linux/lib/bch.c
<<
>>
Prefs
   1/*
   2 * Generic binary BCH encoding/decoding library
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License version 2 as published by
   6 * the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 51
  15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  16 *
  17 * Copyright © 2011 Parrot S.A.
  18 *
  19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
  20 *
  21 * Description:
  22 *
  23 * This library provides runtime configurable encoding/decoding of binary
  24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  25 *
  26 * Call init_bch to get a pointer to a newly allocated bch_control structure for
  27 * the given m (Galois field order), t (error correction capability) and
  28 * (optional) primitive polynomial parameters.
  29 *
  30 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
  31 * Call decode_bch to detect and locate errors in received data.
  32 *
  33 * On systems supporting hw BCH features, intermediate results may be provided
  34 * to decode_bch in order to skip certain steps. See decode_bch() documentation
  35 * for details.
  36 *
  37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  38 * parameters m and t; thus allowing extra compiler optimizations and providing
  39 * better (up to 2x) encoding performance. Using this option makes sense when
  40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  41 * on a particular NAND flash device.
  42 *
  43 * Algorithmic details:
  44 *
  45 * Encoding is performed by processing 32 input bits in parallel, using 4
  46 * remainder lookup tables.
  47 *
  48 * The final stage of decoding involves the following internal steps:
  49 * a. Syndrome computation
  50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  51 * c. Error locator root finding (by far the most expensive step)
  52 *
  53 * In this implementation, step c is not performed using the usual Chien search.
  54 * Instead, an alternative approach described in [1] is used. It consists in
  55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  58 * much better performance than Chien search for usual (m,t) values (typically
  59 * m >= 13, t < 32, see [1]).
  60 *
  61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  66 */
  67
  68#include <linux/kernel.h>
  69#include <linux/errno.h>
  70#include <linux/init.h>
  71#include <linux/module.h>
  72#include <linux/slab.h>
  73#include <linux/bitops.h>
  74#include <asm/byteorder.h>
  75#include <linux/bch.h>
  76
  77#if defined(CONFIG_BCH_CONST_PARAMS)
  78#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  79#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  80#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
  81#define BCH_MAX_M              (CONFIG_BCH_CONST_M)
  82#define BCH_MAX_T              (CONFIG_BCH_CONST_T)
  83#else
  84#define GF_M(_p)               ((_p)->m)
  85#define GF_T(_p)               ((_p)->t)
  86#define GF_N(_p)               ((_p)->n)
  87#define BCH_MAX_M              15 /* 2KB */
  88#define BCH_MAX_T              64 /* 64 bit correction */
  89#endif
  90
  91#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
  92#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
  93
  94#define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
  95
  96#ifndef dbg
  97#define dbg(_fmt, args...)     do {} while (0)
  98#endif
  99
 100/*
 101 * represent a polynomial over GF(2^m)
 102 */
 103struct gf_poly {
 104        unsigned int deg;    /* polynomial degree */
 105        unsigned int c[0];   /* polynomial terms */
 106};
 107
 108/* given its degree, compute a polynomial size in bytes */
 109#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 110
 111/* polynomial of degree 1 */
 112struct gf_poly_deg1 {
 113        struct gf_poly poly;
 114        unsigned int   c[2];
 115};
 116
 117/*
 118 * same as encode_bch(), but process input data one byte at a time
 119 */
 120static void encode_bch_unaligned(struct bch_control *bch,
 121                                 const unsigned char *data, unsigned int len,
 122                                 uint32_t *ecc)
 123{
 124        int i;
 125        const uint32_t *p;
 126        const int l = BCH_ECC_WORDS(bch)-1;
 127
 128        while (len--) {
 129                p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
 130
 131                for (i = 0; i < l; i++)
 132                        ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 133
 134                ecc[l] = (ecc[l] << 8)^(*p);
 135        }
 136}
 137
 138/*
 139 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 140 */
 141static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 142                      const uint8_t *src)
 143{
 144        uint8_t pad[4] = {0, 0, 0, 0};
 145        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 146
 147        for (i = 0; i < nwords; i++, src += 4)
 148                dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
 149
 150        memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 151        dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
 152}
 153
 154/*
 155 * convert 32-bit ecc words to ecc bytes
 156 */
 157static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 158                       const uint32_t *src)
 159{
 160        uint8_t pad[4];
 161        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 162
 163        for (i = 0; i < nwords; i++) {
 164                *dst++ = (src[i] >> 24);
 165                *dst++ = (src[i] >> 16) & 0xff;
 166                *dst++ = (src[i] >>  8) & 0xff;
 167                *dst++ = (src[i] >>  0) & 0xff;
 168        }
 169        pad[0] = (src[nwords] >> 24);
 170        pad[1] = (src[nwords] >> 16) & 0xff;
 171        pad[2] = (src[nwords] >>  8) & 0xff;
 172        pad[3] = (src[nwords] >>  0) & 0xff;
 173        memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 174}
 175
 176/**
 177 * encode_bch - calculate BCH ecc parity of data
 178 * @bch:   BCH control structure
 179 * @data:  data to encode
 180 * @len:   data length in bytes
 181 * @ecc:   ecc parity data, must be initialized by caller
 182 *
 183 * The @ecc parity array is used both as input and output parameter, in order to
 184 * allow incremental computations. It should be of the size indicated by member
 185 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 186 *
 187 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 188 * @bch; it may be less than m*t for large values of t.
