linux/mm/swap.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/export.h>
  25#include <linux/mm_inline.h>
  26#include <linux/percpu_counter.h>
  27#include <linux/memremap.h>
  28#include <linux/percpu.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/backing-dev.h>
  32#include <linux/memremap.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/pagemap.h>
  43
  44/* How many pages do we try to swap or page in/out together? */
  45int page_cluster;
  46
  47static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  48static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
  50static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
  51#ifdef CONFIG_SMP
  52static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
  53#endif
  54
  55/*
  56 * This path almost never happens for VM activity - pages are normally
  57 * freed via pagevecs.  But it gets used by networking.
  58 */
  59static void __page_cache_release(struct page *page)
  60{
  61        if (PageLRU(page)) {
  62                struct zone *zone = page_zone(page);
  63                struct lruvec *lruvec;
  64                unsigned long flags;
  65
  66                spin_lock_irqsave(zone_lru_lock(zone), flags);
  67                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  68                VM_BUG_ON_PAGE(!PageLRU(page), page);
  69                __ClearPageLRU(page);
  70                del_page_from_lru_list(page, lruvec, page_off_lru(page));
  71                spin_unlock_irqrestore(zone_lru_lock(zone), flags);
  72        }
  73        __ClearPageWaiters(page);
  74        mem_cgroup_uncharge(page);
  75}
  76
  77static void __put_single_page(struct page *page)
  78{
  79        __page_cache_release(page);
  80        free_unref_page(page);
  81}
  82
  83static void __put_compound_page(struct page *page)
  84{
  85        compound_page_dtor *dtor;
  86
  87        /*
  88         * __page_cache_release() is supposed to be called for thp, not for
  89         * hugetlb. This is because hugetlb page does never have PageLRU set
  90         * (it's never listed to any LRU lists) and no memcg routines should
  91         * be called for hugetlb (it has a separate hugetlb_cgroup.)
  92         */
  93        if (!PageHuge(page))
  94                __page_cache_release(page);
  95        dtor = get_compound_page_dtor(page);
  96        (*dtor)(page);
  97}
  98
  99void __put_page(struct page *page)
 100{
 101        if (is_zone_device_page(page)) {
 102                put_dev_pagemap(page->pgmap);
 103
 104                /*
 105                 * The page belongs to the device that created pgmap. Do
 106                 * not return it to page allocator.
 107                 */
 108                return;
 109        }
 110
 111        if (unlikely(PageCompound(page)))
 112                __put_compound_page(page);
 113        else
 114                __put_single_page(page);
 115}
 116EXPORT_SYMBOL(__put_page);
 117
 118/**
 119 * put_pages_list() - release a list of pages
 120 * @pages: list of pages threaded on page->lru
 121 *
 122 * Release a list of pages which are strung together on page.lru.  Currently
 123 * used by read_cache_pages() and related error recovery code.
 124 */
 125void put_pages_list(struct list_head *pages)
 126{
 127        while (!list_empty(pages)) {
 128                struct page *victim;
 129
 130                victim = list_entry(pages->prev, struct page, lru);
 131                list_del(&victim->lru);
 132                put_page(victim);
 133        }
 134}
 135EXPORT_SYMBOL(put_pages_list);
 136
 137/*
 138 * get_kernel_pages() - pin kernel pages in memory
 139 * @kiov:       An array of struct kvec structures
 140 * @nr_segs:    number of segments to pin
 141 * @write:      pinning for read/write, currently ignored
 142 * @pages:      array that receives pointers to the pages pinned.
 143 *              Should be at least nr_segs long.
 144 *
 145 * Returns number of pages pinned. This may be fewer than the number
 146 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 147 * were pinned, returns -errno. Each page returned must be released
 148 * with a put_page() call when it is finished with.
 149 */
 150int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 151                struct page **pages)
 152{
 153        int seg;
 154
 155        for (seg = 0; seg < nr_segs; seg++) {
 156                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 157                        return seg;
 158
 159                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 160                get_page(pages[seg]);
 161        }
 162
 163        return seg;
 164}
 165EXPORT_SYMBOL_GPL(get_kernel_pages);
 166
 167/*
 168 * get_kernel_page() - pin a kernel page in memory
 169 * @start:      starting kernel address
 170 * @write:      pinning for read/write, currently ignored
 171 * @pages:      array that receives pointer to the page pinned.
