linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/sched/mm.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/hugetlb.h>
  41#include <linux/pagemap.h>
  42#include <linux/smp.h>
  43#include <linux/page-flags.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/limits.h>
  48#include <linux/export.h>
  49#include <linux/mutex.h>
  50#include <linux/rbtree.h>
  51#include <linux/slab.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/spinlock.h>
  55#include <linux/eventfd.h>
  56#include <linux/poll.h>
  57#include <linux/sort.h>
  58#include <linux/fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/vmpressure.h>
  61#include <linux/mm_inline.h>
  62#include <linux/swap_cgroup.h>
  63#include <linux/cpu.h>
  64#include <linux/oom.h>
  65#include <linux/lockdep.h>
  66#include <linux/file.h>
  67#include <linux/tracehook.h>
  68#include "internal.h"
  69#include <net/sock.h>
  70#include <net/ip.h>
  71#include "slab.h"
  72
  73#include <linux/uaccess.h>
  74
  75#include <trace/events/vmscan.h>
  76
  77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  78EXPORT_SYMBOL(memory_cgrp_subsys);
  79
  80struct mem_cgroup *root_mem_cgroup __read_mostly;
  81
  82#define MEM_CGROUP_RECLAIM_RETRIES      5
  83
  84/* Socket memory accounting disabled? */
  85static bool cgroup_memory_nosocket;
  86
  87/* Kernel memory accounting disabled? */
  88static bool cgroup_memory_nokmem;
  89
  90/* Whether the swap controller is active */
  91#ifdef CONFIG_MEMCG_SWAP
  92int do_swap_account __read_mostly;
  93#else
  94#define do_swap_account         0
  95#endif
  96
  97/* Whether legacy memory+swap accounting is active */
  98static bool do_memsw_account(void)
  99{
 100        return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 101}
 102
 103static const char *const mem_cgroup_lru_names[] = {
 104        "inactive_anon",
 105        "active_anon",
 106        "inactive_file",
 107        "active_file",
 108        "unevictable",
 109};
 110
 111#define THRESHOLDS_EVENTS_TARGET 128
 112#define SOFTLIMIT_EVENTS_TARGET 1024
 113#define NUMAINFO_EVENTS_TARGET  1024
 114
 115/*
 116 * Cgroups above their limits are maintained in a RB-Tree, independent of
 117 * their hierarchy representation
 118 */
 119
 120struct mem_cgroup_tree_per_node {
 121        struct rb_root rb_root;
 122        struct rb_node *rb_rightmost;
 123        spinlock_t lock;
 124};
 125
 126struct mem_cgroup_tree {
 127        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 128};
 129
 130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 131
 132/* for OOM */
 133struct mem_cgroup_eventfd_list {
 134        struct list_head list;
 135        struct eventfd_ctx *eventfd;
 136};
 137
 138/*
 139 * cgroup_event represents events which userspace want to receive.
 140 */
 141struct mem_cgroup_event {
 142        /*
 143         * memcg which the event belongs to.
 144         */
 145        struct mem_cgroup *memcg;
 146        /*
 147         * eventfd to signal userspace about the event.
 148         */
 149        struct eventfd_ctx *eventfd;
 150        /*
 151         * Each of these stored in a list by the cgroup.
 152         */
 153        struct list_head list;
 154        /*
 155         * register_event() callback will be used to add new userspace
 156         * waiter for changes related to this event.  Use eventfd_signal()
 157         * on eventfd to send notification to userspace.
 158         */
 159        int (*register_event)(struct mem_cgroup *memcg,
 160                              struct eventfd_ctx *eventfd, const char *args);
 161        /*
 162         * unregister_event() callback will be called when userspace closes
 163         * the eventfd or on cgroup removing.  This callback must be set,
 164         * if you want provide notification functionality.
 165         */
 166        void (*unregister_event)(struct mem_cgroup *memcg,
 167                                 struct eventfd_ctx *eventfd);
 168        /*
 169         * All fields below needed to unregister event when
 170         * userspace closes eventfd.
 171         */
 172        poll_table pt;
 173        wait_queue_head_t *wqh;
 174        wait_queue_entry_t wait;
 175        struct work_struct remove;
 176};
 177
 178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 180
 181/* Stuffs for move charges at task migration. */
 182/*
 183 * Types of charges to be moved.
 184 */
 185#define MOVE_ANON       0x1U
 186#define MOVE_FILE       0x2U
 187#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 188
 189/* "mc" and its members are protected by cgroup_mutex */
 190static struct move_charge_struct {
 191        spinlock_t        lock; /* for from, to */
 192        struct mm_struct  *mm;
 193        struct mem_cgroup *from;
 194        struct mem_cgroup *to;
 195        unsigned long flags;
 196        unsigned long precharge;
 197        unsigned long moved_charge;
 198        unsigned long moved_swap;
 199        struct task_struct *moving_task;        /* a task moving charges */
 200        wait_queue_head_t waitq;                /* a waitq for other context */
 201} mc = {
 202        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 203        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 204};
 205
 206/*
 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 208 * limit reclaim to prevent infinite loops, if they ever occur.
 209 */
 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 212
 213enum charge_type {
 214        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 215        MEM_CGROUP_CHARGE_TYPE_ANON,
 216        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 217        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 218        NR_CHARGE_TYPE,
 219};
 220
 221/* for encoding cft->private value on file */
 222enum res_type {
 223        _MEM,
 224        _MEMSWAP,
 225        _OOM_TYPE,
 226        _KMEM,
 227        _TCP,
 228};
 229
 230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 231#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 232#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 233/* Used for OOM nofiier */
 234#define OOM_CONTROL             (0)
 235
 236/*
 237 * Iteration constructs for visiting all cgroups (under a tree).  If
 238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 239 * be used for reference counting.
 240 */
 241#define for_each_mem_cgroup_tree(iter, root)            \
 242        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 243             iter != NULL;                              \
 244             iter = mem_cgroup_iter(root, iter, NULL))
 245
 246#define for_each_mem_cgroup(iter)                       \
 247        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 248             iter != NULL;                              \
 249             iter = mem_cgroup_iter(NULL, iter, NULL))
 250
 251/* Some nice accessors for the vmpressure. */
 252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 253{
 254        if (!memcg)
 255                memcg = root_mem_cgroup;
 256        return &memcg->vmpressure;
 257}
 258
 259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 260{
 261        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 262}
 263
 264#ifdef CONFIG_MEMCG_KMEM
 265/*
 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 267 * The main reason for not using cgroup id for this:
 268 *  this works better in sparse environments, where we have a lot of memcgs,
 269 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 270 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 271 *  200 entry array for that.
 272 *
 273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 274 * will double each time we have to increase it.
 275 */
 276static DEFINE_IDA(memcg_cache_ida);
 277int memcg_nr_cache_ids;
 278
 279/* Protects memcg_nr_cache_ids */
 280static DECLARE_RWSEM(memcg_cache_ids_sem);
 281
 282void memcg_get_cache_ids(void)
 283{
 284        down_read(&memcg_cache_ids_sem);
 285}
 286
 287void memcg_put_cache_ids(void)
 288{
 289        up_read(&memcg_cache_ids_sem);
 290}
 291
 292/*
 293 * MIN_SIZE is different than 1, because we would like to avoid going through
 294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 295 * cgroups is a reasonable guess. In the future, it could be a parameter or
 296 * tunable, but that is strictly not necessary.
 297 *
 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 299 * this constant directly from cgroup, but it is understandable that this is
 300 * better kept as an internal representation in cgroup.c. In any case, the
 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 302 * increase ours as well if it increases.
 303 */
 304#define MEMCG_CACHES_MIN_SIZE 4
 305#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 306
 307/*
 308 * A lot of the calls to the cache allocation functions are expected to be
 309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 310 * conditional to this static branch, we'll have to allow modules that does
 311 * kmem_cache_alloc and the such to see this symbol as well
 312 */
 313DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 314EXPORT_SYMBOL(memcg_kmem_enabled_key);
 315
 316struct workqueue_struct *memcg_kmem_cache_wq;
 317
 318static int memcg_shrinker_map_size;
 319static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 320
 321static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 322{
 323        kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 324}
 325
 326static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 327                                         int size, int old_size)
 328{
 329        struct memcg_shrinker_map *new, *old;
 330        int nid;
 331
 332        lockdep_assert_held(&memcg_shrinker_map_mutex);
 333
 334        for_each_node(nid) {
 335                old = rcu_dereference_protected(
 336                        mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 337                /* Not yet online memcg */
 338                if (!old)
 339                        return 0;
 340
 341                new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
 342                if (!new)
 343                        return -ENOMEM;
 344
 345                /* Set all old bits, clear all new bits */
 346                memset(new->map, (int)0xff, old_size);
 347                memset((void *)new->map + old_size, 0, size - old_size);
 348
 349                rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 350                call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 351        }
 352
 353        return 0;
 354}
 355
 356static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 357{
 358        struct mem_cgroup_per_node *pn;
 359        struct memcg_shrinker_map *map;
 360        int nid;
 361
 362        if (mem_cgroup_is_root(memcg))
 363                return;
 364
 365        for_each_node(nid) {
 366                pn = mem_cgroup_nodeinfo(memcg, nid);
 367                map = rcu_dereference_protected(pn->shrinker_map, true);
 368                if (map)
 369                        kvfree(map);
 370                rcu_assign_pointer(pn->shrinker_map, NULL);
 371        }
 372}
 373
 374static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 375{
 376        struct memcg_shrinker_map *map;
 377        int nid, size, ret = 0;
 378
 379        if (mem_cgroup_is_root(memcg))
 380                return 0;
 381
 382        mutex_lock(&memcg_shrinker_map_mutex);
 383        size = memcg_shrinker_map_size;
 384        for_each_node(nid) {
 385                map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
 386                if (!map) {
 387                        memcg_free_shrinker_maps(memcg);
 388                        ret = -ENOMEM;
 389                        break;
 390                }
 391                rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 392        }
 393        mutex_unlock(&memcg_shrinker_map_mutex);
 394
 395        return ret;
 396}
 397
 398int memcg_expand_shrinker_maps(int new_id)
 399{
 400        int size, old_size, ret = 0;
 401        struct mem_cgroup *memcg;
 402
 403        size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 404        old_size = memcg_shrinker_map_size;
 405        if (size <= old_size)
 406                return 0;
 407
 408        mutex_lock(&memcg_shrinker_map_mutex);
 409        if (!root_mem_cgroup)
 410                goto unlock;
 411
 412        for_each_mem_cgroup(memcg) {
 413                if (mem_cgroup_is_root(memcg))
 414                        continue;
 415                ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 416                if (ret)
 417                        goto unlock;
 418        }
 419unlock:
 420        if (!ret)
 421                memcg_shrinker_map_size = size;
 422        mutex_unlock(&memcg_shrinker_map_mutex);
 423        return ret;
 424}
 425
 426void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 427{
 428        if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 429                struct memcg_shrinker_map *map;
 430
 431                rcu_read_lock();
 432                map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 433                /* Pairs with smp mb in shrink_slab() */
 434                smp_mb__before_atomic();
 435                set_bit(shrinker_id, map->map);
 436                rcu_read_unlock();
 437        }
 438}
 439
 440#else /* CONFIG_MEMCG_KMEM */
 441static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 442{
 443        return 0;
 444}
 445static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
 446#endif /* CONFIG_MEMCG_KMEM */
 447
 448/**
 449 * mem_cgroup_css_from_page - css of the memcg associated with a page
 450 * @page: page of interest
 451 *
 452 * If memcg is bound to the default hierarchy, css of the memcg associated
 453 * with @page is returned.  The returned css remains associated with @page
 454 * until it is released.
 455 *
 456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 457 * is returned.
 458 */
 459struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 460{
 461        struct mem_cgroup *memcg;
 462
 463        memcg = page->mem_cgroup;
 464
 465        if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 466                memcg = root_mem_cgroup;
 467
 468        return &memcg->css;
 469}
 470
 471/**
 472 * page_cgroup_ino - return inode number of the memcg a page is charged to
 473 * @page: the page
 474 *
 475 * Look up the closest online ancestor of the memory cgroup @page is charged to
 476 * and return its inode number or 0 if @page is not charged to any cgroup. It
 477 * is safe to call this function without holding a reference to @page.
 478 *
 479 * Note, this function is inherently racy, because there is nothing to prevent
 480 * the cgroup inode from getting torn down and potentially reallocated a moment
 481 * after page_cgroup_ino() returns, so it only should be used by callers that
 482 * do not care (such as procfs interfaces).
 483 */
 484ino_t page_cgroup_ino(struct page *page)
 485{
 486        struct mem_cgroup *memcg;
 487        unsigned long ino = 0;
 488
 489        rcu_read_lock();
 490        memcg = READ_ONCE(page->mem_cgroup);
 491        while (memcg && !(memcg->css.flags & CSS_ONLINE))
 492                memcg = parent_mem_cgroup(memcg);
 493        if (memcg)
 494                ino = cgroup_ino(memcg->css.cgroup);
 495        rcu_read_unlock();
 496        return ino;
 497}
 498
 499static struct mem_cgroup_per_node *
 500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 501{
 502        int nid = page_to_nid(page);
 503
 504        return memcg->nodeinfo[nid];
 505}
 506
 507static struct mem_cgroup_tree_per_node *
 508soft_limit_tree_node(int nid)
 509{
 510        return soft_limit_tree.rb_tree_per_node[nid];
 511}
 512
 513static struct mem_cgroup_tree_per_node *
 514soft_limit_tree_from_page(struct page *page)
 515{
 516        int nid = page_to_nid(page);
 517
 518        return soft_limit_tree.rb_tree_per_node[nid];
 519}
 520
 521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 522                                         struct mem_cgroup_tree_per_node *mctz,
 523                                         unsigned long new_usage_in_excess)
 524{
 525        struct rb_node **p = &mctz->rb_root.rb_node;
 526        struct rb_node *parent = NULL;
 527        struct mem_cgroup_per_node *mz_node;
 528        bool rightmost = true;
 529
 530        if (mz->on_tree)
 531                return;
 532
 533        mz->usage_in_excess = new_usage_in_excess;
 534        if (!mz->usage_in_excess)
 535                return;
 536        while (*p) {
 537                parent = *p;
 538                mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 539                                        tree_node);
 540                if (mz->usage_in_excess < mz_node->usage_in_excess) {
 541                        p = &(*p)->rb_left;
 542                        rightmost = false;
 543                }
 544
 545                /*
 546                 * We can't avoid mem cgroups that are over their soft
 547                 * limit by the same amount
 548                 */
 549                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 550                        p = &(*p)->rb_right;
 551        }
 552
 553        if (rightmost)
 554                mctz->rb_rightmost = &mz->tree_node;
 555
 556        rb_link_node(&mz->tree_node, parent, p);
 557        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 558        mz->on_tree = true;
 559}
 560
 561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 562                                         struct mem_cgroup_tree_per_node *mctz)
 563{
 564        if (!mz->on_tree)
 565                return;
 566
 567        if (&mz->tree_node == mctz->rb_rightmost)
 568                mctz->rb_rightmost = rb_prev(&mz->tree_node);
 569
 570        rb_erase(&mz->tree_node, &mctz->rb_root);
 571        mz->on_tree = false;
 572}
 573
 574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 575                                       struct mem_cgroup_tree_per_node *mctz)
 576{
 577        unsigned long flags;
 578
 579        spin_lock_irqsave(&mctz->lock, flags);
 580        __mem_cgroup_remove_exceeded(mz, mctz);
 581        spin_unlock_irqrestore(&mctz->lock, flags);
 582}
 583
 584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 585{
 586        unsigned long nr_pages = page_counter_read(&memcg->memory);
 587        unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 588        unsigned long excess = 0;
 589
 590        if (nr_pages > soft_limit)
 591                excess = nr_pages - soft_limit;
 592
 593        return excess;
 594}
 595
 596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 597{
 598        unsigned long excess;
 599        struct mem_cgroup_per_node *mz;
 600        struct mem_cgroup_tree_per_node *mctz;
 601
 602        mctz = soft_limit_tree_from_page(page);
 603        if (!mctz)
 604                return;
 605        /*
 606         * Necessary to update all ancestors when hierarchy is used.
 607         * because their event counter is not touched.
 608         */
 609        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 610                mz = mem_cgroup_page_nodeinfo(memcg, page);
 611                excess = soft_limit_excess(memcg);
 612                /*
 613                 * We have to update the tree if mz is on RB-tree or
 614                 * mem is over its softlimit.
 615                 */
 616                if (excess || mz->on_tree) {
 617                        unsigned long flags;
 618
 619                        spin_lock_irqsave(&mctz->lock, flags);
 620                        /* if on-tree, remove it */
 621                        if (mz->on_tree)
 622                                __mem_cgroup_remove_exceeded(mz, mctz);
 623                        /*
 624                         * Insert again. mz->usage_in_excess will be updated.
 625                         * If excess is 0, no tree ops.
 626                         */
 627                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 628                        spin_unlock_irqrestore(&mctz->lock, flags);
 629                }
 630        }
 631}
 632
 633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 634{
 635        struct mem_cgroup_tree_per_node *mctz;
 636        struct mem_cgroup_per_node *mz;
 637        int nid;
 638
 639        for_each_node(nid) {
 640                mz = mem_cgroup_nodeinfo(memcg, nid);
 641                mctz = soft_limit_tree_node(nid);
 642                if (mctz)
 643                        mem_cgroup_remove_exceeded(mz, mctz);
 644        }
 645}
 646
 647static struct mem_cgroup_per_node *
 648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 649{
 650        struct mem_cgroup_per_node *mz;
 651
 652retry:
 653        mz = NULL;
 654        if (!mctz->rb_rightmost)
 655                goto done;              /* Nothing to reclaim from */
 656
 657        mz = rb_entry(mctz->rb_rightmost,
 658                      struct mem_cgroup_per_node, tree_node);
 659        /*
 660         * Remove the node now but someone else can add it back,
 661         * we will to add it back at the end of reclaim to its correct
 662         * position in the tree.
 663         */
 664        __mem_cgroup_remove_exceeded(mz, mctz);
 665        if (!soft_limit_excess(mz->memcg) ||
 666            !css_tryget_online(&mz->memcg->css))
 667                goto retry;
 668done:
 669        return mz;
 670}
 671
 672static struct mem_cgroup_per_node *
 673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 674{
 675        struct mem_cgroup_per_node *mz;
 676
 677        spin_lock_irq(&mctz->lock);
 678        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 679        spin_unlock_irq(&mctz->lock);
 680        return mz;
 681}
 682
 683static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
 684                                      int event)
 685{
 686        return atomic_long_read(&memcg->events[event]);
 687}
 688
 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 690                                         struct page *page,
 691                                         bool compound, int nr_pages)
 692{
 693        /*
 694         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 695         * counted as CACHE even if it's on ANON LRU.
 696         */
 697        if (PageAnon(page))
 698                __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 699        else {
 700                __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 701                if (PageSwapBacked(page))
 702                        __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 703        }
 704
 705        if (compound) {
 706                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 707                __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 708        }
 709
 710        /* pagein of a big page is an event. So, ignore page size */
 711        if (nr_pages > 0)
 712                __count_memcg_events(memcg, PGPGIN, 1);
 713        else {
 714                __count_memcg_events(memcg, PGPGOUT, 1);
 715                nr_pages = -nr_pages; /* for event */
 716        }
 717
 718        __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
 719}
 720
 721unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 722                                           int nid, unsigned int lru_mask)
 723{
 724        struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 725        unsigned long nr = 0;
 726        enum lru_list lru;
 727
 728        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 729
 730        for_each_lru(lru) {
 731                if (!(BIT(lru) & lru_mask))
 732                        continue;
 733                nr += mem_cgroup_get_lru_size(lruvec, lru);
 734        }
 735        return nr;
 736}
 737
 738static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 739                        unsigned int lru_mask)
 740{
 741        unsigned long nr = 0;
 742        int nid;
 743
 744        for_each_node_state(nid, N_MEMORY)
 745                nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 746        return nr;
 747}
 748
 749static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 750                                       enum mem_cgroup_events_target target)
 751{
 752        unsigned long val, next;
 753
 754        val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
 755        next = __this_cpu_read(memcg->stat_cpu->targets[target]);
 756        /* from time_after() in jiffies.h */
 757        if ((long)(next - val) < 0) {
 758                switch (target) {
 759                case MEM_CGROUP_TARGET_THRESH:
 760                        next = val + THRESHOLDS_EVENTS_TARGET;
 761                        break;
 762                case MEM_CGROUP_TARGET_SOFTLIMIT:
 763                        next = val + SOFTLIMIT_EVENTS_TARGET;
 764                        break;
 765                case MEM_CGROUP_TARGET_NUMAINFO:
 766                        next = val + NUMAINFO_EVENTS_TARGET;
 767                        break;
 768                default:
 769                        break;
 770                }
 771                __this_cpu_write(memcg->stat_cpu->targets[target], next);
 772                return true;
 773        }
 774        return false;
 775}
 776
 777/*
 778 * Check events in order.
 779 *
 780 */
 781static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 782{
 783        /* threshold event is triggered in finer grain than soft limit */
 784        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 785                                                MEM_CGROUP_TARGET_THRESH))) {
 786                bool do_softlimit;
 787                bool do_numainfo __maybe_unused;
 788
 789                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 790                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 791#if MAX_NUMNODES > 1
 792                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 793                                                MEM_CGROUP_TARGET_NUMAINFO);
 794#endif
 795                mem_cgroup_threshold(memcg);
 796                if (unlikely(do_softlimit))
 797                        mem_cgroup_update_tree(memcg, page);
 798#if MAX_NUMNODES > 1
 799                if (unlikely(do_numainfo))
 800                        atomic_inc(&memcg->numainfo_events);
 801#endif
 802        }
 803}
 804
 805struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 806{
 807        /*
 808         * mm_update_next_owner() may clear mm->owner to NULL
 809         * if it races with swapoff, page migration, etc.
 810         * So this can be called with p == NULL.
 811         */
 812        if (unlikely(!p))
 813                return NULL;
 814
 815        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 816}
 817EXPORT_SYMBOL(mem_cgroup_from_task);
 818
 819/**
 820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 821 * @mm: mm from which memcg should be extracted. It can be NULL.
 822 *
 823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 825 * returned.
 826 */
 827struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 828{
 829        struct mem_cgroup *memcg;
 830
 831        if (mem_cgroup_disabled())
 832                return NULL;
 833
 834        rcu_read_lock();
 835        do {
 836                /*
 837                 * Page cache insertions can happen withou an
 838                 * actual mm context, e.g. during disk probing
 839                 * on boot, loopback IO, acct() writes etc.
 840                 */
 841                if (unlikely(!mm))
 842                        memcg = root_mem_cgroup;
 843                else {
 844                        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 845                        if (unlikely(!memcg))
 846                                memcg = root_mem_cgroup;
 847                }
 848        } while (!css_tryget_online(&memcg->css));
 849        rcu_read_unlock();
 850        return memcg;
 851}
 852EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 853
 854/**
 855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 856 * @page: page from which memcg should be extracted.
 857 *
 858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 859 * root_mem_cgroup is returned.
 860 */
 861struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
 862{
 863        struct mem_cgroup *memcg = page->mem_cgroup;
 864
 865        if (mem_cgroup_disabled())
 866                return NULL;
 867
 868        rcu_read_lock();
 869        if (!memcg || !css_tryget_online(&memcg->css))
 870                memcg = root_mem_cgroup;
 871        rcu_read_unlock();
 872        return memcg;
 873}
 874EXPORT_SYMBOL(get_mem_cgroup_from_page);
 875
 876/**
 877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 878 */
 879static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
 880{
 881        if (unlikely(current->active_memcg)) {
 882                struct mem_cgroup *memcg = root_mem_cgroup;
 883
 884                rcu_read_lock();
 885                if (css_tryget_online(&current->active_memcg->css))
 886                        memcg = current->active_memcg;
 887                rcu_read_unlock();
 888                return memcg;
 889        }
 890        return get_mem_cgroup_from_mm(current->mm);
 891}
 892
 893/**
 894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 895 * @root: hierarchy root
 896 * @prev: previously returned memcg, NULL on first invocation
 897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 898 *
 899 * Returns references to children of the hierarchy below @root, or
 900 * @root itself, or %NULL after a full round-trip.