 189 */
 190void encode_bch(struct bch_control *bch, const uint8_t *data,
 191                unsigned int len, uint8_t *ecc)
 192{
 193        const unsigned int l = BCH_ECC_WORDS(bch)-1;
 194        unsigned int i, mlen;
 195        unsigned long m;
 196        uint32_t w, r[BCH_ECC_MAX_WORDS];
 197        const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
 198        const uint32_t * const tab0 = bch->mod8_tab;
 199        const uint32_t * const tab1 = tab0 + 256*(l+1);
 200        const uint32_t * const tab2 = tab1 + 256*(l+1);
 201        const uint32_t * const tab3 = tab2 + 256*(l+1);
 202        const uint32_t *pdata, *p0, *p1, *p2, *p3;
 203
 204        if (WARN_ON(r_bytes > sizeof(r)))
 205                return;
 206
 207        if (ecc) {
 208                /* load ecc parity bytes into internal 32-bit buffer */
 209                load_ecc8(bch, bch->ecc_buf, ecc);
 210        } else {
 211                memset(bch->ecc_buf, 0, r_bytes);
 212        }
 213
 214        /* process first unaligned data bytes */
 215        m = ((unsigned long)data) & 3;
 216        if (m) {
 217                mlen = (len < (4-m)) ? len : 4-m;
 218                encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
 219                data += mlen;
 220                len  -= mlen;
 221        }
 222
 223        /* process 32-bit aligned data words */
 224        pdata = (uint32_t *)data;
 225        mlen  = len/4;
 226        data += 4*mlen;
 227        len  -= 4*mlen;
 228        memcpy(r, bch->ecc_buf, r_bytes);
 229
 230        /*
 231         * split each 32-bit word into 4 polynomials of weight 8 as follows:
 232         *
 233         * 31 ...24  23 ...16  15 ... 8  7 ... 0
 234         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 235         *                               tttttttt  mod g = r0 (precomputed)
 236         *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 237         *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 238         * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 239         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 240         */
 241        while (mlen--) {
 242                /* input data is read in big-endian format */
 243                w = r[0]^cpu_to_be32(*pdata++);
 244                p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 245                p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 246                p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 247                p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 248
 249                for (i = 0; i < l; i++)
 250                        r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 251
 252                r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 253        }
 254        memcpy(bch->ecc_buf, r, r_bytes);
 255
 256        /* process last unaligned bytes */
 257        if (len)
 258                encode_bch_unaligned(bch, data, len, bch->ecc_buf);
 259
 260        /* store ecc parity bytes into original parity buffer */
 261        if (ecc)
 262                store_ecc8(bch, ecc, bch->ecc_buf);
 263}
 264EXPORT_SYMBOL_GPL(encode_bch);
 265
 266static inline int modulo(struct bch_control *bch, unsigned int v)
 267{
 268        const unsigned int n = GF_N(bch);
 269        while (v >= n) {
 270                v -= n;
 271                v = (v & n) + (v >> GF_M(bch));
 272        }
 273        return v;
 274}
 275
 276/*
 277 * shorter and faster modulo function, only works when v < 2N.
 278 */
 279static inline int mod_s(struct bch_control *bch, unsigned int v)
 280{
 281        const unsigned int n = GF_N(bch);
 282        return (v < n) ? v : v-n;
 283}
 284
 285static inline int deg(unsigned int poly)
 286{
 287        /* polynomial degree is the most-significant bit index */
 288        return fls(poly)-1;
 289}
 290
 291static inline int parity(unsigned int x)
 292{
 293        /*
 294         * public domain code snippet, lifted from
 295         * http://www-graphics.stanford.edu/~seander/bithacks.html
 296         */
 297        x ^= x >> 1;
 298        x ^= x >> 2;
 299        x = (x & 0x11111111U) * 0x11111111U;
 300        return (x >> 28) & 1;
 301}
 302
 303/* Galois field basic operations: multiply, divide, inverse, etc. */
 304
 305static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 306                                  unsigned int b)
 307{
 308        return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 309                                               bch->a_log_tab[b])] : 0;
 310}
 311
 312static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 313{
 314        return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 315}
 316
 317static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 318                                  unsigned int b)
 319{
 320        return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 321                                        GF_N(bch)-bch->a_log_tab[b])] : 0;
 322}
 323
 324static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 325{
 326        return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 327}
 328
 329static inline unsigned int a_pow(struct bch_control *bch, int i)
 330{
 331        return bch->a_pow_tab[modulo(bch, i)];
 332}
 333
 334static inline int a_log(struct bch_control *bch, unsigned int x)
 335{
 336        return bch->a_log_tab[x];
 337}
 338
 339static inline int a_ilog(struct bch_control *bch, unsigned int x)
 340{
 341        return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 342}
 343
 344/*
 345 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 346 */
