linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche, <flla@stud.uni-sb.de>
  14 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *              Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *              Pedro Roque     :       Fast Retransmit/Recovery.
  25 *                                      Two receive queues.
  26 *                                      Retransmit queue handled by TCP.
  27 *                                      Better retransmit timer handling.
  28 *                                      New congestion avoidance.
  29 *                                      Header prediction.
  30 *                                      Variable renaming.
  31 *
  32 *              Eric            :       Fast Retransmit.
  33 *              Randy Scott     :       MSS option defines.
  34 *              Eric Schenk     :       Fixes to slow start algorithm.
  35 *              Eric Schenk     :       Yet another double ACK bug.
  36 *              Eric Schenk     :       Delayed ACK bug fixes.
  37 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  38 *              David S. Miller :       Don't allow zero congestion window.
  39 *              Eric Schenk     :       Fix retransmitter so that it sends
  40 *                                      next packet on ack of previous packet.
  41 *              Andi Kleen      :       Moved open_request checking here
  42 *                                      and process RSTs for open_requests.
  43 *              Andi Kleen      :       Better prune_queue, and other fixes.
  44 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  45 *                                      timestamps.
  46 *              Andrey Savochkin:       Check sequence numbers correctly when
  47 *                                      removing SACKs due to in sequence incoming
  48 *                                      data segments.
  49 *              Andi Kleen:             Make sure we never ack data there is not
  50 *                                      enough room for. Also make this condition
  51 *                                      a fatal error if it might still happen.
  52 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  53 *                                      connections with MSS<min(MTU,ann. MSS)
  54 *                                      work without delayed acks.
  55 *              Andi Kleen:             Process packets with PSH set in the
  56 *                                      fast path.
  57 *              J Hadi Salim:           ECN support
  58 *              Andrei Gurtov,
  59 *              Pasi Sarolahti,
  60 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  61 *                                      engine. Lots of bugs are found.
  62 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/static_key.h>
  81#include <net/busy_poll.h>
  82
  83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84
  85#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
  86#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
  87#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
  88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
  89#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
  90#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
  91#define FLAG_ECE                0x40 /* ECE in this ACK                         */
  92#define FLAG_LOST_RETRANS       0x80 /* This ACK marks some retransmission lost */
  93#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
  94#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
  95#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  96#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
  97#define FLAG_SET_XMIT_TIMER     0x1000 /* Set TLP or RTO timer */
  98#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
  99#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 100#define FLAG_NO_CHALLENGE_ACK   0x8000 /* do not call tcp_send_challenge_ack()  */
 101#define FLAG_ACK_MAYBE_DELAYED  0x10000 /* Likely a delayed ACK */
 102
 103#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 104#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 105#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 106#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 107
 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 110
 111#define REXMIT_NONE     0 /* no loss recovery to do */
 112#define REXMIT_LOST     1 /* retransmit packets marked lost */
 113#define REXMIT_NEW      2 /* FRTO-style transmit of unsent/new packets */
 114
 115#if IS_ENABLED(CONFIG_TLS_DEVICE)
 116static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
 117
 118void clean_acked_data_enable(struct inet_connection_sock *icsk,
 119                             void (*cad)(struct sock *sk, u32 ack_seq))
 120{
 121        icsk->icsk_clean_acked = cad;
 122        static_branch_inc(&clean_acked_data_enabled);
 123}
 124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 125
 126void clean_acked_data_disable(struct inet_connection_sock *icsk)
 127{
 128        static_branch_dec(&clean_acked_data_enabled);
 129        icsk->icsk_clean_acked = NULL;
 130}
 131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 132#endif
 133
 134static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 135                             unsigned int len)
 136{
 137        static bool __once __read_mostly;
 138
 139        if (!__once) {
 140                struct net_device *dev;
 141
 142                __once = true;
 143
 144                rcu_read_lock();
 145                dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 146                if (!dev || len >= dev->mtu)
 147                        pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 148                                dev ? dev->name : "Unknown driver");
 149                rcu_read_unlock();
 150        }
 151}
 152
 153/* Adapt the MSS value used to make delayed ack decision to the
 154 * real world.
