if (assoc_array_ptr_is_shortcut(cursor)) {
 365                /* Descend through a shortcut */
 366                pr_devel("[%d] shortcut\n", slot);
 367                BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
 368                shortcut = assoc_array_ptr_to_shortcut(cursor);
 369                BUG_ON(shortcut->back_pointer != parent);
 370                BUG_ON(slot != -1 && shortcut->parent_slot != slot);
 371                parent = cursor;
 372                cursor = shortcut->next_node;
 373                slot = -1;
 374                BUG_ON(!assoc_array_ptr_is_node(cursor));
 375        }
 376
 377        pr_devel("[%d] node\n", slot);
 378        node = assoc_array_ptr_to_node(cursor);
 379        BUG_ON(node->back_pointer != parent);
 380        BUG_ON(slot != -1 && node->parent_slot != slot);
 381        slot = 0;
 382
 383continue_node:
 384        pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
 385        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 386                struct assoc_array_ptr *ptr = node->slots[slot];
 387                if (!ptr)
 388                        continue;
 389                if (assoc_array_ptr_is_meta(ptr)) {
 390                        parent = cursor;
 391                        cursor = ptr;
 392                        goto move_to_meta;
 393                }
 394
 395                if (ops) {
 396                        pr_devel("[%d] free leaf\n", slot);
 397                        ops->free_object(assoc_array_ptr_to_leaf(ptr));
 398                }
 399        }
 400
 401        parent = node->back_pointer;
 402        slot = node->parent_slot;
 403        pr_devel("free node\n");
 404        kfree(node);
 405        if (!parent)
 406                return; /* Done */
 407
 408        /* Move back up to the parent (may need to free a shortcut on
 409         * the way up) */
 410        if (assoc_array_ptr_is_shortcut(parent)) {
 411                shortcut = assoc_array_ptr_to_shortcut(parent);
 412                BUG_ON(shortcut->next_node != cursor);
 413                cursor = parent;
 414                parent = shortcut->back_pointer;
 415                slot = shortcut->parent_slot;
 416                pr_devel("free shortcut\n");
 417                kfree(shortcut);
 418                if (!parent)
 419                        return;
 420
 421                BUG_ON(!assoc_array_ptr_is_node(parent));
 422        }
 423
 424        /* Ascend to next slot in parent node */
 425        pr_devel("ascend to %p[%d]\n", parent, slot);
 426        cursor = parent;
 427        node = assoc_array_ptr_to_node(cursor);
 428        slot++;
 429        goto continue_node;
 430}
 431
 432/**
 433 * assoc_array_destroy - Destroy an associative array
 434 * @array: The array to destroy.
 435 * @ops: The operations to use.
 436 *
 437 * Discard all metadata and free all objects in an associative array.  The
 438 * array will be empty and ready to use again upon completion.  This function
 439 * cannot fail.
 440 *
 441 * The caller must prevent all other accesses whilst this takes place as no
 442 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
 443 * accesses to continue.  On the other hand, no memory allocation is required.
 444 */
 445void assoc_array_destroy(struct assoc_array *array,
 446                         const struct assoc_array_ops *ops)
 447{
 448        assoc_array_destroy_subtree(array->root, ops);
 449        array->root = NULL;
 450}
 451
 452/*
 453 * Handle insertion into an empty tree.
 454 */
 455static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
 456{
 457        struct assoc_array_node *new_n0;
 458
 459        pr_devel("-->%s()\n", __func__);
 460
 461        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 462        if (!new_n0)
 463                return false;
 464
 465        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 466        edit->leaf_p = &new_n0->slots[0];
 467        edit->adjust_count_on = new_n0;
 468        edit->set[0].ptr = &edit->array->root;
 469        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 470
 471        pr_devel("<--%s() = ok [no root]\n", __func__);
 472        return true;
 473}
 474
 475/*
 476 * Handle insertion into a terminal node.
 477 */
 478static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
 479                                                  const struct assoc_array_ops *ops,
 480                                                  const void *index_key,
 481                                                  struct assoc_array_walk_result *result)
 482{
 483        struct assoc_array_shortcut *shortcut, *new_s0;
 484        struct assoc_array_node *node, *new_n0, *new_n1, *side;
 485        struct assoc_array_ptr *ptr;
 486        unsigned long dissimilarity, base_seg, blank;
 487        size_t keylen;
 488        bool have_meta;
 489        int level, diff;
 490        int slot, next_slot, free_slot, i, j;
 491
 492        node    = result->terminal_node.node;
 493        level   = result->terminal_node.level;
 494        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
 495
 496        pr_devel("-->%s()\n", __func__);
 497
 498        /* We arrived at a node which doesn't have an onward node or shortcut
 499         * pointer that we have to follow.  This means that (a) the leaf we
 500         * want must go here (either by insertion or replacement) or (b) we
 501         * need to split this node and insert in one of the fragments.
 502         */
 503        free_slot = -1;
 504
 505        /* Firstly, we have to check the leaves in this node to see if there's
 506         * a matching one we should replace in place.
 507         */
 508        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 509                ptr = node->slots[i];
 510                if (!ptr) {
 511                        free_slot = i;
 512                        continue;
 513                }
 514                if (assoc_array_ptr_is_leaf(ptr) &&
 515                    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
 516                                        index_key)) {
 517                        pr_devel("replace in slot %d\n", i);
 518                        edit->leaf_p = &node->slots[i];
 519                        edit->dead_leaf = node->slots[i];
 520                        pr_devel("<--%s() = ok [replace]\n", __func__);
 521                        return true;
 522                }
 523        }
 524
 525        /* If there is a free slot in this node then we can just insert the
 526         * leaf here.