 901 *
 902 * Caller must pass the return value in @prev on subsequent
 903 * invocations for reference counting, or use mem_cgroup_iter_break()
 904 * to cancel a hierarchy walk before the round-trip is complete.
 905 *
 906 * Reclaimers can specify a node and a priority level in @reclaim to
 907 * divide up the memcgs in the hierarchy among all concurrent
 908 * reclaimers operating on the same node and priority.
 909 */
 910struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 911                                   struct mem_cgroup *prev,
 912                                   struct mem_cgroup_reclaim_cookie *reclaim)
 913{
 914        struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 915        struct cgroup_subsys_state *css = NULL;
 916        struct mem_cgroup *memcg = NULL;
 917        struct mem_cgroup *pos = NULL;
 918
 919        if (mem_cgroup_disabled())
 920                return NULL;
 921
 922        if (!root)
 923                root = root_mem_cgroup;
 924
 925        if (prev && !reclaim)
 926                pos = prev;
 927
 928        if (!root->use_hierarchy && root != root_mem_cgroup) {
 929                if (prev)
 930                        goto out;
 931                return root;
 932        }
 933
 934        rcu_read_lock();
 935
 936        if (reclaim) {
 937                struct mem_cgroup_per_node *mz;
 938
 939                mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 940                iter = &mz->iter[reclaim->priority];
 941
 942                if (prev && reclaim->generation != iter->generation)
 943                        goto out_unlock;
 944
 945                while (1) {
 946                        pos = READ_ONCE(iter->position);
 947                        if (!pos || css_tryget(&pos->css))
 948                                break;
 949                        /*
 950                         * css reference reached zero, so iter->position will
 951                         * be cleared by ->css_released. However, we should not
 952                         * rely on this happening soon, because ->css_released
 953                         * is called from a work queue, and by busy-waiting we
 954                         * might block it. So we clear iter->position right
 955                         * away.
 956                         */
 957                        (void)cmpxchg(&iter->position, pos, NULL);
 958                }
 959        }
 960
 961        if (pos)
 962                css = &pos->css;
 963
 964        for (;;) {
 965                css = css_next_descendant_pre(css, &root->css);
 966                if (!css) {
 967                        /*
 968                         * Reclaimers share the hierarchy walk, and a
 969                         * new one might jump in right at the end of
 970                         * the hierarchy - make sure they see at least
 971                         * one group and restart from the beginning.
 972                         */
 973                        if (!prev)
 974                                continue;
 975                        break;
 976                }
 977
 978                /*
 979                 * Verify the css and acquire a reference.  The root
 980                 * is provided by the caller, so we know it's alive
 981                 * and kicking, and don't take an extra reference.
 982                 */
 983                memcg = mem_cgroup_from_css(css);
 984
 985                if (css == &root->css)
 986                        break;
 987
 988                if (css_tryget(css))
 989                        break;
 990
 991                memcg = NULL;
 992        }
 993
 994        if (reclaim) {
 995                /*
 996                 * The position could have already been updated by a competing
 997                 * thread, so check that the value hasn't changed since we read
 998                 * it to avoid reclaiming from the same cgroup twice.
 999                 */
1000                (void)cmpxchg(&iter->position, pos, memcg);
1001
1002                if (pos)
1003                        css_put(&pos->css);
1004
1005                if (!memcg)
1006                        iter->generation++;
1007                else if (!prev)
1008                        reclaim->generation = iter->generation;
1009        }
1010
1011out_unlock:
1012        rcu_read_unlock();
1013out:
1014        if (prev && prev != root)
1015                css_put(&prev->css);
1016
1017        return memcg;
1018}
1019
1020/**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025void mem_cgroup_iter_break(struct mem_cgroup *root,
1026                           struct mem_cgroup *prev)
1027{
1028        if (!root)
1029                root = root_mem_cgroup;
1030        if (prev && prev != root)
1031                css_put(&prev->css);
1032}
1033
1034static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035{
1036        struct mem_cgroup *memcg = dead_memcg;
1037        struct mem_cgroup_reclaim_iter *iter;
1038        struct mem_cgroup_per_node *mz;
1039        int nid;
1040        int i;
1041
1042        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043                for_each_node(nid) {
1044                        mz = mem_cgroup_nodeinfo(memcg, nid);
1045                        for (i = 0; i <= DEF_PRIORITY; i++) {
1046                                iter = &mz->iter[i];
1047                                cmpxchg(&iter->position,
1048                                        dead_memcg, NULL);
1049                        }
1050                }
1051        }
1052}
1053
1054/**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068                          int (*fn)(struct task_struct *, void *), void *arg)
1069{
1070        struct mem_cgroup *iter;
1071        int ret = 0;
1072
1073        BUG_ON(memcg == root_mem_cgroup);
1074
1075        for_each_mem_cgroup_tree(iter, memcg) {
1076                struct css_task_iter it;
1077                struct task_struct *task;
1078
1079                css_task_iter_start(&iter->css, 0, &it);
1080                while (!ret && (task = css_task_iter_next(&it)))
1081                        ret = fn(task, arg);
1082                css_task_iter_end(&it);
1083                if (ret) {
1084                        mem_cgroup_iter_break(memcg, iter);
1085                        break;
1086                }
1087        }
1088        return ret;
1089}
1090
1091/**
1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093 * @page: the page
1094 * @pgdat: pgdat of the page
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
1099 */
1100struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1101{
1102        struct mem_cgroup_per_node *mz;
1103        struct mem_cgroup *memcg;
1104        struct lruvec *lruvec;
1105
1106        if (mem_cgroup_disabled()) {
1107                lruvec = &pgdat->lruvec;
1108                goto out;
1109        }
1110
1111        memcg = page->mem_cgroup;
1112        /*
1113         * Swapcache readahead pages are added to the LRU - and
1114         * possibly migrated - before they are charged.
1115         */
1116        if (!memcg)
1117                memcg = root_mem_cgroup;
1118
1119        mz = mem_cgroup_page_nodeinfo(memcg, page);
1120        lruvec = &mz->lruvec;
1121out:
1122        /*
1123         * Since a node can be onlined after the mem_cgroup was created,
1124         * we have to be prepared to initialize lruvec->zone here;
1125         * and if offlined then reonlined, we need to reinitialize it.
1126         */
1127        if (unlikely(lruvec->pgdat != pgdat))
1128                lruvec->pgdat = pgdat;
1129        return lruvec;
1130}
1131
1132/**
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
1136 * @zid: zone id of the accounted pages
1137 * @nr_pages: positive when adding or negative when removing
1138 *
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142 */
1143void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144                                int zid, int nr_pages)
1145{
1146        struct mem_cgroup_per_node *mz;
1147        unsigned long *lru_size;
1148        long size;
1149
1150        if (mem_cgroup_disabled())
1151                return;
1152
1153        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154        lru_size = &mz->lru_zone_size[zid][lru];
1155
1156        if (nr_pages < 0)
1157                *lru_size += nr_pages;
1158
1159        size = *lru_size;
1160        if (WARN_ONCE(size < 0,
1161                "%s(%p, %d, %d): lru_size %ld\n",
1162                __func__, lruvec, lru, nr_pages, size)) {
1163                VM_BUG_ON(1);
1164                *lru_size = 0;
1165        }
1166
1167        if (nr_pages > 0)
1168                *lru_size += nr_pages;
1169}
1170
1171bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172{
1173        struct mem_cgroup *task_memcg;
1174        struct task_struct *p;
1175        bool ret;
1176
1177        p = find_lock_task_mm(task);
1178        if (p) {
1179                task_memcg = get_mem_cgroup_from_mm(p->mm);
1180                task_unlock(p);
1181        } else {
1182                /*
1183                 * All threads may have already detached their mm's, but the oom
1184                 * killer still needs to detect if they have already been oom
1185                 * killed to prevent needlessly killing additional tasks.
1186                 */
1187                rcu_read_lock();
1188                task_memcg = mem_cgroup_from_task(task);
1189                css_get(&task_memcg->css);
1190                rcu_read_unlock();
1191        }
1192        ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193        css_put(&task_memcg->css);
1194        return ret;
1195}
1196
1197/**
1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199 * @memcg: the memory cgroup
1200 *
1201 * Returns the maximum amount of memory @mem can be charged with, in
1202 * pages.
1203 */
1204static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205{
1206        unsigned long margin = 0;
1207        unsigned long count;
1208        unsigned long limit;
1209
1210        count = page_counter_read(&memcg->memory);
1211        limit = READ_ONCE(memcg->memory.max);
1212        if (count < limit)
1213                margin = limit - count;
1214
1215        if (do_memsw_account()) {
1216                count = page_counter_read(&memcg->memsw);
1217                limit = READ_ONCE(memcg->memsw.max);
1218                if (count <= limit)
1219                        margin = min(margin, limit - count);
1220                else
1221                        margin = 0;
1222        }
1223
1224        return margin;
1225}
1226
1227/*
1228 * A routine for checking "mem" is under move_account() or not.
1229 *
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
1233 */
1234static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235{
1236        struct mem_cgroup *from;
1237        struct mem_cgroup *to;
1238        bool ret = false;
1239        /*
1240         * Unlike task_move routines, we access mc.to, mc.from not under
1241         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242         */
1243        spin_lock(&mc.lock);
1244        from = mc.from;
1245        to = mc.to;
1246        if (!from)
1247                goto unlock;
1248
1249        ret = mem_cgroup_is_descendant(from, memcg) ||
1250                mem_cgroup_is_descendant(to, memcg);
1251unlock:
1252        spin_unlock(&mc.lock);
1253        return ret;
1254}
1255
1256static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257{
1258        if (mc.moving_task && current != mc.moving_task) {
1259                if (mem_cgroup_under_move(memcg)) {
1260                        DEFINE_WAIT(wait);
1261                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262                        /* moving charge context might have finished. */
1263                        if (mc.moving_task)
1264                                schedule();
1265                        finish_wait(&mc.waitq, &wait);
1266                        return true;
1267                }
1268        }
1269        return false;
1270}
1271
1272static const unsigned int memcg1_stats[] = {
1273        MEMCG_CACHE,
1274        MEMCG_RSS,
1275        MEMCG_RSS_HUGE,
1276        NR_SHMEM,
1277        NR_FILE_MAPPED,
1278        NR_FILE_DIRTY,
1279        NR_WRITEBACK,
1280        MEMCG_SWAP,
1281};
1282
1283static const char *const memcg1_stat_names[] = {
1284        "cache",
1285        "rss",
1286        "rss_huge",
1287        "shmem",
1288        "mapped_file",
1289        "dirty",
1290        "writeback",
1291        "swap",
1292};
1293
1294#define K(x) ((x) << (PAGE_SHIFT-10))
1295/**
1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
1303void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304{
1305        struct mem_cgroup *iter;
1306        unsigned int i;
1307
1308        rcu_read_lock();
1309
1310        if (p) {
1311                pr_info("Task in ");
1312                pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313                pr_cont(" killed as a result of limit of ");
1314        } else {
1315                pr_info("Memory limit reached of cgroup ");
1316        }
1317
1318        pr_cont_cgroup_path(memcg->css.cgroup);
1319        pr_cont("\n");
1320
1321        rcu_read_unlock();
1322
1323        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324                K((u64)page_counter_read(&memcg->memory)),
1325                K((u64)memcg->memory.max), memcg->memory.failcnt);
1326        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327                K((u64)page_counter_read(&memcg->memsw)),
1328                K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329        pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330                K((u64)page_counter_read(&memcg->kmem)),
1331                K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332
1333        for_each_mem_cgroup_tree(iter, memcg) {
1334                pr_info("Memory cgroup stats for ");
1335                pr_cont_cgroup_path(iter->css.cgroup);
1336                pr_cont(":");
1337
1338                for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339                        if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340                                continue;
1341                        pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342                                K(memcg_page_state(iter, memcg1_stats[i])));
1343                }
1344
1345                for (i = 0; i < NR_LRU_LISTS; i++)
1346                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349                pr_cont("\n");
1350        }
1351}
1352
1353/*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
1356unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1357{
1358        unsigned long max;
1359
1360        max = memcg->memory.max;
1361        if (mem_cgroup_swappiness(memcg)) {
1362                unsigned long memsw_max;
1363                unsigned long swap_max;
1364
1365                memsw_max = memcg->memsw.max;
1366                swap_max = memcg->swap.max;
1367                swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368                max = min(max + swap_max, memsw_max);
1369        }
1370        return max;
1371}
1372
1373static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374                                     int order)
1375{
1376        struct oom_control oc = {
1377                .zonelist = NULL,
1378                .nodemask = NULL,
1379                .memcg = memcg,
1380                .gfp_mask = gfp_mask,
1381                .order = order,
1382        };
1383        bool ret;
1384
1385        mutex_lock(&oom_lock);
1386        ret = out_of_memory(&oc);
1387        mutex_unlock(&oom_lock);
1388        return ret;
1389}
1390
1391#if MAX_NUMNODES > 1
1392
1393/**
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404                int nid, bool noswap)
1405{
1406        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407                return true;
1408        if (noswap || !total_swap_pages)
1409                return false;
1410        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411                return true;
1412        return false;
1413
1414}
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423{
1424        int nid;
1425        /*
1426         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427         * pagein/pageout changes since the last update.
1428         */
1429        if (!atomic_read(&memcg->numainfo_events))
1430                return;
1431        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432                return;
1433
1434        /* make a nodemask where this memcg uses memory from */
1435        memcg->scan_nodes = node_states[N_MEMORY];
1436
1437        for_each_node_mask(nid, node_states[N_MEMORY]) {
1438
1439                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440                        node_clear(nid, memcg->scan_nodes);
1441        }
1442
1443        atomic_set(&memcg->numainfo_events, 0);
1444        atomic_set(&memcg->numainfo_updating, 0);
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460{
1461        int node;
1462
1463        mem_cgroup_may_update_nodemask(memcg);
1464        node = memcg->last_scanned_node;
1465
1466        node = next_node_in(node, memcg->scan_nodes);
1467        /*
1468         * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469         * last time it really checked all the LRUs due to rate limiting.
1470         * Fallback to the current node in that case for simplicity.
1471         */
1472        if (unlikely(node == MAX_NUMNODES))
1473                node = numa_node_id();
1474
1475        memcg->last_scanned_node = node;
1476        return node;
1477}
1478#else
1479int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480{
1481        return 0;
1482}
1483#endif
1484
1485static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486                                   pg_data_t *pgdat,
1487                                   gfp_t gfp_mask,
1488                                   unsigned long *total_scanned)
1489{
1490        struct mem_cgroup *victim = NULL;
1491        int total = 0;
1492        int loop = 0;
1493        unsigned long excess;
1494        unsigned long nr_scanned;
1495        struct mem_cgroup_reclaim_cookie reclaim = {
1496                .pgdat = pgdat,
1497                .priority = 0,
1498        };
1499
1500        excess = soft_limit_excess(root_memcg);
1501
1502        while (1) {
1503                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504                if (!victim) {
1505                        loop++;
1506                        if (loop >= 2) {
1507                                /*
1508                                 * If we have not been able to reclaim
1509                                 * anything, it might because there are
1510                                 * no reclaimable pages under this hierarchy
1511                                 */
1512                                if (!total)
1513                                        break;
1514                                /*
1515                                 * We want to do more targeted reclaim.
1516                                 * excess >> 2 is not to excessive so as to
1517                                 * reclaim too much, nor too less that we keep
1518                                 * coming back to reclaim from this cgroup
1519                                 */
1520                                if (total >= (excess >> 2) ||
1521                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522                                        break;
1523                        }
1524                        continue;
1525                }
1526                total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527                                        pgdat, &nr_scanned);
1528                *total_scanned += nr_scanned;
1529                if (!soft_limit_excess(root_memcg))
1530                        break;
1531        }
1532        mem_cgroup_iter_break(root_memcg, victim);
1533        return total;
1534}
1535
1536#ifdef CONFIG_LOCKDEP
1537static struct lockdep_map memcg_oom_lock_dep_map = {
1538        .name = "memcg_oom_lock",
1539};
1540#endif
1541
1542static DEFINE_SPINLOCK(memcg_oom_lock);
1543
1544/*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
1548static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1549{
1550        struct mem_cgroup *iter, *failed = NULL;
1551
1552        spin_lock(&memcg_oom_lock);
1553
1554        for_each_mem_cgroup_tree(iter, memcg) {
1555                if (iter->oom_lock) {
1556                        /*
1557                         * this subtree of our hierarchy is already locked
1558                         * so we cannot give a lock.
1559                         */
1560                        failed = iter;
1561                        mem_cgroup_iter_break(memcg, iter);
1562                        break;
1563                } else
1564                        iter->oom_lock = true;
1565        }
1566
1567        if (failed) {
1568                /*
1569                 * OK, we failed to lock the whole subtree so we have
1570                 * to clean up what we set up to the failing subtree
1571                 */
1572                for_each_mem_cgroup_tree(iter, memcg) {
1573                        if (iter == failed) {
1574                                mem_cgroup_iter_break(memcg, iter);
1575                                break;
1576                        }
1577                        iter->oom_lock = false;
1578                }
1579        } else
1580                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581
1582        spin_unlock(&memcg_oom_lock);
1583
1584        return !failed;
1585}
1586
1587static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588{
1589        struct mem_cgroup *iter;
1590
1591        spin_lock(&memcg_oom_lock);
1592        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593        for_each_mem_cgroup_tree(iter, memcg)
1594                iter->oom_lock = false;
1595        spin_unlock(&memcg_oom_lock);
1596}
1597
1598static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599{
1600        struct mem_cgroup *iter;
1601
1602        spin_lock(&memcg_oom_lock);
1603        for_each_mem_cgroup_tree(iter, memcg)
1604                iter->under_oom++;
1605        spin_unlock(&memcg_oom_lock);
1606}
1607
1608static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609{
1610        struct mem_cgroup *iter;
1611
1612        /*
1613         * When a new child is created while the hierarchy is under oom,
1614         * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1615         */
1616        spin_lock(&memcg_oom_lock);
1617        for_each_mem_cgroup_tree(iter, memcg)
1618                if (iter->under_oom > 0)
1619                        iter->under_oom--;
1620        spin_unlock(&memcg_oom_lock);
1621}
1622
1623static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
1625struct oom_wait_info {
1626        struct mem_cgroup *memcg;
1627        wait_queue_entry_t      wait;
1628};
1629
1630static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631        unsigned mode, int sync, void *arg)
1632{
1633        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634        struct mem_cgroup *oom_wait_memcg;
1635        struct oom_wait_info *oom_wait_info;
1636
1637        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638        oom_wait_memcg = oom_wait_info->memcg;
1639
1640        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1642                return 0;
1643        return autoremove_wake_function(wait, mode, sync, arg);
1644}
1645
1646static void memcg_oom_recover(struct mem_cgroup *memcg)
1647{
1648        /*
1649         * For the following lockless ->under_oom test, the only required
1650         * guarantee is that it must see the state asserted by an OOM when
1651         * this function is called as a result of userland actions
1652         * triggered by the notification of the OOM.  This is trivially
1653         * achieved by invoking mem_cgroup_mark_under_oom() before
1654         * triggering notification.
1655         */
1656        if (memcg && memcg->under_oom)
1657                __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658}
1659
1660enum oom_status {
1661        OOM_SUCCESS,
1662        OOM_FAILED,
1663        OOM_ASYNC,
1664        OOM_SKIPPED
1665};
1666
1667static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668{
1669        if (order > PAGE_ALLOC_COSTLY_ORDER)
1670                return OOM_SKIPPED;
1671
1672        /*
1673         * We are in the middle of the charge context here, so we
1674         * don't want to block when potentially sitting on a callstack
1675         * that holds all kinds of filesystem and mm locks.
1676         *
1677         * cgroup1 allows disabling the OOM killer and waiting for outside
1678         * handling until the charge can succeed; remember the context and put
1679         * the task to sleep at the end of the page fault when all locks are
1680         * released.
1681         *
1682         * On the other hand, in-kernel OOM killer allows for an async victim
1683         * memory reclaim (oom_reaper) and that means that we are not solely
1684         * relying on the oom victim to make a forward progress and we can
1685         * invoke the oom killer here.
1686         *
1687         * Please note that mem_cgroup_out_of_memory might fail to find a
1688         * victim and then we have to bail out from the charge path.
1689         */
1690        if (memcg->oom_kill_disable) {
1691                if (!current->in_user_fault)
1692                        return OOM_SKIPPED;
1693                css_get(&memcg->css);
1694                current->memcg_in_oom = memcg;
1695                current->memcg_oom_gfp_mask = mask;
1696                current->memcg_oom_order = order;
1697
1698                return OOM_ASYNC;
1699        }
1700
1701        if (mem_cgroup_out_of_memory(memcg, mask, order))
1702                return OOM_SUCCESS;
1703
1704        return OOM_FAILED;
1705}
1706
1707/**
1708 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1709 * @handle: actually kill/wait or just clean up the OOM state
1710 *
1711 * This has to be called at the end of a page fault if the memcg OOM
1712 * handler was enabled.
1713 *
1714 * Memcg supports userspace OOM handling where failed allocations must
1715 * sleep on a waitqueue until the userspace task resolves the
1716 * situation.  Sleeping directly in the charge context with all kinds
1717 * of locks held is not a good idea, instead we remember an OOM state
1718 * in the task and mem_cgroup_oom_synchronize() has to be called at
1719 * the end of the page fault to complete the OOM handling.
1720 *
1721 * Returns %true if an ongoing memcg OOM situation was detected and
1722 * completed, %false otherwise.
1723 */
1724bool mem_cgroup_oom_synchronize(bool handle)
1725{
1726        struct mem_cgroup *memcg = current->memcg_in_oom;
1727        struct oom_wait_info owait;
1728        bool locked;
1729
1730        /* OOM is global, do not handle */
1731        if (!memcg)
1732                return false;
1733
1734        if (!handle)
1735                goto cleanup;
1736
1737        owait.memcg = memcg;
1738        owait.wait.flags = 0;
1739        owait.wait.func = memcg_oom_wake_function;
1740        owait.wait.private = current;
1741        INIT_LIST_HEAD(&owait.wait.entry);
1742
1743        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1744        mem_cgroup_mark_under_oom(memcg);
1745
1746        locked = mem_cgroup_oom_trylock(memcg);
1747
1748        if (locked)
1749                mem_cgroup_oom_notify(memcg);
1750
1751        if (locked && !memcg->oom_kill_disable) {
1752                mem_cgroup_unmark_under_oom(memcg);
1753                finish_wait(&memcg_oom_waitq, &owait.wait);
1754                mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1755                                         current->memcg_oom_order);
1756        } else {
1757                schedule();
1758                mem_cgroup_unmark_under_oom(memcg);
1759                finish_wait(&memcg_oom_waitq, &owait.wait);
1760        }
1761
1762        if (locked) {
1763                mem_cgroup_oom_unlock(memcg);
1764                /*
1765                 * There is no guarantee that an OOM-lock contender
1766                 * sees the wakeups triggered by the OOM kill
1767                 * uncharges.  Wake any sleepers explicitely.
1768                 */
1769                memcg_oom_recover(memcg);
1770        }
1771cleanup:
1772        current->memcg_in_oom = NULL;
1773        css_put(&memcg->css);
1774        return true;
1775}
1776
1777/**
1778 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1779 * @victim: task to be killed by the OOM killer
1780 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1781 *
1782 * Returns a pointer to a memory cgroup, which has to be cleaned up
1783 * by killing all belonging OOM-killable tasks.
1784 *
1785 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1786 */
1787struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1788                                            struct mem_cgroup *oom_domain)
1789{
1790        struct mem_cgroup *oom_group = NULL;
1791        struct mem_cgroup *memcg;
1792
1793        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1794                return NULL;
1795
1796        if (!oom_domain)
1797                oom_domain = root_mem_cgroup;
1798
1799        rcu_read_lock();
1800
1801        memcg = mem_cgroup_from_task(victim);
1802        if (memcg == root_mem_cgroup)
1803                goto out;
1804
1805        /*
1806         * Traverse the memory cgroup hierarchy from the victim task's
1807         * cgroup up to the OOMing cgroup (or root) to find the
1808         * highest-level memory cgroup with oom.group set.