 347static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 348                              unsigned int *syn)
 349{
 350        int i, j, s;
 351        unsigned int m;
 352        uint32_t poly;
 353        const int t = GF_T(bch);
 354
 355        s = bch->ecc_bits;
 356
 357        /* make sure extra bits in last ecc word are cleared */
 358        m = ((unsigned int)s) & 31;
 359        if (m)
 360                ecc[s/32] &= ~((1u << (32-m))-1);
 361        memset(syn, 0, 2*t*sizeof(*syn));
 362
 363        /* compute v(a^j) for j=1 .. 2t-1 */
 364        do {
 365                poly = *ecc++;
 366                s -= 32;
 367                while (poly) {
 368                        i = deg(poly);
 369                        for (j = 0; j < 2*t; j += 2)
 370                                syn[j] ^= a_pow(bch, (j+1)*(i+s));
 371
 372                        poly ^= (1 << i);
 373                }
 374        } while (s > 0);
 375
 376        /* v(a^(2j)) = v(a^j)^2 */
 377        for (j = 0; j < t; j++)
 378                syn[2*j+1] = gf_sqr(bch, syn[j]);
 379}
 380
 381static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 382{
 383        memcpy(dst, src, GF_POLY_SZ(src->deg));
 384}
 385
 386static int compute_error_locator_polynomial(struct bch_control *bch,
 387                                            const unsigned int *syn)
 388{
 389        const unsigned int t = GF_T(bch);
 390        const unsigned int n = GF_N(bch);
 391        unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 392        struct gf_poly *elp = bch->elp;
 393        struct gf_poly *pelp = bch->poly_2t[0];
 394        struct gf_poly *elp_copy = bch->poly_2t[1];
 395        int k, pp = -1;
 396
 397        memset(pelp, 0, GF_POLY_SZ(2*t));
 398        memset(elp, 0, GF_POLY_SZ(2*t));
 399
 400        pelp->deg = 0;
 401        pelp->c[0] = 1;
 402        elp->deg = 0;
 403        elp->c[0] = 1;
 404
 405        /* use simplified binary Berlekamp-Massey algorithm */
 406        for (i = 0; (i < t) && (elp->deg <= t); i++) {
 407                if (d) {
 408                        k = 2*i-pp;
 409                        gf_poly_copy(elp_copy, elp);
 410                        /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 411                        tmp = a_log(bch, d)+n-a_log(bch, pd);
 412                        for (j = 0; j <= pelp->deg; j++) {
 413                                if (pelp->c[j]) {
 414                                        l = a_log(bch, pelp->c[j]);
 415                                        elp->c[j+k] ^= a_pow(bch, tmp+l);
 416                                }
 417                        }
 418                        /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 419                        tmp = pelp->deg+k;
 420                        if (tmp > elp->deg) {
 421                                elp->deg = tmp;
 422                                gf_poly_copy(pelp, elp_copy);
 423                                pd = d;
 424                                pp = 2*i;
 425                        }
 426                }
 427                /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 428                if (i < t-1) {
 429                        d = syn[2*i+2];
 430                        for (j = 1; j <= elp->deg; j++)
 431                                d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 432                }
 433        }
 434        dbg("elp=%s\n", gf_poly_str(elp));
 435        return (elp->deg > t) ? -1 : (int)elp->deg;
 436}
 437
 438/*
 439 * solve a m x m linear system in GF(2) with an expected number of solutions,
 440 * and return the number of found solutions
 441 */
 442static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 443                               unsigned int *sol, int nsol)
 444{
 445        const int m = GF_M(bch);
 446        unsigned int tmp, mask;
 447        int rem, c, r, p, k, param[BCH_MAX_M];
 448
 449        k = 0;
 450        mask = 1 << m;
 451
 452        /* Gaussian elimination */
 453        for (c = 0; c < m; c++) {
 454                rem = 0;
 455                p = c-k;
 456                /* find suitable row for elimination */
 457                for (r = p; r < m; r++) {
 458                        if (rows[r] & mask) {
 459                                if (r != p) {
 460                                        tmp = rows[r];
 461                                        rows[r] = rows[p];
 462                                        rows[p] = tmp;
 463                                }
 464                                rem = r+1;
 465                                break;
 466                        }
 467                }
 468                if (rem) {
 469                        /* perform elimination on remaining rows */
 470                        tmp = rows[p];
 471                        for (r = rem; r < m; r++) {
 472                                if (rows[r] & mask)
 473                                        rows[r] ^= tmp;
 474                        }
 475                } else {
 476                        /* elimination not needed, store defective row index */
 477                        param[k++] = c;
 478                }
 479                mask >>= 1;
 480        }
 481        /* rewrite system, inserting fake parameter rows */
 482        if (k > 0) {
 483                p = k;
 484                for (r = m-1; r >= 0; r--) {
 485                        if ((r > m-1-k) && rows[r])
 486                                /* system has no solution */
 487                                return 0;
 488
 489                        rows[r] = (p && (r == param[p-1])) ?
