linux/mm/bootmem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  bootmem - A boot-time physical memory allocator and configurator
   4 *
   5 *  Copyright (C) 1999 Ingo Molnar
   6 *                1999 Kanoj Sarcar, SGI
   7 *                2008 Johannes Weiner
   8 *
   9 * Access to this subsystem has to be serialized externally (which is true
  10 * for the boot process anyway).
  11 */
  12#include <linux/init.h>
  13#include <linux/pfn.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/kmemleak.h>
  17#include <linux/range.h>
  18#include <linux/bug.h>
  19#include <linux/io.h>
  20#include <linux/bootmem.h>
  21
  22#include "internal.h"
  23
  24/**
  25 * DOC: bootmem overview
  26 *
  27 * Bootmem is a boot-time physical memory allocator and configurator.
  28 *
  29 * It is used early in the boot process before the page allocator is
  30 * set up.
  31 *
  32 * Bootmem is based on the most basic of allocators, a First Fit
  33 * allocator which uses a bitmap to represent memory. If a bit is 1,
  34 * the page is allocated and 0 if unallocated. To satisfy allocations
  35 * of sizes smaller than a page, the allocator records the Page Frame
  36 * Number (PFN) of the last allocation and the offset the allocation
  37 * ended at. Subsequent small allocations are merged together and
  38 * stored on the same page.
  39 *
  40 * The information used by the bootmem allocator is represented by
  41 * :c:type:`struct bootmem_data`. An array to hold up to %MAX_NUMNODES
  42 * such structures is statically allocated and then it is discarded
  43 * when the system initialization completes. Each entry in this array
  44 * corresponds to a node with memory. For UMA systems only entry 0 is
  45 * used.
  46 *
  47 * The bootmem allocator is initialized during early architecture
  48 * specific setup. Each architecture is required to supply a
  49 * :c:func:`setup_arch` function which, among other tasks, is
  50 * responsible for acquiring the necessary parameters to initialise
  51 * the boot memory allocator. These parameters define limits of usable
  52 * physical memory:
  53 *
  54 * * @min_low_pfn - the lowest PFN that is available in the system
  55 * * @max_low_pfn - the highest PFN that may be addressed by low
  56 *   memory (%ZONE_NORMAL)
  57 * * @max_pfn - the last PFN available to the system.
  58 *
  59 * After those limits are determined, the :c:func:`init_bootmem` or
  60 * :c:func:`init_bootmem_node` function should be called to initialize
  61 * the bootmem allocator. The UMA case should use the `init_bootmem`
  62 * function. It will initialize ``contig_page_data`` structure that
  63 * represents the only memory node in the system. In the NUMA case the
  64 * `init_bootmem_node` function should be called to initialize the
  65 * bootmem allocator for each node.
  66 *
  67 * Once the allocator is set up, it is possible to use either single
  68 * node or NUMA variant of the allocation APIs.
  69 */
  70
  71#ifndef CONFIG_NEED_MULTIPLE_NODES
  72struct pglist_data __refdata contig_page_data = {
  73        .bdata = &bootmem_node_data[0]
  74};
  75EXPORT_SYMBOL(contig_page_data);
  76#endif
  77
  78unsigned long max_low_pfn;
  79unsigned long min_low_pfn;
  80unsigned long max_pfn;
  81unsigned long long max_possible_pfn;
  82
  83bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  84
  85static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  86
  87static int bootmem_debug;
  88
  89static int __init bootmem_debug_setup(char *buf)
  90{
  91        bootmem_debug = 1;
  92        return 0;
  93}
  94early_param("bootmem_debug", bootmem_debug_setup);
  95
  96#define bdebug(fmt, args...) ({                         \
  97        if (unlikely(bootmem_debug))                    \
  98                pr_info("bootmem::%s " fmt,             \
  99                        __func__, ## args);             \
 100})
 101
 102static unsigned long __init bootmap_bytes(unsigned long pages)
 103{
 104        unsigned long bytes = DIV_ROUND_UP(pages, BITS_PER_BYTE);
 105
 106        return ALIGN(bytes, sizeof(long));
 107}
 108
 109/**
 110 * bootmem_bootmap_pages - calculate bitmap size in pages
 111 * @pages: number of pages the bitmap has to represent
 112 *
 113 * Return: the number of pages needed to hold the bitmap.