 527         */
 528        if (free_slot >= 0) {
 529                pr_devel("insert in free slot %d\n", free_slot);
 530                edit->leaf_p = &node->slots[free_slot];
 531                edit->adjust_count_on = node;
 532                pr_devel("<--%s() = ok [insert]\n", __func__);
 533                return true;
 534        }
 535
 536        /* The node has no spare slots - so we're either going to have to split
 537         * it or insert another node before it.
 538         *
 539         * Whatever, we're going to need at least two new nodes - so allocate
 540         * those now.  We may also need a new shortcut, but we deal with that
 541         * when we need it.
 542         */
 543        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 544        if (!new_n0)
 545                return false;
 546        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 547        new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 548        if (!new_n1)
 549                return false;
 550        edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
 551
 552        /* We need to find out how similar the leaves are. */
 553        pr_devel("no spare slots\n");
 554        have_meta = false;
 555        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 556                ptr = node->slots[i];
 557                if (assoc_array_ptr_is_meta(ptr)) {
 558                        edit->segment_cache[i] = 0xff;
 559                        have_meta = true;
 560                        continue;
 561                }
 562                base_seg = ops->get_object_key_chunk(
 563                        assoc_array_ptr_to_leaf(ptr), level);
 564                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 565                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 566        }
 567
 568        if (have_meta) {
 569                pr_devel("have meta\n");
 570                goto split_node;
 571        }
 572
 573        /* The node contains only leaves */
 574        dissimilarity = 0;
 575        base_seg = edit->segment_cache[0];
 576        for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
 577                dissimilarity |= edit->segment_cache[i] ^ base_seg;
 578
 579        pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
 580
 581        if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
 582                /* The old leaves all cluster in the same slot.  We will need
 583                 * to insert a shortcut if the new node wants to cluster with them.
 584                 */
 585                if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
 586                        goto all_leaves_cluster_together;
 587
 588                /* Otherwise all the old leaves cluster in the same slot, but
 589                 * the new leaf wants to go into a different slot - so we
 590                 * create a new node (n0) to hold the new leaf and a pointer to
 591                 * a new node (n1) holding all the old leaves.
 592                 *
 593                 * This can be done by falling through to the node splitting
 594                 * path.
 595                 */
 596                pr_devel("present leaves cluster but not new leaf\n");
 597        }
 598
 599split_node:
 600        pr_devel("split node\n");
 601
 602        /* We need to split the current node.  The node must contain anything
 603         * from a single leaf (in the one leaf case, this leaf will cluster
 604         * with the new leaf) and the rest meta-pointers, to all leaves, some
 605         * of which may cluster.
 606         *
 607         * It won't contain the case in which all the current leaves plus the
 608         * new leaves want to cluster in the same slot.
 609         *
 610         * We need to expel at least two leaves out of a set consisting of the
 611         * leaves in the node and the new leaf.  The current meta pointers can
 612         * just be copied as they shouldn't cluster with any of the leaves.
 613         *
 614         * We need a new node (n0) to replace the current one and a new node to
 615         * take the expelled nodes (n1).
 616         */
 617        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 618        new_n0->back_pointer = node->back_pointer;
 619        new_n0->parent_slot = node->parent_slot;
 620        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 621        new_n1->parent_slot = -1; /* Need to calculate this */
 622
 623do_split_node:
 624        pr_devel("do_split_node\n");
 625
 626        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 627        new_n1->nr_leaves_on_branch = 0;
 628
 629        /* Begin by finding two matching leaves.  There have to be at least two
 630         * that match - even if there are meta pointers - because any leaf that
 631         * would match a slot with a meta pointer in it must be somewhere
 632         * behind that meta pointer and cannot be here.  Further, given N
 633         * remaining leaf slots, we now have N+1 leaves to go in them.
 634         */
 635        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 636                slot = edit->segment_cache[i];
 637                if (slot != 0xff)
 638                        for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
 639                                if (edit->segment_cache[j] == slot)
 640                                        goto found_slot_for_multiple_occupancy;
 641        }
 642found_slot_for_multiple_occupancy:
 643        pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
 644        BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
 645        BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
 646        BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
 647
 648        new_n1->parent_slot = slot;
 649
 650        /* Metadata pointers cannot change slot */
 651        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 652                if (assoc_array_ptr_is_meta(node->slots[i]))
 653                        new_n0->slots[i] = node->slots[i];
 654                else
 655                        new_n0->slots[i] = NULL;
 656        BUG_ON(new_n0->slots[slot] != NULL);
 657        new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
 658
 659        /* Filter the leaf pointers between the new nodes */
 660        free_slot = -1;
 661        next_slot = 0;
 662        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 663                if (assoc_array_ptr_is_meta(node->slots[i]))
 664                        continue;
 665                if (edit->segment_cache[i] == slot) {
 666                        new_n1->slots[next_slot++] = node->slots[i];
 667                        new_n1->nr_leaves_on_branch++;
 668                } else {
 669                        do {
 670                                free_slot++;
 671                        } while (new_n0->slots[free_slot] != NULL);
 672                        new_n0->slots[free_slot] = node->slots[i];
 673                }
 674        }
 675
 676        pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
 677
 678        if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
 679                do {
 680                        free_slot++;
 681                } while (new_n0->slots[free_slot] != NULL);
 682                edit->leaf_p = &new_n0->slots[free_slot];
 683                edit->adjust_count_on = new_n0;
 684        } else {
 685                edit->leaf_p = &new_n1->slots[next_slot++];
 686                edit->adjust_count_on = new_n1;
 687        }
 688
 689        BUG_ON(next_slot <= 1);
 690
 691        edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
 692        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 693                if (edit->segment_cache[i] == 0xff) {
 694                        ptr = node->slots[i];
 695                        BUG_ON(assoc_array_ptr_is_leaf(ptr));
 696                        if (assoc_array_ptr_is_node(ptr)) {
 697                                side = assoc_array_ptr_to_node(ptr);
 698                                edit->set_backpointers[i] = &side->back_pointer;
 699                        } else {
 700                                shortcut = assoc_array_ptr_to_shortcut(ptr);
 701                                edit->set_backpointers[i] = &shortcut->back_pointer;
 702                        }
 703                }
 704        }
 705
 706        ptr = node->back_pointer;
 707        if (!ptr)
 708                edit->set[0].ptr = &edit->array->root;
 709        else if (assoc_array_ptr_is_node(ptr))
 710                edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
 711        else
 712                edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
 713        edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 714        pr_devel("<--%s() = ok [split node]\n", __func__);
 715        return true;
 716
 717all_leaves_cluster_together:
 718        /* All the leaves, new and old, want to cluster together in this node
 719         * in the same slot, so we have to replace this node with a shortcut to
 720         * skip over the identical parts of the key and then place a pair of
 721         * nodes, one inside the other, at the end of the shortcut and
 722         * distribute the keys between them.