 490                                p--, 1u << (m-r) : rows[r-p];
 491                }
 492        }
 493
 494        if (nsol != (1 << k))
 495                /* unexpected number of solutions */
 496                return 0;
 497
 498        for (p = 0; p < nsol; p++) {
 499                /* set parameters for p-th solution */
 500                for (c = 0; c < k; c++)
 501                        rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 502
 503                /* compute unique solution */
 504                tmp = 0;
 505                for (r = m-1; r >= 0; r--) {
 506                        mask = rows[r] & (tmp|1);
 507                        tmp |= parity(mask) << (m-r);
 508                }
 509                sol[p] = tmp >> 1;
 510        }
 511        return nsol;
 512}
 513
 514/*
 515 * this function builds and solves a linear system for finding roots of a degree
 516 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 517 */
 518static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 519                              unsigned int b, unsigned int c,
 520                              unsigned int *roots)
 521{
 522        int i, j, k;
 523        const int m = GF_M(bch);
 524        unsigned int mask = 0xff, t, rows[16] = {0,};
 525
 526        j = a_log(bch, b);
 527        k = a_log(bch, a);
 528        rows[0] = c;
 529
 530        /* buid linear system to solve X^4+aX^2+bX+c = 0 */
 531        for (i = 0; i < m; i++) {
 532                rows[i+1] = bch->a_pow_tab[4*i]^
 533                        (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 534                        (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 535                j++;
 536                k += 2;
 537        }
 538        /*
 539         * transpose 16x16 matrix before passing it to linear solver
 540         * warning: this code assumes m < 16
 541         */
 542        for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 543                for (k = 0; k < 16; k = (k+j+1) & ~j) {
 544                        t = ((rows[k] >> j)^rows[k+j]) & mask;
 545                        rows[k] ^= (t << j);
 546                        rows[k+j] ^= t;
 547                }
 548        }
 549        return solve_linear_system(bch, rows, roots, 4);
 550}
 551
 552/*
 553 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 554 */
 555static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 556                                unsigned int *roots)
 557{
 558        int n = 0;
 559
 560        if (poly->c[0])
 561                /* poly[X] = bX+c with c!=0, root=c/b */
 562                roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 563                                   bch->a_log_tab[poly->c[1]]);
 564        return n;
 565}
 566
 567/*
 568 * compute roots of a degree 2 polynomial over GF(2^m)
 569 */
 570static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 571                                unsigned int *roots)
 572{
 573        int n = 0, i, l0, l1, l2;
 574        unsigned int u, v, r;
 575
 576        if (poly->c[0] && poly->c[1]) {
 577
 578                l0 = bch->a_log_tab[poly->c[0]];
 579                l1 = bch->a_log_tab[poly->c[1]];
 580                l2 = bch->a_log_tab[poly->c[2]];
 581
 582                /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 583                u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 584                /*
 585                 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 586                 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 587                 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 588                 * i.e. r and r+1 are roots iff Tr(u)=0
 589                 */
 590                r = 0;
 591                v = u;
 592                while (v) {
 593                        i = deg(v);
 594                        r ^= bch->xi_tab[i];
 595                        v ^= (1 << i);
 596                }
 597                /* verify root */
 598                if ((gf_sqr(bch, r)^r) == u) {
 599                        /* reverse z=a/bX transformation and compute log(1/r) */
 600                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 601                                            bch->a_log_tab[r]+l2);
 602                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 603                                            bch->a_log_tab[r^1]+l2);
 604                }
 605        }
 606        return n;
 607}
 608
 609/*
 610 * compute roots of a degree 3 polynomial over GF(2^m)
 611 */
 612static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 613                                unsigned int *roots)
 614{
 615        int i, n = 0;
 616        unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 617
 618        if (poly->c[0]) {
 619                /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 620                e3 = poly->c[3];
 621                c2 = gf_div(bch, poly->c[0], e3);
 622                b2 = gf_div(bch, poly->c[1], e3);
 623                a2 = gf_div(bch, poly->c[2], e3);
 624
 625                /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 626                c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 627                b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 628                a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 629
 630                /* find the 4 roots of this affine polynomial */
 631                if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 632                        /* remove a2 from final list of roots */
 633                        for (i = 0; i < 4; i++) {
 634                                if (tmp[i] != a2)
 635                                        roots[n++] = a_ilog(bch, tmp[i]);
 636                        }
 637                }
 638        }
 639        return n;
 640}
 641
 642/*
 643 * compute roots of a degree 4 polynomial over GF(2^m)
 644 */
 645static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 646                                unsigned int *roots)
 647{
 648        int i, l, n = 0;
 649        unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 650
 651        if (poly->c[0] == 0)
 652                return 0;
 653
 654        /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 655        e4 = poly->c[4];
 656        d = gf_div(bch, poly->c[0], e4);