 114 */
 115unsigned long __init bootmem_bootmap_pages(unsigned long pages)
 116{
 117        unsigned long bytes = bootmap_bytes(pages);
 118
 119        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
 120}
 121
 122/*
 123 * link bdata in order
 124 */
 125static void __init link_bootmem(bootmem_data_t *bdata)
 126{
 127        bootmem_data_t *ent;
 128
 129        list_for_each_entry(ent, &bdata_list, list) {
 130                if (bdata->node_min_pfn < ent->node_min_pfn) {
 131                        list_add_tail(&bdata->list, &ent->list);
 132                        return;
 133                }
 134        }
 135
 136        list_add_tail(&bdata->list, &bdata_list);
 137}
 138
 139/*
 140 * Called once to set up the allocator itself.
 141 */
 142static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
 143        unsigned long mapstart, unsigned long start, unsigned long end)
 144{
 145        unsigned long mapsize;
 146
 147        mminit_validate_memmodel_limits(&start, &end);
 148        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 149        bdata->node_min_pfn = start;
 150        bdata->node_low_pfn = end;
 151        link_bootmem(bdata);
 152
 153        /*
 154         * Initially all pages are reserved - setup_arch() has to
 155         * register free RAM areas explicitly.
 156         */
 157        mapsize = bootmap_bytes(end - start);
 158        memset(bdata->node_bootmem_map, 0xff, mapsize);
 159
 160        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 161                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 162
 163        return mapsize;
 164}
 165
 166/**
 167 * init_bootmem_node - register a node as boot memory
 168 * @pgdat: node to register
 169 * @freepfn: pfn where the bitmap for this node is to be placed
 170 * @startpfn: first pfn on the node
 171 * @endpfn: first pfn after the node
 172 *
 173 * Return: the number of bytes needed to hold the bitmap for this node.
 174 */
 175unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 176                                unsigned long startpfn, unsigned long endpfn)
 177{
 178        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 179}
 180
 181/**
 182 * init_bootmem - register boot memory
 183 * @start: pfn where the bitmap is to be placed
 184 * @pages: number of available physical pages
 185 *
 186 * Return: the number of bytes needed to hold the bitmap.
 187 */
 188unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 189{
 190        max_low_pfn = pages;
 191        min_low_pfn = start;
 192        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 193}
 194
 195void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
 196{
 197        unsigned long cursor, end;
 198
 199        kmemleak_free_part_phys(physaddr, size);
 200
 201        cursor = PFN_UP(physaddr);
 202        end = PFN_DOWN(physaddr + size);
 203
 204        for (; cursor < end; cursor++) {
 205                __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
 206                totalram_pages++;
 207        }
 208}
 209
 210static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 211{
 212        struct page *page;
 213        unsigned long *map, start, end, pages, cur, count = 0;
 214
 215        if (!bdata->node_bootmem_map)
 216                return 0;
 217
 218        map = bdata->node_bootmem_map;
 219        start = bdata->node_min_pfn;
 220        end = bdata->node_low_pfn;
 221
 222        bdebug("nid=%td start=%lx end=%lx\n",
 223                bdata - bootmem_node_data, start, end);
 224
 225        while (start < end) {
 226                unsigned long idx, vec;
 227                unsigned shift;
 228
 229                idx = start - bdata->node_min_pfn;
 230                shift = idx & (BITS_PER_LONG - 1);
 231                /*
 232                 * vec holds at most BITS_PER_LONG map bits,
 233                 * bit 0 corresponds to start.