 155 */
 156static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 157{
 158        struct inet_connection_sock *icsk = inet_csk(sk);
 159        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 160        unsigned int len;
 161
 162        icsk->icsk_ack.last_seg_size = 0;
 163
 164        /* skb->len may jitter because of SACKs, even if peer
 165         * sends good full-sized frames.
 166         */
 167        len = skb_shinfo(skb)->gso_size ? : skb->len;
 168        if (len >= icsk->icsk_ack.rcv_mss) {
 169                icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 170                                               tcp_sk(sk)->advmss);
 171                /* Account for possibly-removed options */
 172                if (unlikely(len > icsk->icsk_ack.rcv_mss +
 173                                   MAX_TCP_OPTION_SPACE))
 174                        tcp_gro_dev_warn(sk, skb, len);
 175        } else {
 176                /* Otherwise, we make more careful check taking into account,
 177                 * that SACKs block is variable.
 178                 *
 179                 * "len" is invariant segment length, including TCP header.
 180                 */
 181                len += skb->data - skb_transport_header(skb);
 182                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 183                    /* If PSH is not set, packet should be
 184                     * full sized, provided peer TCP is not badly broken.
 185                     * This observation (if it is correct 8)) allows
 186                     * to handle super-low mtu links fairly.
 187                     */
 188                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 189                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 190                        /* Subtract also invariant (if peer is RFC compliant),
 191                         * tcp header plus fixed timestamp option length.
 192                         * Resulting "len" is MSS free of SACK jitter.
 193                         */
 194                        len -= tcp_sk(sk)->tcp_header_len;
 195                        icsk->icsk_ack.last_seg_size = len;
 196                        if (len == lss) {
 197                                icsk->icsk_ack.rcv_mss = len;
 198                                return;
 199                        }
 200                }
 201                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 202                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 203                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 204        }
 205}
 206
 207static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 208{
 209        struct inet_connection_sock *icsk = inet_csk(sk);
 210        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 211
 212        if (quickacks == 0)
 213                quickacks = 2;
 214        quickacks = min(quickacks, max_quickacks);
 215        if (quickacks > icsk->icsk_ack.quick)
 216                icsk->icsk_ack.quick = quickacks;
 217}
 218
 219void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 220{
 221        struct inet_connection_sock *icsk = inet_csk(sk);
 222
 223        tcp_incr_quickack(sk, max_quickacks);
 224        icsk->icsk_ack.pingpong = 0;
 225        icsk->icsk_ack.ato = TCP_ATO_MIN;
 226}
 227EXPORT_SYMBOL(tcp_enter_quickack_mode);
 228
 229/* Send ACKs quickly, if "quick" count is not exhausted
 230 * and the session is not interactive.
 231 */
 232
 233static bool tcp_in_quickack_mode(struct sock *sk)
 234{
 235        const struct inet_connection_sock *icsk = inet_csk(sk);
 236        const struct dst_entry *dst = __sk_dst_get(sk);
 237
 238        return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 239                (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 240}
 241
 242static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 243{
 244        if (tp->ecn_flags & TCP_ECN_OK)
 245                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 246}
 247
 248static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 249{
 250        if (tcp_hdr(skb)->cwr) {
 251                tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 252
 253                /* If the sender is telling us it has entered CWR, then its
 254                 * cwnd may be very low (even just 1 packet), so we should ACK
 255                 * immediately.
 256                 */
 257                inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 258        }
 259}
 260
 261static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 262{
 263        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 264}
 265
 266static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 267{
 268        struct tcp_sock *tp = tcp_sk(sk);
 269
 270        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 271        case INET_ECN_NOT_ECT:
 272                /* Funny extension: if ECT is not set on a segment,
 273                 * and we already seen ECT on a previous segment,
 274                 * it is probably a retransmit.
 275                 */
 276                if (tp->ecn_flags & TCP_ECN_SEEN)
 277                        tcp_enter_quickack_mode(sk, 2);
 278                break;
 279        case INET_ECN_CE:
 280                if (tcp_ca_needs_ecn(sk))
 281                        tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 282
 283                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 284                        /* Better not delay acks, sender can have a very low cwnd */
 285                        tcp_enter_quickack_mode(sk, 2);
 286                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 287                }
 288                tp->ecn_flags |= TCP_ECN_SEEN;
 289                break;
 290        default:
 291                if (tcp_ca_needs_ecn(sk))
 292                        tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 293                tp->ecn_flags |= TCP_ECN_SEEN;
 294                break;
 295        }
 296}
 297
 298static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 299{
 300        if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 301                __tcp_ecn_check_ce(sk, skb);
 302}
 303
 304static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 305{
 306        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 307                tp->ecn_flags &= ~TCP_ECN_OK;
 308}
 309
 310static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 311{
 312        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 313                tp->ecn_flags &= ~TCP_ECN_OK;
 314}
 315
 316static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 317{
 318        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 319                return true;
 320        return false;
 321}
 322
 323/* Buffer size and advertised window tuning.