 657        c = gf_div(bch, poly->c[1], e4);
 658        b = gf_div(bch, poly->c[2], e4);
 659        a = gf_div(bch, poly->c[3], e4);
 660
 661        /* use Y=1/X transformation to get an affine polynomial */
 662        if (a) {
 663                /* first, eliminate cX by using z=X+e with ae^2+c=0 */
 664                if (c) {
 665                        /* compute e such that e^2 = c/a */
 666                        f = gf_div(bch, c, a);
 667                        l = a_log(bch, f);
 668                        l += (l & 1) ? GF_N(bch) : 0;
 669                        e = a_pow(bch, l/2);
 670                        /*
 671                         * use transformation z=X+e:
 672                         * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 673                         * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 674                         * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 675                         * z^4 + az^3 +     b'z^2 + d'
 676                         */
 677                        d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 678                        b = gf_mul(bch, a, e)^b;
 679                }
 680                /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 681                if (d == 0)
 682                        /* assume all roots have multiplicity 1 */
 683                        return 0;
 684
 685                c2 = gf_inv(bch, d);
 686                b2 = gf_div(bch, a, d);
 687                a2 = gf_div(bch, b, d);
 688        } else {
 689                /* polynomial is already affine */
 690                c2 = d;
 691                b2 = c;
 692                a2 = b;
 693        }
 694        /* find the 4 roots of this affine polynomial */
 695        if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 696                for (i = 0; i < 4; i++) {
 697                        /* post-process roots (reverse transformations) */
 698                        f = a ? gf_inv(bch, roots[i]) : roots[i];
 699                        roots[i] = a_ilog(bch, f^e);
 700                }
 701                n = 4;
 702        }
 703        return n;
 704}
 705
 706/*
 707 * build monic, log-based representation of a polynomial
 708 */
 709static void gf_poly_logrep(struct bch_control *bch,
 710                           const struct gf_poly *a, int *rep)
 711{
 712        int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 713
 714        /* represent 0 values with -1; warning, rep[d] is not set to 1 */
 715        for (i = 0; i < d; i++)
 716                rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 717}
 718
 719/*
 720 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 721 */
 722static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 723                        const struct gf_poly *b, int *rep)
 724{
 725        int la, p, m;
 726        unsigned int i, j, *c = a->c;
 727        const unsigned int d = b->deg;
 728
 729        if (a->deg < d)
 730                return;
 731
 732        /* reuse or compute log representation of denominator */
 733        if (!rep) {
 734                rep = bch->cache;
 735                gf_poly_logrep(bch, b, rep);
 736        }
 737
 738        for (j = a->deg; j >= d; j--) {
 739                if (c[j]) {
 740                        la = a_log(bch, c[j]);
 741                        p = j-d;
 742                        for (i = 0; i < d; i++, p++) {
 743                                m = rep[i];
 744                                if (m >= 0)
 745                                        c[p] ^= bch->a_pow_tab[mod_s(bch,
 746                                                                     m+la)];
 747                        }
 748                }
 749        }
 750        a->deg = d-1;
 751        while (!c[a->deg] && a->deg)
 752                a->deg--;
 753}
 754
 755/*
 756 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 757 */
 758static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 759                        const struct gf_poly *b, struct gf_poly *q)
 760{
 761        if (a->deg >= b->deg) {
 762                q->deg = a->deg-b->deg;
 763                /* compute a mod b (modifies a) */
 764                gf_poly_mod(bch, a, b, NULL);
 765                /* quotient is stored in upper part of polynomial a */
 766                memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 767        } else {
 768                q->deg = 0;
 769                q->c[0] = 0;
 770        }
 771}
 772
 773/*
 774 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 775 */
 776static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 777                                   struct gf_poly *b)
 778{
 779        struct gf_poly *tmp;
 780
 781        dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 782
 783        if (a->deg < b->deg) {
 784                tmp = b;
 785                b = a;
 786                a = tmp;
 787        }
 788
 789        while (b->deg > 0) {
 790                gf_poly_mod(bch, a, b, NULL);
 791                tmp = b;
 792                b = a;
 793                a = tmp;
 794        }
 795
 796        dbg("%s\n", gf_poly_str(a));
 797
 798        return a;
 799}
 800
 801/*
 802 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 803 * This is used in Berlekamp Trace algorithm for splitting polynomials
 804 */
 805static void compute_trace_bk_mod(struct bch_control *bch, int k,
 806                                 const struct gf_poly *f, struct gf_poly *z,
 807                                 struct gf_poly *out)
 808{
 809        const int m = GF_M(bch);
 810        int i, j;
 811
 812        /* z contains z^2j mod f */
 813        z->deg = 1;
 814        z->c[0] = 0;
 815        z->c[1] = bch->a_pow_tab[k];
 816
 817        out->deg = 0;
 818        memset(out, 0, GF_POLY_SZ(f->deg));
 819
 820        /* compute f log representation only once */
 821        gf_poly_logrep(bch, f, bch->cache);
 822
 823        for (i = 0; i < m; i++) {
 824                /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 825                for (j = z->deg; j >= 0; j--) {
 826                        out->c[j] ^= z->c[j];
 827                        z->c[2*j] = gf_sqr(bch, z->c[j]);
 828                        z->c[2*j+1] = 0;
 829                }
 830                if (z->deg > out->deg)