 172 *              Must be at least nr_segs long.
 173 *
 174 * Returns 1 if page is pinned. If the page was not pinned, returns
 175 * -errno. The page returned must be released with a put_page() call
 176 * when it is finished with.
 177 */
 178int get_kernel_page(unsigned long start, int write, struct page **pages)
 179{
 180        const struct kvec kiov = {
 181                .iov_base = (void *)start,
 182                .iov_len = PAGE_SIZE
 183        };
 184
 185        return get_kernel_pages(&kiov, 1, write, pages);
 186}
 187EXPORT_SYMBOL_GPL(get_kernel_page);
 188
 189static void pagevec_lru_move_fn(struct pagevec *pvec,
 190        void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 191        void *arg)
 192{
 193        int i;
 194        struct pglist_data *pgdat = NULL;
 195        struct lruvec *lruvec;
 196        unsigned long flags = 0;
 197
 198        for (i = 0; i < pagevec_count(pvec); i++) {
 199                struct page *page = pvec->pages[i];
 200                struct pglist_data *pagepgdat = page_pgdat(page);
 201
 202                if (pagepgdat != pgdat) {
 203                        if (pgdat)
 204                                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 205                        pgdat = pagepgdat;
 206                        spin_lock_irqsave(&pgdat->lru_lock, flags);
 207                }
 208
 209                lruvec = mem_cgroup_page_lruvec(page, pgdat);
 210                (*move_fn)(page, lruvec, arg);
 211        }
 212        if (pgdat)
 213                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 214        release_pages(pvec->pages, pvec->nr);
 215        pagevec_reinit(pvec);
 216}
 217
 218static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 219                                 void *arg)
 220{
 221        int *pgmoved = arg;
 222
 223        if (PageLRU(page) && !PageUnevictable(page)) {
 224                del_page_from_lru_list(page, lruvec, page_lru(page));
 225                ClearPageActive(page);
 226                add_page_to_lru_list_tail(page, lruvec, page_lru(page));
 227                (*pgmoved)++;
 228        }
 229}
 230
 231/*
 232 * pagevec_move_tail() must be called with IRQ disabled.
 233 * Otherwise this may cause nasty races.
 234 */
 235static void pagevec_move_tail(struct pagevec *pvec)
 236{
 237        int pgmoved = 0;
 238
 239        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 240        __count_vm_events(PGROTATED, pgmoved);
 241}
 242
 243/*
 244 * Writeback is about to end against a page which has been marked for immediate
 245 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 246 * inactive list.
 247 */
 248void rotate_reclaimable_page(struct page *page)
 249{
 250        if (!PageLocked(page) && !PageDirty(page) &&
 251            !PageUnevictable(page) && PageLRU(page)) {
 252                struct pagevec *pvec;
 253                unsigned long flags;
 254
 255                get_page(page);
 256                local_irq_save(flags);
 257                pvec = this_cpu_ptr(&lru_rotate_pvecs);
 258                if (!pagevec_add(pvec, page) || PageCompound(page))
 259                        pagevec_move_tail(pvec);
 260                local_irq_restore(flags);
 261        }
 262}
 263
 264static void update_page_reclaim_stat(struct lruvec *lruvec,
 265                                     int file, int rotated)
 266{
 267        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 268
 269        reclaim_stat->recent_scanned[file]++;
 270        if (rotated)
 271                reclaim_stat->recent_rotated[file]++;
 272}
 273
 274static void __activate_page(struct page *page, struct lruvec *lruvec,
 275                            void *arg)
 276{
 277        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 278                int file = page_is_file_cache(page);
 279                int lru = page_lru_base_type(page);
 280
 281                del_page_from_lru_list(page, lruvec, lru);
 282                SetPageActive(page);
 283                lru += LRU_ACTIVE;
 284                add_page_to_lru_list(page, lruvec, lru);
 285                trace_mm_lru_activate(page);
 286
 287                __count_vm_event(PGACTIVATE);
 288                update_page_reclaim_stat(lruvec, file, 1);
 289        }
 290}
 291
 292#ifdef CONFIG_SMP
 293static void activate_page_drain(int cpu)
 294{
 295        struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 296
 297        if (pagevec_count(pvec))
 298                pagevec_lru_move_fn(pvec, __activate_page, NULL);
 299}
 300
 301static bool need_activate_page_drain(int cpu)