 324 *
 325 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 326 */
 327
 328static void tcp_sndbuf_expand(struct sock *sk)
 329{
 330        const struct tcp_sock *tp = tcp_sk(sk);
 331        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 332        int sndmem, per_mss;
 333        u32 nr_segs;
 334
 335        /* Worst case is non GSO/TSO : each frame consumes one skb
 336         * and skb->head is kmalloced using power of two area of memory
 337         */
 338        per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 339                  MAX_TCP_HEADER +
 340                  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 341
 342        per_mss = roundup_pow_of_two(per_mss) +
 343                  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 344
 345        nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 346        nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 347
 348        /* Fast Recovery (RFC 5681 3.2) :
 349         * Cubic needs 1.7 factor, rounded to 2 to include
 350         * extra cushion (application might react slowly to EPOLLOUT)
 351         */
 352        sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 353        sndmem *= nr_segs * per_mss;
 354
 355        if (sk->sk_sndbuf < sndmem)
 356                sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
 357}
 358
 359/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 360 *
 361 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 362 * forward and advertised in receiver window (tp->rcv_wnd) and
 363 * "application buffer", required to isolate scheduling/application
 364 * latencies from network.
 365 * window_clamp is maximal advertised window. It can be less than
 366 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 367 * is reserved for "application" buffer. The less window_clamp is
 368 * the smoother our behaviour from viewpoint of network, but the lower
 369 * throughput and the higher sensitivity of the connection to losses. 8)
 370 *
 371 * rcv_ssthresh is more strict window_clamp used at "slow start"
 372 * phase to predict further behaviour of this connection.
 373 * It is used for two goals:
 374 * - to enforce header prediction at sender, even when application
 375 *   requires some significant "application buffer". It is check #1.
 376 * - to prevent pruning of receive queue because of misprediction
 377 *   of receiver window. Check #2.
 378 *
 379 * The scheme does not work when sender sends good segments opening
 380 * window and then starts to feed us spaghetti. But it should work
 381 * in common situations. Otherwise, we have to rely on queue collapsing.
 382 */
 383
 384/* Slow part of check#2. */
 385static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 386{
 387        struct tcp_sock *tp = tcp_sk(sk);
 388        /* Optimize this! */
 389        int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 390        int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 391
 392        while (tp->rcv_ssthresh <= window) {
 393                if (truesize <= skb->len)
 394                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 395
 396                truesize >>= 1;
 397                window >>= 1;
 398        }
 399        return 0;
 400}
 401
 402static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 403{
 404        struct tcp_sock *tp = tcp_sk(sk);
 405
 406        /* Check #1 */
 407        if (tp->rcv_ssthresh < tp->window_clamp &&
 408            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 409            !tcp_under_memory_pressure(sk)) {
 410                int incr;
 411
 412                /* Check #2. Increase window, if skb with such overhead
 413                 * will fit to rcvbuf in future.
 414                 */
 415                if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 416                        incr = 2 * tp->advmss;
 417                else
 418                        incr = __tcp_grow_window(sk, skb);
 419
 420                if (incr) {
 421                        incr = max_t(int, incr, 2 * skb->len);
 422                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 423                                               tp->window_clamp);
 424                        inet_csk(sk)->icsk_ack.quick |= 1;
 425                }
 426        }
 427}
 428
 429/* 3. Tuning rcvbuf, when connection enters established state. */
 430static void tcp_fixup_rcvbuf(struct sock *sk)
 431{
 432        u32 mss = tcp_sk(sk)->advmss;
 433        int rcvmem;
 434
 435        rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 436                 tcp_default_init_rwnd(mss);
 437
 438        /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 439         * Allow enough cushion so that sender is not limited by our window
 440         */
 441        if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
 442                rcvmem <<= 2;
 443
 444        if (sk->sk_rcvbuf < rcvmem)
 445                sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 446}
 447
 448/* 4. Try to fixup all. It is made immediately after connection enters
 449 *    established state.