1809         */
1810        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1811                if (memcg->oom_group)
1812                        oom_group = memcg;
1813
1814                if (memcg == oom_domain)
1815                        break;
1816        }
1817
1818        if (oom_group)
1819                css_get(&oom_group->css);
1820out:
1821        rcu_read_unlock();
1822
1823        return oom_group;
1824}
1825
1826void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1827{
1828        pr_info("Tasks in ");
1829        pr_cont_cgroup_path(memcg->css.cgroup);
1830        pr_cont(" are going to be killed due to memory.oom.group set\n");
1831}
1832
1833/**
1834 * lock_page_memcg - lock a page->mem_cgroup binding
1835 * @page: the page
1836 *
1837 * This function protects unlocked LRU pages from being moved to
1838 * another cgroup.
1839 *
1840 * It ensures lifetime of the returned memcg. Caller is responsible
1841 * for the lifetime of the page; __unlock_page_memcg() is available
1842 * when @page might get freed inside the locked section.
1843 */
1844struct mem_cgroup *lock_page_memcg(struct page *page)
1845{
1846        struct mem_cgroup *memcg;
1847        unsigned long flags;
1848
1849        /*
1850         * The RCU lock is held throughout the transaction.  The fast
1851         * path can get away without acquiring the memcg->move_lock
1852         * because page moving starts with an RCU grace period.
1853         *
1854         * The RCU lock also protects the memcg from being freed when
1855         * the page state that is going to change is the only thing
1856         * preventing the page itself from being freed. E.g. writeback
1857         * doesn't hold a page reference and relies on PG_writeback to
1858         * keep off truncation, migration and so forth.
1859         */
1860        rcu_read_lock();
1861
1862        if (mem_cgroup_disabled())
1863                return NULL;
1864again:
1865        memcg = page->mem_cgroup;
1866        if (unlikely(!memcg))
1867                return NULL;
1868
1869        if (atomic_read(&memcg->moving_account) <= 0)
1870                return memcg;
1871
1872        spin_lock_irqsave(&memcg->move_lock, flags);
1873        if (memcg != page->mem_cgroup) {
1874                spin_unlock_irqrestore(&memcg->move_lock, flags);
1875                goto again;
1876        }
1877
1878        /*
1879         * When charge migration first begins, we can have locked and
1880         * unlocked page stat updates happening concurrently.  Track
1881         * the task who has the lock for unlock_page_memcg().
1882         */
1883        memcg->move_lock_task = current;
1884        memcg->move_lock_flags = flags;
1885
1886        return memcg;
1887}
1888EXPORT_SYMBOL(lock_page_memcg);
1889
1890/**
1891 * __unlock_page_memcg - unlock and unpin a memcg
1892 * @memcg: the memcg
1893 *
1894 * Unlock and unpin a memcg returned by lock_page_memcg().
1895 */
1896void __unlock_page_memcg(struct mem_cgroup *memcg)
1897{
1898        if (memcg && memcg->move_lock_task == current) {
1899                unsigned long flags = memcg->move_lock_flags;
1900
1901                memcg->move_lock_task = NULL;
1902                memcg->move_lock_flags = 0;
1903
1904                spin_unlock_irqrestore(&memcg->move_lock, flags);
1905        }
1906
1907        rcu_read_unlock();
1908}
1909
1910/**
1911 * unlock_page_memcg - unlock a page->mem_cgroup binding
1912 * @page: the page
1913 */
1914void unlock_page_memcg(struct page *page)
1915{
1916        __unlock_page_memcg(page->mem_cgroup);
1917}
1918EXPORT_SYMBOL(unlock_page_memcg);
1919
1920struct memcg_stock_pcp {
1921        struct mem_cgroup *cached; /* this never be root cgroup */
1922        unsigned int nr_pages;
1923        struct work_struct work;
1924        unsigned long flags;
1925#define FLUSHING_CACHED_CHARGE  0
1926};
1927static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928static DEFINE_MUTEX(percpu_charge_mutex);
1929
1930/**
1931 * consume_stock: Try to consume stocked charge on this cpu.
1932 * @memcg: memcg to consume from.
1933 * @nr_pages: how many pages to charge.
1934 *
1935 * The charges will only happen if @memcg matches the current cpu's memcg
1936 * stock, and at least @nr_pages are available in that stock.  Failure to
1937 * service an allocation will refill the stock.
1938 *
1939 * returns true if successful, false otherwise.
1940 */
1941static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1942{
1943        struct memcg_stock_pcp *stock;
1944        unsigned long flags;
1945        bool ret = false;
1946
1947        if (nr_pages > MEMCG_CHARGE_BATCH)
1948                return ret;
1949
1950        local_irq_save(flags);
1951
1952        stock = this_cpu_ptr(&memcg_stock);
1953        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1954                stock->nr_pages -= nr_pages;
1955                ret = true;
1956        }
1957
1958        local_irq_restore(flags);
1959
1960        return ret;
1961}
1962
1963/*
1964 * Returns stocks cached in percpu and reset cached information.
1965 */
1966static void drain_stock(struct memcg_stock_pcp *stock)
1967{
1968        struct mem_cgroup *old = stock->cached;
1969
1970        if (stock->nr_pages) {
1971                page_counter_uncharge(&old->memory, stock->nr_pages);
1972                if (do_memsw_account())
1973                        page_counter_uncharge(&old->memsw, stock->nr_pages);
1974                css_put_many(&old->css, stock->nr_pages);
1975                stock->nr_pages = 0;
1976        }
1977        stock->cached = NULL;
1978}
1979
1980static void drain_local_stock(struct work_struct *dummy)
1981{
1982        struct memcg_stock_pcp *stock;
1983        unsigned long flags;
1984
1985        /*
1986         * The only protection from memory hotplug vs. drain_stock races is
1987         * that we always operate on local CPU stock here with IRQ disabled
1988         */
1989        local_irq_save(flags);
1990
1991        stock = this_cpu_ptr(&memcg_stock);
1992        drain_stock(stock);
1993        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1994
1995        local_irq_restore(flags);
1996}
1997
1998/*
1999 * Cache charges(val) to local per_cpu area.
2000 * This will be consumed by consume_stock() function, later.
2001 */
2002static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2003{
2004        struct memcg_stock_pcp *stock;
2005        unsigned long flags;
2006
2007        local_irq_save(flags);
2008
2009        stock = this_cpu_ptr(&memcg_stock);
2010        if (stock->cached != memcg) { /* reset if necessary */
2011                drain_stock(stock);
2012                stock->cached = memcg;
2013        }
2014        stock->nr_pages += nr_pages;
2015
2016        if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2017                drain_stock(stock);
2018
2019        local_irq_restore(flags);
2020}
2021
2022/*
2023 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2024 * of the hierarchy under it.
2025 */
2026static void drain_all_stock(struct mem_cgroup *root_memcg)
2027{
2028        int cpu, curcpu;
2029
2030        /* If someone's already draining, avoid adding running more workers. */
2031        if (!mutex_trylock(&percpu_charge_mutex))
2032                return;
2033        /*
2034         * Notify other cpus that system-wide "drain" is running
2035         * We do not care about races with the cpu hotplug because cpu down
2036         * as well as workers from this path always operate on the local
2037         * per-cpu data. CPU up doesn't touch memcg_stock at all.
2038         */
2039        curcpu = get_cpu();
2040        for_each_online_cpu(cpu) {
2041                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2042                struct mem_cgroup *memcg;
2043
2044                memcg = stock->cached;
2045                if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2046                        continue;
2047                if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2048                        css_put(&memcg->css);
2049                        continue;
2050                }
2051                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2052                        if (cpu == curcpu)
2053                                drain_local_stock(&stock->work);
2054                        else
2055                                schedule_work_on(cpu, &stock->work);
2056                }
2057                css_put(&memcg->css);
2058        }
2059        put_cpu();
2060        mutex_unlock(&percpu_charge_mutex);
2061}
2062
2063static int memcg_hotplug_cpu_dead(unsigned int cpu)
2064{
2065        struct memcg_stock_pcp *stock;
2066        struct mem_cgroup *memcg;
2067
2068        stock = &per_cpu(memcg_stock, cpu);
2069        drain_stock(stock);
2070
2071        for_each_mem_cgroup(memcg) {
2072                int i;
2073
2074                for (i = 0; i < MEMCG_NR_STAT; i++) {
2075                        int nid;
2076                        long x;
2077
2078                        x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2079                        if (x)
2080                                atomic_long_add(x, &memcg->stat[i]);
2081
2082                        if (i >= NR_VM_NODE_STAT_ITEMS)
2083                                continue;
2084
2085                        for_each_node(nid) {
2086                                struct mem_cgroup_per_node *pn;
2087
2088                                pn = mem_cgroup_nodeinfo(memcg, nid);
2089                                x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2090                                if (x)
2091                                        atomic_long_add(x, &pn->lruvec_stat[i]);
2092                        }
2093                }
2094
2095                for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2096                        long x;
2097
2098                        x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2099                        if (x)
2100                                atomic_long_add(x, &memcg->events[i]);
2101                }
2102        }
2103
2104        return 0;
2105}
2106
2107static void reclaim_high(struct mem_cgroup *memcg,
2108                         unsigned int nr_pages,
2109                         gfp_t gfp_mask)
2110{
2111        do {
2112                if (page_counter_read(&memcg->memory) <= memcg->high)
2113                        continue;
2114                memcg_memory_event(memcg, MEMCG_HIGH);
2115                try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2116        } while ((memcg = parent_mem_cgroup(memcg)));
2117}
2118
2119static void high_work_func(struct work_struct *work)
2120{
2121        struct mem_cgroup *memcg;
2122
2123        memcg = container_of(work, struct mem_cgroup, high_work);
2124        reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2125}
2126
2127/*
2128 * Scheduled by try_charge() to be executed from the userland return path
2129 * and reclaims memory over the high limit.
2130 */
2131void mem_cgroup_handle_over_high(void)
2132{
2133        unsigned int nr_pages = current->memcg_nr_pages_over_high;
2134        struct mem_cgroup *memcg;
2135
2136        if (likely(!nr_pages))
2137                return;
2138
2139        memcg = get_mem_cgroup_from_mm(current->mm);
2140        reclaim_high(memcg, nr_pages, GFP_KERNEL);
2141        css_put(&memcg->css);
2142        current->memcg_nr_pages_over_high = 0;
2143}
2144
2145static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2146                      unsigned int nr_pages)
2147{
2148        unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2149        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2150        struct mem_cgroup *mem_over_limit;
2151        struct page_counter *counter;
2152        unsigned long nr_reclaimed;
2153        bool may_swap = true;
2154        bool drained = false;
2155        bool oomed = false;
2156        enum oom_status oom_status;
2157
2158        if (mem_cgroup_is_root(memcg))
2159                return 0;
2160retry:
2161        if (consume_stock(memcg, nr_pages))
2162                return 0;
2163
2164        if (!do_memsw_account() ||
2165            page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2166                if (page_counter_try_charge(&memcg->memory, batch, &counter))
2167                        goto done_restock;
2168                if (do_memsw_account())
2169                        page_counter_uncharge(&memcg->memsw, batch);
2170                mem_over_limit = mem_cgroup_from_counter(counter, memory);
2171        } else {
2172                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2173                may_swap = false;
2174        }
2175
2176        if (batch > nr_pages) {
2177                batch = nr_pages;
2178                goto retry;
2179        }
2180
2181        /*
2182         * Unlike in global OOM situations, memcg is not in a physical
2183         * memory shortage.  Allow dying and OOM-killed tasks to
2184         * bypass the last charges so that they can exit quickly and
2185         * free their memory.
2186         */
2187        if (unlikely(tsk_is_oom_victim(current) ||
2188                     fatal_signal_pending(current) ||
2189                     current->flags & PF_EXITING))
2190                goto force;
2191
2192        /*
2193         * Prevent unbounded recursion when reclaim operations need to
2194         * allocate memory. This might exceed the limits temporarily,
2195         * but we prefer facilitating memory reclaim and getting back
2196         * under the limit over triggering OOM kills in these cases.
2197         */
2198        if (unlikely(current->flags & PF_MEMALLOC))
2199                goto force;
2200
2201        if (unlikely(task_in_memcg_oom(current)))
2202                goto nomem;
2203
2204        if (!gfpflags_allow_blocking(gfp_mask))
2205                goto nomem;
2206
2207        memcg_memory_event(mem_over_limit, MEMCG_MAX);
2208
2209        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2210                                                    gfp_mask, may_swap);
2211
2212        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2213                goto retry;
2214
2215        if (!drained) {
2216                drain_all_stock(mem_over_limit);
2217                drained = true;
2218                goto retry;
2219        }
2220
2221        if (gfp_mask & __GFP_NORETRY)
2222                goto nomem;
2223        /*
2224         * Even though the limit is exceeded at this point, reclaim
2225         * may have been able to free some pages.  Retry the charge
2226         * before killing the task.
2227         *
2228         * Only for regular pages, though: huge pages are rather
2229         * unlikely to succeed so close to the limit, and we fall back
2230         * to regular pages anyway in case of failure.
2231         */
2232        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2233                goto retry;
2234        /*
2235         * At task move, charge accounts can be doubly counted. So, it's
2236         * better to wait until the end of task_move if something is going on.
2237         */
2238        if (mem_cgroup_wait_acct_move(mem_over_limit))
2239                goto retry;
2240
2241        if (nr_retries--)
2242                goto retry;
2243
2244        if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2245                goto nomem;
2246
2247        if (gfp_mask & __GFP_NOFAIL)
2248                goto force;
2249
2250        if (fatal_signal_pending(current))
2251                goto force;
2252
2253        memcg_memory_event(mem_over_limit, MEMCG_OOM);
2254
2255        /*
2256         * keep retrying as long as the memcg oom killer is able to make
2257         * a forward progress or bypass the charge if the oom killer
2258         * couldn't make any progress.
2259         */
2260        oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261                       get_order(nr_pages * PAGE_SIZE));
2262        switch (oom_status) {
2263        case OOM_SUCCESS:
2264                nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2265                oomed = true;
2266                goto retry;
2267        case OOM_FAILED:
2268                goto force;
2269        default:
2270                goto nomem;
2271        }
2272nomem:
2273        if (!(gfp_mask & __GFP_NOFAIL))
2274                return -ENOMEM;
2275force:
2276        /*
2277         * The allocation either can't fail or will lead to more memory
2278         * being freed very soon.  Allow memory usage go over the limit
2279         * temporarily by force charging it.
2280         */
2281        page_counter_charge(&memcg->memory, nr_pages);
2282        if (do_memsw_account())
2283                page_counter_charge(&memcg->memsw, nr_pages);
2284        css_get_many(&memcg->css, nr_pages);
2285
2286        return 0;
2287
2288done_restock:
2289        css_get_many(&memcg->css, batch);
2290        if (batch > nr_pages)
2291                refill_stock(memcg, batch - nr_pages);
2292
2293        /*
2294         * If the hierarchy is above the normal consumption range, schedule
2295         * reclaim on returning to userland.  We can perform reclaim here
2296         * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297         * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2298         * not recorded as it most likely matches current's and won't
2299         * change in the meantime.  As high limit is checked again before
2300         * reclaim, the cost of mismatch is negligible.
2301         */
2302        do {
2303                if (page_counter_read(&memcg->memory) > memcg->high) {
2304                        /* Don't bother a random interrupted task */
2305                        if (in_interrupt()) {
2306                                schedule_work(&memcg->high_work);
2307                                break;
2308                        }
2309                        current->memcg_nr_pages_over_high += batch;
2310                        set_notify_resume(current);
2311                        break;
2312                }
2313        } while ((memcg = parent_mem_cgroup(memcg)));
2314
2315        return 0;
2316}
2317
2318static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2319{
2320        if (mem_cgroup_is_root(memcg))
2321                return;
2322
2323        page_counter_uncharge(&memcg->memory, nr_pages);
2324        if (do_memsw_account())
2325                page_counter_uncharge(&memcg->memsw, nr_pages);
2326
2327        css_put_many(&memcg->css, nr_pages);
2328}
2329
2330static void lock_page_lru(struct page *page, int *isolated)
2331{
2332        struct zone *zone = page_zone(page);
2333
2334        spin_lock_irq(zone_lru_lock(zone));
2335        if (PageLRU(page)) {
2336                struct lruvec *lruvec;
2337
2338                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2339                ClearPageLRU(page);
2340                del_page_from_lru_list(page, lruvec, page_lru(page));
2341                *isolated = 1;
2342        } else
2343                *isolated = 0;
2344}
2345
2346static void unlock_page_lru(struct page *page, int isolated)
2347{
2348        struct zone *zone = page_zone(page);
2349
2350        if (isolated) {
2351                struct lruvec *lruvec;
2352
2353                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354                VM_BUG_ON_PAGE(PageLRU(page), page);
2355                SetPageLRU(page);
2356                add_page_to_lru_list(page, lruvec, page_lru(page));
2357        }
2358        spin_unlock_irq(zone_lru_lock(zone));
2359}
2360
2361static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2362                          bool lrucare)
2363{
2364        int isolated;
2365
2366        VM_BUG_ON_PAGE(page->mem_cgroup, page);
2367
2368        /*
2369         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370         * may already be on some other mem_cgroup's LRU.  Take care of it.
2371         */
2372        if (lrucare)
2373                lock_page_lru(page, &isolated);
2374
2375        /*
2376         * Nobody should be changing or seriously looking at
2377         * page->mem_cgroup at this point:
2378         *
2379         * - the page is uncharged
2380         *
2381         * - the page is off-LRU
2382         *
2383         * - an anonymous fault has exclusive page access, except for
2384         *   a locked page table
2385         *
2386         * - a page cache insertion, a swapin fault, or a migration
2387         *   have the page locked
2388         */
2389        page->mem_cgroup = memcg;
2390
2391        if (lrucare)
2392                unlock_page_lru(page, isolated);
2393}
2394
2395#ifdef CONFIG_MEMCG_KMEM
2396static int memcg_alloc_cache_id(void)
2397{
2398        int id, size;
2399        int err;
2400
2401        id = ida_simple_get(&memcg_cache_ida,
2402                            0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2403        if (id < 0)
2404                return id;
2405
2406        if (id < memcg_nr_cache_ids)
2407                return id;
2408
2409        /*
2410         * There's no space for the new id in memcg_caches arrays,
2411         * so we have to grow them.
2412         */
2413        down_write(&memcg_cache_ids_sem);
2414
2415        size = 2 * (id + 1);
2416        if (size < MEMCG_CACHES_MIN_SIZE)
2417                size = MEMCG_CACHES_MIN_SIZE;
2418        else if (size > MEMCG_CACHES_MAX_SIZE)
2419                size = MEMCG_CACHES_MAX_SIZE;
2420
2421        err = memcg_update_all_caches(size);
2422        if (!err)
2423                err = memcg_update_all_list_lrus(size);
2424        if (!err)
2425                memcg_nr_cache_ids = size;
2426
2427        up_write(&memcg_cache_ids_sem);
2428
2429        if (err) {
2430                ida_simple_remove(&memcg_cache_ida, id);
2431                return err;
2432        }
2433        return id;
2434}
2435
2436static void memcg_free_cache_id(int id)
2437{
2438        ida_simple_remove(&memcg_cache_ida, id);
2439}
2440
2441struct memcg_kmem_cache_create_work {
2442        struct mem_cgroup *memcg;
2443        struct kmem_cache *cachep;
2444        struct work_struct work;
2445};
2446
2447static void memcg_kmem_cache_create_func(struct work_struct *w)
2448{
2449        struct memcg_kmem_cache_create_work *cw =
2450                container_of(w, struct memcg_kmem_cache_create_work, work);
2451        struct mem_cgroup *memcg = cw->memcg;
2452        struct kmem_cache *cachep = cw->cachep;
2453
2454        memcg_create_kmem_cache(memcg, cachep);
2455
2456        css_put(&memcg->css);
2457        kfree(cw);
2458}
2459
2460/*
2461 * Enqueue the creation of a per-memcg kmem_cache.
2462 */
2463static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2464                                               struct kmem_cache *cachep)
2465{
2466        struct memcg_kmem_cache_create_work *cw;
2467
2468        cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2469        if (!cw)
2470                return;
2471
2472        css_get(&memcg->css);
2473
2474        cw->memcg = memcg;
2475        cw->cachep = cachep;
2476        INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2477
2478        queue_work(memcg_kmem_cache_wq, &cw->work);
2479}
2480
2481static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2482                                             struct kmem_cache *cachep)
2483{
2484        /*
2485         * We need to stop accounting when we kmalloc, because if the
2486         * corresponding kmalloc cache is not yet created, the first allocation
2487         * in __memcg_schedule_kmem_cache_create will recurse.
2488         *
2489         * However, it is better to enclose the whole function. Depending on
2490         * the debugging options enabled, INIT_WORK(), for instance, can
2491         * trigger an allocation. This too, will make us recurse. Because at
2492         * this point we can't allow ourselves back into memcg_kmem_get_cache,
2493         * the safest choice is to do it like this, wrapping the whole function.
2494         */
2495        current->memcg_kmem_skip_account = 1;
2496        __memcg_schedule_kmem_cache_create(memcg, cachep);
2497        current->memcg_kmem_skip_account = 0;
2498}
2499
2500static inline bool memcg_kmem_bypass(void)
2501{
2502        if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2503                return true;
2504        return false;
2505}
2506
2507/**
2508 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2509 * @cachep: the original global kmem cache
2510 *
2511 * Return the kmem_cache we're supposed to use for a slab allocation.
2512 * We try to use the current memcg's version of the cache.
2513 *
2514 * If the cache does not exist yet, if we are the first user of it, we
2515 * create it asynchronously in a workqueue and let the current allocation
2516 * go through with the original cache.
2517 *
2518 * This function takes a reference to the cache it returns to assure it
2519 * won't get destroyed while we are working with it. Once the caller is
2520 * done with it, memcg_kmem_put_cache() must be called to release the
2521 * reference.
2522 */
2523struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2524{
2525        struct mem_cgroup *memcg;
2526        struct kmem_cache *memcg_cachep;
2527        int kmemcg_id;
2528
2529        VM_BUG_ON(!is_root_cache(cachep));
2530
2531        if (memcg_kmem_bypass())
2532                return cachep;
2533
2534        if (current->memcg_kmem_skip_account)
2535                return cachep;
2536
2537        memcg = get_mem_cgroup_from_current();
2538        kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2539        if (kmemcg_id < 0)
2540                goto out;
2541
2542        memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2543        if (likely(memcg_cachep))
2544                return memcg_cachep;
2545
2546        /*
2547         * If we are in a safe context (can wait, and not in interrupt
2548         * context), we could be be predictable and return right away.
2549         * This would guarantee that the allocation being performed
2550         * already belongs in the new cache.
2551         *
2552         * However, there are some clashes that can arrive from locking.
2553         * For instance, because we acquire the slab_mutex while doing
2554         * memcg_create_kmem_cache, this means no further allocation
2555         * could happen with the slab_mutex held. So it's better to
2556         * defer everything.
2557         */
2558        memcg_schedule_kmem_cache_create(memcg, cachep);
2559out:
2560        css_put(&memcg->css);
2561        return cachep;
2562}
2563
2564/**
2565 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2566 * @cachep: the cache returned by memcg_kmem_get_cache
2567 */
2568void memcg_kmem_put_cache(struct kmem_cache *cachep)
2569{
2570        if (!is_root_cache(cachep))
2571                css_put(&cachep->memcg_params.memcg->css);
2572}
2573
2574/**
2575 * memcg_kmem_charge_memcg: charge a kmem page
2576 * @page: page to charge
2577 * @gfp: reclaim mode
2578 * @order: allocation order
2579 * @memcg: memory cgroup to charge
2580 *
2581 * Returns 0 on success, an error code on failure.
2582 */
2583int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2584                            struct mem_cgroup *memcg)
2585{
2586        unsigned int nr_pages = 1 << order;
2587        struct page_counter *counter;
2588        int ret;
2589
2590        ret = try_charge(memcg, gfp, nr_pages);
2591        if (ret)
2592                return ret;
2593
2594        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2595            !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2596                cancel_charge(memcg, nr_pages);
2597                return -ENOMEM;
2598        }
2599
2600        page->mem_cgroup = memcg;
2601
2602        return 0;
2603}
2604
2605/**
2606 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2607 * @page: page to charge
2608 * @gfp: reclaim mode
2609 * @order: allocation order
2610 *
2611 * Returns 0 on success, an error code on failure.
