linux/mm/khugepaged.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/mm.h>
   5#include <linux/sched.h>
   6#include <linux/sched/mm.h>
   7#include <linux/sched/coredump.h>
   8#include <linux/mmu_notifier.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/mm_inline.h>
  12#include <linux/kthread.h>
  13#include <linux/khugepaged.h>
  14#include <linux/freezer.h>
  15#include <linux/mman.h>
  16#include <linux/hashtable.h>
  17#include <linux/userfaultfd_k.h>
  18#include <linux/page_idle.h>
  19#include <linux/swapops.h>
  20#include <linux/shmem_fs.h>
  21
  22#include <asm/tlb.h>
  23#include <asm/pgalloc.h>
  24#include "internal.h"
  25
  26enum scan_result {
  27        SCAN_FAIL,
  28        SCAN_SUCCEED,
  29        SCAN_PMD_NULL,
  30        SCAN_EXCEED_NONE_PTE,
  31        SCAN_PTE_NON_PRESENT,
  32        SCAN_PAGE_RO,
  33        SCAN_LACK_REFERENCED_PAGE,
  34        SCAN_PAGE_NULL,
  35        SCAN_SCAN_ABORT,
  36        SCAN_PAGE_COUNT,
  37        SCAN_PAGE_LRU,
  38        SCAN_PAGE_LOCK,
  39        SCAN_PAGE_ANON,
  40        SCAN_PAGE_COMPOUND,
  41        SCAN_ANY_PROCESS,
  42        SCAN_VMA_NULL,
  43        SCAN_VMA_CHECK,
  44        SCAN_ADDRESS_RANGE,
  45        SCAN_SWAP_CACHE_PAGE,
  46        SCAN_DEL_PAGE_LRU,
  47        SCAN_ALLOC_HUGE_PAGE_FAIL,
  48        SCAN_CGROUP_CHARGE_FAIL,
  49        SCAN_EXCEED_SWAP_PTE,
  50        SCAN_TRUNCATED,
  51};
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/huge_memory.h>
  55
  56/* default scan 8*512 pte (or vmas) every 30 second */
  57static unsigned int khugepaged_pages_to_scan __read_mostly;
  58static unsigned int khugepaged_pages_collapsed;
  59static unsigned int khugepaged_full_scans;
  60static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  61/* during fragmentation poll the hugepage allocator once every minute */
  62static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  63static unsigned long khugepaged_sleep_expire;
  64static DEFINE_SPINLOCK(khugepaged_mm_lock);
  65static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  66/*
  67 * default collapse hugepages if there is at least one pte mapped like
  68 * it would have happened if the vma was large enough during page
  69 * fault.
  70 */
  71static unsigned int khugepaged_max_ptes_none __read_mostly;
  72static unsigned int khugepaged_max_ptes_swap __read_mostly;
  73
  74#define MM_SLOTS_HASH_BITS 10
  75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  76
  77static struct kmem_cache *mm_slot_cache __read_mostly;
  78
  79/**
  80 * struct mm_slot - hash lookup from mm to mm_slot
  81 * @hash: hash collision list
  82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  83 * @mm: the mm that this information is valid for
  84 */
  85struct mm_slot {
  86        struct hlist_node hash;
  87        struct list_head mm_node;
  88        struct mm_struct *mm;
  89};
  90
  91/**
  92 * struct khugepaged_scan - cursor for scanning
  93 * @mm_head: the head of the mm list to scan
  94 * @mm_slot: the current mm_slot we are scanning
  95 * @address: the next address inside that to be scanned
  96 *
  97 * There is only the one khugepaged_scan instance of this cursor structure.
  98 */
  99struct khugepaged_scan {
 100        struct list_head mm_head;
 101        struct mm_slot *mm_slot;
 102        unsigned long address;
 103};
 104
 105static struct khugepaged_scan khugepaged_scan = {
 106        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 107};
 108
 109#ifdef CONFIG_SYSFS
 110static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 111                                         struct kobj_attribute *attr,
 112                                         char *buf)
 113{
 114        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 115}
 116
 117static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 118                                          struct kobj_attribute *attr,
 119                                          const char *buf, size_t count)
 120{
 121        unsigned long msecs;
 122        int err;
 123
 124        err = kstrtoul(buf, 10, &msecs);
 125        if (err || msecs > UINT_MAX)
 126                return -EINVAL;
 127
 128        khugepaged_scan_sleep_millisecs = msecs;
 129        khugepaged_sleep_expire = 0;
 130        wake_up_interruptible(&khugepaged_wait);
 131
 132        return count;
 133}
 134static struct kobj_attribute scan_sleep_millisecs_attr =
 135        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 136               scan_sleep_millisecs_store);
 137
 138static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 139                                          struct kobj_attribute *attr,
 140                                          char *buf)
 141{
 142        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 143}
 144
 145static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 146                                           struct kobj_attribute *attr,
 147                                           const char *buf, size_t count)
 148{
 149        unsigned long msecs;
 150        int err;
 151
 152        err = kstrtoul(buf, 10, &msecs);
 153        if (err || msecs > UINT_MAX)
 154                return -EINVAL;
 155
 156        khugepaged_alloc_sleep_millisecs = msecs;
 157        khugepaged_sleep_expire = 0;
 158        wake_up_interruptible(&khugepaged_wait);
 159
 160        return count;
 161}
 162static struct kobj_attribute alloc_sleep_millisecs_attr =
 163        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 164               alloc_sleep_millisecs_store);
 165
 166static ssize_t pages_to_scan_show(struct kobject *kobj,
 167                                  struct kobj_attribute *attr,
 168                                  char *buf)
 169{
 170        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 171}
 172static ssize_t pages_to_scan_store(struct kobject *kobj,
 173                                   struct kobj_attribute *attr,
 174                                   const char *buf, size_t count)
 175{
 176        int err;
 177        unsigned long pages;
 178
 179        err = kstrtoul(buf, 10, &pages);
 180        if (err || !pages || pages > UINT_MAX)
 181                return -EINVAL;
 182
 183        khugepaged_pages_to_scan = pages;
 184
 185        return count;
 186}
 187static struct kobj_attribute pages_to_scan_attr =
 188        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 189               pages_to_scan_store);
 190
 191static ssize_t pages_collapsed_show(struct kobject *kobj,
 192                                    struct kobj_attribute *attr,
 193                                    char *buf)
 194{
 195        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 196}
 197static struct kobj_attribute pages_collapsed_attr =
 198        __ATTR_RO(pages_collapsed);
 199
 200static ssize_t full_scans_show(struct kobject *kobj,
 201                               struct kobj_attribute *attr,
 202                               char *buf)
 203{
 204        return sprintf(buf, "%u\n", khugepaged_full_scans);
 205}
 206static struct kobj_attribute full_scans_attr =
 207        __ATTR_RO(full_scans);
 208
 209static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 210                                      struct kobj_attribute *attr, char *buf)
 211{
 212        return single_hugepage_flag_show(kobj, attr, buf,
 213                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 214}
 215static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 216                                       struct kobj_attribute *attr,
 217                                       const char *buf, size_t count)
 218{
 219        return single_hugepage_flag_store(kobj, attr, buf, count,
 220                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 221}
 222static struct kobj_attribute khugepaged_defrag_attr =
 223        __ATTR(defrag, 0644, khugepaged_defrag_show,
 224               khugepaged_defrag_store);
 225
 226/*
 227 * max_ptes_none controls if khugepaged should collapse hugepages over
 228 * any unmapped ptes in turn potentially increasing the memory
 229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 230 * reduce the available free memory in the system as it
 231 * runs. Increasing max_ptes_none will instead potentially reduce the
 232 * free memory in the system during the khugepaged scan.