 450 */
 451void tcp_init_buffer_space(struct sock *sk)
 452{
 453        int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 454        struct tcp_sock *tp = tcp_sk(sk);
 455        int maxwin;
 456
 457        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 458                tcp_fixup_rcvbuf(sk);
 459        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 460                tcp_sndbuf_expand(sk);
 461
 462        tp->rcvq_space.space = tp->rcv_wnd;
 463        tcp_mstamp_refresh(tp);
 464        tp->rcvq_space.time = tp->tcp_mstamp;
 465        tp->rcvq_space.seq = tp->copied_seq;
 466
 467        maxwin = tcp_full_space(sk);
 468
 469        if (tp->window_clamp >= maxwin) {
 470                tp->window_clamp = maxwin;
 471
 472                if (tcp_app_win && maxwin > 4 * tp->advmss)
 473                        tp->window_clamp = max(maxwin -
 474                                               (maxwin >> tcp_app_win),
 475                                               4 * tp->advmss);
 476        }
 477
 478        /* Force reservation of one segment. */
 479        if (tcp_app_win &&
 480            tp->window_clamp > 2 * tp->advmss &&
 481            tp->window_clamp + tp->advmss > maxwin)
 482                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 483
 484        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 485        tp->snd_cwnd_stamp = tcp_jiffies32;
 486}
 487
 488/* 5. Recalculate window clamp after socket hit its memory bounds. */
 489static void tcp_clamp_window(struct sock *sk)
 490{
 491        struct tcp_sock *tp = tcp_sk(sk);
 492        struct inet_connection_sock *icsk = inet_csk(sk);
 493        struct net *net = sock_net(sk);
 494
 495        icsk->icsk_ack.quick = 0;
 496
 497        if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 498            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 499            !tcp_under_memory_pressure(sk) &&
 500            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 501                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 502                                    net->ipv4.sysctl_tcp_rmem[2]);
 503        }
 504        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 505                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 506}
 507
 508/* Initialize RCV_MSS value.
 509 * RCV_MSS is an our guess about MSS used by the peer.
 510 * We haven't any direct information about the MSS.
 511 * It's better to underestimate the RCV_MSS rather than overestimate.
 512 * Overestimations make us ACKing less frequently than needed.
 513 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 514 */
 515void tcp_initialize_rcv_mss(struct sock *sk)
 516{
 517        const struct tcp_sock *tp = tcp_sk(sk);
 518        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 519
 520        hint = min(hint, tp->rcv_wnd / 2);
 521        hint = min(hint, TCP_MSS_DEFAULT);
 522        hint = max(hint, TCP_MIN_MSS);
 523
 524        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 525}
 526EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 527
 528/* Receiver "autotuning" code.
 529 *
 530 * The algorithm for RTT estimation w/o timestamps is based on
 531 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 532 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 533 *
 534 * More detail on this code can be found at
 535 * <http://staff.psc.edu/jheffner/>,
 536 * though this reference is out of date.  A new paper
 537 * is pending.
 538 */
 539static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 540{
 541        u32 new_sample = tp->rcv_rtt_est.rtt_us;
 542        long m = sample;
 543
 544        if (new_sample != 0) {
 545                /* If we sample in larger samples in the non-timestamp
 546                 * case, we could grossly overestimate the RTT especially
 547                 * with chatty applications or bulk transfer apps which
 548                 * are stalled on filesystem I/O.
 549                 *
 550                 * Also, since we are only going for a minimum in the
 551                 * non-timestamp case, we do not smooth things out
 552                 * else with timestamps disabled convergence takes too
 553                 * long.