 302{
 303        return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 304}
 305
 306void activate_page(struct page *page)
 307{
 308        page = compound_head(page);
 309        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 310                struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 311
 312                get_page(page);
 313                if (!pagevec_add(pvec, page) || PageCompound(page))
 314                        pagevec_lru_move_fn(pvec, __activate_page, NULL);
 315                put_cpu_var(activate_page_pvecs);
 316        }
 317}
 318
 319#else
 320static inline void activate_page_drain(int cpu)
 321{
 322}
 323
 324static bool need_activate_page_drain(int cpu)
 325{
 326        return false;
 327}
 328
 329void activate_page(struct page *page)
 330{
 331        struct zone *zone = page_zone(page);
 332
 333        page = compound_head(page);
 334        spin_lock_irq(zone_lru_lock(zone));
 335        __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
 336        spin_unlock_irq(zone_lru_lock(zone));
 337}
 338#endif
 339
 340static void __lru_cache_activate_page(struct page *page)
 341{
 342        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 343        int i;
 344
 345        /*
 346         * Search backwards on the optimistic assumption that the page being
 347         * activated has just been added to this pagevec. Note that only
 348         * the local pagevec is examined as a !PageLRU page could be in the
 349         * process of being released, reclaimed, migrated or on a remote
 350         * pagevec that is currently being drained. Furthermore, marking
 351         * a remote pagevec's page PageActive potentially hits a race where
 352         * a page is marked PageActive just after it is added to the inactive
 353         * list causing accounting errors and BUG_ON checks to trigger.
 354         */
 355        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 356                struct page *pagevec_page = pvec->pages[i];
 357
 358                if (pagevec_page == page) {
 359                        SetPageActive(page);
 360                        break;
 361                }
 362        }
 363
 364        put_cpu_var(lru_add_pvec);
 365}
 366
 367/*
 368 * Mark a page as having seen activity.
 369 *
 370 * inactive,unreferenced        ->      inactive,referenced
 371 * inactive,referenced          ->      active,unreferenced
 372 * active,unreferenced          ->      active,referenced
 373 *
 374 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 375 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 376 */
 377void mark_page_accessed(struct page *page)
 378{
 379        page = compound_head(page);
 380        if (!PageActive(page) && !PageUnevictable(page) &&
 381                        PageReferenced(page)) {
 382
 383                /*
 384                 * If the page is on the LRU, queue it for activation via
 385                 * activate_page_pvecs. Otherwise, assume the page is on a
 386                 * pagevec, mark it active and it'll be moved to the active
 387                 * LRU on the next drain.
 388                 */
 389                if (PageLRU(page))
 390                        activate_page(page);
 391                else
 392                        __lru_cache_activate_page(page);
 393                ClearPageReferenced(page);
 394                if (page_is_file_cache(page))
 395                        workingset_activation(page);
 396        } else if (!PageReferenced(page)) {
 397                SetPageReferenced(page);
 398        }
 399        if (page_is_idle(page))
 400                clear_page_idle(page);
 401}
 402EXPORT_SYMBOL(mark_page_accessed);
 403
 404static void __lru_cache_add(struct page *page)
 405{
 406        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 407
 408        get_page(page);
 409        if (!pagevec_add(pvec, page) || PageCompound(page))
 410                __pagevec_lru_add(pvec);
 411        put_cpu_var(lru_add_pvec);
 412}
 413
 414/**
 415 * lru_cache_add_anon - add a page to the page lists
 416 * @page: the page to add
 417 */
 418void lru_cache_add_anon(struct page *page)
 419{
 420        if (PageActive(page))
 421                ClearPageActive(page);
 422        __lru_cache_add(page);
 423}
 424
 425void lru_cache_add_file(struct page *page)
 426{
 427        if (PageActive(page))
 428                ClearPageActive(page);
 429        __lru_cache_add(page);
 430}
 431EXPORT_SYMBOL(lru_cache_add_file);
 432
 433/**
 434 * lru_cache_add - add a page to a page list
 435 * @page: the page to be added to the LRU.