 233 */
 234static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 235                                             struct kobj_attribute *attr,
 236                                             char *buf)
 237{
 238        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 239}
 240static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 241                                              struct kobj_attribute *attr,
 242                                              const char *buf, size_t count)
 243{
 244        int err;
 245        unsigned long max_ptes_none;
 246
 247        err = kstrtoul(buf, 10, &max_ptes_none);
 248        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 249                return -EINVAL;
 250
 251        khugepaged_max_ptes_none = max_ptes_none;
 252
 253        return count;
 254}
 255static struct kobj_attribute khugepaged_max_ptes_none_attr =
 256        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 257               khugepaged_max_ptes_none_store);
 258
 259static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 260                                             struct kobj_attribute *attr,
 261                                             char *buf)
 262{
 263        return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
 264}
 265
 266static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 267                                              struct kobj_attribute *attr,
 268                                              const char *buf, size_t count)
 269{
 270        int err;
 271        unsigned long max_ptes_swap;
 272
 273        err  = kstrtoul(buf, 10, &max_ptes_swap);
 274        if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 275                return -EINVAL;
 276
 277        khugepaged_max_ptes_swap = max_ptes_swap;
 278
 279        return count;
 280}
 281
 282static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 283        __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 284               khugepaged_max_ptes_swap_store);
 285
 286static struct attribute *khugepaged_attr[] = {
 287        &khugepaged_defrag_attr.attr,
 288        &khugepaged_max_ptes_none_attr.attr,
 289        &pages_to_scan_attr.attr,
 290        &pages_collapsed_attr.attr,
 291        &full_scans_attr.attr,
 292        &scan_sleep_millisecs_attr.attr,
 293        &alloc_sleep_millisecs_attr.attr,
 294        &khugepaged_max_ptes_swap_attr.attr,
 295        NULL,
 296};
 297
 298struct attribute_group khugepaged_attr_group = {
 299        .attrs = khugepaged_attr,
 300        .name = "khugepaged",
 301};
 302#endif /* CONFIG_SYSFS */
 303
 304#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 305
 306int hugepage_madvise(struct vm_area_struct *vma,
 307                     unsigned long *vm_flags, int advice)
 308{
 309        switch (advice) {
 310        case MADV_HUGEPAGE:
 311#ifdef CONFIG_S390
 312                /*
 313                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 314                 * can't handle this properly after s390_enable_sie, so we simply
 315                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 316                 */
 317                if (mm_has_pgste(vma->vm_mm))
 318                        return 0;
 319#endif
 320                *vm_flags &= ~VM_NOHUGEPAGE;
 321                *vm_flags |= VM_HUGEPAGE;
 322                /*
 323                 * If the vma become good for khugepaged to scan,
 324                 * register it here without waiting a page fault that
 325                 * may not happen any time soon.
 326                 */
 327                if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 328                                khugepaged_enter_vma_merge(vma, *vm_flags))
 329                        return -ENOMEM;
 330                break;
 331        case MADV_NOHUGEPAGE:
 332                *vm_flags &= ~VM_HUGEPAGE;
 333                *vm_flags |= VM_NOHUGEPAGE;
 334                /*
 335                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 336                 * this vma even if we leave the mm registered in khugepaged if
 337                 * it got registered before VM_NOHUGEPAGE was set.
 338                 */
 339                break;
 340        }
 341
 342        return 0;
 343}
 344
 345int __init khugepaged_init(void)
 346{
 347        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 348                                          sizeof(struct mm_slot),
 349                                          __alignof__(struct mm_slot), 0, NULL);
 350        if (!mm_slot_cache)
 351                return -ENOMEM;
 352
 353        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 354        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 355        khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 356
 357        return 0;
 358}
 359
 360void __init khugepaged_destroy(void)
 361{
 362        kmem_cache_destroy(mm_slot_cache);
 363}
 364
 365static inline struct mm_slot *alloc_mm_slot(void)
 366{
 367        if (!mm_slot_cache)     /* initialization failed */
 368                return NULL;
 369        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 370}
 371
 372static inline void free_mm_slot(struct mm_slot *mm_slot)
 373{
 374        kmem_cache_free(mm_slot_cache, mm_slot);
 375}
 376
 377static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 378{
 379        struct mm_slot *mm_slot;
 380
 381        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 382                if (mm == mm_slot->mm)
 383                        return mm_slot;
 384
 385        return NULL;
 386}
 387
 388static void insert_to_mm_slots_hash(struct mm_struct *mm,
 389                                    struct mm_slot *mm_slot)
 390{
 391        mm_slot->mm = mm;
 392        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 393}
 394
 395static inline int khugepaged_test_exit(struct mm_struct *mm)
 396{
 397        return atomic_read(&mm->mm_users) == 0;
 398}
 399
 400static bool hugepage_vma_check(struct vm_area_struct *vma,
 401                               unsigned long vm_flags)
 402{
 403        if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 404            (vm_flags & VM_NOHUGEPAGE) ||
 405            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 406                return false;
 407        if (shmem_file(vma->vm_file)) {
 408                if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
 409                        return false;
 410                return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 411                                HPAGE_PMD_NR);
 412        }
 413        if (!vma->anon_vma || vma->vm_ops)
 414                return false;
 415        if (is_vma_temporary_stack(vma))
 416                return false;
 417        return !(vm_flags & VM_NO_KHUGEPAGED);
 418}
 419
 420int __khugepaged_enter(struct mm_struct *mm)
 421{
 422        struct mm_slot *mm_slot;
 423        int wakeup;
 424
 425        mm_slot = alloc_mm_slot();
 426        if (!mm_slot)
 427                return -ENOMEM;
 428
 429        /* __khugepaged_exit() must not run from under us */
 430        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 431        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 432                free_mm_slot(mm_slot);
 433                return 0;
 434        }
 435
 436        spin_lock(&khugepaged_mm_lock);
 437        insert_to_mm_slots_hash(mm, mm_slot);
 438        /*
 439         * Insert just behind the scanning cursor, to let the area settle
 440         * down a little.
 441         */
 442        wakeup = list_empty(&khugepaged_scan.mm_head);
 443        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 444        spin_unlock(&khugepaged_mm_lock);
 445
 446        mmgrab(mm);
 447        if (wakeup)
 448                wake_up_interruptible(&khugepaged_wait);
 449
 450        return 0;
 451}
 452
 453int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 454                               unsigned long vm_flags)
 455{
 456        unsigned long hstart, hend;
 457
 458        /*
 459         * khugepaged does not yet work on non-shmem files or special
 460         * mappings. And file-private shmem THP is not supported.
 461         */
 462        if (!hugepage_vma_check(vma, vm_flags))
 463                return 0;
 464
 465        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 466        hend = vma->vm_end & HPAGE_PMD_MASK;
 467        if (hstart < hend)
 468                return khugepaged_enter(vma, vm_flags);
 469        return 0;
 470}
 471
 472void __khugepaged_exit(struct mm_struct *mm)
 473{
 474        struct mm_slot *mm_slot;
 475        int free = 0;
 476
 477        spin_lock(&khugepaged_mm_lock);
 478        mm_slot = get_mm_slot(mm);
 479        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 480                hash_del(&mm_slot->hash);
 481                list_del(&mm_slot->mm_node);
 482                free = 1;
 483        }
 484        spin_unlock(&khugepaged_mm_lock);
 485
 486        if (free) {
 487                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 488                free_mm_slot(mm_slot);
 489                mmdrop(mm);
 490        } else if (mm_slot) {
 491                /*
 492                 * This is required to serialize against
 493                 * khugepaged_test_exit() (which is guaranteed to run
 494                 * under mmap sem read mode). Stop here (after we
 495                 * return all pagetables will be destroyed) until
 496                 * khugepaged has finished working on the pagetables
 497                 * under the mmap_sem.