 831                        out->deg = z->deg;
 832
 833                if (i < m-1) {
 834                        z->deg *= 2;
 835                        /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 836                        gf_poly_mod(bch, z, f, bch->cache);
 837                }
 838        }
 839        while (!out->c[out->deg] && out->deg)
 840                out->deg--;
 841
 842        dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 843}
 844
 845/*
 846 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 847 */
 848static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 849                              struct gf_poly **g, struct gf_poly **h)
 850{
 851        struct gf_poly *f2 = bch->poly_2t[0];
 852        struct gf_poly *q  = bch->poly_2t[1];
 853        struct gf_poly *tk = bch->poly_2t[2];
 854        struct gf_poly *z  = bch->poly_2t[3];
 855        struct gf_poly *gcd;
 856
 857        dbg("factoring %s...\n", gf_poly_str(f));
 858
 859        *g = f;
 860        *h = NULL;
 861
 862        /* tk = Tr(a^k.X) mod f */
 863        compute_trace_bk_mod(bch, k, f, z, tk);
 864
 865        if (tk->deg > 0) {
 866                /* compute g = gcd(f, tk) (destructive operation) */
 867                gf_poly_copy(f2, f);
 868                gcd = gf_poly_gcd(bch, f2, tk);
 869                if (gcd->deg < f->deg) {
 870                        /* compute h=f/gcd(f,tk); this will modify f and q */
 871                        gf_poly_div(bch, f, gcd, q);
 872                        /* store g and h in-place (clobbering f) */
 873                        *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 874                        gf_poly_copy(*g, gcd);
 875                        gf_poly_copy(*h, q);
 876                }
 877        }
 878}
 879
 880/*
 881 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 882 * file for details
 883 */
 884static int find_poly_roots(struct bch_control *bch, unsigned int k,
 885                           struct gf_poly *poly, unsigned int *roots)
 886{
 887        int cnt;
 888        struct gf_poly *f1, *f2;
 889
 890        switch (poly->deg) {
 891                /* handle low degree polynomials with ad hoc techniques */
 892        case 1:
 893                cnt = find_poly_deg1_roots(bch, poly, roots);
 894                break;
 895        case 2:
 896                cnt = find_poly_deg2_roots(bch, poly, roots);
 897                break;
 898        case 3:
 899                cnt = find_poly_deg3_roots(bch, poly, roots);
 900                break;
 901        case 4:
 902                cnt = find_poly_deg4_roots(bch, poly, roots);
 903                break;
 904        default:
 905                /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 906                cnt = 0;
 907                if (poly->deg && (k <= GF_M(bch))) {
 908                        factor_polynomial(bch, k, poly, &f1, &f2);
 909                        if (f1)
 910                                cnt += find_poly_roots(bch, k+1, f1, roots);
 911                        if (f2)
 912                                cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 913                }
 914                break;
 915        }
 916        return cnt;
 917}
 918
 919#if defined(USE_CHIEN_SEARCH)
 920/*
 921 * exhaustive root search (Chien) implementation - not used, included only for
 922 * reference/comparison tests
 923 */
 924static int chien_search(struct bch_control *bch, unsigned int len,
 925                        struct gf_poly *p, unsigned int *roots)
 926{
 927        int m;
 928        unsigned int i, j, syn, syn0, count = 0;
 929        const unsigned int k = 8*len+bch->ecc_bits;
 930
 931        /* use a log-based representation of polynomial */
 932        gf_poly_logrep(bch, p, bch->cache);
 933        bch->cache[p->deg] = 0;
 934        syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 935
 936        for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 937                /* compute elp(a^i) */
 938                for (j = 1, syn = syn0; j <= p->deg; j++) {
 939                        m = bch->cache[j];
 940                        if (m >= 0)
 941                                syn ^= a_pow(bch, m+j*i);
 942                }
 943                if (syn == 0) {
 944                        roots[count++] = GF_N(bch)-i;
 945                        if (count == p->deg)
 946                                break;
 947                }
 948        }
 949        return (count == p->deg) ? count : 0;
 950}
 951#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 952#endif /* USE_CHIEN_SEARCH */
 953
 954/**
 955 * decode_bch - decode received codeword and find bit error locations
 956 * @bch:      BCH control structure
 957 * @data:     received data, ignored if @calc_ecc is provided
 958 * @len:      data length in bytes, must always be provided
 959 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 960 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
 961 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
 962 * @errloc:   output array of error locations
 963 *
 964 * Returns:
 965 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
 966 *  invalid parameters were provided
 967 *
 968 * Depending on the available hw BCH support and the need to compute @calc_ecc
 969 * separately (using encode_bch()), this function should be called with one of
 970 * the following parameter configurations -
 971 *
 972 * by providing @data and @recv_ecc only:
 973 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
 974 *
 975 * by providing @recv_ecc and @calc_ecc:
 976 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
 977 *
 978 * by providing ecc = recv_ecc XOR calc_ecc:
 979 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
 980 *
 981 * by providing syndrome results @syn:
 982 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
 983 *
 984 * Once decode_bch() has successfully returned with a positive value, error
 985 * locations returned in array @errloc should be interpreted as follows -
 986 *
 987 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
 988 * data correction)
 989 *
 990 * if (errloc[n] < 8*len), then n-th error is located in data and can be
 991 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
 992 *
 993 * Note that this function does not perform any data correction by itself, it
 994 * merely indicates error locations.