 554                 */
 555                if (!win_dep) {
 556                        m -= (new_sample >> 3);
 557                        new_sample += m;
 558                } else {
 559                        m <<= 3;
 560                        if (m < new_sample)
 561                                new_sample = m;
 562                }
 563        } else {
 564                /* No previous measure. */
 565                new_sample = m << 3;
 566        }
 567
 568        tp->rcv_rtt_est.rtt_us = new_sample;
 569}
 570
 571static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 572{
 573        u32 delta_us;
 574
 575        if (tp->rcv_rtt_est.time == 0)
 576                goto new_measure;
 577        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 578                return;
 579        delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 580        if (!delta_us)
 581                delta_us = 1;
 582        tcp_rcv_rtt_update(tp, delta_us, 1);
 583
 584new_measure:
 585        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 586        tp->rcv_rtt_est.time = tp->tcp_mstamp;
 587}
 588
 589static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 590                                          const struct sk_buff *skb)
 591{
 592        struct tcp_sock *tp = tcp_sk(sk);
 593
 594        if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 595                return;
 596        tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 597
 598        if (TCP_SKB_CB(skb)->end_seq -
 599            TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 600                u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 601                u32 delta_us;
 602
 603                if (!delta)
 604                        delta = 1;
 605                delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 606                tcp_rcv_rtt_update(tp, delta_us, 0);
 607        }
 608}
 609
 610/*
 611 * This function should be called every time data is copied to user space.
 612 * It calculates the appropriate TCP receive buffer space.
 613 */
 614void tcp_rcv_space_adjust(struct sock *sk)
 615{
 616        struct tcp_sock *tp = tcp_sk(sk);
 617        u32 copied;
 618        int time;
 619
 620        trace_tcp_rcv_space_adjust(sk);
 621
 622        tcp_mstamp_refresh(tp);
 623        time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 624        if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 625                return;
 626
 627        /* Number of bytes copied to user in last RTT */
 628        copied = tp->copied_seq - tp->rcvq_space.seq;
 629        if (copied <= tp->rcvq_space.space)
 630                goto new_measure;
 631
 632        /* A bit of theory :
 633         * copied = bytes received in previous RTT, our base window
 634         * To cope with packet losses, we need a 2x factor
 635         * To cope with slow start, and sender growing its cwin by 100 %
 636         * every RTT, we need a 4x factor, because the ACK we are sending
 637         * now is for the next RTT, not the current one :
 638         * <prev RTT . ><current RTT .. ><next RTT .... >
 639         */
 640
 641        if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 642            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 643                int rcvmem, rcvbuf;
 644                u64 rcvwin, grow;
 645
 646                /* minimal window to cope with packet losses, assuming
 647                 * steady state. Add some cushion because of small variations.
 648                 */
 649                rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 650
 651                /* Accommodate for sender rate increase (eg. slow start) */
 652                grow = rcvwin * (copied - tp->rcvq_space.space);
 653                do_div(grow, tp->rcvq_space.space);
 654                rcvwin += (grow << 1);
 655
 656                rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 657                while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 658                        rcvmem += 128;
 659
 660                do_div(rcvwin, tp->advmss);
 661                rcvbuf = min_t(u64, rcvwin * rcvmem,
 662                               sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 663                if (rcvbuf > sk->sk_rcvbuf) {
 664                        sk->sk_rcvbuf = rcvbuf;
 665
 666                        /* Make the window clamp follow along.  */
 667                        tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 668                }
 669        }
 670        tp->rcvq_space.space = copied;
 671
 672new_measure:
 673        tp->rcvq_space.seq = tp->copied_seq;
 674        tp->rcvq_space.time = tp->tcp_mstamp;
 675}
 676
 677/* There is something which you must keep in mind when you analyze the
 678 * behavior of the tp->ato delayed ack timeout interval.  When a
 679 * connection starts up, we want to ack as quickly as possible.  The
 680 * problem is that "good" TCP's do slow start at the beginning of data
 681 * transmission.  The means that until we send the first few ACK's the
 682 * sender will sit on his end and only queue most of his data, because
 683 * he can only send snd_cwnd unacked packets at any given time.  For
 684 * each ACK we send, he increments snd_cwnd and transmits more of his
 685 * queue.  -DaveM
 686 */
 687static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 688{
 689        struct tcp_sock *tp = tcp_sk(sk);
 690        struct inet_connection_sock *icsk = inet_csk(sk);
 691        u32 now;
 692
 693        inet_csk_schedule_ack(sk);
 694
 695        tcp_measure_rcv_mss(sk, skb);
 696
 697        tcp_rcv_rtt_measure(tp);
 698
 699        now = tcp_jiffies32;
 700
 701        if (!icsk->icsk_ack.ato) {
 702                /* The _first_ data packet received, initialize
 703                 * delayed ACK engine.