 723         *
 724         * Firstly we need to work out where the leaves start diverging as a
 725         * bit position into their keys so that we know how big the shortcut
 726         * needs to be.
 727         *
 728         * We only need to make a single pass of N of the N+1 leaves because if
 729         * any keys differ between themselves at bit X then at least one of
 730         * them must also differ with the base key at bit X or before.
 731         */
 732        pr_devel("all leaves cluster together\n");
 733        diff = INT_MAX;
 734        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 735                int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
 736                                          index_key);
 737                if (x < diff) {
 738                        BUG_ON(x < 0);
 739                        diff = x;
 740                }
 741        }
 742        BUG_ON(diff == INT_MAX);
 743        BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
 744
 745        keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 746        keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 747
 748        new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 749                         keylen * sizeof(unsigned long), GFP_KERNEL);
 750        if (!new_s0)
 751                return false;
 752        edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
 753
 754        edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 755        new_s0->back_pointer = node->back_pointer;
 756        new_s0->parent_slot = node->parent_slot;
 757        new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 758        new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 759        new_n0->parent_slot = 0;
 760        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 761        new_n1->parent_slot = -1; /* Need to calculate this */
 762
 763        new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 764        pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
 765        BUG_ON(level <= 0);
 766
 767        for (i = 0; i < keylen; i++)
 768                new_s0->index_key[i] =
 769                        ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
 770
 771        blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 772        pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
 773        new_s0->index_key[keylen - 1] &= ~blank;
 774
 775        /* This now reduces to a node splitting exercise for which we'll need
 776         * to regenerate the disparity table.
 777         */
 778        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 779                ptr = node->slots[i];
 780                base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
 781                                                     level);
 782                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 783                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 784        }
 785
 786        base_seg = ops->get_key_chunk(index_key, level);
 787        base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 788        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
 789        goto do_split_node;
 790}
 791
 792/*
 793 * Handle insertion into the middle of a shortcut.
 794 */
 795static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
 796                                            const struct assoc_array_ops *ops,
 797                                            struct assoc_array_walk_result *result)
 798{
 799        struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
 800        struct assoc_array_node *node, *new_n0, *side;
 801        unsigned long sc_segments, dissimilarity, blank;
 802        size_t keylen;
 803        int level, sc_level, diff;
 804        int sc_slot;
 805
 806        shortcut        = result->wrong_shortcut.shortcut;
 807        level           = result->wrong_shortcut.level;
 808        sc_level        = result->wrong_shortcut.sc_level;
 809        sc_segments     = result->wrong_shortcut.sc_segments;
 810        dissimilarity   = result->wrong_shortcut.dissimilarity;
 811
 812        pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
 813                 __func__, level, dissimilarity, sc_level);
 814
 815        /* We need to split a shortcut and insert a node between the two
 816         * pieces.  Zero-length pieces will be dispensed with entirely.
 817         *
 818         * First of all, we need to find out in which level the first
 819         * difference was.
 820         */
 821        diff = __ffs(dissimilarity);
 822        diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 823        diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
 824        pr_devel("diff=%d\n", diff);
 825
 826        if (!shortcut->back_pointer) {
 827                edit->set[0].ptr = &edit->array->root;
 828        } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
 829                node = assoc_array_ptr_to_node(shortcut->back_pointer);
 830                edit->set[0].ptr = &node->slots[shortcut->parent_slot];
 831        } else {
 832                BUG();
 833        }
 834
 835        edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
 836
 837        /* Create a new node now since we're going to need it anyway */
 838        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 839        if (!new_n0)
 840                return false;
 841        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 842        edit->adjust_count_on = new_n0;
 843
 844        /* Insert a new shortcut before the new node if this segment isn't of
 845         * zero length - otherwise we just connect the new node directly to the
 846         * parent.
 847         */
 848        level += ASSOC_ARRAY_LEVEL_STEP;
 849        if (diff > level) {
 850                pr_devel("pre-shortcut %d...%d\n", level, diff);
 851                keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 852                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 853
 854                new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 855                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 856                if (!new_s0)
 857                        return false;
 858                edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
 859                edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 860                new_s0->back_pointer = shortcut->back_pointer;
 861                new_s0->parent_slot = shortcut->parent_slot;
 862                new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 863                new_s0->skip_to_level = diff;
 864
 865                new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 866                new_n0->parent_slot = 0;
 867
 868                memcpy(new_s0->index_key, shortcut->index_key,
 869                       keylen * sizeof(unsigned long));
 870
 871                blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 872                pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
 873                new_s0->index_key[keylen - 1] &= ~blank;
 874        } else {
 875                pr_devel("no pre-shortcut\n");
 876                edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 877                new_n0->back_pointer = shortcut->back_pointer;
 878                new_n0->parent_slot = shortcut->parent_slot;
 879        }
 880
 881        side = assoc_array_ptr_to_node(shortcut->next_node);
 882        new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
 883
 884        /* We need to know which slot in the new node is going to take a
 885         * metadata pointer.