 234                 */
 235                vec = ~map[idx / BITS_PER_LONG];
 236
 237                if (shift) {
 238                        vec >>= shift;
 239                        if (end - start >= BITS_PER_LONG)
 240                                vec |= ~map[idx / BITS_PER_LONG + 1] <<
 241                                        (BITS_PER_LONG - shift);
 242                }
 243                /*
 244                 * If we have a properly aligned and fully unreserved
 245                 * BITS_PER_LONG block of pages in front of us, free
 246                 * it in one go.
 247                 */
 248                if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
 249                        int order = ilog2(BITS_PER_LONG);
 250
 251                        __free_pages_bootmem(pfn_to_page(start), start, order);
 252                        count += BITS_PER_LONG;
 253                        start += BITS_PER_LONG;
 254                } else {
 255                        cur = start;
 256
 257                        start = ALIGN(start + 1, BITS_PER_LONG);
 258                        while (vec && cur != start) {
 259                                if (vec & 1) {
 260                                        page = pfn_to_page(cur);
 261                                        __free_pages_bootmem(page, cur, 0);
 262                                        count++;
 263                                }
 264                                vec >>= 1;
 265                                ++cur;
 266                        }
 267                }
 268        }
 269
 270        cur = bdata->node_min_pfn;
 271        page = virt_to_page(bdata->node_bootmem_map);
 272        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 273        pages = bootmem_bootmap_pages(pages);
 274        count += pages;
 275        while (pages--)
 276                __free_pages_bootmem(page++, cur++, 0);
 277        bdata->node_bootmem_map = NULL;
 278
 279        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 280
 281        return count;
 282}
 283
 284static int reset_managed_pages_done __initdata;
 285
 286void reset_node_managed_pages(pg_data_t *pgdat)
 287{
 288        struct zone *z;
 289
 290        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 291                z->managed_pages = 0;
 292}
 293
 294void __init reset_all_zones_managed_pages(void)
 295{
 296        struct pglist_data *pgdat;
 297
 298        if (reset_managed_pages_done)
 299                return;
 300
 301        for_each_online_pgdat(pgdat)
 302                reset_node_managed_pages(pgdat);
 303
 304        reset_managed_pages_done = 1;
 305}
 306
 307unsigned long __init free_all_bootmem(void)
 308{
 309        unsigned long total_pages = 0;
 310        bootmem_data_t *bdata;
 311
 312        reset_all_zones_managed_pages();
 313
 314        list_for_each_entry(bdata, &bdata_list, list)
 315                total_pages += free_all_bootmem_core(bdata);
 316
 317        totalram_pages += total_pages;
 318
 319        return total_pages;
 320}
 321
 322static void __init __free(bootmem_data_t *bdata,
 323                        unsigned long sidx, unsigned long eidx)
 324{
 325        unsigned long idx;
 326
 327        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 328                sidx + bdata->node_min_pfn,
 329                eidx + bdata->node_min_pfn);
 330
 331        if (WARN_ON(bdata->node_bootmem_map == NULL))
 332                return;
 333
 334        if (bdata->hint_idx > sidx)
 335                bdata->hint_idx = sidx;
 336
 337        for (idx = sidx; idx < eidx; idx++)
 338                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 339                        BUG();
 340}
 341
 342static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 343                        unsigned long eidx, int flags)
 344{
 345        unsigned long idx;
 346        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 347
 348        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 349                bdata - bootmem_node_data,
 350                sidx + bdata->node_min_pfn,
 351                eidx + bdata->node_min_pfn,
 352                flags);
 353
 354        if (WARN_ON(bdata->node_bootmem_map == NULL))
 355                return 0;
 356
 357        for (idx = sidx; idx < eidx; idx++)
 358                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 359                        if (exclusive) {
 360                                __free(bdata, sidx, idx);
 361                                return -EBUSY;