2612 */
2613int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2614{
2615        struct mem_cgroup *memcg;
2616        int ret = 0;
2617
2618        if (memcg_kmem_bypass())
2619                return 0;
2620
2621        memcg = get_mem_cgroup_from_current();
2622        if (!mem_cgroup_is_root(memcg)) {
2623                ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2624                if (!ret)
2625                        __SetPageKmemcg(page);
2626        }
2627        css_put(&memcg->css);
2628        return ret;
2629}
2630/**
2631 * memcg_kmem_uncharge: uncharge a kmem page
2632 * @page: page to uncharge
2633 * @order: allocation order
2634 */
2635void memcg_kmem_uncharge(struct page *page, int order)
2636{
2637        struct mem_cgroup *memcg = page->mem_cgroup;
2638        unsigned int nr_pages = 1 << order;
2639
2640        if (!memcg)
2641                return;
2642
2643        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2644
2645        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2646                page_counter_uncharge(&memcg->kmem, nr_pages);
2647
2648        page_counter_uncharge(&memcg->memory, nr_pages);
2649        if (do_memsw_account())
2650                page_counter_uncharge(&memcg->memsw, nr_pages);
2651
2652        page->mem_cgroup = NULL;
2653
2654        /* slab pages do not have PageKmemcg flag set */
2655        if (PageKmemcg(page))
2656                __ClearPageKmemcg(page);
2657
2658        css_put_many(&memcg->css, nr_pages);
2659}
2660#endif /* CONFIG_MEMCG_KMEM */
2661
2662#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2663
2664/*
2665 * Because tail pages are not marked as "used", set it. We're under
2666 * zone_lru_lock and migration entries setup in all page mappings.
2667 */
2668void mem_cgroup_split_huge_fixup(struct page *head)
2669{
2670        int i;
2671
2672        if (mem_cgroup_disabled())
2673                return;
2674
2675        for (i = 1; i < HPAGE_PMD_NR; i++)
2676                head[i].mem_cgroup = head->mem_cgroup;
2677
2678        __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2679}
2680#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2681
2682#ifdef CONFIG_MEMCG_SWAP
2683/**
2684 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2685 * @entry: swap entry to be moved
2686 * @from:  mem_cgroup which the entry is moved from
2687 * @to:  mem_cgroup which the entry is moved to
2688 *
2689 * It succeeds only when the swap_cgroup's record for this entry is the same
2690 * as the mem_cgroup's id of @from.
2691 *
2692 * Returns 0 on success, -EINVAL on failure.
2693 *
2694 * The caller must have charged to @to, IOW, called page_counter_charge() about
2695 * both res and memsw, and called css_get().
2696 */
2697static int mem_cgroup_move_swap_account(swp_entry_t entry,
2698                                struct mem_cgroup *from, struct mem_cgroup *to)
2699{
2700        unsigned short old_id, new_id;
2701
2702        old_id = mem_cgroup_id(from);
2703        new_id = mem_cgroup_id(to);
2704
2705        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2706                mod_memcg_state(from, MEMCG_SWAP, -1);
2707                mod_memcg_state(to, MEMCG_SWAP, 1);
2708                return 0;
2709        }
2710        return -EINVAL;
2711}
2712#else
2713static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2714                                struct mem_cgroup *from, struct mem_cgroup *to)
2715{
2716        return -EINVAL;
2717}
2718#endif
2719
2720static DEFINE_MUTEX(memcg_max_mutex);
2721
2722static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2723                                 unsigned long max, bool memsw)
2724{
2725        bool enlarge = false;
2726        bool drained = false;
2727        int ret;
2728        bool limits_invariant;
2729        struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2730
2731        do {
2732                if (signal_pending(current)) {
2733                        ret = -EINTR;
2734                        break;
2735                }
2736
2737                mutex_lock(&memcg_max_mutex);
2738                /*
2739                 * Make sure that the new limit (memsw or memory limit) doesn't
2740                 * break our basic invariant rule memory.max <= memsw.max.
2741                 */
2742                limits_invariant = memsw ? max >= memcg->memory.max :
2743                                           max <= memcg->memsw.max;
2744                if (!limits_invariant) {
2745                        mutex_unlock(&memcg_max_mutex);
2746                        ret = -EINVAL;
2747                        break;
2748                }
2749                if (max > counter->max)
2750                        enlarge = true;
2751                ret = page_counter_set_max(counter, max);
2752                mutex_unlock(&memcg_max_mutex);
2753
2754                if (!ret)
2755                        break;
2756
2757                if (!drained) {
2758                        drain_all_stock(memcg);
2759                        drained = true;
2760                        continue;
2761                }
2762
2763                if (!try_to_free_mem_cgroup_pages(memcg, 1,
2764                                        GFP_KERNEL, !memsw)) {
2765                        ret = -EBUSY;
2766                        break;
2767                }
2768        } while (true);
2769
2770        if (!ret && enlarge)
2771                memcg_oom_recover(memcg);
2772
2773        return ret;
2774}
2775
2776unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2777                                            gfp_t gfp_mask,
2778                                            unsigned long *total_scanned)
2779{
2780        unsigned long nr_reclaimed = 0;
2781        struct mem_cgroup_per_node *mz, *next_mz = NULL;
2782        unsigned long reclaimed;
2783        int loop = 0;
2784        struct mem_cgroup_tree_per_node *mctz;
2785        unsigned long excess;
2786        unsigned long nr_scanned;
2787
2788        if (order > 0)
2789                return 0;
2790
2791        mctz = soft_limit_tree_node(pgdat->node_id);
2792
2793        /*
2794         * Do not even bother to check the largest node if the root
2795         * is empty. Do it lockless to prevent lock bouncing. Races
2796         * are acceptable as soft limit is best effort anyway.
2797         */
2798        if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2799                return 0;
2800
2801        /*
2802         * This loop can run a while, specially if mem_cgroup's continuously
2803         * keep exceeding their soft limit and putting the system under
2804         * pressure
2805         */
2806        do {
2807                if (next_mz)
2808                        mz = next_mz;
2809                else
2810                        mz = mem_cgroup_largest_soft_limit_node(mctz);
2811                if (!mz)
2812                        break;
2813
2814                nr_scanned = 0;
2815                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2816                                                    gfp_mask, &nr_scanned);
2817                nr_reclaimed += reclaimed;
2818                *total_scanned += nr_scanned;
2819                spin_lock_irq(&mctz->lock);
2820                __mem_cgroup_remove_exceeded(mz, mctz);
2821
2822                /*
2823                 * If we failed to reclaim anything from this memory cgroup
2824                 * it is time to move on to the next cgroup
2825                 */
2826                next_mz = NULL;
2827                if (!reclaimed)
2828                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2829
2830                excess = soft_limit_excess(mz->memcg);
2831                /*
2832                 * One school of thought says that we should not add
2833                 * back the node to the tree if reclaim returns 0.
2834                 * But our reclaim could return 0, simply because due
2835                 * to priority we are exposing a smaller subset of
2836                 * memory to reclaim from. Consider this as a longer
2837                 * term TODO.
2838                 */
2839                /* If excess == 0, no tree ops */
2840                __mem_cgroup_insert_exceeded(mz, mctz, excess);
2841                spin_unlock_irq(&mctz->lock);
2842                css_put(&mz->memcg->css);
2843                loop++;
2844                /*
2845                 * Could not reclaim anything and there are no more
2846                 * mem cgroups to try or we seem to be looping without
2847                 * reclaiming anything.
2848                 */
2849                if (!nr_reclaimed &&
2850                        (next_mz == NULL ||
2851                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2852                        break;
2853        } while (!nr_reclaimed);
2854        if (next_mz)
2855                css_put(&next_mz->memcg->css);
2856        return nr_reclaimed;
2857}
2858
2859/*
2860 * Test whether @memcg has children, dead or alive.  Note that this
2861 * function doesn't care whether @memcg has use_hierarchy enabled and
2862 * returns %true if there are child csses according to the cgroup
2863 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2864 */
2865static inline bool memcg_has_children(struct mem_cgroup *memcg)
2866{
2867        bool ret;
2868
2869        rcu_read_lock();
2870        ret = css_next_child(NULL, &memcg->css);
2871        rcu_read_unlock();
2872        return ret;
2873}
2874
2875/*
2876 * Reclaims as many pages from the given memcg as possible.
2877 *
2878 * Caller is responsible for holding css reference for memcg.
2879 */
2880static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2881{
2882        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2883
2884        /* we call try-to-free pages for make this cgroup empty */
2885        lru_add_drain_all();
2886
2887        drain_all_stock(memcg);
2888
2889        /* try to free all pages in this cgroup */
2890        while (nr_retries && page_counter_read(&memcg->memory)) {
2891                int progress;
2892
2893                if (signal_pending(current))
2894                        return -EINTR;
2895
2896                progress = try_to_free_mem_cgroup_pages(memcg, 1,
2897                                                        GFP_KERNEL, true);
2898                if (!progress) {
2899                        nr_retries--;
2900                        /* maybe some writeback is necessary */
2901                        congestion_wait(BLK_RW_ASYNC, HZ/10);
2902                }
2903
2904        }
2905
2906        return 0;
2907}
2908
2909static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2910                                            char *buf, size_t nbytes,
2911                                            loff_t off)
2912{
2913        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2914
2915        if (mem_cgroup_is_root(memcg))
2916                return -EINVAL;
2917        return mem_cgroup_force_empty(memcg) ?: nbytes;
2918}
2919
2920static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2921                                     struct cftype *cft)
2922{
2923        return mem_cgroup_from_css(css)->use_hierarchy;
2924}
2925
2926static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2927                                      struct cftype *cft, u64 val)
2928{
2929        int retval = 0;
2930        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2931        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2932
2933        if (memcg->use_hierarchy == val)
2934                return 0;
2935
2936        /*
2937         * If parent's use_hierarchy is set, we can't make any modifications
2938         * in the child subtrees. If it is unset, then the change can
2939         * occur, provided the current cgroup has no children.
2940         *
2941         * For the root cgroup, parent_mem is NULL, we allow value to be
2942         * set if there are no children.
2943         */
2944        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2945                                (val == 1 || val == 0)) {
2946                if (!memcg_has_children(memcg))
2947                        memcg->use_hierarchy = val;
2948                else
2949                        retval = -EBUSY;
2950        } else
2951                retval = -EINVAL;
2952
2953        return retval;
2954}
2955
2956struct accumulated_stats {
2957        unsigned long stat[MEMCG_NR_STAT];
2958        unsigned long events[NR_VM_EVENT_ITEMS];
2959        unsigned long lru_pages[NR_LRU_LISTS];
2960        const unsigned int *stats_array;
2961        const unsigned int *events_array;
2962        int stats_size;
2963        int events_size;
2964};
2965
2966static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2967                                  struct accumulated_stats *acc)
2968{
2969        struct mem_cgroup *mi;
2970        int i;
2971
2972        for_each_mem_cgroup_tree(mi, memcg) {
2973                for (i = 0; i < acc->stats_size; i++)
2974                        acc->stat[i] += memcg_page_state(mi,
2975                                acc->stats_array ? acc->stats_array[i] : i);
2976
2977                for (i = 0; i < acc->events_size; i++)
2978                        acc->events[i] += memcg_sum_events(mi,
2979                                acc->events_array ? acc->events_array[i] : i);
2980
2981                for (i = 0; i < NR_LRU_LISTS; i++)
2982                        acc->lru_pages[i] +=
2983                                mem_cgroup_nr_lru_pages(mi, BIT(i));
2984        }
2985}
2986
2987static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2988{
2989        unsigned long val = 0;
2990
2991        if (mem_cgroup_is_root(memcg)) {
2992                struct mem_cgroup *iter;
2993
2994                for_each_mem_cgroup_tree(iter, memcg) {
2995                        val += memcg_page_state(iter, MEMCG_CACHE);
2996                        val += memcg_page_state(iter, MEMCG_RSS);
2997                        if (swap)
2998                                val += memcg_page_state(iter, MEMCG_SWAP);
2999                }
3000        } else {
3001                if (!swap)
3002                        val = page_counter_read(&memcg->memory);
3003                else
3004                        val = page_counter_read(&memcg->memsw);
3005        }
3006        return val;
3007}
3008
3009enum {
3010        RES_USAGE,
3011        RES_LIMIT,
3012        RES_MAX_USAGE,
3013        RES_FAILCNT,
3014        RES_SOFT_LIMIT,
3015};
3016
3017static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3018                               struct cftype *cft)
3019{
3020        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021        struct page_counter *counter;
3022
3023        switch (MEMFILE_TYPE(cft->private)) {
3024        case _MEM:
3025                counter = &memcg->memory;
3026                break;
3027        case _MEMSWAP:
3028                counter = &memcg->memsw;
3029                break;
3030        case _KMEM:
3031                counter = &memcg->kmem;
3032                break;
3033        case _TCP:
3034                counter = &memcg->tcpmem;
3035                break;
3036        default:
3037                BUG();
3038        }
3039
3040        switch (MEMFILE_ATTR(cft->private)) {
3041        case RES_USAGE:
3042                if (counter == &memcg->memory)
3043                        return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3044                if (counter == &memcg->memsw)
3045                        return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3046                return (u64)page_counter_read(counter) * PAGE_SIZE;
3047        case RES_LIMIT:
3048                return (u64)counter->max * PAGE_SIZE;
3049        case RES_MAX_USAGE:
3050                return (u64)counter->watermark * PAGE_SIZE;
3051        case RES_FAILCNT:
3052                return counter->failcnt;
3053        case RES_SOFT_LIMIT:
3054                return (u64)memcg->soft_limit * PAGE_SIZE;
3055        default:
3056                BUG();
3057        }
3058}
3059
3060#ifdef CONFIG_MEMCG_KMEM
3061static int memcg_online_kmem(struct mem_cgroup *memcg)
3062{
3063        int memcg_id;
3064
3065        if (cgroup_memory_nokmem)
3066                return 0;
3067
3068        BUG_ON(memcg->kmemcg_id >= 0);
3069        BUG_ON(memcg->kmem_state);
3070
3071        memcg_id = memcg_alloc_cache_id();
3072        if (memcg_id < 0)
3073                return memcg_id;
3074
3075        static_branch_inc(&memcg_kmem_enabled_key);
3076        /*
3077         * A memory cgroup is considered kmem-online as soon as it gets
3078         * kmemcg_id. Setting the id after enabling static branching will
3079         * guarantee no one starts accounting before all call sites are
3080         * patched.
3081         */
3082        memcg->kmemcg_id = memcg_id;
3083        memcg->kmem_state = KMEM_ONLINE;
3084        INIT_LIST_HEAD(&memcg->kmem_caches);
3085
3086        return 0;
3087}
3088
3089static void memcg_offline_kmem(struct mem_cgroup *memcg)
3090{
3091        struct cgroup_subsys_state *css;
3092        struct mem_cgroup *parent, *child;
3093        int kmemcg_id;
3094
3095        if (memcg->kmem_state != KMEM_ONLINE)
3096                return;
3097        /*
3098         * Clear the online state before clearing memcg_caches array
3099         * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3100         * guarantees that no cache will be created for this cgroup
3101         * after we are done (see memcg_create_kmem_cache()).
3102         */
3103        memcg->kmem_state = KMEM_ALLOCATED;
3104
3105        memcg_deactivate_kmem_caches(memcg);
3106
3107        kmemcg_id = memcg->kmemcg_id;
3108        BUG_ON(kmemcg_id < 0);
3109
3110        parent = parent_mem_cgroup(memcg);
3111        if (!parent)
3112                parent = root_mem_cgroup;
3113
3114        /*
3115         * Change kmemcg_id of this cgroup and all its descendants to the
3116         * parent's id, and then move all entries from this cgroup's list_lrus
3117         * to ones of the parent. After we have finished, all list_lrus
3118         * corresponding to this cgroup are guaranteed to remain empty. The
3119         * ordering is imposed by list_lru_node->lock taken by
3120         * memcg_drain_all_list_lrus().
3121         */
3122        rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3123        css_for_each_descendant_pre(css, &memcg->css) {
3124                child = mem_cgroup_from_css(css);
3125                BUG_ON(child->kmemcg_id != kmemcg_id);
3126                child->kmemcg_id = parent->kmemcg_id;
3127                if (!memcg->use_hierarchy)
3128                        break;
3129        }
3130        rcu_read_unlock();
3131
3132        memcg_drain_all_list_lrus(kmemcg_id, parent);
3133
3134        memcg_free_cache_id(kmemcg_id);
3135}
3136
3137static void memcg_free_kmem(struct mem_cgroup *memcg)
3138{
3139        /* css_alloc() failed, offlining didn't happen */
3140        if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3141                memcg_offline_kmem(memcg);
3142
3143        if (memcg->kmem_state == KMEM_ALLOCATED) {
3144                memcg_destroy_kmem_caches(memcg);
3145                static_branch_dec(&memcg_kmem_enabled_key);
3146                WARN_ON(page_counter_read(&memcg->kmem));
3147        }
3148}
3149#else
3150static int memcg_online_kmem(struct mem_cgroup *memcg)
3151{
3152        return 0;
3153}
3154static void memcg_offline_kmem(struct mem_cgroup *memcg)
3155{
3156}
3157static void memcg_free_kmem(struct mem_cgroup *memcg)
3158{
3159}
3160#endif /* CONFIG_MEMCG_KMEM */
3161
3162static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3163                                 unsigned long max)
3164{
3165        int ret;
3166
3167        mutex_lock(&memcg_max_mutex);
3168        ret = page_counter_set_max(&memcg->kmem, max);
3169        mutex_unlock(&memcg_max_mutex);
3170        return ret;
3171}
3172
3173static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3174{
3175        int ret;
3176
3177        mutex_lock(&memcg_max_mutex);
3178
3179        ret = page_counter_set_max(&memcg->tcpmem, max);
3180        if (ret)
3181                goto out;
3182
3183        if (!memcg->tcpmem_active) {
3184                /*
3185                 * The active flag needs to be written after the static_key
3186                 * update. This is what guarantees that the socket activation
3187                 * function is the last one to run. See mem_cgroup_sk_alloc()
3188                 * for details, and note that we don't mark any socket as
3189                 * belonging to this memcg until that flag is up.
3190                 *
3191                 * We need to do this, because static_keys will span multiple
3192                 * sites, but we can't control their order. If we mark a socket
3193                 * as accounted, but the accounting functions are not patched in
3194                 * yet, we'll lose accounting.
3195                 *
3196                 * We never race with the readers in mem_cgroup_sk_alloc(),
3197                 * because when this value change, the code to process it is not
3198                 * patched in yet.
3199                 */
3200                static_branch_inc(&memcg_sockets_enabled_key);
3201                memcg->tcpmem_active = true;
3202        }
3203out:
3204        mutex_unlock(&memcg_max_mutex);
3205        return ret;
3206}
3207
3208/*
3209 * The user of this function is...
3210 * RES_LIMIT.
3211 */
3212static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3213                                char *buf, size_t nbytes, loff_t off)
3214{
3215        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3216        unsigned long nr_pages;
3217        int ret;
3218
3219        buf = strstrip(buf);
3220        ret = page_counter_memparse(buf, "-1", &nr_pages);
3221        if (ret)
3222                return ret;
3223
3224        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3225        case RES_LIMIT:
3226                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3227                        ret = -EINVAL;
3228                        break;
3229                }
3230                switch (MEMFILE_TYPE(of_cft(of)->private)) {
3231                case _MEM:
3232                        ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3233                        break;
3234                case _MEMSWAP:
3235                        ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3236                        break;
3237                case _KMEM:
3238                        ret = memcg_update_kmem_max(memcg, nr_pages);
3239                        break;
3240                case _TCP:
3241                        ret = memcg_update_tcp_max(memcg, nr_pages);
3242                        break;
3243                }
3244                break;
3245        case RES_SOFT_LIMIT:
3246                memcg->soft_limit = nr_pages;
3247                ret = 0;
3248                break;
3249        }
3250        return ret ?: nbytes;
3251}
3252
3253static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3254                                size_t nbytes, loff_t off)
3255{
3256        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3257        struct page_counter *counter;
3258
3259        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3260        case _MEM:
3261                counter = &memcg->memory;
3262                break;
3263        case _MEMSWAP:
3264                counter = &memcg->memsw;
3265                break;
3266        case _KMEM:
3267                counter = &memcg->kmem;
3268                break;
3269        case _TCP:
3270                counter = &memcg->tcpmem;
3271                break;
3272        default:
3273                BUG();
3274        }
3275
3276        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3277        case RES_MAX_USAGE:
3278                page_counter_reset_watermark(counter);
3279                break;
3280        case RES_FAILCNT:
3281                counter->failcnt = 0;
3282                break;
3283        default:
3284                BUG();
3285        }
3286
3287        return nbytes;
3288}
3289
3290static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3291                                        struct cftype *cft)
3292{
3293        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3294}
3295
3296#ifdef CONFIG_MMU
3297static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3298                                        struct cftype *cft, u64 val)
3299{
3300        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3301
3302        if (val & ~MOVE_MASK)
3303                return -EINVAL;
3304
3305        /*
3306         * No kind of locking is needed in here, because ->can_attach() will
3307         * check this value once in the beginning of the process, and then carry
3308         * on with stale data. This means that changes to this value will only
3309         * affect task migrations starting after the change.
3310         */
3311        memcg->move_charge_at_immigrate = val;
3312        return 0;
3313}
3314#else
3315static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316                                        struct cftype *cft, u64 val)
3317{
3318        return -ENOSYS;
3319}
3320#endif
3321
3322#ifdef CONFIG_NUMA
3323static int memcg_numa_stat_show(struct seq_file *m, void *v)
3324{
3325        struct numa_stat {
3326                const char *name;
3327                unsigned int lru_mask;
3328        };
3329
3330        static const struct numa_stat stats[] = {
3331                { "total", LRU_ALL },
3332                { "file", LRU_ALL_FILE },
3333                { "anon", LRU_ALL_ANON },
3334                { "unevictable", BIT(LRU_UNEVICTABLE) },
3335        };
3336        const struct numa_stat *stat;
3337        int nid;
3338        unsigned long nr;
3339        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3340
3341        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3342                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3343                seq_printf(m, "%s=%lu", stat->name, nr);
3344                for_each_node_state(nid, N_MEMORY) {
3345                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3346                                                          stat->lru_mask);
3347                        seq_printf(m, " N%d=%lu", nid, nr);
3348                }
3349                seq_putc(m, '\n');
3350        }
3351
3352        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3353                struct mem_cgroup *iter;
3354
3355                nr = 0;
3356                for_each_mem_cgroup_tree(iter, memcg)
3357                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3358                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3359                for_each_node_state(nid, N_MEMORY) {
3360                        nr = 0;
3361                        for_each_mem_cgroup_tree(iter, memcg)
3362                                nr += mem_cgroup_node_nr_lru_pages(
3363                                        iter, nid, stat->lru_mask);
3364                        seq_printf(m, " N%d=%lu", nid, nr);
3365                }
3366                seq_putc(m, '\n');
3367        }
3368
3369        return 0;
3370}
3371#endif /* CONFIG_NUMA */
3372
3373/* Universal VM events cgroup1 shows, original sort order */
3374static const unsigned int memcg1_events[] = {
3375        PGPGIN,
3376        PGPGOUT,
3377        PGFAULT,
3378        PGMAJFAULT,
3379};
3380
3381static const char *const memcg1_event_names[] = {
3382        "pgpgin",
3383        "pgpgout",
3384        "pgfault",
3385        "pgmajfault",
3386};
3387
3388static int memcg_stat_show(struct seq_file *m, void *v)
3389{
3390        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3391        unsigned long memory, memsw;
3392        struct mem_cgroup *mi;
3393        unsigned int i;
3394        struct accumulated_stats acc;
3395
3396        BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3397        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3398
3399        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3400                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3401                        continue;
3402                seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3403                           memcg_page_state(memcg, memcg1_stats[i]) *
3404                           PAGE_SIZE);
3405        }
3406
3407        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3408                seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3409                           memcg_sum_events(memcg, memcg1_events[i]));
3410
3411        for (i = 0; i < NR_LRU_LISTS; i++)
3412                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3413                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3414
3415        /* Hierarchical information */
3416        memory = memsw = PAGE_COUNTER_MAX;
3417        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3418                memory = min(memory, mi->memory.max);
3419                memsw = min(memsw, mi->memsw.max);
3420        }
3421        seq_printf(m, "hierarchical_memory_limit %llu\n",
3422                   (u64)memory * PAGE_SIZE);
3423        if (do_memsw_account())
3424                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3425                           (u64)memsw * PAGE_SIZE);
3426
3427        memset(&acc, 0, sizeof(acc));
3428        acc.stats_size = ARRAY_SIZE(memcg1_stats);
3429        acc.stats_array = memcg1_stats;
3430        acc.events_size = ARRAY_SIZE(memcg1_events);
3431        acc.events_array = memcg1_events;
3432        accumulate_memcg_tree(memcg, &acc);
3433
3434        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3435                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3436                        continue;
3437                seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3438                           (u64)acc.stat[i] * PAGE_SIZE);
3439        }
3440
3441        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3442                seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3443                           (u64)acc.events[i]);
3444
3445        for (i = 0; i < NR_LRU_LISTS; i++)
3446                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3447                           (u64)acc.lru_pages[i] * PAGE_SIZE);
3448
3449#ifdef CONFIG_DEBUG_VM
3450        {
3451                pg_data_t *pgdat;
3452                struct mem_cgroup_per_node *mz;
3453                struct zone_reclaim_stat *rstat;
3454                unsigned long recent_rotated[2] = {0, 0};
3455                unsigned long recent_scanned[2] = {0, 0};
3456
3457                for_each_online_pgdat(pgdat) {
3458                        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3459                        rstat = &mz->lruvec.reclaim_stat;
3460
3461                        recent_rotated[0] += rstat->recent_rotated[0];
3462                        recent_rotated[1] += rstat->recent_rotated[1];
3463                        recent_scanned[0] += rstat->recent_scanned[0];
3464                        recent_scanned[1] += rstat->recent_scanned[1];
3465                }
3466                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3467                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3468                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3469                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3470        }
3471#endif
3472
3473        return 0;
3474}
3475
3476static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3477                                      struct cftype *cft)
3478{
3479        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3480
3481        return mem_cgroup_swappiness(memcg);
3482}
3483
3484static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3485                                       struct cftype *cft, u64 val)
3486{
3487        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3488
3489        if (val > 100)
3490                return -EINVAL;
3491
3492        if (css->parent)
3493                memcg->swappiness = val;
3494        else
3495                vm_swappiness = val;
3496
3497        return 0;
3498}
3499
3500static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3501{
3502        struct mem_cgroup_threshold_ary *t;
3503        unsigned long usage;
3504        int i;
3505
3506        rcu_read_lock();
3507        if (!swap)
3508                t = rcu_dereference(memcg->thresholds.primary);
3509        else
3510                t = rcu_dereference(memcg->memsw_thresholds.primary);
3511
3512        if (!t)
3513                goto unlock;
3514
3515        usage = mem_cgroup_usage(memcg, swap);
3516
3517        /*
3518         * current_threshold points to threshold just below or equal to usage.