 886         */
 887        sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 888        sc_slot &= ASSOC_ARRAY_FAN_MASK;
 889
 890        pr_devel("new slot %lx >> %d -> %d\n",
 891                 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
 892
 893        /* Determine whether we need to follow the new node with a replacement
 894         * for the current shortcut.  We could in theory reuse the current
 895         * shortcut if its parent slot number doesn't change - but that's a
 896         * 1-in-16 chance so not worth expending the code upon.
 897         */
 898        level = diff + ASSOC_ARRAY_LEVEL_STEP;
 899        if (level < shortcut->skip_to_level) {
 900                pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
 901                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 902                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 903
 904                new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
 905                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 906                if (!new_s1)
 907                        return false;
 908                edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
 909
 910                new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
 911                new_s1->parent_slot = sc_slot;
 912                new_s1->next_node = shortcut->next_node;
 913                new_s1->skip_to_level = shortcut->skip_to_level;
 914
 915                new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
 916
 917                memcpy(new_s1->index_key, shortcut->index_key,
 918                       keylen * sizeof(unsigned long));
 919
 920                edit->set[1].ptr = &side->back_pointer;
 921                edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
 922        } else {
 923                pr_devel("no post-shortcut\n");
 924
 925                /* We don't have to replace the pointed-to node as long as we
 926                 * use memory barriers to make sure the parent slot number is
 927                 * changed before the back pointer (the parent slot number is
 928                 * irrelevant to the old parent shortcut).
 929                 */
 930                new_n0->slots[sc_slot] = shortcut->next_node;
 931                edit->set_parent_slot[0].p = &side->parent_slot;
 932                edit->set_parent_slot[0].to = sc_slot;
 933                edit->set[1].ptr = &side->back_pointer;
 934                edit->set[1].to = assoc_array_node_to_ptr(new_n0);
 935        }
 936
 937        /* Install the new leaf in a spare slot in the new node. */
 938        if (sc_slot == 0)
 939                edit->leaf_p = &new_n0->slots[1];
 940        else
 941                edit->leaf_p = &new_n0->slots[0];
 942
 943        pr_devel("<--%s() = ok [split shortcut]\n", __func__);
 944        return edit;
 945}
 946
 947/**
 948 * assoc_array_insert - Script insertion of an object into an associative array
 949 * @array: The array to insert into.
 950 * @ops: The operations to use.
 951 * @index_key: The key to insert at.
 952 * @object: The object to insert.
 953 *
 954 * Precalculate and preallocate a script for the insertion or replacement of an
 955 * object in an associative array.  This results in an edit script that can
 956 * either be applied or cancelled.
 957 *
 958 * The function returns a pointer to an edit script or -ENOMEM.
 959 *
 960 * The caller should lock against other modifications and must continue to hold
 961 * the lock until assoc_array_apply_edit() has been called.
 962 *
 963 * Accesses to the tree may take place concurrently with this function,
 964 * provided they hold the RCU read lock.
 965 */
 966struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
 967                                            const struct assoc_array_ops *ops,
 968                                            const void *index_key,
 969                                            void *object)
 970{
 971        struct assoc_array_walk_result result;
 972        struct assoc_array_edit *edit;
 973
 974        pr_devel("-->%s()\n", __func__);
 975
 976        /* The leaf pointer we're given must not have the bottom bit set as we
 977         * use those for type-marking the pointer.  NULL pointers are also not
 978         * allowed as they indicate an empty slot but we have to allow them
 979         * here as they can be updated later.
 980         */
 981        BUG_ON(assoc_array_ptr_is_meta(object));
 982
 983        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 984        if (!edit)
 985                return ERR_PTR(-ENOMEM);
 986        edit->array = array;
 987        edit->ops = ops;
 988        edit->leaf = assoc_array_leaf_to_ptr(object);
 989        edit->adjust_count_by = 1;
 990
 991        switch (assoc_array_walk(array, ops, index_key, &result)) {
 992        case assoc_array_walk_tree_empty:
 993                /* Allocate a root node if there isn't one yet */
 994                if (!assoc_array_insert_in_empty_tree(edit))
 995                        goto enomem;
 996                return edit;
 997
 998        case assoc_array_walk_found_terminal_node:
 999                /* We found a node that doesn't have a node/shortcut pointer in
1000                 * the slot corresponding to the index key that we have to
1001                 * follow.
1002                 */
1003                if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1004                                                           &result))
1005                        goto enomem;
1006                return edit;
1007
1008        case assoc_array_walk_found_wrong_shortcut:
1009                /* We found a shortcut that didn't match our key in a slot we
1010                 * needed to follow.
1011                 */
1012                if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1013                        goto enomem;
1014                return edit;
1015        }
1016
1017enomem:
1018        /* Clean up after an out of memory error */
1019        pr_devel("enomem\n");
1020        assoc_array_cancel_edit(edit);
1021        return ERR_PTR(-ENOMEM);
1022}
1023
1024/**
1025 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1026 * @edit: The edit script to modify.
1027 * @object: The object pointer to set.
1028 *
1029 * Change the object to be inserted in an edit script.  The object pointed to
1030 * by the old object is not freed.  This must be done prior to applying the
1031 * script.
1032 */
1033void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1034{
1035        BUG_ON(!object);
1036        edit->leaf = assoc_array_leaf_to_ptr(object);
1037}
1038
1039struct assoc_array_delete_collapse_context {
1040        struct assoc_array_node *node;
1041        const void              *skip_leaf;
1042        int                     slot;
1043};
1044
1045/*
1046 * Subtree collapse to node iterator.