 362                        }
 363                        bdebug("silent double reserve of PFN %lx\n",
 364                                idx + bdata->node_min_pfn);
 365                }
 366        return 0;
 367}
 368
 369static int __init mark_bootmem_node(bootmem_data_t *bdata,
 370                                unsigned long start, unsigned long end,
 371                                int reserve, int flags)
 372{
 373        unsigned long sidx, eidx;
 374
 375        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 376                bdata - bootmem_node_data, start, end, reserve, flags);
 377
 378        BUG_ON(start < bdata->node_min_pfn);
 379        BUG_ON(end > bdata->node_low_pfn);
 380
 381        sidx = start - bdata->node_min_pfn;
 382        eidx = end - bdata->node_min_pfn;
 383
 384        if (reserve)
 385                return __reserve(bdata, sidx, eidx, flags);
 386        else
 387                __free(bdata, sidx, eidx);
 388        return 0;
 389}
 390
 391static int __init mark_bootmem(unsigned long start, unsigned long end,
 392                                int reserve, int flags)
 393{
 394        unsigned long pos;
 395        bootmem_data_t *bdata;
 396
 397        pos = start;
 398        list_for_each_entry(bdata, &bdata_list, list) {
 399                int err;
 400                unsigned long max;
 401
 402                if (pos < bdata->node_min_pfn ||
 403                    pos >= bdata->node_low_pfn) {
 404                        BUG_ON(pos != start);
 405                        continue;
 406                }
 407
 408                max = min(bdata->node_low_pfn, end);
 409
 410                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 411                if (reserve && err) {
 412                        mark_bootmem(start, pos, 0, 0);
 413                        return err;
 414                }
 415
 416                if (max == end)
 417                        return 0;
 418                pos = bdata->node_low_pfn;
 419        }
 420        BUG();
 421}
 422
 423void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 424                              unsigned long size)
 425{
 426        unsigned long start, end;
 427
 428        kmemleak_free_part_phys(physaddr, size);
 429
 430        start = PFN_UP(physaddr);
 431        end = PFN_DOWN(physaddr + size);
 432
 433        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 434}
 435
 436void __init free_bootmem(unsigned long physaddr, unsigned long size)
 437{
 438        unsigned long start, end;
 439
 440        kmemleak_free_part_phys(physaddr, size);
 441
 442        start = PFN_UP(physaddr);
 443        end = PFN_DOWN(physaddr + size);
 444
 445        mark_bootmem(start, end, 0, 0);
 446}
 447
 448/**
 449 * reserve_bootmem_node - mark a page range as reserved
 450 * @pgdat: node the range resides on
 451 * @physaddr: starting address of the range
 452 * @size: size of the range in bytes
 453 * @flags: reservation flags (see linux/bootmem.h)
 454 *
 455 * Partial pages will be reserved.
 456 *
 457 * The range must reside completely on the specified node.
 458 *
 459 * Return: 0 on success, -errno on failure.
 460 */
 461int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 462                                 unsigned long size, int flags)
 463{
 464        unsigned long start, end;
 465
 466        start = PFN_DOWN(physaddr);
 467        end = PFN_UP(physaddr + size);
 468
 469        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 470}
 471
 472/**
 473 * reserve_bootmem - mark a page range as reserved
 474 * @addr: starting address of the range
 475 * @size: size of the range in bytes
 476 * @flags: reservation flags (see linux/bootmem.h)
 477 *
 478 * Partial pages will be reserved.
 479 *
 480 * The range must be contiguous but may span node boundaries.
 481 *
 482 * Return: 0 on success, -errno on failure.
 483 */
 484int __init reserve_bootmem(unsigned long addr, unsigned long size,
 485                            int flags)
 486{
 487        unsigned long start, end;
 488
 489        start = PFN_DOWN(addr);
 490        end = PFN_UP(addr + size);
 491
 492        return mark_bootmem(start, end, 1, flags);
 493}
 494
 495static unsigned long __init align_idx(struct bootmem_data *bdata,
 496                                      unsigned long idx, unsigned long step)
 497{
 498        unsigned long base = bdata->node_min_pfn;
 499
 500        /*
 501         * Align the index with respect to the node start so that the
 502         * combination of both satisfies the requested alignment.