 704                 */
 705                tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 706                icsk->icsk_ack.ato = TCP_ATO_MIN;
 707        } else {
 708                int m = now - icsk->icsk_ack.lrcvtime;
 709
 710                if (m <= TCP_ATO_MIN / 2) {
 711                        /* The fastest case is the first. */
 712                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 713                } else if (m < icsk->icsk_ack.ato) {
 714                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 715                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 716                                icsk->icsk_ack.ato = icsk->icsk_rto;
 717                } else if (m > icsk->icsk_rto) {
 718                        /* Too long gap. Apparently sender failed to
 719                         * restart window, so that we send ACKs quickly.
 720                         */
 721                        tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 722                        sk_mem_reclaim(sk);
 723                }
 724        }
 725        icsk->icsk_ack.lrcvtime = now;
 726
 727        tcp_ecn_check_ce(sk, skb);
 728
 729        if (skb->len >= 128)
 730                tcp_grow_window(sk, skb);
 731}
 732
 733/* Called to compute a smoothed rtt estimate. The data fed to this
 734 * routine either comes from timestamps, or from segments that were
 735 * known _not_ to have been retransmitted [see Karn/Partridge
 736 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 737 * piece by Van Jacobson.
 738 * NOTE: the next three routines used to be one big routine.
 739 * To save cycles in the RFC 1323 implementation it was better to break
 740 * it up into three procedures. -- erics
 741 */
 742static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 743{
 744        struct tcp_sock *tp = tcp_sk(sk);
 745        long m = mrtt_us; /* RTT */
 746        u32 srtt = tp->srtt_us;
 747
 748        /*      The following amusing code comes from Jacobson's
 749         *      article in SIGCOMM '88.  Note that rtt and mdev
 750         *      are scaled versions of rtt and mean deviation.
 751         *      This is designed to be as fast as possible
 752         *      m stands for "measurement".
 753         *
 754         *      On a 1990 paper the rto value is changed to:
 755         *      RTO = rtt + 4 * mdev
 756         *
 757         * Funny. This algorithm seems to be very broken.
 758         * These formulae increase RTO, when it should be decreased, increase
 759         * too slowly, when it should be increased quickly, decrease too quickly
 760         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 761         * does not matter how to _calculate_ it. Seems, it was trap
 762         * that VJ failed to avoid. 8)
 763         */
 764        if (srtt != 0) {
 765                m -= (srtt >> 3);       /* m is now error in rtt est */
 766                srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
 767                if (m < 0) {
 768                        m = -m;         /* m is now abs(error) */
 769                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 770                        /* This is similar to one of Eifel findings.
 771                         * Eifel blocks mdev updates when rtt decreases.
 772                         * This solution is a bit different: we use finer gain
 773                         * for mdev in this case (alpha*beta).
 774                         * Like Eifel it also prevents growth of rto,
 775                         * but also it limits too fast rto decreases,
 776                         * happening in pure Eifel.
 777                         */
 778                        if (m > 0)
 779                                m >>= 3;
 780                } else {
 781                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 782                }
 783                tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
 784                if (tp->mdev_us > tp->mdev_max_us) {
 785                        tp->mdev_max_us = tp->mdev_us;
 786                        if (tp->mdev_max_us > tp->rttvar_us)
 787                                tp->rttvar_us = tp->mdev_max_us;
 788                }
 789                if (after(tp->snd_una, tp->rtt_seq)) {
 790                        if (tp->mdev_max_us < tp->rttvar_us)
 791                                tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 792                        tp->rtt_seq = tp->snd_nxt;
 793                        tp->mdev_max_us = tcp_rto_min_us(sk);
 794                }
 795        } else {
 796                /* no previous measure. */
 797                srtt = m << 3;          /* take the measured time to be rtt */
 798                tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
 799                tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 800                tp->mdev_max_us = tp->rttvar_us;
 801                tp->rtt_seq = tp->snd_nxt;
 802        }
 803        tp->srtt_us = max(1U, srtt);
 804}
 805
 806static void tcp_update_pacing_rate(struct sock *sk)
 807{
 808        const struct tcp_sock *tp = tcp_sk(sk);
 809        u64 rate;
 810
 811        /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 812        rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 813
 814        /* current rate is (cwnd * mss) / srtt
 815         * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 816         * In Congestion Avoidance phase, set it to 120 % the current rate.