 436 *
 437 * Queue the page for addition to the LRU via pagevec. The decision on whether
 438 * to add the page to the [in]active [file|anon] list is deferred until the
 439 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 440 * have the page added to the active list using mark_page_accessed().
 441 */
 442void lru_cache_add(struct page *page)
 443{
 444        VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 445        VM_BUG_ON_PAGE(PageLRU(page), page);
 446        __lru_cache_add(page);
 447}
 448
 449/**
 450 * lru_cache_add_active_or_unevictable
 451 * @page:  the page to be added to LRU
 452 * @vma:   vma in which page is mapped for determining reclaimability
 453 *
 454 * Place @page on the active or unevictable LRU list, depending on its
 455 * evictability.  Note that if the page is not evictable, it goes
 456 * directly back onto it's zone's unevictable list, it does NOT use a
 457 * per cpu pagevec.
 458 */
 459void lru_cache_add_active_or_unevictable(struct page *page,
 460                                         struct vm_area_struct *vma)
 461{
 462        VM_BUG_ON_PAGE(PageLRU(page), page);
 463
 464        if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
 465                SetPageActive(page);
 466        else if (!TestSetPageMlocked(page)) {
 467                /*
 468                 * We use the irq-unsafe __mod_zone_page_stat because this
 469                 * counter is not modified from interrupt context, and the pte
 470                 * lock is held(spinlock), which implies preemption disabled.
 471                 */
 472                __mod_zone_page_state(page_zone(page), NR_MLOCK,
 473                                    hpage_nr_pages(page));
 474                count_vm_event(UNEVICTABLE_PGMLOCKED);
 475        }
 476        lru_cache_add(page);
 477}
 478
 479/*
 480 * If the page can not be invalidated, it is moved to the
 481 * inactive list to speed up its reclaim.  It is moved to the
 482 * head of the list, rather than the tail, to give the flusher
 483 * threads some time to write it out, as this is much more
 484 * effective than the single-page writeout from reclaim.
 485 *
 486 * If the page isn't page_mapped and dirty/writeback, the page
 487 * could reclaim asap using PG_reclaim.
 488 *
 489 * 1. active, mapped page -> none
 490 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 491 * 3. inactive, mapped page -> none
 492 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 493 * 5. inactive, clean -> inactive, tail
 494 * 6. Others -> none
 495 *
 496 * In 4, why it moves inactive's head, the VM expects the page would
 497 * be write it out by flusher threads as this is much more effective
 498 * than the single-page writeout from reclaim.
 499 */
 500static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 501                              void *arg)
 502{
 503        int lru, file;
 504        bool active;
 505
 506        if (!PageLRU(page))
 507                return;
 508
 509        if (PageUnevictable(page))
 510                return;
 511
 512        /* Some processes are using the page */
 513        if (page_mapped(page))
 514                return;
 515
 516        active = PageActive(page);
 517        file = page_is_file_cache(page);
 518        lru = page_lru_base_type(page);
 519
 520        del_page_from_lru_list(page, lruvec, lru + active);
 521        ClearPageActive(page);
 522        ClearPageReferenced(page);
 523        add_page_to_lru_list(page, lruvec, lru);
 524
 525        if (PageWriteback(page) || PageDirty(page)) {
 526                /*
 527                 * PG_reclaim could be raced with end_page_writeback
 528                 * It can make readahead confusing.  But race window
 529                 * is _really_ small and  it's non-critical problem.
 530                 */
 531                SetPageReclaim(page);
 532        } else {
 533                /*
 534                 * The page's writeback ends up during pagevec
 535                 * We moves tha page into tail of inactive.