 498                 */
 499                down_write(&mm->mmap_sem);
 500                up_write(&mm->mmap_sem);
 501        }
 502}
 503
 504static void release_pte_page(struct page *page)
 505{
 506        dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
 507        unlock_page(page);
 508        putback_lru_page(page);
 509}
 510
 511static void release_pte_pages(pte_t *pte, pte_t *_pte)
 512{
 513        while (--_pte >= pte) {
 514                pte_t pteval = *_pte;
 515                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 516                        release_pte_page(pte_page(pteval));
 517        }
 518}
 519
 520static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 521                                        unsigned long address,
 522                                        pte_t *pte)
 523{
 524        struct page *page = NULL;
 525        pte_t *_pte;
 526        int none_or_zero = 0, result = 0, referenced = 0;
 527        bool writable = false;
 528
 529        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 530             _pte++, address += PAGE_SIZE) {
 531                pte_t pteval = *_pte;
 532                if (pte_none(pteval) || (pte_present(pteval) &&
 533                                is_zero_pfn(pte_pfn(pteval)))) {
 534                        if (!userfaultfd_armed(vma) &&
 535                            ++none_or_zero <= khugepaged_max_ptes_none) {
 536                                continue;
 537                        } else {
 538                                result = SCAN_EXCEED_NONE_PTE;
 539                                goto out;
 540                        }
 541                }
 542                if (!pte_present(pteval)) {
 543                        result = SCAN_PTE_NON_PRESENT;
 544                        goto out;
 545                }
 546                page = vm_normal_page(vma, address, pteval);
 547                if (unlikely(!page)) {
 548                        result = SCAN_PAGE_NULL;
 549                        goto out;
 550                }
 551
 552                /* TODO: teach khugepaged to collapse THP mapped with pte */
 553                if (PageCompound(page)) {
 554                        result = SCAN_PAGE_COMPOUND;
 555                        goto out;
 556                }
 557
 558                VM_BUG_ON_PAGE(!PageAnon(page), page);
 559
 560                /*
 561                 * We can do it before isolate_lru_page because the
 562                 * page can't be freed from under us. NOTE: PG_lock
 563                 * is needed to serialize against split_huge_page
 564                 * when invoked from the VM.
 565                 */
 566                if (!trylock_page(page)) {
 567                        result = SCAN_PAGE_LOCK;
 568                        goto out;
 569                }
 570
 571                /*
 572                 * cannot use mapcount: can't collapse if there's a gup pin.
 573                 * The page must only be referenced by the scanned process
 574                 * and page swap cache.
 575                 */
 576                if (page_count(page) != 1 + PageSwapCache(page)) {
 577                        unlock_page(page);
 578                        result = SCAN_PAGE_COUNT;
 579                        goto out;
 580                }
 581                if (pte_write(pteval)) {
 582                        writable = true;
 583                } else {
 584                        if (PageSwapCache(page) &&
 585                            !reuse_swap_page(page, NULL)) {
 586                                unlock_page(page);
 587                                result = SCAN_SWAP_CACHE_PAGE;
 588                                goto out;
 589                        }
 590                        /*
 591                         * Page is not in the swap cache. It can be collapsed
 592                         * into a THP.
 593                         */
 594                }
 595
 596                /*
 597                 * Isolate the page to avoid collapsing an hugepage
 598                 * currently in use by the VM.
 599                 */
 600                if (isolate_lru_page(page)) {
 601                        unlock_page(page);
 602                        result = SCAN_DEL_PAGE_LRU;
 603                        goto out;
 604                }
 605                inc_node_page_state(page,
 606                                NR_ISOLATED_ANON + page_is_file_cache(page));
 607                VM_BUG_ON_PAGE(!PageLocked(page), page);
 608                VM_BUG_ON_PAGE(PageLRU(page), page);
 609
 610                /* There should be enough young pte to collapse the page */
 611                if (pte_young(pteval) ||
 612                    page_is_young(page) || PageReferenced(page) ||
 613                    mmu_notifier_test_young(vma->vm_mm, address))
 614                        referenced++;
 615        }
 616        if (likely(writable)) {
 617                if (likely(referenced)) {
 618                        result = SCAN_SUCCEED;
 619                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 620                                                            referenced, writable, result);
 621                        return 1;
 622                }
 623        } else {
 624                result = SCAN_PAGE_RO;
 625        }
 626
 627out:
 628        release_pte_pages(pte, _pte);
 629        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 630                                            referenced, writable, result);
 631        return 0;
 632}
 633
 634static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 635                                      struct vm_area_struct *vma,
 636                                      unsigned long address,
 637                                      spinlock_t *ptl)
 638{
 639        pte_t *_pte;
 640        for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 641                                _pte++, page++, address += PAGE_SIZE) {
 642                pte_t pteval = *_pte;
 643                struct page *src_page;
 644
 645                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 646                        clear_user_highpage(page, address);
 647                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 648                        if (is_zero_pfn(pte_pfn(pteval))) {
 649                                /*
 650                                 * ptl mostly unnecessary.
 651                                 */
 652                                spin_lock(ptl);
 653                                /*
 654                                 * paravirt calls inside pte_clear here are
 655                                 * superfluous.
 656                                 */
 657                                pte_clear(vma->vm_mm, address, _pte);
 658                                spin_unlock(ptl);
 659                        }
 660                } else {
 661                        src_page = pte_page(pteval);
 662                        copy_user_highpage(page, src_page, address, vma);
 663                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 664                        release_pte_page(src_page);
 665                        /*
 666                         * ptl mostly unnecessary, but preempt has to
 667                         * be disabled to update the per-cpu stats
 668                         * inside page_remove_rmap().
 669                         */
 670                        spin_lock(ptl);
 671                        /*
 672                         * paravirt calls inside pte_clear here are
 673                         * superfluous.
 674                         */
 675                        pte_clear(vma->vm_mm, address, _pte);
 676                        page_remove_rmap(src_page, false);
 677                        spin_unlock(ptl);
 678                        free_page_and_swap_cache(src_page);
 679                }
 680        }
 681}
 682
 683static void khugepaged_alloc_sleep(void)
 684{
 685        DEFINE_WAIT(wait);
 686
 687        add_wait_queue(&khugepaged_wait, &wait);
 688        freezable_schedule_timeout_interruptible(
 689                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 690        remove_wait_queue(&khugepaged_wait, &wait);
 691}
 692
 693static int khugepaged_node_load[MAX_NUMNODES];
 694
 695static bool khugepaged_scan_abort(int nid)
 696{
 697        int i;
 698
 699        /*
 700         * If node_reclaim_mode is disabled, then no extra effort is made to
 701         * allocate memory locally.