1047 */
1048static int assoc_array_delete_collapse_iterator(const void *leaf,
1049                                                void *iterator_data)
1050{
1051        struct assoc_array_delete_collapse_context *collapse = iterator_data;
1052
1053        if (leaf == collapse->skip_leaf)
1054                return 0;
1055
1056        BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1057
1058        collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1059        return 0;
1060}
1061
1062/**
1063 * assoc_array_delete - Script deletion of an object from an associative array
1064 * @array: The array to search.
1065 * @ops: The operations to use.
1066 * @index_key: The key to the object.
1067 *
1068 * Precalculate and preallocate a script for the deletion of an object from an
1069 * associative array.  This results in an edit script that can either be
1070 * applied or cancelled.
1071 *
1072 * The function returns a pointer to an edit script if the object was found,
1073 * NULL if the object was not found or -ENOMEM.
1074 *
1075 * The caller should lock against other modifications and must continue to hold
1076 * the lock until assoc_array_apply_edit() has been called.
1077 *
1078 * Accesses to the tree may take place concurrently with this function,
1079 * provided they hold the RCU read lock.
1080 */
1081struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1082                                            const struct assoc_array_ops *ops,
1083                                            const void *index_key)
1084{
1085        struct assoc_array_delete_collapse_context collapse;
1086        struct assoc_array_walk_result result;
1087        struct assoc_array_node *node, *new_n0;
1088        struct assoc_array_edit *edit;
1089        struct assoc_array_ptr *ptr;
1090        bool has_meta;
1091        int slot, i;
1092
1093        pr_devel("-->%s()\n", __func__);
1094
1095        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1096        if (!edit)
1097                return ERR_PTR(-ENOMEM);
1098        edit->array = array;
1099        edit->ops = ops;
1100        edit->adjust_count_by = -1;
1101
1102        switch (assoc_array_walk(array, ops, index_key, &result)) {
1103        case assoc_array_walk_found_terminal_node:
1104                /* We found a node that should contain the leaf we've been
1105                 * asked to remove - *if* it's in the tree.
1106                 */
1107                pr_devel("terminal_node\n");
1108                node = result.terminal_node.node;
1109
1110                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1111                        ptr = node->slots[slot];
1112                        if (ptr &&
1113                            assoc_array_ptr_is_leaf(ptr) &&
1114                            ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1115                                                index_key))
1116                                goto found_leaf;
1117                }
1118        case assoc_array_walk_tree_empty:
1119        case assoc_array_walk_found_wrong_shortcut:
1120        default:
1121                assoc_array_cancel_edit(edit);
1122                pr_devel("not found\n");
1123                return NULL;
1124        }
1125
1126found_leaf:
1127        BUG_ON(array->nr_leaves_on_tree <= 0);
1128
1129        /* In the simplest form of deletion we just clear the slot and release
1130         * the leaf after a suitable interval.
1131         */
1132        edit->dead_leaf = node->slots[slot];
1133        edit->set[0].ptr = &node->slots[slot];
1134        edit->set[0].to = NULL;
1135        edit->adjust_count_on = node;
1136
1137        /* If that concludes erasure of the last leaf, then delete the entire
1138         * internal array.
1139         */
1140        if (array->nr_leaves_on_tree == 1) {
1141                edit->set[1].ptr = &array->root;
1142                edit->set[1].to = NULL;
1143                edit->adjust_count_on = NULL;
1144                edit->excised_subtree = array->root;
1145                pr_devel("all gone\n");
1146                return edit;
1147        }
1148
1149        /* However, we'd also like to clear up some metadata blocks if we
1150         * possibly can.
1151         *
1152         * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1153         * leaves in it, then attempt to collapse it - and attempt to
1154         * recursively collapse up the tree.
1155         *
1156         * We could also try and collapse in partially filled subtrees to take
1157         * up space in this node.
1158         */
1159        if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1160                struct assoc_array_node *parent, *grandparent;
1161                struct assoc_array_ptr *ptr;
1162
1163                /* First of all, we need to know if this node has metadata so
1164                 * that we don't try collapsing if all the leaves are already
1165                 * here.
1166                 */
1167                has_meta = false;
1168                for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1169                        ptr = node->slots[i];
1170                        if (assoc_array_ptr_is_meta(ptr)) {
1171                                has_meta = true;
1172                                break;
1173                        }
1174                }
1175
1176                pr_devel("leaves: %ld [m=%d]\n",
1177                         node->nr_leaves_on_branch - 1, has_meta);
1178
1179                /* Look further up the tree to see if we can collapse this node
1180                 * into a more proximal node too.
1181                 */
1182                parent = node;
1183        collapse_up:
1184                pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1185
1186                ptr = parent->back_pointer;
1187                if (!ptr)
1188                        goto do_collapse;
1189                if (assoc_array_ptr_is_shortcut(ptr)) {
1190                        struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1191                        ptr = s->back_pointer;
1192                        if (!ptr)
1193                                goto do_collapse;
1194                }
1195
1196                grandparent = assoc_array_ptr_to_node(ptr);
1197                if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1198                        parent = grandparent;
1199                        goto collapse_up;
1200                }
1201
1202        do_collapse:
1203                /* There's no point collapsing if the original node has no meta
1204                 * pointers to discard and if we didn't merge into one of that
1205                 * node's ancestry.