 536                 */
 537                list_move_tail(&page->lru, &lruvec->lists[lru]);
 538                __count_vm_event(PGROTATED);
 539        }
 540
 541        if (active)
 542                __count_vm_event(PGDEACTIVATE);
 543        update_page_reclaim_stat(lruvec, file, 0);
 544}
 545
 546
 547static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
 548                            void *arg)
 549{
 550        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 551            !PageSwapCache(page) && !PageUnevictable(page)) {
 552                bool active = PageActive(page);
 553
 554                del_page_from_lru_list(page, lruvec,
 555                                       LRU_INACTIVE_ANON + active);
 556                ClearPageActive(page);
 557                ClearPageReferenced(page);
 558                /*
 559                 * lazyfree pages are clean anonymous pages. They have
 560                 * SwapBacked flag cleared to distinguish normal anonymous
 561                 * pages
 562                 */
 563                ClearPageSwapBacked(page);
 564                add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
 565
 566                __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
 567                count_memcg_page_event(page, PGLAZYFREE);
 568                update_page_reclaim_stat(lruvec, 1, 0);
 569        }
 570}
 571
 572/*
 573 * Drain pages out of the cpu's pagevecs.
 574 * Either "cpu" is the current CPU, and preemption has already been
 575 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 576 */
 577void lru_add_drain_cpu(int cpu)
 578{
 579        struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 580
 581        if (pagevec_count(pvec))
 582                __pagevec_lru_add(pvec);
 583
 584        pvec = &per_cpu(lru_rotate_pvecs, cpu);
 585        if (pagevec_count(pvec)) {
 586                unsigned long flags;
 587
 588                /* No harm done if a racing interrupt already did this */
 589                local_irq_save(flags);
 590                pagevec_move_tail(pvec);
 591                local_irq_restore(flags);
 592        }
 593
 594        pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
 595        if (pagevec_count(pvec))
 596                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 597
 598        pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
 599        if (pagevec_count(pvec))
 600                pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 601
 602        activate_page_drain(cpu);
 603}
 604
 605/**
 606 * deactivate_file_page - forcefully deactivate a file page
 607 * @page: page to deactivate
 608 *
 609 * This function hints the VM that @page is a good reclaim candidate,
 610 * for example if its invalidation fails due to the page being dirty
 611 * or under writeback.
 612 */
 613void deactivate_file_page(struct page *page)
 614{
 615        /*
 616         * In a workload with many unevictable page such as mprotect,
 617         * unevictable page deactivation for accelerating reclaim is pointless.
 618         */
 619        if (PageUnevictable(page))
 620                return;
 621
 622        if (likely(get_page_unless_zero(page))) {
 623                struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
 624
 625                if (!pagevec_add(pvec, page) || PageCompound(page))
 626                        pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 627                put_cpu_var(lru_deactivate_file_pvecs);
 628        }
 629}
 630
 631/**
 632 * mark_page_lazyfree - make an anon page lazyfree
 633 * @page: page to deactivate
 634 *
 635 * mark_page_lazyfree() moves @page to the inactive file list.
 636 * This is done to accelerate the reclaim of @page.
 637 */
 638void mark_page_lazyfree(struct page *page)
 639{
 640        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 641            !PageSwapCache(page) && !PageUnevictable(page)) {
 642                struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
 643
 644                get_page(page);
 645                if (!pagevec_add(pvec, page) || PageCompound(page))
 646                        pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 647                put_cpu_var(lru_lazyfree_pvecs);
 648        }
 649}
 650
 651void lru_add_drain(void)
 652{
 653        lru_add_drain_cpu(get_cpu());
 654        put_cpu();
 655}
 656
 657static void lru_add_drain_per_cpu(struct work_struct *dummy)
 658{
 659        lru_add_drain();
 660}
 661
 662static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 663
 664/*
 665 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 666 * kworkers being shut down before our page_alloc_cpu_dead callback is
 667 * executed on the offlined cpu.
 668 * Calling this function with cpu hotplug locks held can actually lead
 669 * to obscure indirect dependencies via WQ context.