3519         * If it's not true, a threshold was crossed after last
3520         * call of __mem_cgroup_threshold().
3521         */
3522        i = t->current_threshold;
3523
3524        /*
3525         * Iterate backward over array of thresholds starting from
3526         * current_threshold and check if a threshold is crossed.
3527         * If none of thresholds below usage is crossed, we read
3528         * only one element of the array here.
3529         */
3530        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3531                eventfd_signal(t->entries[i].eventfd, 1);
3532
3533        /* i = current_threshold + 1 */
3534        i++;
3535
3536        /*
3537         * Iterate forward over array of thresholds starting from
3538         * current_threshold+1 and check if a threshold is crossed.
3539         * If none of thresholds above usage is crossed, we read
3540         * only one element of the array here.
3541         */
3542        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3543                eventfd_signal(t->entries[i].eventfd, 1);
3544
3545        /* Update current_threshold */
3546        t->current_threshold = i - 1;
3547unlock:
3548        rcu_read_unlock();
3549}
3550
3551static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3552{
3553        while (memcg) {
3554                __mem_cgroup_threshold(memcg, false);
3555                if (do_memsw_account())
3556                        __mem_cgroup_threshold(memcg, true);
3557
3558                memcg = parent_mem_cgroup(memcg);
3559        }
3560}
3561
3562static int compare_thresholds(const void *a, const void *b)
3563{
3564        const struct mem_cgroup_threshold *_a = a;
3565        const struct mem_cgroup_threshold *_b = b;
3566
3567        if (_a->threshold > _b->threshold)
3568                return 1;
3569
3570        if (_a->threshold < _b->threshold)
3571                return -1;
3572
3573        return 0;
3574}
3575
3576static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3577{
3578        struct mem_cgroup_eventfd_list *ev;
3579
3580        spin_lock(&memcg_oom_lock);
3581
3582        list_for_each_entry(ev, &memcg->oom_notify, list)
3583                eventfd_signal(ev->eventfd, 1);
3584
3585        spin_unlock(&memcg_oom_lock);
3586        return 0;
3587}
3588
3589static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3590{
3591        struct mem_cgroup *iter;
3592
3593        for_each_mem_cgroup_tree(iter, memcg)
3594                mem_cgroup_oom_notify_cb(iter);
3595}
3596
3597static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3598        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3599{
3600        struct mem_cgroup_thresholds *thresholds;
3601        struct mem_cgroup_threshold_ary *new;
3602        unsigned long threshold;
3603        unsigned long usage;
3604        int i, size, ret;
3605
3606        ret = page_counter_memparse(args, "-1", &threshold);
3607        if (ret)
3608                return ret;
3609
3610        mutex_lock(&memcg->thresholds_lock);
3611
3612        if (type == _MEM) {
3613                thresholds = &memcg->thresholds;
3614                usage = mem_cgroup_usage(memcg, false);
3615        } else if (type == _MEMSWAP) {
3616                thresholds = &memcg->memsw_thresholds;
3617                usage = mem_cgroup_usage(memcg, true);
3618        } else
3619                BUG();
3620
3621        /* Check if a threshold crossed before adding a new one */
3622        if (thresholds->primary)
3623                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3624
3625        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3626
3627        /* Allocate memory for new array of thresholds */
3628        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3629                        GFP_KERNEL);
3630        if (!new) {
3631                ret = -ENOMEM;
3632                goto unlock;
3633        }
3634        new->size = size;
3635
3636        /* Copy thresholds (if any) to new array */
3637        if (thresholds->primary) {
3638                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3639                                sizeof(struct mem_cgroup_threshold));
3640        }
3641
3642        /* Add new threshold */
3643        new->entries[size - 1].eventfd = eventfd;
3644        new->entries[size - 1].threshold = threshold;
3645
3646        /* Sort thresholds. Registering of new threshold isn't time-critical */
3647        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3648                        compare_thresholds, NULL);
3649
3650        /* Find current threshold */
3651        new->current_threshold = -1;
3652        for (i = 0; i < size; i++) {
3653                if (new->entries[i].threshold <= usage) {
3654                        /*
3655                         * new->current_threshold will not be used until
3656                         * rcu_assign_pointer(), so it's safe to increment
3657                         * it here.
3658                         */
3659                        ++new->current_threshold;
3660                } else
3661                        break;
3662        }
3663
3664        /* Free old spare buffer and save old primary buffer as spare */
3665        kfree(thresholds->spare);
3666        thresholds->spare = thresholds->primary;
3667
3668        rcu_assign_pointer(thresholds->primary, new);
3669
3670        /* To be sure that nobody uses thresholds */
3671        synchronize_rcu();
3672
3673unlock:
3674        mutex_unlock(&memcg->thresholds_lock);
3675
3676        return ret;
3677}
3678
3679static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3680        struct eventfd_ctx *eventfd, const char *args)
3681{
3682        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3683}
3684
3685static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3686        struct eventfd_ctx *eventfd, const char *args)
3687{
3688        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3689}
3690
3691static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3692        struct eventfd_ctx *eventfd, enum res_type type)
3693{
3694        struct mem_cgroup_thresholds *thresholds;
3695        struct mem_cgroup_threshold_ary *new;
3696        unsigned long usage;
3697        int i, j, size;
3698
3699        mutex_lock(&memcg->thresholds_lock);
3700
3701        if (type == _MEM) {
3702                thresholds = &memcg->thresholds;
3703                usage = mem_cgroup_usage(memcg, false);
3704        } else if (type == _MEMSWAP) {
3705                thresholds = &memcg->memsw_thresholds;
3706                usage = mem_cgroup_usage(memcg, true);
3707        } else
3708                BUG();
3709
3710        if (!thresholds->primary)
3711                goto unlock;
3712
3713        /* Check if a threshold crossed before removing */
3714        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3715
3716        /* Calculate new number of threshold */
3717        size = 0;
3718        for (i = 0; i < thresholds->primary->size; i++) {
3719                if (thresholds->primary->entries[i].eventfd != eventfd)
3720                        size++;
3721        }
3722
3723        new = thresholds->spare;
3724
3725        /* Set thresholds array to NULL if we don't have thresholds */
3726        if (!size) {
3727                kfree(new);
3728                new = NULL;
3729                goto swap_buffers;
3730        }
3731
3732        new->size = size;
3733
3734        /* Copy thresholds and find current threshold */
3735        new->current_threshold = -1;
3736        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3737                if (thresholds->primary->entries[i].eventfd == eventfd)
3738                        continue;
3739
3740                new->entries[j] = thresholds->primary->entries[i];
3741                if (new->entries[j].threshold <= usage) {
3742                        /*
3743                         * new->current_threshold will not be used
3744                         * until rcu_assign_pointer(), so it's safe to increment
3745                         * it here.
3746                         */
3747                        ++new->current_threshold;
3748                }
3749                j++;
3750        }
3751
3752swap_buffers:
3753        /* Swap primary and spare array */
3754        thresholds->spare = thresholds->primary;
3755
3756        rcu_assign_pointer(thresholds->primary, new);
3757
3758        /* To be sure that nobody uses thresholds */
3759        synchronize_rcu();
3760
3761        /* If all events are unregistered, free the spare array */
3762        if (!new) {
3763                kfree(thresholds->spare);
3764                thresholds->spare = NULL;
3765        }
3766unlock:
3767        mutex_unlock(&memcg->thresholds_lock);
3768}
3769
3770static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3771        struct eventfd_ctx *eventfd)
3772{
3773        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3774}
3775
3776static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3777        struct eventfd_ctx *eventfd)
3778{
3779        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3780}
3781
3782static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3783        struct eventfd_ctx *eventfd, const char *args)
3784{
3785        struct mem_cgroup_eventfd_list *event;
3786
3787        event = kmalloc(sizeof(*event), GFP_KERNEL);
3788        if (!event)
3789                return -ENOMEM;
3790
3791        spin_lock(&memcg_oom_lock);
3792
3793        event->eventfd = eventfd;
3794        list_add(&event->list, &memcg->oom_notify);
3795
3796        /* already in OOM ? */
3797        if (memcg->under_oom)
3798                eventfd_signal(eventfd, 1);
3799        spin_unlock(&memcg_oom_lock);
3800
3801        return 0;
3802}
3803
3804static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3805        struct eventfd_ctx *eventfd)
3806{
3807        struct mem_cgroup_eventfd_list *ev, *tmp;
3808
3809        spin_lock(&memcg_oom_lock);
3810
3811        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3812                if (ev->eventfd == eventfd) {
3813                        list_del(&ev->list);
3814                        kfree(ev);
3815                }
3816        }
3817
3818        spin_unlock(&memcg_oom_lock);
3819}
3820
3821static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3822{
3823        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3824
3825        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3826        seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3827        seq_printf(sf, "oom_kill %lu\n",
3828                   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3829        return 0;
3830}
3831
3832static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3833        struct cftype *cft, u64 val)
3834{
3835        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3836
3837        /* cannot set to root cgroup and only 0 and 1 are allowed */
3838        if (!css->parent || !((val == 0) || (val == 1)))
3839                return -EINVAL;
3840
3841        memcg->oom_kill_disable = val;
3842        if (!val)
3843                memcg_oom_recover(memcg);
3844
3845        return 0;
3846}
3847
3848#ifdef CONFIG_CGROUP_WRITEBACK
3849
3850static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3851{
3852        return wb_domain_init(&memcg->cgwb_domain, gfp);
3853}
3854
3855static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3856{
3857        wb_domain_exit(&memcg->cgwb_domain);
3858}
3859
3860static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3861{
3862        wb_domain_size_changed(&memcg->cgwb_domain);
3863}
3864
3865struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3866{
3867        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3868
3869        if (!memcg->css.parent)
3870                return NULL;
3871
3872        return &memcg->cgwb_domain;
3873}
3874
3875/**
3876 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3877 * @wb: bdi_writeback in question
3878 * @pfilepages: out parameter for number of file pages
3879 * @pheadroom: out parameter for number of allocatable pages according to memcg
3880 * @pdirty: out parameter for number of dirty pages
3881 * @pwriteback: out parameter for number of pages under writeback
3882 *
3883 * Determine the numbers of file, headroom, dirty, and writeback pages in
3884 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3885 * is a bit more involved.
3886 *
3887 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3888 * headroom is calculated as the lowest headroom of itself and the
3889 * ancestors.  Note that this doesn't consider the actual amount of
3890 * available memory in the system.  The caller should further cap
3891 * *@pheadroom accordingly.
3892 */
3893void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3894                         unsigned long *pheadroom, unsigned long *pdirty,
3895                         unsigned long *pwriteback)
3896{
3897        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3898        struct mem_cgroup *parent;
3899
3900        *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3901
3902        /* this should eventually include NR_UNSTABLE_NFS */
3903        *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3904        *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3905                                                     (1 << LRU_ACTIVE_FILE));
3906        *pheadroom = PAGE_COUNTER_MAX;
3907
3908        while ((parent = parent_mem_cgroup(memcg))) {
3909                unsigned long ceiling = min(memcg->memory.max, memcg->high);
3910                unsigned long used = page_counter_read(&memcg->memory);
3911
3912                *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3913                memcg = parent;
3914        }
3915}
3916
3917#else   /* CONFIG_CGROUP_WRITEBACK */
3918
3919static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3920{
3921        return 0;
3922}
3923
3924static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3925{
3926}
3927
3928static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3929{
3930}
3931
3932#endif  /* CONFIG_CGROUP_WRITEBACK */
3933
3934/*
3935 * DO NOT USE IN NEW FILES.
3936 *
3937 * "cgroup.event_control" implementation.
3938 *
3939 * This is way over-engineered.  It tries to support fully configurable
3940 * events for each user.  Such level of flexibility is completely
3941 * unnecessary especially in the light of the planned unified hierarchy.
3942 *
3943 * Please deprecate this and replace with something simpler if at all
3944 * possible.
3945 */
3946
3947/*
3948 * Unregister event and free resources.
3949 *
3950 * Gets called from workqueue.
3951 */
3952static void memcg_event_remove(struct work_struct *work)
3953{
3954        struct mem_cgroup_event *event =
3955                container_of(work, struct mem_cgroup_event, remove);
3956        struct mem_cgroup *memcg = event->memcg;
3957
3958        remove_wait_queue(event->wqh, &event->wait);
3959
3960        event->unregister_event(memcg, event->eventfd);
3961
3962        /* Notify userspace the event is going away. */
3963        eventfd_signal(event->eventfd, 1);
3964
3965        eventfd_ctx_put(event->eventfd);
3966        kfree(event);
3967        css_put(&memcg->css);
3968}
3969
3970/*
3971 * Gets called on EPOLLHUP on eventfd when user closes it.
3972 *
3973 * Called with wqh->lock held and interrupts disabled.
3974 */
3975static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3976                            int sync, void *key)
3977{
3978        struct mem_cgroup_event *event =
3979                container_of(wait, struct mem_cgroup_event, wait);
3980        struct mem_cgroup *memcg = event->memcg;
3981        __poll_t flags = key_to_poll(key);
3982
3983        if (flags & EPOLLHUP) {
3984                /*
3985                 * If the event has been detached at cgroup removal, we
3986                 * can simply return knowing the other side will cleanup
3987                 * for us.
3988                 *
3989                 * We can't race against event freeing since the other
3990                 * side will require wqh->lock via remove_wait_queue(),
3991                 * which we hold.
3992                 */
3993                spin_lock(&memcg->event_list_lock);
3994                if (!list_empty(&event->list)) {
3995                        list_del_init(&event->list);
3996                        /*
3997                         * We are in atomic context, but cgroup_event_remove()
3998                         * may sleep, so we have to call it in workqueue.
3999                         */
4000                        schedule_work(&event->remove);
4001                }
4002                spin_unlock(&memcg->event_list_lock);
4003        }
4004
4005        return 0;
4006}
4007
4008static void memcg_event_ptable_queue_proc(struct file *file,
4009                wait_queue_head_t *wqh, poll_table *pt)
4010{
4011        struct mem_cgroup_event *event =
4012                container_of(pt, struct mem_cgroup_event, pt);
4013
4014        event->wqh = wqh;
4015        add_wait_queue(wqh, &event->wait);
4016}
4017
4018/*
4019 * DO NOT USE IN NEW FILES.
4020 *
4021 * Parse input and register new cgroup event handler.
4022 *
4023 * Input must be in format '<event_fd> <control_fd> <args>'.
4024 * Interpretation of args is defined by control file implementation.
4025 */
4026static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4027                                         char *buf, size_t nbytes, loff_t off)
4028{
4029        struct cgroup_subsys_state *css = of_css(of);
4030        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4031        struct mem_cgroup_event *event;
4032        struct cgroup_subsys_state *cfile_css;
4033        unsigned int efd, cfd;
4034        struct fd efile;
4035        struct fd cfile;
4036        const char *name;
4037        char *endp;
4038        int ret;
4039
4040        buf = strstrip(buf);
4041
4042        efd = simple_strtoul(buf, &endp, 10);
4043        if (*endp != ' ')
4044                return -EINVAL;
4045        buf = endp + 1;
4046
4047        cfd = simple_strtoul(buf, &endp, 10);
4048        if ((*endp != ' ') && (*endp != '\0'))
4049                return -EINVAL;
4050        buf = endp + 1;
4051
4052        event = kzalloc(sizeof(*event), GFP_KERNEL);
4053        if (!event)
4054                return -ENOMEM;
4055
4056        event->memcg = memcg;
4057        INIT_LIST_HEAD(&event->list);
4058        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4059        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4060        INIT_WORK(&event->remove, memcg_event_remove);
4061
4062        efile = fdget(efd);
4063        if (!efile.file) {
4064                ret = -EBADF;
4065                goto out_kfree;
4066        }
4067
4068        event->eventfd = eventfd_ctx_fileget(efile.file);
4069        if (IS_ERR(event->eventfd)) {
4070                ret = PTR_ERR(event->eventfd);
4071                goto out_put_efile;
4072        }
4073
4074        cfile = fdget(cfd);
4075        if (!cfile.file) {
4076                ret = -EBADF;
4077                goto out_put_eventfd;
4078        }
4079
4080        /* the process need read permission on control file */
4081        /* AV: shouldn't we check that it's been opened for read instead? */
4082        ret = inode_permission(file_inode(cfile.file), MAY_READ);
4083        if (ret < 0)
4084                goto out_put_cfile;
4085
4086        /*
4087         * Determine the event callbacks and set them in @event.  This used
4088         * to be done via struct cftype but cgroup core no longer knows
4089         * about these events.  The following is crude but the whole thing
4090         * is for compatibility anyway.
4091         *
4092         * DO NOT ADD NEW FILES.
4093         */
4094        name = cfile.file->f_path.dentry->d_name.name;
4095
4096        if (!strcmp(name, "memory.usage_in_bytes")) {
4097                event->register_event = mem_cgroup_usage_register_event;
4098                event->unregister_event = mem_cgroup_usage_unregister_event;
4099        } else if (!strcmp(name, "memory.oom_control")) {
4100                event->register_event = mem_cgroup_oom_register_event;
4101                event->unregister_event = mem_cgroup_oom_unregister_event;
4102        } else if (!strcmp(name, "memory.pressure_level")) {
4103                event->register_event = vmpressure_register_event;
4104                event->unregister_event = vmpressure_unregister_event;
4105        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4106                event->register_event = memsw_cgroup_usage_register_event;
4107                event->unregister_event = memsw_cgroup_usage_unregister_event;
4108        } else {
4109                ret = -EINVAL;
4110                goto out_put_cfile;
4111        }
4112
4113        /*
4114         * Verify @cfile should belong to @css.  Also, remaining events are
4115         * automatically removed on cgroup destruction but the removal is
4116         * asynchronous, so take an extra ref on @css.
4117         */
4118        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4119                                               &memory_cgrp_subsys);
4120        ret = -EINVAL;
4121        if (IS_ERR(cfile_css))
4122                goto out_put_cfile;
4123        if (cfile_css != css) {
4124                css_put(cfile_css);
4125                goto out_put_cfile;
4126        }
4127
4128        ret = event->register_event(memcg, event->eventfd, buf);
4129        if (ret)
4130                goto out_put_css;
4131
4132        vfs_poll(efile.file, &event->pt);
4133
4134        spin_lock(&memcg->event_list_lock);
4135        list_add(&event->list, &memcg->event_list);
4136        spin_unlock(&memcg->event_list_lock);
4137
4138        fdput(cfile);
4139        fdput(efile);
4140
4141        return nbytes;
4142
4143out_put_css:
4144        css_put(css);
4145out_put_cfile:
4146        fdput(cfile);
4147out_put_eventfd:
4148        eventfd_ctx_put(event->eventfd);
4149out_put_efile:
4150        fdput(efile);
4151out_kfree:
4152        kfree(event);
4153
4154        return ret;
4155}
4156
4157static struct cftype mem_cgroup_legacy_files[] = {
4158        {
4159                .name = "usage_in_bytes",
4160                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4161                .read_u64 = mem_cgroup_read_u64,
4162        },
4163        {
4164                .name = "max_usage_in_bytes",
4165                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4166                .write = mem_cgroup_reset,
4167                .read_u64 = mem_cgroup_read_u64,
4168        },
4169        {
4170                .name = "limit_in_bytes",
4171                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4172                .write = mem_cgroup_write,
4173                .read_u64 = mem_cgroup_read_u64,
4174        },
4175        {
4176                .name = "soft_limit_in_bytes",
4177                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4178                .write = mem_cgroup_write,
4179                .read_u64 = mem_cgroup_read_u64,
4180        },
4181        {
4182                .name = "failcnt",
4183                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4184                .write = mem_cgroup_reset,
4185                .read_u64 = mem_cgroup_read_u64,
4186        },
4187        {
4188                .name = "stat",
4189                .seq_show = memcg_stat_show,
4190        },
4191        {
4192                .name = "force_empty",
4193                .write = mem_cgroup_force_empty_write,
4194        },
4195        {
4196                .name = "use_hierarchy",
4197                .write_u64 = mem_cgroup_hierarchy_write,
4198                .read_u64 = mem_cgroup_hierarchy_read,
4199        },
4200        {
4201                .name = "cgroup.event_control",         /* XXX: for compat */
4202                .write = memcg_write_event_control,
4203                .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4204        },
4205        {
4206                .name = "swappiness",
4207                .read_u64 = mem_cgroup_swappiness_read,
4208                .write_u64 = mem_cgroup_swappiness_write,
4209        },
4210        {
4211                .name = "move_charge_at_immigrate",
4212                .read_u64 = mem_cgroup_move_charge_read,
4213                .write_u64 = mem_cgroup_move_charge_write,
4214        },
4215        {
4216                .name = "oom_control",
4217                .seq_show = mem_cgroup_oom_control_read,
4218                .write_u64 = mem_cgroup_oom_control_write,
4219                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4220        },
4221        {
4222                .name = "pressure_level",
4223        },
4224#ifdef CONFIG_NUMA
4225        {
4226                .name = "numa_stat",
4227                .seq_show = memcg_numa_stat_show,
4228        },
4229#endif
4230        {
4231                .name = "kmem.limit_in_bytes",
4232                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4233                .write = mem_cgroup_write,
4234                .read_u64 = mem_cgroup_read_u64,
4235        },
4236        {
4237                .name = "kmem.usage_in_bytes",
4238                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4239                .read_u64 = mem_cgroup_read_u64,
4240        },
4241        {
4242                .name = "kmem.failcnt",
4243                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4244                .write = mem_cgroup_reset,
4245                .read_u64 = mem_cgroup_read_u64,
4246        },
4247        {
4248                .name = "kmem.max_usage_in_bytes",
4249                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4250                .write = mem_cgroup_reset,
4251                .read_u64 = mem_cgroup_read_u64,
4252        },
4253#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4254        {
4255                .name = "kmem.slabinfo",
4256                .seq_start = memcg_slab_start,
4257                .seq_next = memcg_slab_next,
4258                .seq_stop = memcg_slab_stop,
4259                .seq_show = memcg_slab_show,
4260        },
4261#endif
4262        {
4263                .name = "kmem.tcp.limit_in_bytes",
4264                .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4265                .write = mem_cgroup_write,
4266                .read_u64 = mem_cgroup_read_u64,
4267        },
4268        {
4269                .name = "kmem.tcp.usage_in_bytes",
4270                .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4271                .read_u64 = mem_cgroup_read_u64,
4272        },
4273        {
4274                .name = "kmem.tcp.failcnt",
4275                .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4276                .write = mem_cgroup_reset,
4277                .read_u64 = mem_cgroup_read_u64,
4278        },
4279        {
4280                .name = "kmem.tcp.max_usage_in_bytes",
4281                .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4282                .write = mem_cgroup_reset,
4283                .read_u64 = mem_cgroup_read_u64,
4284        },
4285        { },    /* terminate */
4286};
4287
4288/*
4289 * Private memory cgroup IDR
4290 *
4291 * Swap-out records and page cache shadow entries need to store memcg
4292 * references in constrained space, so we maintain an ID space that is
4293 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4294 * memory-controlled cgroups to 64k.