 702         */
 703        if (!node_reclaim_mode)
 704                return false;
 705
 706        /* If there is a count for this node already, it must be acceptable */
 707        if (khugepaged_node_load[nid])
 708                return false;
 709
 710        for (i = 0; i < MAX_NUMNODES; i++) {
 711                if (!khugepaged_node_load[i])
 712                        continue;
 713                if (node_distance(nid, i) > RECLAIM_DISTANCE)
 714                        return true;
 715        }
 716        return false;
 717}
 718
 719/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 720static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 721{
 722        return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 723}
 724
 725#ifdef CONFIG_NUMA
 726static int khugepaged_find_target_node(void)
 727{
 728        static int last_khugepaged_target_node = NUMA_NO_NODE;
 729        int nid, target_node = 0, max_value = 0;
 730
 731        /* find first node with max normal pages hit */
 732        for (nid = 0; nid < MAX_NUMNODES; nid++)
 733                if (khugepaged_node_load[nid] > max_value) {
 734                        max_value = khugepaged_node_load[nid];
 735                        target_node = nid;
 736                }
 737
 738        /* do some balance if several nodes have the same hit record */
 739        if (target_node <= last_khugepaged_target_node)
 740                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 741                                nid++)
 742                        if (max_value == khugepaged_node_load[nid]) {
 743                                target_node = nid;
 744                                break;
 745                        }
 746
 747        last_khugepaged_target_node = target_node;
 748        return target_node;
 749}
 750
 751static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 752{
 753        if (IS_ERR(*hpage)) {
 754                if (!*wait)
 755                        return false;
 756
 757                *wait = false;
 758                *hpage = NULL;
 759                khugepaged_alloc_sleep();
 760        } else if (*hpage) {
 761                put_page(*hpage);
 762                *hpage = NULL;
 763        }
 764
 765        return true;
 766}
 767
 768static struct page *
 769khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 770{
 771        VM_BUG_ON_PAGE(*hpage, *hpage);
 772
 773        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 774        if (unlikely(!*hpage)) {
 775                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 776                *hpage = ERR_PTR(-ENOMEM);
 777                return NULL;
 778        }
 779
 780        prep_transhuge_page(*hpage);
 781        count_vm_event(THP_COLLAPSE_ALLOC);
 782        return *hpage;
 783}
 784#else
 785static int khugepaged_find_target_node(void)
 786{
 787        return 0;
 788}
 789
 790static inline struct page *alloc_khugepaged_hugepage(void)
 791{
 792        struct page *page;
 793
 794        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 795                           HPAGE_PMD_ORDER);
 796        if (page)
 797                prep_transhuge_page(page);
 798        return page;
 799}
 800
 801static struct page *khugepaged_alloc_hugepage(bool *wait)
 802{
 803        struct page *hpage;
 804
 805        do {
 806                hpage = alloc_khugepaged_hugepage();
 807                if (!hpage) {
 808                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 809                        if (!*wait)
 810                                return NULL;
 811
 812                        *wait = false;
 813                        khugepaged_alloc_sleep();
 814                } else
 815                        count_vm_event(THP_COLLAPSE_ALLOC);
 816        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
 817
 818        return hpage;
 819}
 820
 821static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 822{
 823        if (!*hpage)
 824                *hpage = khugepaged_alloc_hugepage(wait);
 825
 826        if (unlikely(!*hpage))
 827                return false;
 828
 829        return true;
 830}
 831
 832static struct page *
 833khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 834{
 835        VM_BUG_ON(!*hpage);
 836
 837        return  *hpage;
 838}
 839#endif
 840
 841/*
 842 * If mmap_sem temporarily dropped, revalidate vma
 843 * before taking mmap_sem.
 844 * Return 0 if succeeds, otherwise return none-zero
 845 * value (scan code).
 846 */
 847
 848static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 849                struct vm_area_struct **vmap)
 850{
 851        struct vm_area_struct *vma;
 852        unsigned long hstart, hend;
 853
 854        if (unlikely(khugepaged_test_exit(mm)))
 855                return SCAN_ANY_PROCESS;
 856
 857        *vmap = vma = find_vma(mm, address);
 858        if (!vma)
 859                return SCAN_VMA_NULL;
 860
 861        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 862        hend = vma->vm_end & HPAGE_PMD_MASK;
 863        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 864                return SCAN_ADDRESS_RANGE;
 865        if (!hugepage_vma_check(vma, vma->vm_flags))
 866                return SCAN_VMA_CHECK;
 867        return 0;
 868}
 869
 870/*
 871 * Bring missing pages in from swap, to complete THP collapse.
 872 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 873 *
 874 * Called and returns without pte mapped or spinlocks held,
 875 * but with mmap_sem held to protect against vma changes.
 876 */
 877
 878static bool __collapse_huge_page_swapin(struct mm_struct *mm,
 879                                        struct vm_area_struct *vma,
 880                                        unsigned long address, pmd_t *pmd,
 881                                        int referenced)
 882{
 883        int swapped_in = 0;
 884        vm_fault_t ret = 0;
 885        struct vm_fault vmf = {
 886                .vma = vma,
 887                .address = address,
 888                .flags = FAULT_FLAG_ALLOW_RETRY,
 889                .pmd = pmd,
 890                .pgoff = linear_page_index(vma, address),
 891        };
 892
 893        /* we only decide to swapin, if there is enough young ptes */
 894        if (referenced < HPAGE_PMD_NR/2) {
 895                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 896                return false;
 897        }
 898        vmf.pte = pte_offset_map(pmd, address);
 899        for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
 900                        vmf.pte++, vmf.address += PAGE_SIZE) {
 901                vmf.orig_pte = *vmf.pte;
 902                if (!is_swap_pte(vmf.orig_pte))
 903                        continue;
 904                swapped_in++;
 905                ret = do_swap_page(&vmf);
 906
 907                /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
 908                if (ret & VM_FAULT_RETRY) {
 909                        down_read(&mm->mmap_sem);
 910                        if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
 911                                /* vma is no longer available, don't continue to swapin */
 912                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 913                                return false;
 914                        }
 915                        /* check if the pmd is still valid */
 916                        if (mm_find_pmd(mm, address) != pmd) {
 917                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 918                                return false;
 919                        }
 920                }
 921                if (ret & VM_FAULT_ERROR) {
 922                        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 923                        return false;
 924                }
 925                /* pte is unmapped now, we need to map it */
 926                vmf.pte = pte_offset_map(pmd, vmf.address);
 927        }
 928        vmf.pte--;
 929        pte_unmap(vmf.pte);
 930        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
 931        return true;
 932}
 933
 934static void collapse_huge_page(struct mm_struct *mm,
 935                                   unsigned long address,
 936                                   struct page **hpage,
 937                                   int node, int referenced)
 938{
 939        pmd_t *pmd, _pmd;
 940        pte_t *pte;
 941        pgtable_t pgtable;
 942        struct page *new_page;
 943        spinlock_t *pmd_ptl, *pte_ptl;
 944        int isolated = 0, result = 0;
 945        struct mem_cgroup *memcg;
 946        struct vm_area_struct *vma;
 947        unsigned long mmun_start;       /* For mmu_notifiers */
 948        unsigned long mmun_end;         /* For mmu_notifiers */
 949        gfp_t gfp;
 950
 951        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 952
 953        /* Only allocate from the target node */
 954        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
 955
 956        /*
 957         * Before allocating the hugepage, release the mmap_sem read lock.
 958         * The allocation can take potentially a long time if it involves
 959         * sync compaction, and we do not need to hold the mmap_sem during
 960         * that. We will recheck the vma after taking it again in write mode.
 961         */
 962        up_read(&mm->mmap_sem);
 963        new_page = khugepaged_alloc_page(hpage, gfp, node);
 964        if (!new_page) {
 965                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 966                goto out_nolock;
 967        }
 968
 969        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 970                result = SCAN_CGROUP_CHARGE_FAIL;
 971                goto out_nolock;
 972        }
 973
 974        down_read(&mm->mmap_sem);
 975        result = hugepage_vma_revalidate(mm, address, &vma);
 976        if (result) {
 977                mem_cgroup_cancel_charge(new_page, memcg, true);
 978                up_read(&mm->mmap_sem);
 979                goto out_nolock;
 980        }
 981
 982        pmd = mm_find_pmd(mm, address);
 983        if (!pmd) {
 984                result = SCAN_PMD_NULL;
 985                mem_cgroup_cancel_charge(new_page, memcg, true);
 986                up_read(&mm->mmap_sem);
 987                goto out_nolock;
 988        }
 989
 990        /*
 991         * __collapse_huge_page_swapin always returns with mmap_sem locked.
 992         * If it fails, we release mmap_sem and jump out_nolock.
 993         * Continuing to collapse causes inconsistency.
 994         */
 995        if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
 996                mem_cgroup_cancel_charge(new_page, memcg, true);
 997                up_read(&mm->mmap_sem);
 998                goto out_nolock;
 999        }
1000
1001        up_read(&mm->mmap_sem);
1002        /*
1003         * Prevent all access to pagetables with the exception of
1004         * gup_fast later handled by the ptep_clear_flush and the VM
1005         * handled by the anon_vma lock + PG_lock.