 503         */
 504
 505        return ALIGN(base + idx, step) - base;
 506}
 507
 508static unsigned long __init align_off(struct bootmem_data *bdata,
 509                                      unsigned long off, unsigned long align)
 510{
 511        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 512
 513        /* Same as align_idx for byte offsets */
 514
 515        return ALIGN(base + off, align) - base;
 516}
 517
 518static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
 519                                        unsigned long size, unsigned long align,
 520                                        unsigned long goal, unsigned long limit)
 521{
 522        unsigned long fallback = 0;
 523        unsigned long min, max, start, sidx, midx, step;
 524
 525        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 526                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 527                align, goal, limit);
 528
 529        BUG_ON(!size);
 530        BUG_ON(align & (align - 1));
 531        BUG_ON(limit && goal + size > limit);
 532
 533        if (!bdata->node_bootmem_map)
 534                return NULL;
 535
 536        min = bdata->node_min_pfn;
 537        max = bdata->node_low_pfn;
 538
 539        goal >>= PAGE_SHIFT;
 540        limit >>= PAGE_SHIFT;
 541
 542        if (limit && max > limit)
 543                max = limit;
 544        if (max <= min)
 545                return NULL;
 546
 547        step = max(align >> PAGE_SHIFT, 1UL);
 548
 549        if (goal && min < goal && goal < max)
 550                start = ALIGN(goal, step);
 551        else
 552                start = ALIGN(min, step);
 553
 554        sidx = start - bdata->node_min_pfn;
 555        midx = max - bdata->node_min_pfn;
 556
 557        if (bdata->hint_idx > sidx) {
 558                /*
 559                 * Handle the valid case of sidx being zero and still
 560                 * catch the fallback below.
 561                 */
 562                fallback = sidx + 1;
 563                sidx = align_idx(bdata, bdata->hint_idx, step);
 564        }
 565
 566        while (1) {
 567                int merge;
 568                void *region;
 569                unsigned long eidx, i, start_off, end_off;
 570find_block:
 571                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 572                sidx = align_idx(bdata, sidx, step);
 573                eidx = sidx + PFN_UP(size);
 574
 575                if (sidx >= midx || eidx > midx)
 576                        break;
 577
 578                for (i = sidx; i < eidx; i++)
 579                        if (test_bit(i, bdata->node_bootmem_map)) {
 580                                sidx = align_idx(bdata, i, step);
 581                                if (sidx == i)
 582                                        sidx += step;
 583                                goto find_block;
 584                        }
 585
 586                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 587                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 588                        start_off = align_off(bdata, bdata->last_end_off, align);
 589                else
 590                        start_off = PFN_PHYS(sidx);
 591
 592                merge = PFN_DOWN(start_off) < sidx;
 593                end_off = start_off + size;
 594
 595                bdata->last_end_off = end_off;
 596                bdata->hint_idx = PFN_UP(end_off);
 597
 598                /*
 599                 * Reserve the area now:
 600                 */
 601                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 602                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 603                        BUG();
 604
 605                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 606                                start_off);
 607                memset(region, 0, size);
 608                /*
 609                 * The min_count is set to 0 so that bootmem allocated blocks
 610                 * are never reported as leaks.
 611                 */
 612                kmemleak_alloc(region, size, 0, 0);
 613                return region;
 614        }
 615
 616        if (fallback) {
 617                sidx = align_idx(bdata, fallback - 1, step);
 618                fallback = 0;
 619                goto find_block;
 620        }
 621
 622        return NULL;
 623}
 624
 625static void * __init alloc_bootmem_core(unsigned long size,
 626                                        unsigned long align,
 627                                        unsigned long goal,
 628                                        unsigned long limit)
 629{
 630        bootmem_data_t *bdata;
 631        void *region;
 632
 633        if (WARN_ON_ONCE(slab_is_available()))
 634                return kzalloc(size, GFP_NOWAIT);
 635
 636        list_for_each_entry(bdata, &bdata_list, list) {
 637                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 638                        continue;
 639                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 640                        break;
 641
 642                region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
 643                if (region)
 644                        return region;
 645        }
 646
 647        return NULL;
 648}
 649
 650static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 651                                              unsigned long align,
 652                                              unsigned long goal,
 653                                              unsigned long limit)
 654{
 655        void *ptr;
 656
 657restart:
 658        ptr = alloc_bootmem_core(size, align, goal, limit);
 659        if (ptr)
 660                return ptr;
 661        if (goal) {
 662                goal = 0;
 663                goto restart;
 664        }
 665
 666        return NULL;
 667}
 668
 669void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 670                                        unsigned long goal)
 671{
 672        unsigned long limit = 0;
 673
 674        return ___alloc_bootmem_nopanic(size, align, goal, limit);
 675}
 676
 677static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 678                                        unsigned long goal, unsigned long limit)
 679{
 680        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 681
 682        if (mem)
 683                return mem;
 684        /*
 685         * Whoops, we cannot satisfy the allocation request.