4295 *
4296 * However, there usually are many references to the oflline CSS after
4297 * the cgroup has been destroyed, such as page cache or reclaimable
4298 * slab objects, that don't need to hang on to the ID. We want to keep
4299 * those dead CSS from occupying IDs, or we might quickly exhaust the
4300 * relatively small ID space and prevent the creation of new cgroups
4301 * even when there are much fewer than 64k cgroups - possibly none.
4302 *
4303 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4304 * be freed and recycled when it's no longer needed, which is usually
4305 * when the CSS is offlined.
4306 *
4307 * The only exception to that are records of swapped out tmpfs/shmem
4308 * pages that need to be attributed to live ancestors on swapin. But
4309 * those references are manageable from userspace.
4310 */
4311
4312static DEFINE_IDR(mem_cgroup_idr);
4313
4314static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4315{
4316        if (memcg->id.id > 0) {
4317                idr_remove(&mem_cgroup_idr, memcg->id.id);
4318                memcg->id.id = 0;
4319        }
4320}
4321
4322static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4323{
4324        VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4325        atomic_add(n, &memcg->id.ref);
4326}
4327
4328static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4329{
4330        VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4331        if (atomic_sub_and_test(n, &memcg->id.ref)) {
4332                mem_cgroup_id_remove(memcg);
4333
4334                /* Memcg ID pins CSS */
4335                css_put(&memcg->css);
4336        }
4337}
4338
4339static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4340{
4341        mem_cgroup_id_get_many(memcg, 1);
4342}
4343
4344static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4345{
4346        mem_cgroup_id_put_many(memcg, 1);
4347}
4348
4349/**
4350 * mem_cgroup_from_id - look up a memcg from a memcg id
4351 * @id: the memcg id to look up
4352 *
4353 * Caller must hold rcu_read_lock().
4354 */
4355struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4356{
4357        WARN_ON_ONCE(!rcu_read_lock_held());
4358        return idr_find(&mem_cgroup_idr, id);
4359}
4360
4361static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4362{
4363        struct mem_cgroup_per_node *pn;
4364        int tmp = node;
4365        /*
4366         * This routine is called against possible nodes.
4367         * But it's BUG to call kmalloc() against offline node.
4368         *
4369         * TODO: this routine can waste much memory for nodes which will
4370         *       never be onlined. It's better to use memory hotplug callback
4371         *       function.
4372         */
4373        if (!node_state(node, N_NORMAL_MEMORY))
4374                tmp = -1;
4375        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4376        if (!pn)
4377                return 1;
4378
4379        pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4380        if (!pn->lruvec_stat_cpu) {
4381                kfree(pn);
4382                return 1;
4383        }
4384
4385        lruvec_init(&pn->lruvec);
4386        pn->usage_in_excess = 0;
4387        pn->on_tree = false;
4388        pn->memcg = memcg;
4389
4390        memcg->nodeinfo[node] = pn;
4391        return 0;
4392}
4393
4394static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4395{
4396        struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4397
4398        if (!pn)
4399                return;
4400
4401        free_percpu(pn->lruvec_stat_cpu);
4402        kfree(pn);
4403}
4404
4405static void __mem_cgroup_free(struct mem_cgroup *memcg)
4406{
4407        int node;
4408
4409        for_each_node(node)
4410                free_mem_cgroup_per_node_info(memcg, node);
4411        free_percpu(memcg->stat_cpu);
4412        kfree(memcg);
4413}
4414
4415static void mem_cgroup_free(struct mem_cgroup *memcg)
4416{
4417        memcg_wb_domain_exit(memcg);
4418        __mem_cgroup_free(memcg);
4419}
4420
4421static struct mem_cgroup *mem_cgroup_alloc(void)
4422{
4423        struct mem_cgroup *memcg;
4424        size_t size;
4425        int node;
4426
4427        size = sizeof(struct mem_cgroup);
4428        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4429
4430        memcg = kzalloc(size, GFP_KERNEL);
4431        if (!memcg)
4432                return NULL;
4433
4434        memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4435                                 1, MEM_CGROUP_ID_MAX,
4436                                 GFP_KERNEL);
4437        if (memcg->id.id < 0)
4438                goto fail;
4439
4440        memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4441        if (!memcg->stat_cpu)
4442                goto fail;
4443
4444        for_each_node(node)
4445                if (alloc_mem_cgroup_per_node_info(memcg, node))
4446                        goto fail;
4447
4448        if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4449                goto fail;
4450
4451        INIT_WORK(&memcg->high_work, high_work_func);
4452        memcg->last_scanned_node = MAX_NUMNODES;
4453        INIT_LIST_HEAD(&memcg->oom_notify);
4454        mutex_init(&memcg->thresholds_lock);
4455        spin_lock_init(&memcg->move_lock);
4456        vmpressure_init(&memcg->vmpressure);
4457        INIT_LIST_HEAD(&memcg->event_list);
4458        spin_lock_init(&memcg->event_list_lock);
4459        memcg->socket_pressure = jiffies;
4460#ifdef CONFIG_MEMCG_KMEM
4461        memcg->kmemcg_id = -1;
4462#endif
4463#ifdef CONFIG_CGROUP_WRITEBACK
4464        INIT_LIST_HEAD(&memcg->cgwb_list);
4465#endif
4466        idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4467        return memcg;
4468fail:
4469        mem_cgroup_id_remove(memcg);
4470        __mem_cgroup_free(memcg);
4471        return NULL;
4472}
4473
4474static struct cgroup_subsys_state * __ref
4475mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4476{
4477        struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4478        struct mem_cgroup *memcg;
4479        long error = -ENOMEM;
4480
4481        memcg = mem_cgroup_alloc();
4482        if (!memcg)
4483                return ERR_PTR(error);
4484
4485        memcg->high = PAGE_COUNTER_MAX;
4486        memcg->soft_limit = PAGE_COUNTER_MAX;
4487        if (parent) {
4488                memcg->swappiness = mem_cgroup_swappiness(parent);
4489                memcg->oom_kill_disable = parent->oom_kill_disable;
4490        }
4491        if (parent && parent->use_hierarchy) {
4492                memcg->use_hierarchy = true;
4493                page_counter_init(&memcg->memory, &parent->memory);
4494                page_counter_init(&memcg->swap, &parent->swap);
4495                page_counter_init(&memcg->memsw, &parent->memsw);
4496                page_counter_init(&memcg->kmem, &parent->kmem);
4497                page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4498        } else {
4499                page_counter_init(&memcg->memory, NULL);
4500                page_counter_init(&memcg->swap, NULL);
4501                page_counter_init(&memcg->memsw, NULL);
4502                page_counter_init(&memcg->kmem, NULL);
4503                page_counter_init(&memcg->tcpmem, NULL);
4504                /*
4505                 * Deeper hierachy with use_hierarchy == false doesn't make
4506                 * much sense so let cgroup subsystem know about this
4507                 * unfortunate state in our controller.
4508                 */
4509                if (parent != root_mem_cgroup)
4510                        memory_cgrp_subsys.broken_hierarchy = true;
4511        }
4512
4513        /* The following stuff does not apply to the root */
4514        if (!parent) {
4515                root_mem_cgroup = memcg;
4516                return &memcg->css;
4517        }
4518
4519        error = memcg_online_kmem(memcg);
4520        if (error)
4521                goto fail;
4522
4523        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4524                static_branch_inc(&memcg_sockets_enabled_key);
4525
4526        return &memcg->css;
4527fail:
4528        mem_cgroup_id_remove(memcg);
4529        mem_cgroup_free(memcg);
4530        return ERR_PTR(-ENOMEM);
4531}
4532
4533static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4534{
4535        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4536
4537        /*
4538         * A memcg must be visible for memcg_expand_shrinker_maps()
4539         * by the time the maps are allocated. So, we allocate maps
4540         * here, when for_each_mem_cgroup() can't skip it.
4541         */
4542        if (memcg_alloc_shrinker_maps(memcg)) {
4543                mem_cgroup_id_remove(memcg);
4544                return -ENOMEM;
4545        }
4546
4547        /* Online state pins memcg ID, memcg ID pins CSS */
4548        atomic_set(&memcg->id.ref, 1);
4549        css_get(css);
4550        return 0;
4551}
4552
4553static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4554{
4555        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4556        struct mem_cgroup_event *event, *tmp;
4557
4558        /*
4559         * Unregister events and notify userspace.
4560         * Notify userspace about cgroup removing only after rmdir of cgroup
4561         * directory to avoid race between userspace and kernelspace.
4562         */
4563        spin_lock(&memcg->event_list_lock);
4564        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4565                list_del_init(&event->list);
4566                schedule_work(&event->remove);
4567        }
4568        spin_unlock(&memcg->event_list_lock);
4569
4570        page_counter_set_min(&memcg->memory, 0);
4571        page_counter_set_low(&memcg->memory, 0);
4572
4573        memcg_offline_kmem(memcg);
4574        wb_memcg_offline(memcg);
4575
4576        mem_cgroup_id_put(memcg);
4577}
4578
4579static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4580{
4581        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4582
4583        invalidate_reclaim_iterators(memcg);
4584}
4585
4586static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4587{
4588        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4589
4590        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4591                static_branch_dec(&memcg_sockets_enabled_key);
4592
4593        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4594                static_branch_dec(&memcg_sockets_enabled_key);
4595
4596        vmpressure_cleanup(&memcg->vmpressure);
4597        cancel_work_sync(&memcg->high_work);
4598        mem_cgroup_remove_from_trees(memcg);
4599        memcg_free_shrinker_maps(memcg);
4600        memcg_free_kmem(memcg);
4601        mem_cgroup_free(memcg);
4602}
4603
4604/**
4605 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4606 * @css: the target css
4607 *
4608 * Reset the states of the mem_cgroup associated with @css.  This is
4609 * invoked when the userland requests disabling on the default hierarchy
4610 * but the memcg is pinned through dependency.  The memcg should stop
4611 * applying policies and should revert to the vanilla state as it may be
4612 * made visible again.
4613 *
4614 * The current implementation only resets the essential configurations.
4615 * This needs to be expanded to cover all the visible parts.
4616 */
4617static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4618{
4619        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4620
4621        page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4622        page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4623        page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4624        page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4625        page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4626        page_counter_set_min(&memcg->memory, 0);
4627        page_counter_set_low(&memcg->memory, 0);
4628        memcg->high = PAGE_COUNTER_MAX;
4629        memcg->soft_limit = PAGE_COUNTER_MAX;
4630        memcg_wb_domain_size_changed(memcg);
4631}
4632
4633#ifdef CONFIG_MMU
4634/* Handlers for move charge at task migration. */
4635static int mem_cgroup_do_precharge(unsigned long count)
4636{
4637        int ret;
4638
4639        /* Try a single bulk charge without reclaim first, kswapd may wake */
4640        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4641        if (!ret) {
4642                mc.precharge += count;
4643                return ret;
4644        }
4645
4646        /* Try charges one by one with reclaim, but do not retry */
4647        while (count--) {
4648                ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4649                if (ret)
4650                        return ret;
4651                mc.precharge++;
4652                cond_resched();
4653        }
4654        return 0;
4655}
4656
4657union mc_target {
4658        struct page     *page;
4659        swp_entry_t     ent;
4660};
4661
4662enum mc_target_type {
4663        MC_TARGET_NONE = 0,
4664        MC_TARGET_PAGE,
4665        MC_TARGET_SWAP,
4666        MC_TARGET_DEVICE,
4667};
4668
4669static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4670                                                unsigned long addr, pte_t ptent)
4671{
4672        struct page *page = _vm_normal_page(vma, addr, ptent, true);
4673
4674        if (!page || !page_mapped(page))
4675                return NULL;
4676        if (PageAnon(page)) {
4677                if (!(mc.flags & MOVE_ANON))
4678                        return NULL;
4679        } else {
4680                if (!(mc.flags & MOVE_FILE))
4681                        return NULL;
4682        }
4683        if (!get_page_unless_zero(page))
4684                return NULL;
4685
4686        return page;
4687}
4688
4689#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4690static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4691                        pte_t ptent, swp_entry_t *entry)
4692{
4693        struct page *page = NULL;
4694        swp_entry_t ent = pte_to_swp_entry(ptent);
4695
4696        if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4697                return NULL;
4698
4699        /*
4700         * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4701         * a device and because they are not accessible by CPU they are store
4702         * as special swap entry in the CPU page table.
4703         */
4704        if (is_device_private_entry(ent)) {
4705                page = device_private_entry_to_page(ent);
4706                /*
4707                 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4708                 * a refcount of 1 when free (unlike normal page)
4709                 */
4710                if (!page_ref_add_unless(page, 1, 1))
4711                        return NULL;
4712                return page;
4713        }
4714
4715        /*
4716         * Because lookup_swap_cache() updates some statistics counter,
4717         * we call find_get_page() with swapper_space directly.
4718         */
4719        page = find_get_page(swap_address_space(ent), swp_offset(ent));
4720        if (do_memsw_account())
4721                entry->val = ent.val;
4722
4723        return page;
4724}
4725#else
4726static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4727                        pte_t ptent, swp_entry_t *entry)
4728{
4729        return NULL;
4730}
4731#endif
4732
4733static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4734                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4735{
4736        struct page *page = NULL;
4737        struct address_space *mapping;
4738        pgoff_t pgoff;
4739
4740        if (!vma->vm_file) /* anonymous vma */
4741                return NULL;
4742        if (!(mc.flags & MOVE_FILE))
4743                return NULL;
4744
4745        mapping = vma->vm_file->f_mapping;
4746        pgoff = linear_page_index(vma, addr);
4747
4748        /* page is moved even if it's not RSS of this task(page-faulted). */
4749#ifdef CONFIG_SWAP
4750        /* shmem/tmpfs may report page out on swap: account for that too. */
4751        if (shmem_mapping(mapping)) {
4752                page = find_get_entry(mapping, pgoff);
4753                if (radix_tree_exceptional_entry(page)) {
4754                        swp_entry_t swp = radix_to_swp_entry(page);
4755                        if (do_memsw_account())
4756                                *entry = swp;
4757                        page = find_get_page(swap_address_space(swp),
4758                                             swp_offset(swp));
4759                }
4760        } else
4761                page = find_get_page(mapping, pgoff);
4762#else
4763        page = find_get_page(mapping, pgoff);
4764#endif
4765        return page;
4766}
4767
4768/**
4769 * mem_cgroup_move_account - move account of the page
4770 * @page: the page
4771 * @compound: charge the page as compound or small page
4772 * @from: mem_cgroup which the page is moved from.
4773 * @to: mem_cgroup which the page is moved to. @from != @to.
4774 *
4775 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4776 *
4777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4778 * from old cgroup.
4779 */
4780static int mem_cgroup_move_account(struct page *page,
4781                                   bool compound,
4782                                   struct mem_cgroup *from,
4783                                   struct mem_cgroup *to)
4784{
4785        unsigned long flags;
4786        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4787        int ret;
4788        bool anon;
4789
4790        VM_BUG_ON(from == to);
4791        VM_BUG_ON_PAGE(PageLRU(page), page);
4792        VM_BUG_ON(compound && !PageTransHuge(page));
4793
4794        /*
4795         * Prevent mem_cgroup_migrate() from looking at
4796         * page->mem_cgroup of its source page while we change it.
4797         */
4798        ret = -EBUSY;
4799        if (!trylock_page(page))
4800                goto out;
4801
4802        ret = -EINVAL;
4803        if (page->mem_cgroup != from)
4804                goto out_unlock;
4805
4806        anon = PageAnon(page);
4807
4808        spin_lock_irqsave(&from->move_lock, flags);
4809
4810        if (!anon && page_mapped(page)) {
4811                __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4812                __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4813        }
4814
4815        /*
4816         * move_lock grabbed above and caller set from->moving_account, so
4817         * mod_memcg_page_state will serialize updates to PageDirty.
4818         * So mapping should be stable for dirty pages.
4819         */
4820        if (!anon && PageDirty(page)) {
4821                struct address_space *mapping = page_mapping(page);
4822
4823                if (mapping_cap_account_dirty(mapping)) {
4824                        __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4825                        __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4826                }
4827        }
4828
4829        if (PageWriteback(page)) {
4830                __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4831                __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4832        }
4833
4834        /*
4835         * It is safe to change page->mem_cgroup here because the page
4836         * is referenced, charged, and isolated - we can't race with
4837         * uncharging, charging, migration, or LRU putback.
4838         */
4839
4840        /* caller should have done css_get */
4841        page->mem_cgroup = to;
4842        spin_unlock_irqrestore(&from->move_lock, flags);
4843
4844        ret = 0;
4845
4846        local_irq_disable();
4847        mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4848        memcg_check_events(to, page);
4849        mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4850        memcg_check_events(from, page);
4851        local_irq_enable();
4852out_unlock:
4853        unlock_page(page);
4854out:
4855        return ret;
4856}
4857
4858/**
4859 * get_mctgt_type - get target type of moving charge
4860 * @vma: the vma the pte to be checked belongs
4861 * @addr: the address corresponding to the pte to be checked
4862 * @ptent: the pte to be checked
4863 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4864 *
4865 * Returns
4866 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4867 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4868 *     move charge. if @target is not NULL, the page is stored in target->page
4869 *     with extra refcnt got(Callers should handle it).
4870 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4871 *     target for charge migration. if @target is not NULL, the entry is stored
4872 *     in target->ent.
4873 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4874 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4875 *     For now we such page is charge like a regular page would be as for all
4876 *     intent and purposes it is just special memory taking the place of a
4877 *     regular page.
4878 *
4879 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4880 *
4881 * Called with pte lock held.
4882 */
4883
4884static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4885                unsigned long addr, pte_t ptent, union mc_target *target)
4886{
4887        struct page *page = NULL;
4888        enum mc_target_type ret = MC_TARGET_NONE;
4889        swp_entry_t ent = { .val = 0 };
4890
4891        if (pte_present(ptent))
4892                page = mc_handle_present_pte(vma, addr, ptent);
4893        else if (is_swap_pte(ptent))
4894                page = mc_handle_swap_pte(vma, ptent, &ent);
4895        else if (pte_none(ptent))
4896                page = mc_handle_file_pte(vma, addr, ptent, &ent);
4897
4898        if (!page && !ent.val)
4899                return ret;
4900        if (page) {
4901                /*
4902                 * Do only loose check w/o serialization.
4903                 * mem_cgroup_move_account() checks the page is valid or
4904                 * not under LRU exclusion.
4905                 */
4906                if (page->mem_cgroup == mc.from) {
4907                        ret = MC_TARGET_PAGE;
4908                        if (is_device_private_page(page) ||
4909                            is_device_public_page(page))
4910                                ret = MC_TARGET_DEVICE;
4911                        if (target)
4912                                target->page = page;
4913                }
4914                if (!ret || !target)
4915                        put_page(page);
4916        }
4917        /*
4918         * There is a swap entry and a page doesn't exist or isn't charged.
4919         * But we cannot move a tail-page in a THP.
4920         */
4921        if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4922            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4923                ret = MC_TARGET_SWAP;
4924                if (target)
4925                        target->ent = ent;
4926        }
4927        return ret;
4928}
4929
4930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931/*
4932 * We don't consider PMD mapped swapping or file mapped pages because THP does
4933 * not support them for now.
4934 * Caller should make sure that pmd_trans_huge(pmd) is true.
4935 */
4936static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4937                unsigned long addr, pmd_t pmd, union mc_target *target)
4938{
4939        struct page *page = NULL;
4940        enum mc_target_type ret = MC_TARGET_NONE;
4941
4942        if (unlikely(is_swap_pmd(pmd))) {
4943                VM_BUG_ON(thp_migration_supported() &&
4944                                  !is_pmd_migration_entry(pmd));
4945                return ret;
4946        }
4947        page = pmd_page(pmd);
4948        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4949        if (!(mc.flags & MOVE_ANON))
4950                return ret;
4951        if (page->mem_cgroup == mc.from) {
4952                ret = MC_TARGET_PAGE;
4953                if (target) {
4954                        get_page(page);
4955                        target->page = page;
4956                }
4957        }
4958        return ret;
4959}
4960#else
4961static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4962                unsigned long addr, pmd_t pmd, union mc_target *target)
4963{
4964        return MC_TARGET_NONE;
4965}
4966#endif
4967
4968static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4969                                        unsigned long addr, unsigned long end,
4970                                        struct mm_walk *walk)
4971{
4972        struct vm_area_struct *vma = walk->vma;
4973        pte_t *pte;
4974        spinlock_t *ptl;
4975
4976        ptl = pmd_trans_huge_lock(pmd, vma);
4977        if (ptl) {
4978                /*
4979                 * Note their can not be MC_TARGET_DEVICE for now as we do not
4980                 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4981                 * MEMORY_DEVICE_PRIVATE but this might change.
4982                 */
4983                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4984                        mc.precharge += HPAGE_PMD_NR;
4985                spin_unlock(ptl);
4986                return 0;
4987        }
4988
4989        if (pmd_trans_unstable(pmd))
4990                return 0;
4991        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4992        for (; addr != end; pte++, addr += PAGE_SIZE)
4993                if (get_mctgt_type(vma, addr, *pte, NULL))
4994                        mc.precharge++; /* increment precharge temporarily */
4995        pte_unmap_unlock(pte - 1, ptl);
4996        cond_resched();
4997
4998        return 0;
4999}
5000
5001static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5002{
5003        unsigned long precharge;
5004
5005        struct mm_walk mem_cgroup_count_precharge_walk = {
5006                .pmd_entry = mem_cgroup_count_precharge_pte_range,
5007                .mm = mm,
5008        };
5009        down_read(&mm->mmap_sem);
5010        walk_page_range(0, mm->highest_vm_end,
5011                        &mem_cgroup_count_precharge_walk);
5012        up_read(&mm->mmap_sem);
5013
5014        precharge = mc.precharge;
5015        mc.precharge = 0;
5016
5017        return precharge;
5018}
5019
5020static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5021{
5022        unsigned long precharge = mem_cgroup_count_precharge(mm);
5023
5024        VM_BUG_ON(mc.moving_task);
5025        mc.moving_task = current;
5026        return mem_cgroup_do_precharge(precharge);
5027}
5028
5029/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5030static void __mem_cgroup_clear_mc(void)
5031{
5032        struct mem_cgroup *from = mc.from;
5033        struct mem_cgroup *to = mc.to;
5034
5035        /* we must uncharge all the leftover precharges from mc.to */
5036        if (mc.precharge) {
5037                cancel_charge(mc.to, mc.precharge);
5038                mc.precharge = 0;
5039        }
5040        /*
5041         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5042         * we must uncharge here.
5043         */
5044        if (mc.moved_charge) {
5045                cancel_charge(mc.from, mc.moved_charge);
5046                mc.moved_charge = 0;
5047        }
5048        /* we must fixup refcnts and charges */
5049        if (mc.moved_swap) {
5050                /* uncharge swap account from the old cgroup */
5051                if (!mem_cgroup_is_root(mc.from))
5052                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5053
5054                mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5055
5056                /*
5057                 * we charged both to->memory and to->memsw, so we
5058                 * should uncharge to->memory.