1206                 */
1207                if (has_meta || parent != node) {
1208                        node = parent;
1209
1210                        /* Create a new node to collapse into */
1211                        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1212                        if (!new_n0)
1213                                goto enomem;
1214                        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1215
1216                        new_n0->back_pointer = node->back_pointer;
1217                        new_n0->parent_slot = node->parent_slot;
1218                        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1219                        edit->adjust_count_on = new_n0;
1220
1221                        collapse.node = new_n0;
1222                        collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1223                        collapse.slot = 0;
1224                        assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1225                                                    node->back_pointer,
1226                                                    assoc_array_delete_collapse_iterator,
1227                                                    &collapse);
1228                        pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1229                        BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1230
1231                        if (!node->back_pointer) {
1232                                edit->set[1].ptr = &array->root;
1233                        } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1234                                BUG();
1235                        } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1236                                struct assoc_array_node *p =
1237                                        assoc_array_ptr_to_node(node->back_pointer);
1238                                edit->set[1].ptr = &p->slots[node->parent_slot];
1239                        } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1240                                struct assoc_array_shortcut *s =
1241                                        assoc_array_ptr_to_shortcut(node->back_pointer);
1242                                edit->set[1].ptr = &s->next_node;
1243                        }
1244                        edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1245                        edit->excised_subtree = assoc_array_node_to_ptr(node);
1246                }
1247        }
1248
1249        return edit;
1250
1251enomem:
1252        /* Clean up after an out of memory error */
1253        pr_devel("enomem\n");
1254        assoc_array_cancel_edit(edit);
1255        return ERR_PTR(-ENOMEM);
1256}
1257
1258/**
1259 * assoc_array_clear - Script deletion of all objects from an associative array
1260 * @array: The array to clear.
1261 * @ops: The operations to use.
1262 *
1263 * Precalculate and preallocate a script for the deletion of all the objects
1264 * from an associative array.  This results in an edit script that can either
1265 * be applied or cancelled.
1266 *
1267 * The function returns a pointer to an edit script if there are objects to be
1268 * deleted, NULL if there are no objects in the array or -ENOMEM.
1269 *
1270 * The caller should lock against other modifications and must continue to hold
1271 * the lock until assoc_array_apply_edit() has been called.
1272 *
1273 * Accesses to the tree may take place concurrently with this function,
1274 * provided they hold the RCU read lock.
1275 */
1276struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1277                                           const struct assoc_array_ops *ops)
1278{
1279        struct assoc_array_edit *edit;
1280
1281        pr_devel("-->%s()\n", __func__);
1282
1283        if (!array->root)
1284                return NULL;
1285
1286        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1287        if (!edit)
1288                return ERR_PTR(-ENOMEM);
1289        edit->array = array;
1290        edit->ops = ops;
1291        edit->set[1].ptr = &array->root;
1292        edit->set[1].to = NULL;
1293        edit->excised_subtree = array->root;
1294        edit->ops_for_excised_subtree = ops;
1295        pr_devel("all gone\n");
1296        return edit;
1297}
1298
1299/*
1300 * Handle the deferred destruction after an applied edit.
1301 */
1302static void assoc_array_rcu_cleanup(struct rcu_head *head)
1303{
1304        struct assoc_array_edit *edit =
1305                container_of(head, struct assoc_array_edit, rcu);
1306        int i;
1307
1308        pr_devel("-->%s()\n", __func__);
1309
1310        if (edit->dead_leaf)
1311                edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1312        for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1313                if (edit->excised_meta[i])
1314                        kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1315
1316        if (edit->excised_subtree) {
1317                BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1318                if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1319                        struct assoc_array_node *n =
1320                                assoc_array_ptr_to_node(edit->excised_subtree);
1321                        n->back_pointer = NULL;
1322                } else {
1323                        struct assoc_array_shortcut *s =
1324                                assoc_array_ptr_to_shortcut(edit->excised_subtree);
1325                        s->back_pointer = NULL;
1326                }
1327                assoc_array_destroy_subtree(edit->excised_subtree,
1328                                            edit->ops_for_excised_subtree);
1329        }
1330
1331        kfree(edit);
1332}
1333
1334/**
1335 * assoc_array_apply_edit - Apply an edit script to an associative array
1336 * @edit: The script to apply.
1337 *
1338 * Apply an edit script to an associative array to effect an insertion,
1339 * deletion or clearance.  As the edit script includes preallocated memory,
1340 * this is guaranteed not to fail.
1341 *
1342 * The edit script, dead objects and dead metadata will be scheduled for
1343 * destruction after an RCU grace period to permit those doing read-only
1344 * accesses on the array to continue to do so under the RCU read lock whilst
1345 * the edit is taking place.
1346 */
1347void assoc_array_apply_edit(struct assoc_array_edit *edit)
1348{
1349        struct assoc_array_shortcut *shortcut;
1350        struct assoc_array_node *node;
1351        struct assoc_array_ptr *ptr;
1352        int i;
1353
1354        pr_devel("-->%s()\n", __func__);
1355
1356        smp_wmb();
1357        if (edit->leaf_p)
1358                *edit->leaf_p = edit->leaf;
1359
1360        smp_wmb();
1361        for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1362                if (edit->set_parent_slot[i].p)
1363                        *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1364
1365        smp_wmb();
1366        for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1367                if (edit->set_backpointers[i])
1368                        *edit->set_backpointers[i] = edit->set_backpointers_to;
1369
1370        smp_wmb();
1371        for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1372                if (edit->set[i].ptr)
1373                        *edit->set[i].ptr = edit->set[i].to;
1374
1375        if (edit->array->root == NULL) {
1376                edit->array->nr_leaves_on_tree = 0;
1377        } else if (edit->adjust_count_on) {
1378                node = edit->adjust_count_on;
1379                for (;;) {
1380                        node->nr_leaves_on_branch += edit->adjust_count_by;
1381
1382                        ptr = node->back_pointer;
1383                        if (!ptr)
1384                                break;
1385                        if (assoc_array_ptr_is_shortcut(ptr)) {
1386                                shortcut = assoc_array_ptr_to_shortcut(ptr);
1387                                ptr = shortcut->back_pointer;
1388                                if (!ptr)
1389                                        break;
1390                        }
1391                        BUG_ON(!assoc_array_ptr_is_node(ptr));
1392                        node = assoc_array_ptr_to_node(ptr);
1393                }
1394
1395                edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1396        }
1397
1398        call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1399}
1400
1401/**
1402 * assoc_array_cancel_edit - Discard an edit script.