1006         */
1007        down_write(&mm->mmap_sem);
1008        result = hugepage_vma_revalidate(mm, address, &vma);
1009        if (result)
1010                goto out;
1011        /* check if the pmd is still valid */
1012        if (mm_find_pmd(mm, address) != pmd)
1013                goto out;
1014
1015        anon_vma_lock_write(vma->anon_vma);
1016
1017        pte = pte_offset_map(pmd, address);
1018        pte_ptl = pte_lockptr(mm, pmd);
1019
1020        mmun_start = address;
1021        mmun_end   = address + HPAGE_PMD_SIZE;
1022        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1023        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1024        /*
1025         * After this gup_fast can't run anymore. This also removes
1026         * any huge TLB entry from the CPU so we won't allow
1027         * huge and small TLB entries for the same virtual address
1028         * to avoid the risk of CPU bugs in that area.
1029         */
1030        _pmd = pmdp_collapse_flush(vma, address, pmd);
1031        spin_unlock(pmd_ptl);
1032        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1033
1034        spin_lock(pte_ptl);
1035        isolated = __collapse_huge_page_isolate(vma, address, pte);
1036        spin_unlock(pte_ptl);
1037
1038        if (unlikely(!isolated)) {
1039                pte_unmap(pte);
1040                spin_lock(pmd_ptl);
1041                BUG_ON(!pmd_none(*pmd));
1042                /*
1043                 * We can only use set_pmd_at when establishing
1044                 * hugepmds and never for establishing regular pmds that
1045                 * points to regular pagetables. Use pmd_populate for that
1046                 */
1047                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1048                spin_unlock(pmd_ptl);
1049                anon_vma_unlock_write(vma->anon_vma);
1050                result = SCAN_FAIL;
1051                goto out;
1052        }
1053
1054        /*
1055         * All pages are isolated and locked so anon_vma rmap
1056         * can't run anymore.
1057         */
1058        anon_vma_unlock_write(vma->anon_vma);
1059
1060        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1061        pte_unmap(pte);
1062        __SetPageUptodate(new_page);
1063        pgtable = pmd_pgtable(_pmd);
1064
1065        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1066        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1067
1068        /*
1069         * spin_lock() below is not the equivalent of smp_wmb(), so
1070         * this is needed to avoid the copy_huge_page writes to become
1071         * visible after the set_pmd_at() write.
1072         */
1073        smp_wmb();
1074
1075        spin_lock(pmd_ptl);
1076        BUG_ON(!pmd_none(*pmd));
1077        page_add_new_anon_rmap(new_page, vma, address, true);
1078        mem_cgroup_commit_charge(new_page, memcg, false, true);
1079        lru_cache_add_active_or_unevictable(new_page, vma);
1080        pgtable_trans_huge_deposit(mm, pmd, pgtable);
1081        set_pmd_at(mm, address, pmd, _pmd);
1082        update_mmu_cache_pmd(vma, address, pmd);
1083        spin_unlock(pmd_ptl);
1084
1085        *hpage = NULL;
1086
1087        khugepaged_pages_collapsed++;
1088        result = SCAN_SUCCEED;
1089out_up_write:
1090        up_write(&mm->mmap_sem);
1091out_nolock:
1092        trace_mm_collapse_huge_page(mm, isolated, result);
1093        return;
1094out:
1095        mem_cgroup_cancel_charge(new_page, memcg, true);
1096        goto out_up_write;
1097}
1098
1099static int khugepaged_scan_pmd(struct mm_struct *mm,
1100                               struct vm_area_struct *vma,
1101                               unsigned long address,
1102                               struct page **hpage)
1103{
1104        pmd_t *pmd;
1105        pte_t *pte, *_pte;
1106        int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1107        struct page *page = NULL;
1108        unsigned long _address;
1109        spinlock_t *ptl;
1110        int node = NUMA_NO_NODE, unmapped = 0;
1111        bool writable = false;
1112
1113        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1114
1115        pmd = mm_find_pmd(mm, address);
1116        if (!pmd) {
1117                result = SCAN_PMD_NULL;
1118                goto out;
1119        }
1120
1121        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1122        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1123        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1124             _pte++, _address += PAGE_SIZE) {
1125                pte_t pteval = *_pte;
1126                if (is_swap_pte(pteval)) {
1127                        if (++unmapped <= khugepaged_max_ptes_swap) {
1128                                continue;
1129                        } else {
1130                                result = SCAN_EXCEED_SWAP_PTE;
1131                                goto out_unmap;
1132                        }
1133                }
1134                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1135                        if (!userfaultfd_armed(vma) &&
1136                            ++none_or_zero <= khugepaged_max_ptes_none) {
1137                                continue;
1138                        } else {
1139                                result = SCAN_EXCEED_NONE_PTE;
1140                                goto out_unmap;
1141                        }
1142                }
1143                if (!pte_present(pteval)) {
1144                        result = SCAN_PTE_NON_PRESENT;
1145                        goto out_unmap;
1146                }
1147                if (pte_write(pteval))
1148                        writable = true;
1149
1150                page = vm_normal_page(vma, _address, pteval);
1151                if (unlikely(!page)) {
1152                        result = SCAN_PAGE_NULL;
1153                        goto out_unmap;
1154                }
1155
1156                /* TODO: teach khugepaged to collapse THP mapped with pte */
1157                if (PageCompound(page)) {
1158                        result = SCAN_PAGE_COMPOUND;
1159                        goto out_unmap;
1160                }
1161
1162                /*
1163                 * Record which node the original page is from and save this
1164                 * information to khugepaged_node_load[].
1165                 * Khupaged will allocate hugepage from the node has the max
1166                 * hit record.
1167                 */
1168                node = page_to_nid(page);
1169                if (khugepaged_scan_abort(node)) {
1170                        result = SCAN_SCAN_ABORT;
1171                        goto out_unmap;
1172                }
1173                khugepaged_node_load[node]++;
1174                if (!PageLRU(page)) {
1175                        result = SCAN_PAGE_LRU;
1176                        goto out_unmap;
1177                }
1178                if (PageLocked(page)) {
1179                        result = SCAN_PAGE_LOCK;
1180                        goto out_unmap;
1181                }
1182                if (!PageAnon(page)) {
1183                        result = SCAN_PAGE_ANON;
1184                        goto out_unmap;
1185                }
1186
1187                /*
1188                 * cannot use mapcount: can't collapse if there's a gup pin.
1189                 * The page must only be referenced by the scanned process
1190                 * and page swap cache.
1191                 */
1192                if (page_count(page) != 1 + PageSwapCache(page)) {
1193                        result = SCAN_PAGE_COUNT;
1194                        goto out_unmap;
1195                }
1196                if (pte_young(pteval) ||
1197                    page_is_young(page) || PageReferenced(page) ||
1198                    mmu_notifier_test_young(vma->vm_mm, address))
1199                        referenced++;
1200        }
1201        if (writable) {
1202                if (referenced) {
1203                        result = SCAN_SUCCEED;
1204                        ret = 1;
1205                } else {
1206                        result = SCAN_LACK_REFERENCED_PAGE;
1207                }
1208        } else {
1209                result = SCAN_PAGE_RO;
1210        }
1211out_unmap:
1212        pte_unmap_unlock(pte, ptl);
1213        if (ret) {
1214                node = khugepaged_find_target_node();
1215                /* collapse_huge_page will return with the mmap_sem released */
1216                collapse_huge_page(mm, address, hpage, node, referenced);
1217        }
1218out:
1219        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1220                                     none_or_zero, result, unmapped);
1221        return ret;
1222}
1223
1224static void collect_mm_slot(struct mm_slot *mm_slot)
1225{
1226        struct mm_struct *mm = mm_slot->mm;
1227
1228        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1229
1230        if (khugepaged_test_exit(mm)) {
1231                /* free mm_slot */
1232                hash_del(&mm_slot->hash);
1233                list_del(&mm_slot->mm_node);
1234
1235                /*
1236                 * Not strictly needed because the mm exited already.