5059                 */
5060                if (!mem_cgroup_is_root(mc.to))
5061                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5062
5063                mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5064                css_put_many(&mc.to->css, mc.moved_swap);
5065
5066                mc.moved_swap = 0;
5067        }
5068        memcg_oom_recover(from);
5069        memcg_oom_recover(to);
5070        wake_up_all(&mc.waitq);
5071}
5072
5073static void mem_cgroup_clear_mc(void)
5074{
5075        struct mm_struct *mm = mc.mm;
5076
5077        /*
5078         * we must clear moving_task before waking up waiters at the end of
5079         * task migration.
5080         */
5081        mc.moving_task = NULL;
5082        __mem_cgroup_clear_mc();
5083        spin_lock(&mc.lock);
5084        mc.from = NULL;
5085        mc.to = NULL;
5086        mc.mm = NULL;
5087        spin_unlock(&mc.lock);
5088
5089        mmput(mm);
5090}
5091
5092static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5093{
5094        struct cgroup_subsys_state *css;
5095        struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5096        struct mem_cgroup *from;
5097        struct task_struct *leader, *p;
5098        struct mm_struct *mm;
5099        unsigned long move_flags;
5100        int ret = 0;
5101
5102        /* charge immigration isn't supported on the default hierarchy */
5103        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5104                return 0;
5105
5106        /*
5107         * Multi-process migrations only happen on the default hierarchy
5108         * where charge immigration is not used.  Perform charge
5109         * immigration if @tset contains a leader and whine if there are
5110         * multiple.
5111         */
5112        p = NULL;
5113        cgroup_taskset_for_each_leader(leader, css, tset) {
5114                WARN_ON_ONCE(p);
5115                p = leader;
5116                memcg = mem_cgroup_from_css(css);
5117        }
5118        if (!p)
5119                return 0;
5120
5121        /*
5122         * We are now commited to this value whatever it is. Changes in this
5123         * tunable will only affect upcoming migrations, not the current one.
5124         * So we need to save it, and keep it going.
5125         */
5126        move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5127        if (!move_flags)
5128                return 0;
5129
5130        from = mem_cgroup_from_task(p);
5131
5132        VM_BUG_ON(from == memcg);
5133
5134        mm = get_task_mm(p);
5135        if (!mm)
5136                return 0;
5137        /* We move charges only when we move a owner of the mm */
5138        if (mm->owner == p) {
5139                VM_BUG_ON(mc.from);
5140                VM_BUG_ON(mc.to);
5141                VM_BUG_ON(mc.precharge);
5142                VM_BUG_ON(mc.moved_charge);
5143                VM_BUG_ON(mc.moved_swap);
5144
5145                spin_lock(&mc.lock);
5146                mc.mm = mm;
5147                mc.from = from;
5148                mc.to = memcg;
5149                mc.flags = move_flags;
5150                spin_unlock(&mc.lock);
5151                /* We set mc.moving_task later */
5152
5153                ret = mem_cgroup_precharge_mc(mm);
5154                if (ret)
5155                        mem_cgroup_clear_mc();
5156        } else {
5157                mmput(mm);
5158        }
5159        return ret;
5160}
5161
5162static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5163{
5164        if (mc.to)
5165                mem_cgroup_clear_mc();
5166}
5167
5168static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5169                                unsigned long addr, unsigned long end,
5170                                struct mm_walk *walk)
5171{
5172        int ret = 0;
5173        struct vm_area_struct *vma = walk->vma;
5174        pte_t *pte;
5175        spinlock_t *ptl;
5176        enum mc_target_type target_type;
5177        union mc_target target;
5178        struct page *page;
5179
5180        ptl = pmd_trans_huge_lock(pmd, vma);
5181        if (ptl) {
5182                if (mc.precharge < HPAGE_PMD_NR) {
5183                        spin_unlock(ptl);
5184                        return 0;
5185                }
5186                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5187                if (target_type == MC_TARGET_PAGE) {
5188                        page = target.page;
5189                        if (!isolate_lru_page(page)) {
5190                                if (!mem_cgroup_move_account(page, true,
5191                                                             mc.from, mc.to)) {
5192                                        mc.precharge -= HPAGE_PMD_NR;
5193                                        mc.moved_charge += HPAGE_PMD_NR;
5194                                }
5195                                putback_lru_page(page);
5196                        }
5197                        put_page(page);
5198                } else if (target_type == MC_TARGET_DEVICE) {
5199                        page = target.page;
5200                        if (!mem_cgroup_move_account(page, true,
5201                                                     mc.from, mc.to)) {
5202                                mc.precharge -= HPAGE_PMD_NR;
5203                                mc.moved_charge += HPAGE_PMD_NR;
5204                        }
5205                        put_page(page);
5206                }
5207                spin_unlock(ptl);
5208                return 0;
5209        }
5210
5211        if (pmd_trans_unstable(pmd))
5212                return 0;
5213retry:
5214        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5215        for (; addr != end; addr += PAGE_SIZE) {
5216                pte_t ptent = *(pte++);
5217                bool device = false;
5218                swp_entry_t ent;
5219
5220                if (!mc.precharge)
5221                        break;
5222
5223                switch (get_mctgt_type(vma, addr, ptent, &target)) {
5224                case MC_TARGET_DEVICE:
5225                        device = true;
5226                        /* fall through */
5227                case MC_TARGET_PAGE:
5228                        page = target.page;
5229                        /*
5230                         * We can have a part of the split pmd here. Moving it
5231                         * can be done but it would be too convoluted so simply
5232                         * ignore such a partial THP and keep it in original
5233                         * memcg. There should be somebody mapping the head.
5234                         */
5235                        if (PageTransCompound(page))
5236                                goto put;
5237                        if (!device && isolate_lru_page(page))
5238                                goto put;
5239                        if (!mem_cgroup_move_account(page, false,
5240                                                mc.from, mc.to)) {
5241                                mc.precharge--;
5242                                /* we uncharge from mc.from later. */
5243                                mc.moved_charge++;
5244                        }
5245                        if (!device)
5246                                putback_lru_page(page);
5247put:                    /* get_mctgt_type() gets the page */
5248                        put_page(page);
5249                        break;
5250                case MC_TARGET_SWAP:
5251                        ent = target.ent;
5252                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5253                                mc.precharge--;
5254                                /* we fixup refcnts and charges later. */
5255                                mc.moved_swap++;
5256                        }
5257                        break;
5258                default:
5259                        break;
5260                }
5261        }
5262        pte_unmap_unlock(pte - 1, ptl);
5263        cond_resched();
5264
5265        if (addr != end) {
5266                /*
5267                 * We have consumed all precharges we got in can_attach().
5268                 * We try charge one by one, but don't do any additional
5269                 * charges to mc.to if we have failed in charge once in attach()
5270                 * phase.
5271                 */
5272                ret = mem_cgroup_do_precharge(1);
5273                if (!ret)
5274                        goto retry;
5275        }
5276
5277        return ret;
5278}
5279
5280static void mem_cgroup_move_charge(void)
5281{
5282        struct mm_walk mem_cgroup_move_charge_walk = {
5283                .pmd_entry = mem_cgroup_move_charge_pte_range,
5284                .mm = mc.mm,
5285        };
5286
5287        lru_add_drain_all();
5288        /*
5289         * Signal lock_page_memcg() to take the memcg's move_lock
5290         * while we're moving its pages to another memcg. Then wait
5291         * for already started RCU-only updates to finish.
5292         */
5293        atomic_inc(&mc.from->moving_account);
5294        synchronize_rcu();
5295retry:
5296        if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5297                /*
5298                 * Someone who are holding the mmap_sem might be waiting in
5299                 * waitq. So we cancel all extra charges, wake up all waiters,
5300                 * and retry. Because we cancel precharges, we might not be able
5301                 * to move enough charges, but moving charge is a best-effort
5302                 * feature anyway, so it wouldn't be a big problem.
5303                 */
5304                __mem_cgroup_clear_mc();
5305                cond_resched();
5306                goto retry;
5307        }
5308        /*
5309         * When we have consumed all precharges and failed in doing
5310         * additional charge, the page walk just aborts.
5311         */
5312        walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5313
5314        up_read(&mc.mm->mmap_sem);
5315        atomic_dec(&mc.from->moving_account);
5316}
5317
5318static void mem_cgroup_move_task(void)
5319{
5320        if (mc.to) {
5321                mem_cgroup_move_charge();
5322                mem_cgroup_clear_mc();
5323        }
5324}
5325#else   /* !CONFIG_MMU */
5326static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5327{
5328        return 0;
5329}
5330static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5331{
5332}
5333static void mem_cgroup_move_task(void)
5334{
5335}
5336#endif
5337
5338/*
5339 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5340 * to verify whether we're attached to the default hierarchy on each mount
5341 * attempt.
5342 */
5343static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5344{
5345        /*
5346         * use_hierarchy is forced on the default hierarchy.  cgroup core
5347         * guarantees that @root doesn't have any children, so turning it
5348         * on for the root memcg is enough.
5349         */
5350        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5351                root_mem_cgroup->use_hierarchy = true;
5352        else
5353                root_mem_cgroup->use_hierarchy = false;
5354}
5355
5356static u64 memory_current_read(struct cgroup_subsys_state *css,
5357                               struct cftype *cft)
5358{
5359        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5360
5361        return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5362}
5363
5364static int memory_min_show(struct seq_file *m, void *v)
5365{
5366        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5367        unsigned long min = READ_ONCE(memcg->memory.min);
5368
5369        if (min == PAGE_COUNTER_MAX)
5370                seq_puts(m, "max\n");
5371        else
5372                seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5373
5374        return 0;
5375}
5376
5377static ssize_t memory_min_write(struct kernfs_open_file *of,
5378                                char *buf, size_t nbytes, loff_t off)
5379{
5380        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5381        unsigned long min;
5382        int err;
5383
5384        buf = strstrip(buf);
5385        err = page_counter_memparse(buf, "max", &min);
5386        if (err)
5387                return err;
5388
5389        page_counter_set_min(&memcg->memory, min);
5390
5391        return nbytes;
5392}
5393
5394static int memory_low_show(struct seq_file *m, void *v)
5395{
5396        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5397        unsigned long low = READ_ONCE(memcg->memory.low);
5398
5399        if (low == PAGE_COUNTER_MAX)
5400                seq_puts(m, "max\n");
5401        else
5402                seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5403
5404        return 0;
5405}
5406
5407static ssize_t memory_low_write(struct kernfs_open_file *of,
5408                                char *buf, size_t nbytes, loff_t off)
5409{
5410        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5411        unsigned long low;
5412        int err;
5413
5414        buf = strstrip(buf);
5415        err = page_counter_memparse(buf, "max", &low);
5416        if (err)
5417                return err;
5418
5419        page_counter_set_low(&memcg->memory, low);
5420
5421        return nbytes;
5422}
5423
5424static int memory_high_show(struct seq_file *m, void *v)
5425{
5426        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5427        unsigned long high = READ_ONCE(memcg->high);
5428
5429        if (high == PAGE_COUNTER_MAX)
5430                seq_puts(m, "max\n");
5431        else
5432                seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5433
5434        return 0;
5435}
5436
5437static ssize_t memory_high_write(struct kernfs_open_file *of,
5438                                 char *buf, size_t nbytes, loff_t off)
5439{
5440        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5441        unsigned long nr_pages;
5442        unsigned long high;
5443        int err;
5444
5445        buf = strstrip(buf);
5446        err = page_counter_memparse(buf, "max", &high);
5447        if (err)
5448                return err;
5449
5450        memcg->high = high;
5451
5452        nr_pages = page_counter_read(&memcg->memory);
5453        if (nr_pages > high)
5454                try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5455                                             GFP_KERNEL, true);
5456
5457        memcg_wb_domain_size_changed(memcg);
5458        return nbytes;
5459}
5460
5461static int memory_max_show(struct seq_file *m, void *v)
5462{
5463        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5464        unsigned long max = READ_ONCE(memcg->memory.max);
5465
5466        if (max == PAGE_COUNTER_MAX)
5467                seq_puts(m, "max\n");
5468        else
5469                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5470
5471        return 0;
5472}
5473
5474static ssize_t memory_max_write(struct kernfs_open_file *of,
5475                                char *buf, size_t nbytes, loff_t off)
5476{
5477        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5478        unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5479        bool drained = false;
5480        unsigned long max;
5481        int err;
5482
5483        buf = strstrip(buf);
5484        err = page_counter_memparse(buf, "max", &max);
5485        if (err)
5486                return err;
5487
5488        xchg(&memcg->memory.max, max);
5489
5490        for (;;) {
5491                unsigned long nr_pages = page_counter_read(&memcg->memory);
5492
5493                if (nr_pages <= max)
5494                        break;
5495
5496                if (signal_pending(current)) {
5497                        err = -EINTR;
5498                        break;
5499                }
5500
5501                if (!drained) {
5502                        drain_all_stock(memcg);
5503                        drained = true;
5504                        continue;
5505                }
5506
5507                if (nr_reclaims) {
5508                        if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5509                                                          GFP_KERNEL, true))
5510                                nr_reclaims--;
5511                        continue;
5512                }
5513
5514                memcg_memory_event(memcg, MEMCG_OOM);
5515                if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5516                        break;
5517        }
5518
5519        memcg_wb_domain_size_changed(memcg);
5520        return nbytes;
5521}
5522
5523static int memory_events_show(struct seq_file *m, void *v)
5524{
5525        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5526
5527        seq_printf(m, "low %lu\n",
5528                   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5529        seq_printf(m, "high %lu\n",
5530                   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5531        seq_printf(m, "max %lu\n",
5532                   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5533        seq_printf(m, "oom %lu\n",
5534                   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5535        seq_printf(m, "oom_kill %lu\n",
5536                   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5537
5538        return 0;
5539}
5540
5541static int memory_stat_show(struct seq_file *m, void *v)
5542{
5543        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5544        struct accumulated_stats acc;
5545        int i;
5546
5547        /*
5548         * Provide statistics on the state of the memory subsystem as
5549         * well as cumulative event counters that show past behavior.
5550         *
5551         * This list is ordered following a combination of these gradients:
5552         * 1) generic big picture -> specifics and details
5553         * 2) reflecting userspace activity -> reflecting kernel heuristics
5554         *
5555         * Current memory state:
5556         */
5557
5558        memset(&acc, 0, sizeof(acc));
5559        acc.stats_size = MEMCG_NR_STAT;
5560        acc.events_size = NR_VM_EVENT_ITEMS;
5561        accumulate_memcg_tree(memcg, &acc);
5562
5563        seq_printf(m, "anon %llu\n",
5564                   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5565        seq_printf(m, "file %llu\n",
5566                   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5567        seq_printf(m, "kernel_stack %llu\n",
5568                   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5569        seq_printf(m, "slab %llu\n",
5570                   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5571                         acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5572        seq_printf(m, "sock %llu\n",
5573                   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5574
5575        seq_printf(m, "shmem %llu\n",
5576                   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5577        seq_printf(m, "file_mapped %llu\n",
5578                   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5579        seq_printf(m, "file_dirty %llu\n",
5580                   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5581        seq_printf(m, "file_writeback %llu\n",
5582                   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5583
5584        for (i = 0; i < NR_LRU_LISTS; i++)
5585                seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5586                           (u64)acc.lru_pages[i] * PAGE_SIZE);
5587
5588        seq_printf(m, "slab_reclaimable %llu\n",
5589                   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5590        seq_printf(m, "slab_unreclaimable %llu\n",
5591                   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5592
5593        /* Accumulated memory events */
5594
5595        seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5596        seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5597
5598        seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5599        seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5600                   acc.events[PGSCAN_DIRECT]);
5601        seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5602                   acc.events[PGSTEAL_DIRECT]);
5603        seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5604        seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5605        seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5606        seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5607
5608        seq_printf(m, "workingset_refault %lu\n",
5609                   acc.stat[WORKINGSET_REFAULT]);
5610        seq_printf(m, "workingset_activate %lu\n",
5611                   acc.stat[WORKINGSET_ACTIVATE]);
5612        seq_printf(m, "workingset_nodereclaim %lu\n",
5613                   acc.stat[WORKINGSET_NODERECLAIM]);
5614
5615        return 0;
5616}
5617
5618static int memory_oom_group_show(struct seq_file *m, void *v)
5619{
5620        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5621
5622        seq_printf(m, "%d\n", memcg->oom_group);
5623
5624        return 0;
5625}
5626
5627static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5628                                      char *buf, size_t nbytes, loff_t off)
5629{
5630        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5631        int ret, oom_group;
5632
5633        buf = strstrip(buf);
5634        if (!buf)
5635                return -EINVAL;
5636
5637        ret = kstrtoint(buf, 0, &oom_group);
5638        if (ret)
5639                return ret;
5640
5641        if (oom_group != 0 && oom_group != 1)
5642                return -EINVAL;
5643
5644        memcg->oom_group = oom_group;
5645
5646        return nbytes;
5647}
5648
5649static struct cftype memory_files[] = {
5650        {
5651                .name = "current",
5652                .flags = CFTYPE_NOT_ON_ROOT,
5653                .read_u64 = memory_current_read,
5654        },
5655        {
5656                .name = "min",
5657                .flags = CFTYPE_NOT_ON_ROOT,
5658                .seq_show = memory_min_show,
5659                .write = memory_min_write,
5660        },
5661        {
5662                .name = "low",
5663                .flags = CFTYPE_NOT_ON_ROOT,
5664                .seq_show = memory_low_show,
5665                .write = memory_low_write,
5666        },
5667        {
5668                .name = "high",
5669                .flags = CFTYPE_NOT_ON_ROOT,
5670                .seq_show = memory_high_show,
5671                .write = memory_high_write,
5672        },
5673        {
5674                .name = "max",
5675                .flags = CFTYPE_NOT_ON_ROOT,
5676                .seq_show = memory_max_show,
5677                .write = memory_max_write,
5678        },
5679        {
5680                .name = "events",
5681                .flags = CFTYPE_NOT_ON_ROOT,
5682                .file_offset = offsetof(struct mem_cgroup, events_file),
5683                .seq_show = memory_events_show,
5684        },
5685        {
5686                .name = "stat",
5687                .flags = CFTYPE_NOT_ON_ROOT,
5688                .seq_show = memory_stat_show,
5689        },
5690        {
5691                .name = "oom.group",
5692                .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5693                .seq_show = memory_oom_group_show,
5694                .write = memory_oom_group_write,
5695        },
5696        { }     /* terminate */
5697};
5698
5699struct cgroup_subsys memory_cgrp_subsys = {
5700        .css_alloc = mem_cgroup_css_alloc,
5701        .css_online = mem_cgroup_css_online,
5702        .css_offline = mem_cgroup_css_offline,
5703        .css_released = mem_cgroup_css_released,
5704        .css_free = mem_cgroup_css_free,
5705        .css_reset = mem_cgroup_css_reset,
5706        .can_attach = mem_cgroup_can_attach,
5707        .cancel_attach = mem_cgroup_cancel_attach,
5708        .post_attach = mem_cgroup_move_task,
5709        .bind = mem_cgroup_bind,
5710        .dfl_cftypes = memory_files,
5711        .legacy_cftypes = mem_cgroup_legacy_files,
5712        .early_init = 0,
5713};
5714
5715/**
5716 * mem_cgroup_protected - check if memory consumption is in the normal range
5717 * @root: the top ancestor of the sub-tree being checked
5718 * @memcg: the memory cgroup to check
5719 *
5720 * WARNING: This function is not stateless! It can only be used as part
5721 *          of a top-down tree iteration, not for isolated queries.
5722 *
5723 * Returns one of the following:
5724 *   MEMCG_PROT_NONE: cgroup memory is not protected
5725 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5726 *     an unprotected supply of reclaimable memory from other cgroups.
5727 *   MEMCG_PROT_MIN: cgroup memory is protected
5728 *
5729 * @root is exclusive; it is never protected when looked at directly
5730 *
5731 * To provide a proper hierarchical behavior, effective memory.min/low values
5732 * are used. Below is the description of how effective memory.low is calculated.
5733 * Effective memory.min values is calculated in the same way.
5734 *
5735 * Effective memory.low is always equal or less than the original memory.low.
5736 * If there is no memory.low overcommittment (which is always true for
5737 * top-level memory cgroups), these two values are equal.
5738 * Otherwise, it's a part of parent's effective memory.low,
5739 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5740 * memory.low usages, where memory.low usage is the size of actually
5741 * protected memory.
5742 *
5743 *                                             low_usage
5744 * elow = min( memory.low, parent->elow * ------------------ ),
5745 *                                        siblings_low_usage
5746 *
5747 *             | memory.current, if memory.current < memory.low
5748 * low_usage = |
5749               | 0, otherwise.
5750 *
5751 *
5752 * Such definition of the effective memory.low provides the expected
5753 * hierarchical behavior: parent's memory.low value is limiting
5754 * children, unprotected memory is reclaimed first and cgroups,
5755 * which are not using their guarantee do not affect actual memory
5756 * distribution.
5757 *
5758 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5759 *
5760 *     A      A/memory.low = 2G, A/memory.current = 6G
5761 *    //\\
5762 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5763 *            C/memory.low = 1G  C/memory.current = 2G
5764 *            D/memory.low = 0   D/memory.current = 2G
5765 *            E/memory.low = 10G E/memory.current = 0
5766 *
5767 * and the memory pressure is applied, the following memory distribution
5768 * is expected (approximately):
5769 *
5770 *     A/memory.current = 2G
5771 *
5772 *     B/memory.current = 1.3G
5773 *     C/memory.current = 0.6G
5774 *     D/memory.current = 0
5775 *     E/memory.current = 0
5776 *
5777 * These calculations require constant tracking of the actual low usages
5778 * (see propagate_protected_usage()), as well as recursive calculation of
5779 * effective memory.low values. But as we do call mem_cgroup_protected()
5780 * path for each memory cgroup top-down from the reclaim,
5781 * it's possible to optimize this part, and save calculated elow
5782 * for next usage. This part is intentionally racy, but it's ok,
5783 * as memory.low is a best-effort mechanism.
5784 */
5785enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5786                                                struct mem_cgroup *memcg)
5787{
5788        struct mem_cgroup *parent;
5789        unsigned long emin, parent_emin;
5790        unsigned long elow, parent_elow;
5791        unsigned long usage;
5792
5793        if (mem_cgroup_disabled())
5794                return MEMCG_PROT_NONE;
5795
5796        if (!root)
5797                root = root_mem_cgroup;
5798        if (memcg == root)
5799                return MEMCG_PROT_NONE;
5800
5801        usage = page_counter_read(&memcg->memory);
5802        if (!usage)
5803                return MEMCG_PROT_NONE;
5804
5805        emin = memcg->memory.min;
5806        elow = memcg->memory.low;
5807
5808        parent = parent_mem_cgroup(memcg);
5809        /* No parent means a non-hierarchical mode on v1 memcg */
5810        if (!parent)
5811                return MEMCG_PROT_NONE;
5812
5813        if (parent == root)
5814                goto exit;
5815
5816        parent_emin = READ_ONCE(parent->memory.emin);
5817        emin = min(emin, parent_emin);
5818        if (emin && parent_emin) {
5819                unsigned long min_usage, siblings_min_usage;
5820
5821                min_usage = min(usage, memcg->memory.min);
5822                siblings_min_usage = atomic_long_read(
5823                        &parent->memory.children_min_usage);
5824
5825                if (min_usage && siblings_min_usage)
5826                        emin = min(emin, parent_emin * min_usage /
5827                                   siblings_min_usage);
5828        }
5829
5830        parent_elow = READ_ONCE(parent->memory.elow);
5831        elow = min(elow, parent_elow);
5832        if (elow && parent_elow) {
5833                unsigned long low_usage, siblings_low_usage;
5834
5835                low_usage = min(usage, memcg->memory.low);
5836                siblings_low_usage = atomic_long_read(
5837                        &parent->memory.children_low_usage);
5838
5839                if (low_usage && siblings_low_usage)
5840                        elow = min(elow, parent_elow * low_usage /
5841                                   siblings_low_usage);
5842        }
5843
5844exit:
5845        memcg->memory.emin = emin;
5846        memcg->memory.elow = elow;
5847
5848        if (usage <= emin)
5849                return MEMCG_PROT_MIN;
5850        else if (usage <= elow)
5851                return MEMCG_PROT_LOW;
5852        else
5853                return MEMCG_PROT_NONE;
5854}
5855
5856/**
5857 * mem_cgroup_try_charge - try charging a page
5858 * @page: page to charge
5859 * @mm: mm context of the victim
5860 * @gfp_mask: reclaim mode
5861 * @memcgp: charged memcg return
5862 * @compound: charge the page as compound or small page
5863 *
5864 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5865 * pages according to @gfp_mask if necessary.