1403 * @edit: The script to discard.
1404 *
1405 * Free an edit script and all the preallocated data it holds without making
1406 * any changes to the associative array it was intended for.
1407 *
1408 * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1409 * that was to be inserted.  That is left to the caller.
1410 */
1411void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1412{
1413        struct assoc_array_ptr *ptr;
1414        int i;
1415
1416        pr_devel("-->%s()\n", __func__);
1417
1418        /* Clean up after an out of memory error */
1419        for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1420                ptr = edit->new_meta[i];
1421                if (ptr) {
1422                        if (assoc_array_ptr_is_node(ptr))
1423                                kfree(assoc_array_ptr_to_node(ptr));
1424                        else
1425                                kfree(assoc_array_ptr_to_shortcut(ptr));
1426                }
1427        }
1428        kfree(edit);
1429}
1430
1431/**
1432 * assoc_array_gc - Garbage collect an associative array.
1433 * @array: The array to clean.
1434 * @ops: The operations to use.
1435 * @iterator: A callback function to pass judgement on each object.
1436 * @iterator_data: Private data for the callback function.
1437 *
1438 * Collect garbage from an associative array and pack down the internal tree to
1439 * save memory.
1440 *
1441 * The iterator function is asked to pass judgement upon each object in the
1442 * array.  If it returns false, the object is discard and if it returns true,
1443 * the object is kept.  If it returns true, it must increment the object's
1444 * usage count (or whatever it needs to do to retain it) before returning.
1445 *
1446 * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1447 * latter case, the array is not changed.
1448 *
1449 * The caller should lock against other modifications and must continue to hold
1450 * the lock until assoc_array_apply_edit() has been called.
1451 *
1452 * Accesses to the tree may take place concurrently with this function,
1453 * provided they hold the RCU read lock.
1454 */
1455int assoc_array_gc(struct assoc_array *array,
1456                   const struct assoc_array_ops *ops,
1457                   bool (*iterator)(void *object, void *iterator_data),
1458                   void *iterator_data)
1459{
1460        struct assoc_array_shortcut *shortcut, *new_s;
1461        struct assoc_array_node *node, *new_n;
1462        struct assoc_array_edit *edit;
1463        struct assoc_array_ptr *cursor, *ptr;
1464        struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1465        unsigned long nr_leaves_on_tree;
1466        int keylen, slot, nr_free, next_slot, i;
1467
1468        pr_devel("-->%s()\n", __func__);
1469
1470        if (!array->root)
1471                return 0;
1472
1473        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1474        if (!edit)
1475                return -ENOMEM;
1476        edit->array = array;
1477        edit->ops = ops;
1478        edit->ops_for_excised_subtree = ops;
1479        edit->set[0].ptr = &array->root;
1480        edit->excised_subtree = array->root;
1481
1482        new_root = new_parent = NULL;
1483        new_ptr_pp = &new_root;
1484        cursor = array->root;
1485
1486descend:
1487        /* If this point is a shortcut, then we need to duplicate it and
1488         * advance the target cursor.
1489         */
1490        if (assoc_array_ptr_is_shortcut(cursor)) {
1491                shortcut = assoc_array_ptr_to_shortcut(cursor);
1492                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1493                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1494                new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1495                                keylen * sizeof(unsigned long), GFP_KERNEL);
1496                if (!new_s)
1497                        goto enomem;
1498                pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1499                memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1500                                         keylen * sizeof(unsigned long)));
1501                new_s->back_pointer = new_parent;
1502                new_s->parent_slot = shortcut->parent_slot;
1503                *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1504                new_ptr_pp = &new_s->next_node;
1505                cursor = shortcut->next_node;
1506        }
1507
1508        /* Duplicate the node at this position */
1509        node = assoc_array_ptr_to_node(cursor);
1510        new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1511        if (!new_n)
1512                goto enomem;
1513        pr_devel("dup node %p -> %p\n", node, new_n);
1514        new_n->back_pointer = new_parent;
1515        new_n->parent_slot = node->parent_slot;
1516        *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1517        new_ptr_pp = NULL;
1518        slot = 0;
1519
1520continue_node:
1521        /* Filter across any leaves and gc any subtrees */
1522        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1523                ptr = node->slots[slot];
1524                if (!ptr)
1525                        continue;
1526
1527                if (assoc_array_ptr_is_leaf(ptr)) {
1528                        if (iterator(assoc_array_ptr_to_leaf(ptr),
1529                                     iterator_data))
1530                                /* The iterator will have done any reference
1531                                 * counting on the object for us.
1532                                 */
1533                                new_n->slots[slot] = ptr;
1534                        continue;
1535                }
1536
1537                new_ptr_pp = &new_n->slots[slot];
1538                cursor = ptr;
1539                goto descend;
1540        }
1541
1542        pr_devel("-- compress node %p --\n", new_n);
1543
1544        /* Count up the number of empty slots in this node and work out the
1545         * subtree leaf count.