1237                 *
1238                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1239                 */
1240
1241                /* khugepaged_mm_lock actually not necessary for the below */
1242                free_mm_slot(mm_slot);
1243                mmdrop(mm);
1244        }
1245}
1246
1247#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1248static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1249{
1250        struct vm_area_struct *vma;
1251        unsigned long addr;
1252        pmd_t *pmd, _pmd;
1253
1254        i_mmap_lock_write(mapping);
1255        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1256                /* probably overkill */
1257                if (vma->anon_vma)
1258                        continue;
1259                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1260                if (addr & ~HPAGE_PMD_MASK)
1261                        continue;
1262                if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1263                        continue;
1264                pmd = mm_find_pmd(vma->vm_mm, addr);
1265                if (!pmd)
1266                        continue;
1267                /*
1268                 * We need exclusive mmap_sem to retract page table.
1269                 * If trylock fails we would end up with pte-mapped THP after
1270                 * re-fault. Not ideal, but it's more important to not disturb
1271                 * the system too much.
1272                 */
1273                if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1274                        spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1275                        /* assume page table is clear */
1276                        _pmd = pmdp_collapse_flush(vma, addr, pmd);
1277                        spin_unlock(ptl);
1278                        up_write(&vma->vm_mm->mmap_sem);
1279                        mm_dec_nr_ptes(vma->vm_mm);
1280                        pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1281                }
1282        }
1283        i_mmap_unlock_write(mapping);
1284}
1285
1286/**
1287 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1288 *
1289 * Basic scheme is simple, details are more complex:
1290 *  - allocate and freeze a new huge page;
1291 *  - scan over radix tree replacing old pages the new one
1292 *    + swap in pages if necessary;
1293 *    + fill in gaps;
1294 *    + keep old pages around in case if rollback is required;
1295 *  - if replacing succeed:
1296 *    + copy data over;
1297 *    + free old pages;
1298 *    + unfreeze huge page;
1299 *  - if replacing failed;
1300 *    + put all pages back and unfreeze them;
1301 *    + restore gaps in the radix-tree;
1302 *    + free huge page;
1303 */
1304static void collapse_shmem(struct mm_struct *mm,
1305                struct address_space *mapping, pgoff_t start,
1306                struct page **hpage, int node)
1307{
1308        gfp_t gfp;
1309        struct page *page, *new_page, *tmp;
1310        struct mem_cgroup *memcg;
1311        pgoff_t index, end = start + HPAGE_PMD_NR;
1312        LIST_HEAD(pagelist);
1313        struct radix_tree_iter iter;
1314        void **slot;
1315        int nr_none = 0, result = SCAN_SUCCEED;
1316
1317        VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1318
1319        /* Only allocate from the target node */
1320        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1321
1322        new_page = khugepaged_alloc_page(hpage, gfp, node);
1323        if (!new_page) {
1324                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1325                goto out;
1326        }
1327
1328        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1329                result = SCAN_CGROUP_CHARGE_FAIL;
1330                goto out;
1331        }
1332
1333        new_page->index = start;
1334        new_page->mapping = mapping;
1335        __SetPageSwapBacked(new_page);
1336        __SetPageLocked(new_page);
1337        BUG_ON(!page_ref_freeze(new_page, 1));
1338
1339
1340        /*
1341         * At this point the new_page is 'frozen' (page_count() is zero), locked
1342         * and not up-to-date. It's safe to insert it into radix tree, because
1343         * nobody would be able to map it or use it in other way until we
1344         * unfreeze it.
1345         */
1346
1347        index = start;
1348        xa_lock_irq(&mapping->i_pages);
1349        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1350                int n = min(iter.index, end) - index;
1351
1352                /*
1353                 * Handle holes in the radix tree: charge it from shmem and
1354                 * insert relevant subpage of new_page into the radix-tree.
1355                 */
1356                if (n && !shmem_charge(mapping->host, n)) {
1357                        result = SCAN_FAIL;
1358                        break;
1359                }
1360                nr_none += n;
1361                for (; index < min(iter.index, end); index++) {
1362                        radix_tree_insert(&mapping->i_pages, index,
1363                                        new_page + (index % HPAGE_PMD_NR));
1364                }
1365
1366                /* We are done. */
1367                if (index >= end)
1368                        break;
1369
1370                page = radix_tree_deref_slot_protected(slot,
1371                                &mapping->i_pages.xa_lock);
1372                if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1373                        xa_unlock_irq(&mapping->i_pages);
1374                        /* swap in or instantiate fallocated page */
1375                        if (shmem_getpage(mapping->host, index, &page,
1376                                                SGP_NOHUGE)) {
1377                                result = SCAN_FAIL;
1378                                goto tree_unlocked;
1379                        }
1380                        xa_lock_irq(&mapping->i_pages);
1381                } else if (trylock_page(page)) {
1382                        get_page(page);
1383                } else {
1384                        result = SCAN_PAGE_LOCK;
1385                        break;
1386                }
1387
1388                /*
1389                 * The page must be locked, so we can drop the i_pages lock
1390                 * without racing with truncate.
1391                 */
1392                VM_BUG_ON_PAGE(!PageLocked(page), page);
1393                VM_BUG_ON_PAGE(!PageUptodate(page), page);
1394                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1395
1396                if (page_mapping(page) != mapping) {
1397                        result = SCAN_TRUNCATED;
1398                        goto out_unlock;
1399                }
1400                xa_unlock_irq(&mapping->i_pages);
1401
1402                if (isolate_lru_page(page)) {
1403                        result = SCAN_DEL_PAGE_LRU;
1404                        goto out_isolate_failed;
1405                }
1406
1407                if (page_mapped(page))
1408                        unmap_mapping_pages(mapping, index, 1, false);
1409
1410                xa_lock_irq(&mapping->i_pages);
1411
1412                slot = radix_tree_lookup_slot(&mapping->i_pages, index);
1413                VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1414                                        &mapping->i_pages.xa_lock), page);
1415                VM_BUG_ON_PAGE(page_mapped(page), page);
1416
1417                /*
1418                 * The page is expected to have page_count() == 3:
1419                 *  - we hold a pin on it;
1420                 *  - one reference from radix tree;
1421                 *  - one from isolate_lru_page;
1422                 */
1423                if (!page_ref_freeze(page, 3)) {
1424                        result = SCAN_PAGE_COUNT;
1425                        goto out_lru;
1426                }
1427
1428                /*
1429                 * Add the page to the list to be able to undo the collapse if
1430                 * something go wrong.
1431                 */
1432                list_add_tail(&page->lru, &pagelist);
1433
1434                /* Finally, replace with the new page. */
1435                radix_tree_replace_slot(&mapping->i_pages, slot,
1436                                new_page + (index % HPAGE_PMD_NR));
1437
1438                slot = radix_tree_iter_resume(slot, &iter);
1439                index++;
1440                continue;
1441out_lru:
1442                xa_unlock_irq(&mapping->i_pages);
1443                putback_lru_page(page);
1444out_isolate_failed:
1445                unlock_page(page);
1446                put_page(page);
1447                goto tree_unlocked;
1448out_unlock:
1449                unlock_page(page);
1450                put_page(page);
1451                break;
1452        }
1453
1454        /*
1455         * Handle hole in radix tree at the end of the range.
1456         * This code only triggers if there's nothing in radix tree
1457         * beyond 'end'.
1458         */
1459        if (result == SCAN_SUCCEED && index < end) {
1460                int n = end - index;
1461
1462                if (!shmem_charge(mapping->host, n)) {
1463                        result = SCAN_FAIL;
1464                        goto tree_locked;
1465                }
1466
1467                for (; index < end; index++) {
1468                        radix_tree_insert(&mapping->i_pages, index,
1469                                        new_page + (index % HPAGE_PMD_NR));
1470                }
1471                nr_none += n;
1472        }
1473
1474tree_locked:
1475        xa_unlock_irq(&mapping->i_pages);
1476tree_unlocked:
1477
1478        if (result == SCAN_SUCCEED) {
1479                unsigned long flags;
1480                struct zone *zone = page_zone(new_page);
1481
1482                /*
1483                 * Replacing old pages with new one has succeed, now we need to
1484                 * copy the content and free old pages.