 995 */
 996int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
 997               const uint8_t *recv_ecc, const uint8_t *calc_ecc,
 998               const unsigned int *syn, unsigned int *errloc)
 999{
1000        const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1001        unsigned int nbits;
1002        int i, err, nroots;
1003        uint32_t sum;
1004
1005        /* sanity check: make sure data length can be handled */
1006        if (8*len > (bch->n-bch->ecc_bits))
1007                return -EINVAL;
1008
1009        /* if caller does not provide syndromes, compute them */
1010        if (!syn) {
1011                if (!calc_ecc) {
1012                        /* compute received data ecc into an internal buffer */
1013                        if (!data || !recv_ecc)
1014                                return -EINVAL;
1015                        encode_bch(bch, data, len, NULL);
1016                } else {
1017                        /* load provided calculated ecc */
1018                        load_ecc8(bch, bch->ecc_buf, calc_ecc);
1019                }
1020                /* load received ecc or assume it was XORed in calc_ecc */
1021                if (recv_ecc) {
1022                        load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1023                        /* XOR received and calculated ecc */
1024                        for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1025                                bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1026                                sum |= bch->ecc_buf[i];
1027                        }
1028                        if (!sum)
1029                                /* no error found */
1030                                return 0;
1031                }
1032                compute_syndromes(bch, bch->ecc_buf, bch->syn);
1033                syn = bch->syn;
1034        }
1035
1036        err = compute_error_locator_polynomial(bch, syn);
1037        if (err > 0) {
1038                nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1039                if (err != nroots)
1040                        err = -1;
1041        }
1042        if (err > 0) {
1043                /* post-process raw error locations for easier correction */
1044                nbits = (len*8)+bch->ecc_bits;
1045                for (i = 0; i < err; i++) {
1046                        if (errloc[i] >= nbits) {
1047                                err = -1;
1048                                break;
1049                        }
1050                        errloc[i] = nbits-1-errloc[i];
1051                        errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1052                }
1053        }
1054        return (err >= 0) ? err : -EBADMSG;
1055}
1056EXPORT_SYMBOL_GPL(decode_bch);
1057
1058/*
1059 * generate Galois field lookup tables
1060 */
1061static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1062{
1063        unsigned int i, x = 1;
1064        const unsigned int k = 1 << deg(poly);
1065
1066        /* primitive polynomial must be of degree m */
1067        if (k != (1u << GF_M(bch)))
1068                return -1;
1069
1070        for (i = 0; i < GF_N(bch); i++) {
1071                bch->a_pow_tab[i] = x;
1072                bch->a_log_tab[x] = i;
1073                if (i && (x == 1))
1074                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1075                        return -1;
1076                x <<= 1;
1077                if (x & k)
1078                        x ^= poly;
1079        }
1080        bch->a_pow_tab[GF_N(bch)] = 1;
1081        bch->a_log_tab[0] = 0;
1082
1083        return 0;
1084}
1085
1086/*
1087 * compute generator polynomial remainder tables for fast encoding
1088 */
1089static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1090{
1091        int i, j, b, d;
1092        uint32_t data, hi, lo, *tab;
1093        const int l = BCH_ECC_WORDS(bch);
1094        const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1095        const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1096
1097        memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1098
1099        for (i = 0; i < 256; i++) {
1100                /* p(X)=i is a small polynomial of weight <= 8 */
1101                for (b = 0; b < 4; b++) {
1102                        /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1103                        tab = bch->mod8_tab + (b*256+i)*l;
1104                        data = i << (8*b);
1105                        while (data) {
1106                                d = deg(data);
1107                                /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1108                                data ^= g[0] >> (31-d);
1109                                for (j = 0; j < ecclen; j++) {
1110                                        hi = (d < 31) ? g[j] << (d+1) : 0;
1111                                        lo = (j+1 < plen) ?
1112                                                g[j+1] >> (31-d) : 0;
1113                                        tab[j] ^= hi|lo;
1114                                }
1115                        }
1116                }
1117        }
1118}
1119
1120/*
1121 * build a base for factoring degree 2 polynomials
1122 */
1123static int build_deg2_base(struct bch_control *bch)
1124{
1125        const int m = GF_M(bch);
1126        int i, j, r;
1127        unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1128
1129        /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1130        for (i = 0; i < m; i++) {
1131                for (j = 0, sum = 0; j < m; j++)
1132                        sum ^= a_pow(bch, i*(1 << j));
1133
1134                if (sum) {
1135                        ak = bch->a_pow_tab[i];
1136                        break;
1137                }
1138        }
1139        /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1140        remaining = m;
1141        memset(xi, 0, sizeof(xi));
1142
1143        for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1144                y = gf_sqr(bch, x)^x;
1145                for (i = 0; i < 2; i++) {
1146                        r = a_log(bch, y);
1147                        if (y && (r < m) && !xi[r]) {
1148                                bch->xi_tab[r] = x;
1149                                xi[r] = 1;
1150                                remaining--;
1151                                dbg("x%d = %x\n", r, x);
1152                                break;
1153                        }
1154                        y ^= ak;
1155                }
1156        }
1157        /* should not happen but check anyway */
1158        return remaining ? -1 : 0;
1159}
1160
1161static void *bch_alloc(size_t size, int *err)
1162{
1163        void *ptr;
1164
1165        ptr = kmalloc(size, GFP_KERNEL);
1166        if (ptr == NULL)
1167                *err = 1;
1168        return ptr;
1169}
1170
1171/*
1172 * compute generator polynomial for given (m,t) parameters.