 817         *
 818         * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 819         *       If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 820         *       end of slow start and should slow down.
 821         */
 822        if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 823                rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 824        else
 825                rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 826
 827        rate *= max(tp->snd_cwnd, tp->packets_out);
 828
 829        if (likely(tp->srtt_us))
 830                do_div(rate, tp->srtt_us);
 831
 832        /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 833         * without any lock. We want to make sure compiler wont store
 834         * intermediate values in this location.
 835         */
 836        WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 837                                             sk->sk_max_pacing_rate));
 838}
 839
 840/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 841 * routine referred to above.
 842 */
 843static void tcp_set_rto(struct sock *sk)
 844{
 845        const struct tcp_sock *tp = tcp_sk(sk);
 846        /* Old crap is replaced with new one. 8)
 847         *
 848         * More seriously:
 849         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 850         *    It cannot be less due to utterly erratic ACK generation made
 851         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 852         *    to do with delayed acks, because at cwnd>2 true delack timeout
 853         *    is invisible. Actually, Linux-2.4 also generates erratic
 854         *    ACKs in some circumstances.
 855         */
 856        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 857
 858        /* 2. Fixups made earlier cannot be right.
 859         *    If we do not estimate RTO correctly without them,
 860         *    all the algo is pure shit and should be replaced
 861         *    with correct one. It is exactly, which we pretend to do.
 862         */
 863
 864        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 865         * guarantees that rto is higher.
 866         */
 867        tcp_bound_rto(sk);
 868}
 869
 870__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 871{
 872        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 873
 874        if (!cwnd)
 875                cwnd = TCP_INIT_CWND;
 876        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 877}
 878
 879/* Take a notice that peer is sending D-SACKs */
 880static void tcp_dsack_seen(struct tcp_sock *tp)
 881{
 882        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 883        tp->rack.dsack_seen = 1;
 884        tp->dsack_dups++;
 885}
 886
 887/* It's reordering when higher sequence was delivered (i.e. sacked) before
 888 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 889 * distance is approximated in full-mss packet distance ("reordering").
 890 */
 891static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 892                                      const int ts)
 893{
 894        struct tcp_sock *tp = tcp_sk(sk);
 895        const u32 mss = tp->mss_cache;
 896        u32 fack, metric;
 897
 898        fack = tcp_highest_sack_seq(tp);
 899        if (!before(low_seq, fack))
 900                return;
 901
 902        metric = fack - low_seq;
 903        if ((metric > tp->reordering * mss) && mss) {
 904#if FASTRETRANS_DEBUG > 1
 905                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 906                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 907                         tp->reordering,
 908                         0,
 909                         tp->sacked_out,
 910                         tp->undo_marker ? tp->undo_retrans : 0);
 911#endif
 912                tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 913                                       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 914        }
 915
 916        /* This exciting event is worth to be remembered. 8) */
 917        tp->reord_seen++;
 918        NET_INC_STATS(sock_net(sk),
 919                      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 920}
 921
 922/* This must be called before lost_out is incremented */
 923static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 924{
 925        if (!tp->retransmit_skb_hint ||
 926            before(TCP_SKB_CB(skb)->seq,
 927                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 928                tp->retransmit_skb_hint = skb;
 929}
 930
 931/* Sum the number of packets on the wire we have marked as lost.
 932 * There are two cases we care about here:
 933 * a) Packet hasn't been marked lost (nor retransmitted),
 934 *    and this is the first loss.
 935 * b) Packet has been marked both lost and retransmitted,
 936 *    and this means we think it was lost again.
 937 */
 938static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 939{
 940        __u8 sacked = TCP_SKB_CB(skb)->sacked;
 941
 942        if (!(sacked & TCPCB_LOST) ||
 943            ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 944                tp->lost += tcp_skb_pcount(skb);
 945}
 946
 947static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 948{
 949        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 950                tcp_verify_retransmit_hint(tp, skb);
 951
 952                tp->lost_out += tcp_skb_pcount(skb);
 953                tcp_sum_lost(tp, skb);
 954                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 955        }
 956}
 957
 958void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 959{
 960        tcp_verify_retransmit_hint(tp, skb);
 961
 962        tcp_sum_lost(tp, skb);
 963        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 964                tp->lost_out += tcp_skb_pcount(skb);
 965                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 966        }
 967}
 968
 969/* This procedure tags the retransmission queue when SACKs arrive.