1485                 */
1486                list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1487                        copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1488                                        page);
1489                        list_del(&page->lru);
1490                        unlock_page(page);
1491                        page_ref_unfreeze(page, 1);
1492                        page->mapping = NULL;
1493                        ClearPageActive(page);
1494                        ClearPageUnevictable(page);
1495                        put_page(page);
1496                }
1497
1498                local_irq_save(flags);
1499                __inc_node_page_state(new_page, NR_SHMEM_THPS);
1500                if (nr_none) {
1501                        __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1502                        __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1503                }
1504                local_irq_restore(flags);
1505
1506                /*
1507                 * Remove pte page tables, so we can re-faulti
1508                 * the page as huge.
1509                 */
1510                retract_page_tables(mapping, start);
1511
1512                /* Everything is ready, let's unfreeze the new_page */
1513                set_page_dirty(new_page);
1514                SetPageUptodate(new_page);
1515                page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1516                mem_cgroup_commit_charge(new_page, memcg, false, true);
1517                lru_cache_add_anon(new_page);
1518                unlock_page(new_page);
1519
1520                *hpage = NULL;
1521
1522                khugepaged_pages_collapsed++;
1523        } else {
1524                /* Something went wrong: rollback changes to the radix-tree */
1525                shmem_uncharge(mapping->host, nr_none);
1526                xa_lock_irq(&mapping->i_pages);
1527                radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1528                        if (iter.index >= end)
1529                                break;
1530                        page = list_first_entry_or_null(&pagelist,
1531                                        struct page, lru);
1532                        if (!page || iter.index < page->index) {
1533                                if (!nr_none)
1534                                        break;
1535                                nr_none--;
1536                                /* Put holes back where they were */
1537                                radix_tree_delete(&mapping->i_pages, iter.index);
1538                                continue;
1539                        }
1540
1541                        VM_BUG_ON_PAGE(page->index != iter.index, page);
1542
1543                        /* Unfreeze the page. */
1544                        list_del(&page->lru);
1545                        page_ref_unfreeze(page, 2);
1546                        radix_tree_replace_slot(&mapping->i_pages, slot, page);
1547                        slot = radix_tree_iter_resume(slot, &iter);
1548                        xa_unlock_irq(&mapping->i_pages);
1549                        putback_lru_page(page);
1550                        unlock_page(page);
1551                        xa_lock_irq(&mapping->i_pages);
1552                }
1553                VM_BUG_ON(nr_none);
1554                xa_unlock_irq(&mapping->i_pages);
1555
1556                /* Unfreeze new_page, caller would take care about freeing it */
1557                page_ref_unfreeze(new_page, 1);
1558                mem_cgroup_cancel_charge(new_page, memcg, true);
1559                unlock_page(new_page);
1560                new_page->mapping = NULL;
1561        }
1562out:
1563        VM_BUG_ON(!list_empty(&pagelist));
1564        /* TODO: tracepoints */
1565}
1566
1567static void khugepaged_scan_shmem(struct mm_struct *mm,
1568                struct address_space *mapping,
1569                pgoff_t start, struct page **hpage)
1570{
1571        struct page *page = NULL;
1572        struct radix_tree_iter iter;
1573        void **slot;
1574        int present, swap;
1575        int node = NUMA_NO_NODE;
1576        int result = SCAN_SUCCEED;
1577
1578        present = 0;
1579        swap = 0;
1580        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1581        rcu_read_lock();
1582        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1583                if (iter.index >= start + HPAGE_PMD_NR)
1584                        break;
1585
1586                page = radix_tree_deref_slot(slot);
1587                if (radix_tree_deref_retry(page)) {
1588                        slot = radix_tree_iter_retry(&iter);
1589                        continue;
1590                }
1591
1592                if (radix_tree_exception(page)) {
1593                        if (++swap > khugepaged_max_ptes_swap) {
1594                                result = SCAN_EXCEED_SWAP_PTE;
1595                                break;
1596                        }
1597                        continue;
1598                }
1599
1600                if (PageTransCompound(page)) {
1601                        result = SCAN_PAGE_COMPOUND;
1602                        break;
1603                }
1604
1605                node = page_to_nid(page);
1606                if (khugepaged_scan_abort(node)) {
1607                        result = SCAN_SCAN_ABORT;
1608                        break;
1609                }
1610                khugepaged_node_load[node]++;
1611
1612                if (!PageLRU(page)) {
1613                        result = SCAN_PAGE_LRU;
1614                        break;
1615                }
1616
1617                if (page_count(page) != 1 + page_mapcount(page)) {
1618                        result = SCAN_PAGE_COUNT;
1619                        break;
1620                }
1621
1622                /*
1623                 * We probably should check if the page is referenced here, but
1624                 * nobody would transfer pte_young() to PageReferenced() for us.
1625                 * And rmap walk here is just too costly...
1626                 */
1627
1628                present++;
1629
1630                if (need_resched()) {
1631                        slot = radix_tree_iter_resume(slot, &iter);
1632                        cond_resched_rcu();
1633                }
1634        }
1635        rcu_read_unlock();
1636
1637        if (result == SCAN_SUCCEED) {
1638                if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1639                        result = SCAN_EXCEED_NONE_PTE;
1640                } else {
1641                        node = khugepaged_find_target_node();
1642                        collapse_shmem(mm, mapping, start, hpage, node);
1643                }
1644        }
1645
1646        /* TODO: tracepoints */
1647}
1648#else
1649static void khugepaged_scan_shmem(struct mm_struct *mm,
1650                struct address_space *mapping,
1651                pgoff_t start, struct page **hpage)
1652{
1653        BUILD_BUG();
1654}
1655#endif
1656
1657static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1658                                            struct page **hpage)
1659        __releases(&khugepaged_mm_lock)
1660        __acquires(&khugepaged_mm_lock)
1661{
1662        struct mm_slot *mm_slot;
1663        struct mm_struct *mm;
1664        struct vm_area_struct *vma;
1665        int progress = 0;
1666
1667        VM_BUG_ON(!pages);
1668        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1669
1670        if (khugepaged_scan.mm_slot)
1671                mm_slot = khugepaged_scan.mm_slot;
1672        else {
1673                mm_slot = list_entry(khugepaged_scan.mm_head.next,
1674                                     struct mm_slot, mm_node);
1675                khugepaged_scan.address = 0;
1676                khugepaged_scan.mm_slot = mm_slot;
1677        }
1678        spin_unlock(&khugepaged_mm_lock);
1679
1680        mm = mm_slot->mm;
1681        /*
1682         * Don't wait for semaphore (to avoid long wait times).  Just move to
1683         * the next mm on the list.