1546         */
1547        new_n->nr_leaves_on_branch = 0;
1548        nr_free = 0;
1549        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550                ptr = new_n->slots[slot];
1551                if (!ptr)
1552                        nr_free++;
1553                else if (assoc_array_ptr_is_leaf(ptr))
1554                        new_n->nr_leaves_on_branch++;
1555        }
1556        pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1557
1558        /* See what we can fold in */
1559        next_slot = 0;
1560        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1561                struct assoc_array_shortcut *s;
1562                struct assoc_array_node *child;
1563
1564                ptr = new_n->slots[slot];
1565                if (!ptr || assoc_array_ptr_is_leaf(ptr))
1566                        continue;
1567
1568                s = NULL;
1569                if (assoc_array_ptr_is_shortcut(ptr)) {
1570                        s = assoc_array_ptr_to_shortcut(ptr);
1571                        ptr = s->next_node;
1572                }
1573
1574                child = assoc_array_ptr_to_node(ptr);
1575                new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1576
1577                if (child->nr_leaves_on_branch <= nr_free + 1) {
1578                        /* Fold the child node into this one */
1579                        pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1581                                 next_slot);
1582
1583                        /* We would already have reaped an intervening shortcut
1584                         * on the way back up the tree.
1585                         */
1586                        BUG_ON(s);
1587
1588                        new_n->slots[slot] = NULL;
1589                        nr_free++;
1590                        if (slot < next_slot)
1591                                next_slot = slot;
1592                        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1593                                struct assoc_array_ptr *p = child->slots[i];
1594                                if (!p)
1595                                        continue;
1596                                BUG_ON(assoc_array_ptr_is_meta(p));
1597                                while (new_n->slots[next_slot])
1598                                        next_slot++;
1599                                BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1600                                new_n->slots[next_slot++] = p;
1601                                nr_free--;
1602                        }
1603                        kfree(child);
1604                } else {
1605                        pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1607                                 next_slot);
1608                }
1609        }
1610
1611        pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1612
1613        nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1614
1615        /* Excise this node if it is singly occupied by a shortcut */
1616        if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1617                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1618                        if ((ptr = new_n->slots[slot]))
1619                                break;
1620
1621                if (assoc_array_ptr_is_meta(ptr) &&
1622                    assoc_array_ptr_is_shortcut(ptr)) {
1623                        pr_devel("excise node %p with 1 shortcut\n", new_n);
1624                        new_s = assoc_array_ptr_to_shortcut(ptr);
1625                        new_parent = new_n->back_pointer;
1626                        slot = new_n->parent_slot;
1627                        kfree(new_n);
1628                        if (!new_parent) {
1629                                new_s->back_pointer = NULL;
1630                                new_s->parent_slot = 0;
1631                                new_root = ptr;
1632                                goto gc_complete;
1633                        }
1634
1635                        if (assoc_array_ptr_is_shortcut(new_parent)) {
1636                                /* We can discard any preceding shortcut also */
1637                                struct assoc_array_shortcut *s =
1638                                        assoc_array_ptr_to_shortcut(new_parent);
1639
1640                                pr_devel("excise preceding shortcut\n");
1641
1642                                new_parent = new_s->back_pointer = s->back_pointer;
1643                                slot = new_s->parent_slot = s->parent_slot;
1644                                kfree(s);
1645                                if (!new_parent) {
1646                                        new_s->back_pointer = NULL;
1647                                        new_s->parent_slot = 0;
1648                                        new_root = ptr;
1649                                        goto gc_complete;
1650                                }
1651                        }
1652
1653                        new_s->back_pointer = new_parent;
1654                        new_s->parent_slot = slot;
1655                        new_n = assoc_array_ptr_to_node(new_parent);
1656                        new_n->slots[slot] = ptr;
1657                        goto ascend_old_tree;
1658                }
1659        }
1660
1661        /* Excise any shortcuts we might encounter that point to nodes that
1662         * only contain leaves.
1663         */
1664        ptr = new_n->back_pointer;
1665        if (!ptr)
1666                goto gc_complete;
1667
1668        if (assoc_array_ptr_is_shortcut(ptr)) {
1669                new_s = assoc_array_ptr_to_shortcut(ptr);
1670                new_parent = new_s->back_pointer;
1671                slot = new_s->parent_slot;
1672
1673                if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1674                        struct assoc_array_node *n;
1675
1676                        pr_devel("excise shortcut\n");
1677                        new_n->back_pointer = new_parent;
1678                        new_n->parent_slot = slot;
1679                        kfree(new_s);
1680                        if (!new_parent) {
1681                                new_root = assoc_array_node_to_ptr(new_n);
1682                                goto gc_complete;
1683                        }
1684
1685                        n = assoc_array_ptr_to_node(new_parent);
1686                        n->slots[slot] = assoc_array_node_to_ptr(new_n);
1687                }
1688        } else {
1689                new_parent = ptr;
1690        }
1691        new_n = assoc_array_ptr_to_node(new_parent);
1692
1693ascend_old_tree:
1694        ptr = node->back_pointer;
1695        if (assoc_array_ptr_is_shortcut(ptr)) {
1696                shortcut = assoc_array_ptr_to_shortcut(ptr);
1697                slot = shortcut->parent_slot;
1698                cursor = shortcut->back_pointer;
1699                if (!cursor)
1700                        goto gc_complete;
1701        } else {
1702                slot = node->parent_slot;
1703                cursor = ptr;
1704        }
1705        BUG_ON(!cursor);
1706        node = assoc_array_ptr_to_node(cursor);
1707        slot++;
1708        goto continue_node;
1709
1710gc_complete:
1711        edit->set[0].to = new_root;
1712        assoc_array_apply_edit(edit);
1713        array->nr_leaves_on_tree = nr_leaves_on_tree;
1714        return 0;
1715
1716enomem:
1717        pr_devel("enomem\n");
1718        assoc_array_destroy_subtree(new_root, edit->ops);
1719        kfree(edit);
1720        return -ENOMEM;
1721}
1722