 686         */
 687        pr_alert("bootmem alloc of %lu bytes failed!\n", size);
 688        panic("Out of memory");
 689        return NULL;
 690}
 691
 692void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 693                              unsigned long goal)
 694{
 695        unsigned long limit = 0;
 696
 697        return ___alloc_bootmem(size, align, goal, limit);
 698}
 699
 700void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
 701                                unsigned long size, unsigned long align,
 702                                unsigned long goal, unsigned long limit)
 703{
 704        void *ptr;
 705
 706        if (WARN_ON_ONCE(slab_is_available()))
 707                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 708again:
 709
 710        /* do not panic in alloc_bootmem_bdata() */
 711        if (limit && goal + size > limit)
 712                limit = 0;
 713
 714        ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
 715        if (ptr)
 716                return ptr;
 717
 718        ptr = alloc_bootmem_core(size, align, goal, limit);
 719        if (ptr)
 720                return ptr;
 721
 722        if (goal) {
 723                goal = 0;
 724                goto again;
 725        }
 726
 727        return NULL;
 728}
 729
 730void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 731                                   unsigned long align, unsigned long goal)
 732{
 733        return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 734}
 735
 736void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 737                                    unsigned long align, unsigned long goal,
 738                                    unsigned long limit)
 739{
 740        void *ptr;
 741
 742        ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 743        if (ptr)
 744                return ptr;
 745
 746        pr_alert("bootmem alloc of %lu bytes failed!\n", size);
 747        panic("Out of memory");
 748        return NULL;
 749}
 750
 751void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 752                                   unsigned long align, unsigned long goal)
 753{
 754        if (WARN_ON_ONCE(slab_is_available()))
 755                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 756
 757        return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
 758}
 759
 760void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
 761                                   unsigned long align, unsigned long goal)
 762{
 763#ifdef MAX_DMA32_PFN
 764        unsigned long end_pfn;
 765
 766        if (WARN_ON_ONCE(slab_is_available()))
 767                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 768
 769        /* update goal according ...MAX_DMA32_PFN */
 770        end_pfn = pgdat_end_pfn(pgdat);
 771
 772        if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
 773            (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
 774                void *ptr;
 775                unsigned long new_goal;
 776
 777                new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
 778                ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
 779                                                 new_goal, 0);
 780                if (ptr)
 781                        return ptr;
 782        }
 783#endif
 784
 785        return __alloc_bootmem_node(pgdat, size, align, goal);
 786
 787}
 788
 789void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 790                                  unsigned long goal)
 791{
 792        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 793}
 794
 795void * __init __alloc_bootmem_low_nopanic(unsigned long size,
 796                                          unsigned long align,
 797                                          unsigned long goal)
 798{
 799        return ___alloc_bootmem_nopanic(size, align, goal,
 800                                        ARCH_LOW_ADDRESS_LIMIT);
 801}
 802
 803void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 804                                       unsigned long align, unsigned long goal)
 805{
 806        if (WARN_ON_ONCE(slab_is_available()))
 807                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 808
 809        return ___alloc_bootmem_node(pgdat, size, align,
 810                                     goal, ARCH_LOW_ADDRESS_LIMIT);
 811}
 812