1684         */
1685        vma = NULL;
1686        if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1687                goto breakouterloop_mmap_sem;
1688        if (likely(!khugepaged_test_exit(mm)))
1689                vma = find_vma(mm, khugepaged_scan.address);
1690
1691        progress++;
1692        for (; vma; vma = vma->vm_next) {
1693                unsigned long hstart, hend;
1694
1695                cond_resched();
1696                if (unlikely(khugepaged_test_exit(mm))) {
1697                        progress++;
1698                        break;
1699                }
1700                if (!hugepage_vma_check(vma, vma->vm_flags)) {
1701skip:
1702                        progress++;
1703                        continue;
1704                }
1705                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1706                hend = vma->vm_end & HPAGE_PMD_MASK;
1707                if (hstart >= hend)
1708                        goto skip;
1709                if (khugepaged_scan.address > hend)
1710                        goto skip;
1711                if (khugepaged_scan.address < hstart)
1712                        khugepaged_scan.address = hstart;
1713                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1714
1715                while (khugepaged_scan.address < hend) {
1716                        int ret;
1717                        cond_resched();
1718                        if (unlikely(khugepaged_test_exit(mm)))
1719                                goto breakouterloop;
1720
1721                        VM_BUG_ON(khugepaged_scan.address < hstart ||
1722                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
1723                                  hend);
1724                        if (shmem_file(vma->vm_file)) {
1725                                struct file *file;
1726                                pgoff_t pgoff = linear_page_index(vma,
1727                                                khugepaged_scan.address);
1728                                if (!shmem_huge_enabled(vma))
1729                                        goto skip;
1730                                file = get_file(vma->vm_file);
1731                                up_read(&mm->mmap_sem);
1732                                ret = 1;
1733                                khugepaged_scan_shmem(mm, file->f_mapping,
1734                                                pgoff, hpage);
1735                                fput(file);
1736                        } else {
1737                                ret = khugepaged_scan_pmd(mm, vma,
1738                                                khugepaged_scan.address,
1739                                                hpage);
1740                        }
1741                        /* move to next address */
1742                        khugepaged_scan.address += HPAGE_PMD_SIZE;
1743                        progress += HPAGE_PMD_NR;
1744                        if (ret)
1745                                /* we released mmap_sem so break loop */
1746                                goto breakouterloop_mmap_sem;
1747                        if (progress >= pages)
1748                                goto breakouterloop;
1749                }
1750        }
1751breakouterloop:
1752        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1753breakouterloop_mmap_sem:
1754
1755        spin_lock(&khugepaged_mm_lock);
1756        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1757        /*
1758         * Release the current mm_slot if this mm is about to die, or
1759         * if we scanned all vmas of this mm.
1760         */
1761        if (khugepaged_test_exit(mm) || !vma) {
1762                /*
1763                 * Make sure that if mm_users is reaching zero while
1764                 * khugepaged runs here, khugepaged_exit will find
1765                 * mm_slot not pointing to the exiting mm.
1766                 */
1767                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1768                        khugepaged_scan.mm_slot = list_entry(
1769                                mm_slot->mm_node.next,
1770                                struct mm_slot, mm_node);
1771                        khugepaged_scan.address = 0;
1772                } else {
1773                        khugepaged_scan.mm_slot = NULL;
1774                        khugepaged_full_scans++;
1775                }
1776
1777                collect_mm_slot(mm_slot);
1778        }
1779
1780        return progress;
1781}
1782
1783static int khugepaged_has_work(void)
1784{
1785        return !list_empty(&khugepaged_scan.mm_head) &&
1786                khugepaged_enabled();
1787}
1788
1789static int khugepaged_wait_event(void)
1790{
1791        return !list_empty(&khugepaged_scan.mm_head) ||
1792                kthread_should_stop();
1793}
1794
1795static void khugepaged_do_scan(void)
1796{
1797        struct page *hpage = NULL;
1798        unsigned int progress = 0, pass_through_head = 0;
1799        unsigned int pages = khugepaged_pages_to_scan;
1800        bool wait = true;
1801
1802        barrier(); /* write khugepaged_pages_to_scan to local stack */
1803
1804        while (progress < pages) {
1805                if (!khugepaged_prealloc_page(&hpage, &wait))
1806                        break;
1807
1808                cond_resched();
1809
1810                if (unlikely(kthread_should_stop() || try_to_freeze()))
1811                        break;
1812
1813                spin_lock(&khugepaged_mm_lock);
1814                if (!khugepaged_scan.mm_slot)
1815                        pass_through_head++;
1816                if (khugepaged_has_work() &&
1817                    pass_through_head < 2)
1818                        progress += khugepaged_scan_mm_slot(pages - progress,
1819                                                            &hpage);
1820                else
1821                        progress = pages;
1822                spin_unlock(&khugepaged_mm_lock);
1823        }
1824
1825        if (!IS_ERR_OR_NULL(hpage))
1826                put_page(hpage);
1827}
1828
1829static bool khugepaged_should_wakeup(void)
1830{
1831        return kthread_should_stop() ||
1832               time_after_eq(jiffies, khugepaged_sleep_expire);
1833}
1834
1835static void khugepaged_wait_work(void)
1836{
1837        if (khugepaged_has_work()) {
1838                const unsigned long scan_sleep_jiffies =
1839                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1840
1841                if (!scan_sleep_jiffies)
1842                        return;
1843
1844                khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1845                wait_event_freezable_timeout(khugepaged_wait,
1846                                             khugepaged_should_wakeup(),
1847                                             scan_sleep_jiffies);
1848                return;
1849        }
1850
1851        if (khugepaged_enabled())
1852                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1853}
1854
1855static int khugepaged(void *none)
1856{
1857        struct mm_slot *mm_slot;
1858
1859        set_freezable();
1860        set_user_nice(current, MAX_NICE);
1861
1862        while (!kthread_should_stop()) {
1863                khugepaged_do_scan();
1864                khugepaged_wait_work();
1865        }
1866
1867        spin_lock(&khugepaged_mm_lock);
1868        mm_slot = khugepaged_scan.mm_slot;
1869        khugepaged_scan.mm_slot = NULL;
1870        if (mm_slot)
1871                collect_mm_slot(mm_slot);
1872        spin_unlock(&khugepaged_mm_lock);
1873        return 0;
1874}
1875
1876static void set_recommended_min_free_kbytes(void)
1877{
1878        struct zone *zone;
1879        int nr_zones = 0;
1880        unsigned long recommended_min;
1881
1882        for_each_populated_zone(zone) {
1883                /*
1884                 * We don't need to worry about fragmentation of
1885                 * ZONE_MOVABLE since it only has movable pages.
1886                 */
1887                if (zone_idx(zone) > gfp_zone(GFP_USER))
1888                        continue;
1889
1890                nr_zones++;
1891        }
1892
1893        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1894        recommended_min = pageblock_nr_pages * nr_zones * 2;
1895
1896        /*
1897         * Make sure that on average at least two pageblocks are almost free
1898         * of another type, one for a migratetype to fall back to and a
1899         * second to avoid subsequent fallbacks of other types There are 3
1900         * MIGRATE_TYPES we care about.
1901         */
1902        recommended_min += pageblock_nr_pages * nr_zones *
1903                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1904
1905        /* don't ever allow to reserve more than 5% of the lowmem */
1906        recommended_min = min(recommended_min,
1907                              (unsigned long) nr_free_buffer_pages() / 20);
1908        recommended_min <<= (PAGE_SHIFT-10);
1909
1910        if (recommended_min > min_free_kbytes) {
1911                if (user_min_free_kbytes >= 0)
1912                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1913                                min_free_kbytes, recommended_min);
1914
1915                min_free_kbytes = recommended_min;
1916        }
1917        setup_per_zone_wmarks();
1918}
1919
1920int start_stop_khugepaged(void)
1921{
1922        static struct task_struct *khugepaged_thread __read_mostly;
1923        static DEFINE_MUTEX(khugepaged_mutex);
1924        int err = 0;
1925
1926        mutex_lock(&khugepaged_mutex);
1927        if (khugepaged_enabled()) {
1928                if (!khugepaged_thread)
1929                        khugepaged_thread = kthread_run(khugepaged, NULL,
1930                                                        "khugepaged");
1931                if (IS_ERR(khugepaged_thread)) {
1932                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1933                        err = PTR_ERR(khugepaged_thread);
1934                        khugepaged_thread = NULL;
1935                        goto fail;
1936                }
1937
1938                if (!list_empty(&khugepaged_scan.mm_head))
1939                        wake_up_interruptible(&khugepaged_wait);
1940
1941                set_recommended_min_free_kbytes();
1942        } else if (khugepaged_thread) {
1943                kthread_stop(khugepaged_thread);
1944                khugepaged_thread = NULL;
1945        }
1946fail:
1947        mutex_unlock(&khugepaged_mutex);
1948        return err;
1949}
1950