1173 */
1174static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1175{
1176        const unsigned int m = GF_M(bch);
1177        const unsigned int t = GF_T(bch);
1178        int n, err = 0;
1179        unsigned int i, j, nbits, r, word, *roots;
1180        struct gf_poly *g;
1181        uint32_t *genpoly;
1182
1183        g = bch_alloc(GF_POLY_SZ(m*t), &err);
1184        roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1185        genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1186
1187        if (err) {
1188                kfree(genpoly);
1189                genpoly = NULL;
1190                goto finish;
1191        }
1192
1193        /* enumerate all roots of g(X) */
1194        memset(roots , 0, (bch->n+1)*sizeof(*roots));
1195        for (i = 0; i < t; i++) {
1196                for (j = 0, r = 2*i+1; j < m; j++) {
1197                        roots[r] = 1;
1198                        r = mod_s(bch, 2*r);
1199                }
1200        }
1201        /* build generator polynomial g(X) */
1202        g->deg = 0;
1203        g->c[0] = 1;
1204        for (i = 0; i < GF_N(bch); i++) {
1205                if (roots[i]) {
1206                        /* multiply g(X) by (X+root) */
1207                        r = bch->a_pow_tab[i];
1208                        g->c[g->deg+1] = 1;
1209                        for (j = g->deg; j > 0; j--)
1210                                g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1211
1212                        g->c[0] = gf_mul(bch, g->c[0], r);
1213                        g->deg++;
1214                }
1215        }
1216        /* store left-justified binary representation of g(X) */
1217        n = g->deg+1;
1218        i = 0;
1219
1220        while (n > 0) {
1221                nbits = (n > 32) ? 32 : n;
1222                for (j = 0, word = 0; j < nbits; j++) {
1223                        if (g->c[n-1-j])
1224                                word |= 1u << (31-j);
1225                }
1226                genpoly[i++] = word;
1227                n -= nbits;
1228        }
1229        bch->ecc_bits = g->deg;
1230
1231finish:
1232        kfree(g);
1233        kfree(roots);
1234
1235        return genpoly;
1236}
1237
1238/**
1239 * init_bch - initialize a BCH encoder/decoder
1240 * @m:          Galois field order, should be in the range 5-15
1241 * @t:          maximum error correction capability, in bits
1242 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1243 *
1244 * Returns:
1245 *  a newly allocated BCH control structure if successful, NULL otherwise
1246 *
1247 * This initialization can take some time, as lookup tables are built for fast
1248 * encoding/decoding; make sure not to call this function from a time critical
1249 * path. Usually, init_bch() should be called on module/driver init and
1250 * free_bch() should be called to release memory on exit.
1251 *
1252 * You may provide your own primitive polynomial of degree @m in argument
1253 * @prim_poly, or let init_bch() use its default polynomial.
1254 *
1255 * Once init_bch() has successfully returned a pointer to a newly allocated
1256 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1257 * the structure.
1258 */
1259struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1260{
1261        int err = 0;
1262        unsigned int i, words;
1263        uint32_t *genpoly;
1264        struct bch_control *bch = NULL;
1265
1266        const int min_m = 5;
1267
1268        /* default primitive polynomials */
1269        static const unsigned int prim_poly_tab[] = {
1270                0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1271                0x402b, 0x8003,
1272        };
1273
1274#if defined(CONFIG_BCH_CONST_PARAMS)
1275        if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1276                printk(KERN_ERR "bch encoder/decoder was configured to support "
1277                       "parameters m=%d, t=%d only!\n",
1278                       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1279                goto fail;
1280        }
1281#endif
1282        if ((m < min_m) || (m > BCH_MAX_M))
1283                /*
1284                 * values of m greater than 15 are not currently supported;
1285                 * supporting m > 15 would require changing table base type
1286                 * (uint16_t) and a small patch in matrix transposition
1287                 */
1288                goto fail;
1289
1290        if (t > BCH_MAX_T)
1291                /*
1292                 * we can support larger than 64 bits if necessary, at the
1293                 * cost of higher stack usage.
1294                 */
1295                goto fail;
1296
1297        /* sanity checks */
1298        if ((t < 1) || (m*t >= ((1 << m)-1)))
1299                /* invalid t value */
1300                goto fail;
1301
1302        /* select a primitive polynomial for generating GF(2^m) */
1303        if (prim_poly == 0)
1304                prim_poly = prim_poly_tab[m-min_m];
1305
1306        bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1307        if (bch == NULL)
1308                goto fail;
1309
1310        bch->m = m;
1311        bch->t = t;
1312        bch->n = (1 << m)-1;
1313        words  = DIV_ROUND_UP(m*t, 32);
1314        bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1315        bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1316        bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1317        bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1318        bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1319        bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1320        bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1321        bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1322        bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1323        bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1324
1325        for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1326                bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1327
1328        if (err)
1329                goto fail;
1330
1331        err = build_gf_tables(bch, prim_poly);
1332        if (err)
1333                goto fail;
1334
1335        /* use generator polynomial for computing encoding tables */
1336        genpoly = compute_generator_polynomial(bch);
1337        if (genpoly == NULL)
1338                goto fail;
1339
1340        build_mod8_tables(bch, genpoly);
1341        kfree(genpoly);
1342
1343        err = build_deg2_base(bch);
1344        if (err)
1345                goto fail;
1346
1347        return bch;
1348
1349fail:
1350        free_bch(bch);
1351        return NULL;
1352}
1353EXPORT_SYMBOL_GPL(init_bch);
1354
1355/**
1356 *  free_bch - free the BCH control structure
1357 *  @bch:    BCH control structure to release
1358 */
1359void free_bch(struct bch_control *bch)
1360{
1361        unsigned int i;
1362
1363        if (bch) {
1364                kfree(bch->a_pow_tab);
1365                kfree(bch->a_log_tab);
1366                kfree(bch->mod8_tab);
1367                kfree(bch->ecc_buf);
1368                kfree(bch->ecc_buf2);
1369                kfree(bch->xi_tab);
1370                kfree(bch->syn);
1371                kfree(bch->cache);
1372                kfree(bch->elp);
1373
1374                for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1375                        kfree(bch->poly_2t[i]);
1376
1377                kfree(bch);
1378        }
1379}
1380EXPORT_SYMBOL_GPL(free_bch);
1381
1382MODULE_LICENSE("GPL");
1383MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1384MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1385