 670 */
 671void lru_add_drain_all(void)
 672{
 673        static DEFINE_MUTEX(lock);
 674        static struct cpumask has_work;
 675        int cpu;
 676
 677        /*
 678         * Make sure nobody triggers this path before mm_percpu_wq is fully
 679         * initialized.
 680         */
 681        if (WARN_ON(!mm_percpu_wq))
 682                return;
 683
 684        mutex_lock(&lock);
 685        cpumask_clear(&has_work);
 686
 687        for_each_online_cpu(cpu) {
 688                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 689
 690                if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 691                    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 692                    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
 693                    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
 694                    need_activate_page_drain(cpu)) {
 695                        INIT_WORK(work, lru_add_drain_per_cpu);
 696                        queue_work_on(cpu, mm_percpu_wq, work);
 697                        cpumask_set_cpu(cpu, &has_work);
 698                }
 699        }
 700
 701        for_each_cpu(cpu, &has_work)
 702                flush_work(&per_cpu(lru_add_drain_work, cpu));
 703
 704        mutex_unlock(&lock);
 705}
 706
 707/**
 708 * release_pages - batched put_page()
 709 * @pages: array of pages to release
 710 * @nr: number of pages
 711 *
 712 * Decrement the reference count on all the pages in @pages.  If it
 713 * fell to zero, remove the page from the LRU and free it.
 714 */
 715void release_pages(struct page **pages, int nr)
 716{
 717        int i;
 718        LIST_HEAD(pages_to_free);
 719        struct pglist_data *locked_pgdat = NULL;
 720        struct lruvec *lruvec;
 721        unsigned long uninitialized_var(flags);
 722        unsigned int uninitialized_var(lock_batch);
 723
 724        for (i = 0; i < nr; i++) {
 725                struct page *page = pages[i];
 726
 727                /*
 728                 * Make sure the IRQ-safe lock-holding time does not get
 729                 * excessive with a continuous string of pages from the
 730                 * same pgdat. The lock is held only if pgdat != NULL.
 731                 */
 732                if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
 733                        spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 734                        locked_pgdat = NULL;
 735                }
 736
 737                if (is_huge_zero_page(page))
 738                        continue;
 739
 740                /* Device public page can not be huge page */
 741                if (is_device_public_page(page)) {
 742                        if (locked_pgdat) {
 743                                spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 744                                                       flags);
 745                                locked_pgdat = NULL;
 746                        }
 747                        put_devmap_managed_page(page);
 748                        continue;
 749                }
 750
 751                page = compound_head(page);
 752                if (!put_page_testzero(page))
 753                        continue;
 754
 755                if (PageCompound(page)) {
 756                        if (locked_pgdat) {
 757                                spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 758                                locked_pgdat = NULL;
 759                        }
 760                        __put_compound_page(page);
 761                        continue;
 762                }
 763
 764                if (PageLRU(page)) {
 765                        struct pglist_data *pgdat = page_pgdat(page);
 766
 767                        if (pgdat != locked_pgdat) {
 768                                if (locked_pgdat)
 769                                        spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 770                                                                        flags);
 771                                lock_batch = 0;
 772                                locked_pgdat = pgdat;
 773                                spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
 774                        }
 775
 776                        lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
 777                        VM_BUG_ON_PAGE(!PageLRU(page), page);
 778                        __ClearPageLRU(page);
 779                        del_page_from_lru_list(page, lruvec, page_off_lru(page));
 780                }
 781
 782                /* Clear Active bit in case of parallel mark_page_accessed */
 783                __ClearPageActive(page);
 784                __ClearPageWaiters(page);
 785
 786                list_add(&page->lru, &pages_to_free);
 787        }
 788        if (locked_pgdat)
 789                spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 790
 791        mem_cgroup_uncharge_list(&pages_to_free);
 792        free_unref_page_list(&pages_to_free);
 793}
 794EXPORT_SYMBOL(release_pages);
 795
 796/*
 797 * The pages which we're about to release may be in the deferred lru-addition
 798 * queues.  That would prevent them from really being freed right now.  That's
 799 * OK from a correctness point of view but is inefficient - those pages may be
 800 * cache-warm and we want to give them back to the page allocator ASAP.