5866 *
5867 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5868 * Otherwise, an error code is returned.
5869 *
5870 * After page->mapping has been set up, the caller must finalize the
5871 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5872 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5873 */
5874int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5875                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
5876                          bool compound)
5877{
5878        struct mem_cgroup *memcg = NULL;
5879        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5880        int ret = 0;
5881
5882        if (mem_cgroup_disabled())
5883                goto out;
5884
5885        if (PageSwapCache(page)) {
5886                /*
5887                 * Every swap fault against a single page tries to charge the
5888                 * page, bail as early as possible.  shmem_unuse() encounters
5889                 * already charged pages, too.  The USED bit is protected by
5890                 * the page lock, which serializes swap cache removal, which
5891                 * in turn serializes uncharging.
5892                 */
5893                VM_BUG_ON_PAGE(!PageLocked(page), page);
5894                if (compound_head(page)->mem_cgroup)
5895                        goto out;
5896
5897                if (do_swap_account) {
5898                        swp_entry_t ent = { .val = page_private(page), };
5899                        unsigned short id = lookup_swap_cgroup_id(ent);
5900
5901                        rcu_read_lock();
5902                        memcg = mem_cgroup_from_id(id);
5903                        if (memcg && !css_tryget_online(&memcg->css))
5904                                memcg = NULL;
5905                        rcu_read_unlock();
5906                }
5907        }
5908
5909        if (!memcg)
5910                memcg = get_mem_cgroup_from_mm(mm);
5911
5912        ret = try_charge(memcg, gfp_mask, nr_pages);
5913
5914        css_put(&memcg->css);
5915out:
5916        *memcgp = memcg;
5917        return ret;
5918}
5919
5920int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5921                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
5922                          bool compound)
5923{
5924        struct mem_cgroup *memcg;
5925        int ret;
5926
5927        ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5928        memcg = *memcgp;
5929        mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5930        return ret;
5931}
5932
5933/**
5934 * mem_cgroup_commit_charge - commit a page charge
5935 * @page: page to charge
5936 * @memcg: memcg to charge the page to
5937 * @lrucare: page might be on LRU already
5938 * @compound: charge the page as compound or small page
5939 *
5940 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5941 * after page->mapping has been set up.  This must happen atomically
5942 * as part of the page instantiation, i.e. under the page table lock
5943 * for anonymous pages, under the page lock for page and swap cache.
5944 *
5945 * In addition, the page must not be on the LRU during the commit, to
5946 * prevent racing with task migration.  If it might be, use @lrucare.
5947 *
5948 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5949 */
5950void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5951                              bool lrucare, bool compound)
5952{
5953        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5954
5955        VM_BUG_ON_PAGE(!page->mapping, page);
5956        VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5957
5958        if (mem_cgroup_disabled())
5959                return;
5960        /*
5961         * Swap faults will attempt to charge the same page multiple
5962         * times.  But reuse_swap_page() might have removed the page
5963         * from swapcache already, so we can't check PageSwapCache().
5964         */
5965        if (!memcg)
5966                return;
5967
5968        commit_charge(page, memcg, lrucare);
5969
5970        local_irq_disable();
5971        mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5972        memcg_check_events(memcg, page);
5973        local_irq_enable();
5974
5975        if (do_memsw_account() && PageSwapCache(page)) {
5976                swp_entry_t entry = { .val = page_private(page) };
5977                /*
5978                 * The swap entry might not get freed for a long time,
5979                 * let's not wait for it.  The page already received a
5980                 * memory+swap charge, drop the swap entry duplicate.
5981                 */
5982                mem_cgroup_uncharge_swap(entry, nr_pages);
5983        }
5984}
5985
5986/**
5987 * mem_cgroup_cancel_charge - cancel a page charge
5988 * @page: page to charge
5989 * @memcg: memcg to charge the page to
5990 * @compound: charge the page as compound or small page
5991 *
5992 * Cancel a charge transaction started by mem_cgroup_try_charge().
5993 */
5994void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5995                bool compound)
5996{
5997        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5998
5999        if (mem_cgroup_disabled())
6000                return;
6001        /*
6002         * Swap faults will attempt to charge the same page multiple
6003         * times.  But reuse_swap_page() might have removed the page
6004         * from swapcache already, so we can't check PageSwapCache().
6005         */
6006        if (!memcg)
6007                return;
6008
6009        cancel_charge(memcg, nr_pages);
6010}
6011
6012struct uncharge_gather {
6013        struct mem_cgroup *memcg;
6014        unsigned long pgpgout;
6015        unsigned long nr_anon;
6016        unsigned long nr_file;
6017        unsigned long nr_kmem;
6018        unsigned long nr_huge;
6019        unsigned long nr_shmem;
6020        struct page *dummy_page;
6021};
6022
6023static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6024{
6025        memset(ug, 0, sizeof(*ug));
6026}
6027
6028static void uncharge_batch(const struct uncharge_gather *ug)
6029{
6030        unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6031        unsigned long flags;
6032
6033        if (!mem_cgroup_is_root(ug->memcg)) {
6034                page_counter_uncharge(&ug->memcg->memory, nr_pages);
6035                if (do_memsw_account())
6036                        page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6037                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6038                        page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6039                memcg_oom_recover(ug->memcg);
6040        }
6041
6042        local_irq_save(flags);
6043        __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6044        __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6045        __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6046        __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6047        __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6048        __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6049        memcg_check_events(ug->memcg, ug->dummy_page);
6050        local_irq_restore(flags);
6051
6052        if (!mem_cgroup_is_root(ug->memcg))
6053                css_put_many(&ug->memcg->css, nr_pages);
6054}
6055
6056static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6057{
6058        VM_BUG_ON_PAGE(PageLRU(page), page);
6059        VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6060                        !PageHWPoison(page) , page);
6061
6062        if (!page->mem_cgroup)
6063                return;
6064
6065        /*
6066         * Nobody should be changing or seriously looking at
6067         * page->mem_cgroup at this point, we have fully
6068         * exclusive access to the page.
6069         */
6070
6071        if (ug->memcg != page->mem_cgroup) {
6072                if (ug->memcg) {
6073                        uncharge_batch(ug);
6074                        uncharge_gather_clear(ug);
6075                }
6076                ug->memcg = page->mem_cgroup;
6077        }
6078
6079        if (!PageKmemcg(page)) {
6080                unsigned int nr_pages = 1;
6081
6082                if (PageTransHuge(page)) {
6083                        nr_pages <<= compound_order(page);
6084                        ug->nr_huge += nr_pages;
6085                }
6086                if (PageAnon(page))
6087                        ug->nr_anon += nr_pages;
6088                else {
6089                        ug->nr_file += nr_pages;
6090                        if (PageSwapBacked(page))
6091                                ug->nr_shmem += nr_pages;
6092                }
6093                ug->pgpgout++;
6094        } else {
6095                ug->nr_kmem += 1 << compound_order(page);
6096                __ClearPageKmemcg(page);
6097        }
6098
6099        ug->dummy_page = page;
6100        page->mem_cgroup = NULL;
6101}
6102
6103static void uncharge_list(struct list_head *page_list)
6104{
6105        struct uncharge_gather ug;
6106        struct list_head *next;
6107
6108        uncharge_gather_clear(&ug);
6109
6110        /*
6111         * Note that the list can be a single page->lru; hence the
6112         * do-while loop instead of a simple list_for_each_entry().
6113         */
6114        next = page_list->next;
6115        do {
6116                struct page *page;
6117
6118                page = list_entry(next, struct page, lru);
6119                next = page->lru.next;
6120
6121                uncharge_page(page, &ug);
6122        } while (next != page_list);
6123
6124        if (ug.memcg)
6125                uncharge_batch(&ug);
6126}
6127
6128/**
6129 * mem_cgroup_uncharge - uncharge a page
6130 * @page: page to uncharge
6131 *
6132 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6133 * mem_cgroup_commit_charge().
6134 */
6135void mem_cgroup_uncharge(struct page *page)
6136{
6137        struct uncharge_gather ug;
6138
6139        if (mem_cgroup_disabled())
6140                return;
6141
6142        /* Don't touch page->lru of any random page, pre-check: */
6143        if (!page->mem_cgroup)
6144                return;
6145
6146        uncharge_gather_clear(&ug);
6147        uncharge_page(page, &ug);
6148        uncharge_batch(&ug);
6149}
6150
6151/**
6152 * mem_cgroup_uncharge_list - uncharge a list of page
6153 * @page_list: list of pages to uncharge
6154 *
6155 * Uncharge a list of pages previously charged with
6156 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6157 */
6158void mem_cgroup_uncharge_list(struct list_head *page_list)
6159{
6160        if (mem_cgroup_disabled())
6161                return;
6162
6163        if (!list_empty(page_list))
6164                uncharge_list(page_list);
6165}
6166
6167/**
6168 * mem_cgroup_migrate - charge a page's replacement
6169 * @oldpage: currently circulating page
6170 * @newpage: replacement page
6171 *
6172 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6173 * be uncharged upon free.
6174 *
6175 * Both pages must be locked, @newpage->mapping must be set up.
6176 */
6177void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6178{
6179        struct mem_cgroup *memcg;
6180        unsigned int nr_pages;
6181        bool compound;
6182        unsigned long flags;
6183
6184        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6185        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6186        VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6187        VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6188                       newpage);
6189
6190        if (mem_cgroup_disabled())
6191                return;
6192
6193        /* Page cache replacement: new page already charged? */
6194        if (newpage->mem_cgroup)
6195                return;
6196
6197        /* Swapcache readahead pages can get replaced before being charged */
6198        memcg = oldpage->mem_cgroup;
6199        if (!memcg)
6200                return;
6201
6202        /* Force-charge the new page. The old one will be freed soon */
6203        compound = PageTransHuge(newpage);
6204        nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6205
6206        page_counter_charge(&memcg->memory, nr_pages);
6207        if (do_memsw_account())
6208                page_counter_charge(&memcg->memsw, nr_pages);
6209        css_get_many(&memcg->css, nr_pages);
6210
6211        commit_charge(newpage, memcg, false);
6212
6213        local_irq_save(flags);
6214        mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6215        memcg_check_events(memcg, newpage);
6216        local_irq_restore(flags);
6217}
6218
6219DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6220EXPORT_SYMBOL(memcg_sockets_enabled_key);
6221
6222void mem_cgroup_sk_alloc(struct sock *sk)
6223{
6224        struct mem_cgroup *memcg;
6225
6226        if (!mem_cgroup_sockets_enabled)
6227                return;
6228
6229        /*
6230         * Socket cloning can throw us here with sk_memcg already
6231         * filled. It won't however, necessarily happen from
6232         * process context. So the test for root memcg given
6233         * the current task's memcg won't help us in this case.
6234         *
6235         * Respecting the original socket's memcg is a better
6236         * decision in this case.
6237         */
6238        if (sk->sk_memcg) {
6239                css_get(&sk->sk_memcg->css);
6240                return;
6241        }
6242
6243        rcu_read_lock();
6244        memcg = mem_cgroup_from_task(current);
6245        if (memcg == root_mem_cgroup)
6246                goto out;
6247        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6248                goto out;
6249        if (css_tryget_online(&memcg->css))
6250                sk->sk_memcg = memcg;
6251out:
6252        rcu_read_unlock();
6253}
6254
6255void mem_cgroup_sk_free(struct sock *sk)
6256{
6257        if (sk->sk_memcg)
6258                css_put(&sk->sk_memcg->css);
6259}
6260
6261/**
6262 * mem_cgroup_charge_skmem - charge socket memory
6263 * @memcg: memcg to charge
6264 * @nr_pages: number of pages to charge
6265 *
6266 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6267 * @memcg's configured limit, %false if the charge had to be forced.
6268 */
6269bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6270{
6271        gfp_t gfp_mask = GFP_KERNEL;
6272
6273        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6274                struct page_counter *fail;
6275
6276                if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6277                        memcg->tcpmem_pressure = 0;
6278                        return true;
6279                }
6280                page_counter_charge(&memcg->tcpmem, nr_pages);
6281                memcg->tcpmem_pressure = 1;
6282                return false;
6283        }
6284
6285        /* Don't block in the packet receive path */
6286        if (in_softirq())
6287                gfp_mask = GFP_NOWAIT;
6288
6289        mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6290
6291        if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6292                return true;
6293
6294        try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6295        return false;
6296}
6297
6298/**
6299 * mem_cgroup_uncharge_skmem - uncharge socket memory
6300 * @memcg: memcg to uncharge
6301 * @nr_pages: number of pages to uncharge
6302 */
6303void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6304{
6305        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6306                page_counter_uncharge(&memcg->tcpmem, nr_pages);
6307                return;
6308        }
6309
6310        mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6311
6312        refill_stock(memcg, nr_pages);
6313}
6314
6315static int __init cgroup_memory(char *s)
6316{
6317        char *token;
6318
6319        while ((token = strsep(&s, ",")) != NULL) {
6320                if (!*token)
6321                        continue;
6322                if (!strcmp(token, "nosocket"))
6323                        cgroup_memory_nosocket = true;
6324                if (!strcmp(token, "nokmem"))
6325                        cgroup_memory_nokmem = true;
6326        }
6327        return 0;
6328}
6329__setup("cgroup.memory=", cgroup_memory);
6330
6331/*
6332 * subsys_initcall() for memory controller.
6333 *
6334 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6335 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6336 * basically everything that doesn't depend on a specific mem_cgroup structure
6337 * should be initialized from here.
6338 */
6339static int __init mem_cgroup_init(void)
6340{
6341        int cpu, node;
6342
6343#ifdef CONFIG_MEMCG_KMEM
6344        /*
6345         * Kmem cache creation is mostly done with the slab_mutex held,
6346         * so use a workqueue with limited concurrency to avoid stalling
6347         * all worker threads in case lots of cgroups are created and
6348         * destroyed simultaneously.
6349         */
6350        memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6351        BUG_ON(!memcg_kmem_cache_wq);
6352#endif
6353
6354        cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6355                                  memcg_hotplug_cpu_dead);
6356
6357        for_each_possible_cpu(cpu)
6358                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6359                          drain_local_stock);
6360
6361        for_each_node(node) {
6362                struct mem_cgroup_tree_per_node *rtpn;
6363
6364                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6365                                    node_online(node) ? node : NUMA_NO_NODE);
6366
6367                rtpn->rb_root = RB_ROOT;
6368                rtpn->rb_rightmost = NULL;
6369                spin_lock_init(&rtpn->lock);
6370                soft_limit_tree.rb_tree_per_node[node] = rtpn;
6371        }
6372
6373        return 0;
6374}
6375subsys_initcall(mem_cgroup_init);
6376
6377#ifdef CONFIG_MEMCG_SWAP
6378static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6379{
6380        while (!atomic_inc_not_zero(&memcg->id.ref)) {
6381                /*
6382                 * The root cgroup cannot be destroyed, so it's refcount must
6383                 * always be >= 1.
6384                 */
6385                if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6386                        VM_BUG_ON(1);
6387                        break;
6388                }
6389                memcg = parent_mem_cgroup(memcg);
6390                if (!memcg)
6391                        memcg = root_mem_cgroup;
6392        }
6393        return memcg;
6394}
6395
6396/**
6397 * mem_cgroup_swapout - transfer a memsw charge to swap
6398 * @page: page whose memsw charge to transfer
6399 * @entry: swap entry to move the charge to
6400 *
6401 * Transfer the memsw charge of @page to @entry.
6402 */
6403void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6404{
6405        struct mem_cgroup *memcg, *swap_memcg;
6406        unsigned int nr_entries;
6407        unsigned short oldid;
6408
6409        VM_BUG_ON_PAGE(PageLRU(page), page);
6410        VM_BUG_ON_PAGE(page_count(page), page);
6411
6412        if (!do_memsw_account())
6413                return;
6414
6415        memcg = page->mem_cgroup;
6416
6417        /* Readahead page, never charged */
6418        if (!memcg)
6419                return;
6420
6421        /*
6422         * In case the memcg owning these pages has been offlined and doesn't
6423         * have an ID allocated to it anymore, charge the closest online
6424         * ancestor for the swap instead and transfer the memory+swap charge.
6425         */
6426        swap_memcg = mem_cgroup_id_get_online(memcg);
6427        nr_entries = hpage_nr_pages(page);
6428        /* Get references for the tail pages, too */
6429        if (nr_entries > 1)
6430                mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6431        oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6432                                   nr_entries);
6433        VM_BUG_ON_PAGE(oldid, page);
6434        mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6435
6436        page->mem_cgroup = NULL;
6437
6438        if (!mem_cgroup_is_root(memcg))
6439                page_counter_uncharge(&memcg->memory, nr_entries);
6440
6441        if (memcg != swap_memcg) {
6442                if (!mem_cgroup_is_root(swap_memcg))
6443                        page_counter_charge(&swap_memcg->memsw, nr_entries);
6444                page_counter_uncharge(&memcg->memsw, nr_entries);
6445        }
6446
6447        /*
6448         * Interrupts should be disabled here because the caller holds the
6449         * i_pages lock which is taken with interrupts-off. It is
6450         * important here to have the interrupts disabled because it is the
6451         * only synchronisation we have for updating the per-CPU variables.
6452         */
6453        VM_BUG_ON(!irqs_disabled());
6454        mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6455                                     -nr_entries);
6456        memcg_check_events(memcg, page);
6457
6458        if (!mem_cgroup_is_root(memcg))
6459                css_put_many(&memcg->css, nr_entries);
6460}
6461
6462/**
6463 * mem_cgroup_try_charge_swap - try charging swap space for a page
6464 * @page: page being added to swap
6465 * @entry: swap entry to charge
6466 *
6467 * Try to charge @page's memcg for the swap space at @entry.
6468 *
6469 * Returns 0 on success, -ENOMEM on failure.
6470 */
6471int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6472{
6473        unsigned int nr_pages = hpage_nr_pages(page);
6474        struct page_counter *counter;
6475        struct mem_cgroup *memcg;
6476        unsigned short oldid;
6477
6478        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6479                return 0;
6480
6481        memcg = page->mem_cgroup;
6482
6483        /* Readahead page, never charged */
6484        if (!memcg)
6485                return 0;
6486
6487        if (!entry.val) {
6488                memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6489                return 0;
6490        }
6491
6492        memcg = mem_cgroup_id_get_online(memcg);
6493
6494        if (!mem_cgroup_is_root(memcg) &&
6495            !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6496                memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6497                memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6498                mem_cgroup_id_put(memcg);
6499                return -ENOMEM;
6500        }
6501
6502        /* Get references for the tail pages, too */
6503        if (nr_pages > 1)
6504                mem_cgroup_id_get_many(memcg, nr_pages - 1);
6505        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6506        VM_BUG_ON_PAGE(oldid, page);
6507        mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6508
6509        return 0;
6510}
6511
6512/**
6513 * mem_cgroup_uncharge_swap - uncharge swap space
6514 * @entry: swap entry to uncharge
6515 * @nr_pages: the amount of swap space to uncharge
6516 */
6517void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6518{
6519        struct mem_cgroup *memcg;
6520        unsigned short id;
6521
6522        if (!do_swap_account)
6523                return;
6524
6525        id = swap_cgroup_record(entry, 0, nr_pages);
6526        rcu_read_lock();
6527        memcg = mem_cgroup_from_id(id);
6528        if (memcg) {
6529                if (!mem_cgroup_is_root(memcg)) {
6530                        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6531                                page_counter_uncharge(&memcg->swap, nr_pages);
6532                        else
6533                                page_counter_uncharge(&memcg->memsw, nr_pages);
6534                }
6535                mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6536                mem_cgroup_id_put_many(memcg, nr_pages);
6537        }
6538        rcu_read_unlock();
6539}
6540
6541long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6542{
6543        long nr_swap_pages = get_nr_swap_pages();
6544
6545        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6546                return nr_swap_pages;
6547        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6548                nr_swap_pages = min_t(long, nr_swap_pages,
6549                                      READ_ONCE(memcg->swap.max) -
6550                                      page_counter_read(&memcg->swap));
6551        return nr_swap_pages;
6552}
6553
6554bool mem_cgroup_swap_full(struct page *page)
6555{
6556        struct mem_cgroup *memcg;
6557
6558        VM_BUG_ON_PAGE(!PageLocked(page), page);
6559
6560        if (vm_swap_full())
6561                return true;
6562        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6563                return false;
6564
6565        memcg = page->mem_cgroup;
6566        if (!memcg)
6567                return false;
6568
6569        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6570                if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6571                        return true;
6572
6573        return false;
6574}
6575
6576/* for remember boot option*/
6577#ifdef CONFIG_MEMCG_SWAP_ENABLED
6578static int really_do_swap_account __initdata = 1;
6579#else
6580static int really_do_swap_account __initdata;
6581#endif
6582
6583static int __init enable_swap_account(char *s)
6584{
6585        if (!strcmp(s, "1"))
6586                really_do_swap_account = 1;
6587        else if (!strcmp(s, "0"))
6588                really_do_swap_account = 0;
6589        return 1;
6590}
6591__setup("swapaccount=", enable_swap_account);
6592
6593static u64 swap_current_read(struct cgroup_subsys_state *css,
6594                             struct cftype *cft)
6595{
6596        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597
6598        return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6599}
6600
6601static int swap_max_show(struct seq_file *m, void *v)
6602{
6603        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6604        unsigned long max = READ_ONCE(memcg->swap.max);
6605
6606        if (max == PAGE_COUNTER_MAX)
6607                seq_puts(m, "max\n");
6608        else
6609                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6610
6611        return 0;
6612}
6613
6614static ssize_t swap_max_write(struct kernfs_open_file *of,
6615                              char *buf, size_t nbytes, loff_t off)
6616{
6617        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6618        unsigned long max;
6619        int err;
6620
6621        buf = strstrip(buf);
6622        err = page_counter_memparse(buf, "max", &max);
6623        if (err)
6624                return err;
6625
6626        xchg(&memcg->swap.max, max);
6627
6628        return nbytes;
6629}
6630
6631static int swap_events_show(struct seq_file *m, void *v)
6632{
6633        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6634
6635        seq_printf(m, "max %lu\n",
6636                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6637        seq_printf(m, "fail %lu\n",
6638                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6639
6640        return 0;
6641}
6642
6643static struct cftype swap_files[] = {
6644        {
6645                .name = "swap.current",
6646                .flags = CFTYPE_NOT_ON_ROOT,
6647                .read_u64 = swap_current_read,
6648        },
6649        {
6650                .name = "swap.max",
6651                .flags = CFTYPE_NOT_ON_ROOT,
6652                .seq_show = swap_max_show,
6653                .write = swap_max_write,
6654        },
6655        {
6656                .name = "swap.events",
6657                .flags = CFTYPE_NOT_ON_ROOT,
6658                .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6659                .seq_show = swap_events_show,
6660        },
6661        { }     /* terminate */
6662};
6663
6664static struct cftype memsw_cgroup_files[] = {
6665        {
6666                .name = "memsw.usage_in_bytes",
6667                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6668                .read_u64 = mem_cgroup_read_u64,
6669        },
6670        {
6671                .name = "memsw.max_usage_in_bytes",
6672                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6673                .write = mem_cgroup_reset,
6674                .read_u64 = mem_cgroup_read_u64,
6675        },
6676        {
6677                .name = "memsw.limit_in_bytes",
6678                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6679                .write = mem_cgroup_write,
6680                .read_u64 = mem_cgroup_read_u64,
6681        },
6682        {
6683                .name = "memsw.failcnt",
6684                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6685                .write = mem_cgroup_reset,
6686                .read_u64 = mem_cgroup_read_u64,
6687        },
6688        { },    /* terminate */
6689};
6690
6691static int __init mem_cgroup_swap_init(void)
6692{
6693        if (!mem_cgroup_disabled() && really_do_swap_account) {
6694                do_swap_account = 1;
6695                WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6696                                               swap_files));
6697                WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6698                                                  memsw_cgroup_files));
6699        }
6700        return 0;
6701}
6702subsys_initcall(mem_cgroup_swap_init);
6703
6704#endif /* CONFIG_MEMCG_SWAP */
6705