 801 *
 802 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 803 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 804 * mutual recursion.
 805 */
 806void __pagevec_release(struct pagevec *pvec)
 807{
 808        if (!pvec->percpu_pvec_drained) {
 809                lru_add_drain();
 810                pvec->percpu_pvec_drained = true;
 811        }
 812        release_pages(pvec->pages, pagevec_count(pvec));
 813        pagevec_reinit(pvec);
 814}
 815EXPORT_SYMBOL(__pagevec_release);
 816
 817#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 818/* used by __split_huge_page_refcount() */
 819void lru_add_page_tail(struct page *page, struct page *page_tail,
 820                       struct lruvec *lruvec, struct list_head *list)
 821{
 822        const int file = 0;
 823
 824        VM_BUG_ON_PAGE(!PageHead(page), page);
 825        VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 826        VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 827        VM_BUG_ON(NR_CPUS != 1 &&
 828                  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
 829
 830        if (!list)
 831                SetPageLRU(page_tail);
 832
 833        if (likely(PageLRU(page)))
 834                list_add_tail(&page_tail->lru, &page->lru);
 835        else if (list) {
 836                /* page reclaim is reclaiming a huge page */
 837                get_page(page_tail);
 838                list_add_tail(&page_tail->lru, list);
 839        } else {
 840                struct list_head *list_head;
 841                /*
 842                 * Head page has not yet been counted, as an hpage,
 843                 * so we must account for each subpage individually.
 844                 *
 845                 * Use the standard add function to put page_tail on the list,
 846                 * but then correct its position so they all end up in order.
 847                 */
 848                add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
 849                list_head = page_tail->lru.prev;
 850                list_move_tail(&page_tail->lru, list_head);
 851        }
 852
 853        if (!PageUnevictable(page))
 854                update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
 855}
 856#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 857
 858static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 859                                 void *arg)
 860{
 861        enum lru_list lru;
 862        int was_unevictable = TestClearPageUnevictable(page);
 863
 864        VM_BUG_ON_PAGE(PageLRU(page), page);
 865
 866        SetPageLRU(page);
 867        /*
 868         * Page becomes evictable in two ways:
 869         * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
 870         * 2) Before acquiring LRU lock to put the page to correct LRU and then
 871         *   a) do PageLRU check with lock [check_move_unevictable_pages]
 872         *   b) do PageLRU check before lock [clear_page_mlock]
 873         *
 874         * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
 875         * following strict ordering:
 876         *
 877         * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
 878         *
 879         * SetPageLRU()                         TestClearPageMlocked()
 880         * smp_mb() // explicit ordering        // above provides strict
 881         *                                      // ordering
 882         * PageMlocked()                        PageLRU()
 883         *
 884         *
 885         * if '#1' does not observe setting of PG_lru by '#0' and fails
 886         * isolation, the explicit barrier will make sure that page_evictable
 887         * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
 888         * can be reordered after PageMlocked check and can make '#1' to fail
 889         * the isolation of the page whose Mlocked bit is cleared (#0 is also
 890         * looking at the same page) and the evictable page will be stranded
 891         * in an unevictable LRU.
 892         */
 893        smp_mb();
 894
 895        if (page_evictable(page)) {
 896                lru = page_lru(page);
 897                update_page_reclaim_stat(lruvec, page_is_file_cache(page),
 898                                         PageActive(page));
 899                if (was_unevictable)
 900                        count_vm_event(UNEVICTABLE_PGRESCUED);
 901        } else {
 902                lru = LRU_UNEVICTABLE;
 903                ClearPageActive(page);
 904                SetPageUnevictable(page);
 905                if (!was_unevictable)
 906                        count_vm_event(UNEVICTABLE_PGCULLED);
 907        }
 908
 909        add_page_to_lru_list(page, lruvec, lru);
 910        trace_mm_lru_insertion(page, lru);
 911}
 912
 913/*
 914 * Add the passed pages to the LRU, then drop the caller's refcount
 915 * on them.  Reinitialises the caller's pagevec.
 916 */
 917void __pagevec_lru_add(struct pagevec *pvec)
 918{
 919        pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
 920}
 921EXPORT_SYMBOL(__pagevec_lru_add);
 922
 923/**
 924 * pagevec_lookup_entries - gang pagecache lookup
 925 * @pvec:       Where the resulting entries are placed
 926 * @mapping:    The address_space to search
 927 * @start:      The starting entry index
 928 * @nr_entries: The maximum number of pages
 929 * @indices:    The cache indices corresponding to the entries in @pvec
 930 *
 931 * pagevec_lookup_entries() will search for and return a group of up
 932 * to @nr_pages pages and shadow entries in the mapping.  All
 933 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
 934 * reference against actual pages in @pvec.
 935 *
 936 * The search returns a group of mapping-contiguous entries with
 937 * ascending indexes.  There may be holes in the indices due to
 938 * not-present entries.
 939 *
 940 * pagevec_lookup_entries() returns the number of entries which were
 941 * found.
 942 */
 943unsigned pagevec_lookup_entries(struct pagevec *pvec,
 944                                struct address_space *mapping,
 945                                pgoff_t start, unsigned nr_entries,
 946                                pgoff_t *indices)
 947{
 948        pvec->nr = find_get_entries(mapping, start, nr_entries,
 949                                    pvec->pages, indices);
 950        return pagevec_count(pvec);
 951}
 952
 953/**
 954 * pagevec_remove_exceptionals - pagevec exceptionals pruning
 955 * @pvec:       The pagevec to prune
 956 *
 957 * pagevec_lookup_entries() fills both pages and exceptional radix
 958 * tree entries into the pagevec.  This function prunes all
 959 * exceptionals from @pvec without leaving holes, so that it can be
 960 * passed on to page-only pagevec operations.
 961 */
 962void pagevec_remove_exceptionals(struct pagevec *pvec)
 963{
 964        int i, j;
 965
 966        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 967                struct page *page = pvec->pages[i];
 968                if (!radix_tree_exceptional_entry(page))
 969                        pvec->pages[j++] = page;
 970        }
 971        pvec->nr = j;
 972}
 973
 974/**
 975 * pagevec_lookup_range - gang pagecache lookup
 976 * @pvec:       Where the resulting pages are placed
 977 * @mapping:    The address_space to search
 978 * @start:      The starting page index
 979 * @end:        The final page index
 980 *
 981 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
 982 * pages in the mapping starting from index @start and upto index @end
 983 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
 984 * reference against the pages in @pvec.
 985 *
 986 * The search returns a group of mapping-contiguous pages with ascending
 987 * indexes.  There may be holes in the indices due to not-present pages. We
 988 * also update @start to index the next page for the traversal.
 989 *
 990 * pagevec_lookup_range() returns the number of pages which were found. If this
 991 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
 992 * reached.
 993 */
 994unsigned pagevec_lookup_range(struct pagevec *pvec,
 995                struct address_space *mapping, pgoff_t *start, pgoff_t end)
 996{
 997        pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
 998                                        pvec->pages);
 999        return pagevec_count(pvec);
1000}
1001EXPORT_SYMBOL(pagevec_lookup_range);
1002
1003unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1004                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1005                int tag)
1006{
1007        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1008                                        PAGEVEC_SIZE, pvec->pages);
1009        return pagevec_count(pvec);
1010}
1011EXPORT_SYMBOL(pagevec_lookup_range_tag);
1012
1013unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1014                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1015                int tag, unsigned max_pages)
1016{
1017        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1018                min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1019        return pagevec_count(pvec);
1020}
1021EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1022/*
1023 * Perform any setup for the swap system
1024 */
1025void __init swap_setup(void)
1026{
1027        unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1028
1029        /* Use a smaller cluster for small-memory machines */
1030        if (megs < 16)
1031                page_cluster = 2;
1032        else
1033                page_cluster = 3;
1034        /*
1035         * Right now other parts of the system means that we
1036         * _really_ don't want to cluster much more
1037         */
1038}
1039