 970 *
 971 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 972 * Packets in queue with these bits set are counted in variables
 973 * sacked_out, retrans_out and lost_out, correspondingly.
 974 *
 975 * Valid combinations are:
 976 * Tag  InFlight        Description
 977 * 0    1               - orig segment is in flight.
 978 * S    0               - nothing flies, orig reached receiver.
 979 * L    0               - nothing flies, orig lost by net.
 980 * R    2               - both orig and retransmit are in flight.
 981 * L|R  1               - orig is lost, retransmit is in flight.
 982 * S|R  1               - orig reached receiver, retrans is still in flight.
 983 * (L|S|R is logically valid, it could occur when L|R is sacked,
 984 *  but it is equivalent to plain S and code short-curcuits it to S.
 985 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 986 *
 987 * These 6 states form finite state machine, controlled by the following events:
 988 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 989 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 990 * 3. Loss detection event of two flavors:
 991 *      A. Scoreboard estimator decided the packet is lost.
 992 *         A'. Reno "three dupacks" marks head of queue lost.
 993 *      B. SACK arrives sacking SND.NXT at the moment, when the
 994 *         segment was retransmitted.
 995 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 996 *
 997 * It is pleasant to note, that state diagram turns out to be commutative,
 998 * so that we are allowed not to be bothered by order of our actions,
 999 * when multiple events arrive simultaneously. (see the function below).
1000 *
1001 * Reordering detection.
1002 * --------------------
1003 * Reordering metric is maximal distance, which a packet can be displaced
1004 * in packet stream. With SACKs we can estimate it:
1005 *
1006 * 1. SACK fills old hole and the corresponding segment was not
1007 *    ever retransmitted -> reordering. Alas, we cannot use it
1008 *    when segment was retransmitted.
1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1010 *    for retransmitted and already SACKed segment -> reordering..
1011 * Both of these heuristics are not used in Loss state, when we cannot
1012 * account for retransmits accurately.
1013 *
1014 * SACK block validation.
1015 * ----------------------
1016 *
1017 * SACK block range validation checks that the received SACK block fits to
1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1019 * Note that SND.UNA is not included to the range though being valid because
1020 * it means that the receiver is rather inconsistent with itself reporting
1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1022 * perfectly valid, however, in light of RFC2018 which explicitly states
1023 * that "SACK block MUST reflect the newest segment.  Even if the newest
1024 * segment is going to be discarded ...", not that it looks very clever
1025 * in case of head skb. Due to potentional receiver driven attacks, we
1026 * choose to avoid immediate execution of a walk in write queue due to
1027 * reneging and defer head skb's loss recovery to standard loss recovery
1028 * procedure that will eventually trigger (nothing forbids us doing this).
1029 *
1030 * Implements also blockage to start_seq wrap-around. Problem lies in the
1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1032 * there's no guarantee that it will be before snd_nxt (n). The problem
1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1034 * wrap (s_w):
1035 *
1036 *         <- outs wnd ->                          <- wrapzone ->
1037 *         u     e      n                         u_w   e_w  s n_w
1038 *         |     |      |                          |     |   |  |
1039 * |<------------+------+----- TCP seqno space --------------+---------->|
1040 * ...-- <2^31 ->|                                           |<--------...
1041 * ...---- >2^31 ------>|                                    |<--------...
1042 *
1043 * Current code wouldn't be vulnerable but it's better still to discard such
1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1047 * equal to the ideal case (infinite seqno space without wrap caused issues).
1048 *
1049 * With D-SACK the lower bound is extended to cover sequence space below
1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1051 * again, D-SACK block must not to go across snd_una (for the same reason as
1052 * for the normal SACK blocks, explained above). But there all simplicity
1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1054 * fully below undo_marker they do not affect behavior in anyway and can
1055 * therefore be safely ignored. In rare cases (which are more or less
1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1057 * fragmentation and packet reordering past skb's retransmission. To consider
1058 * them correctly, the acceptable range must be extended even more though
1059 * the exact amount is rather hard to quantify. However, tp->max_window can
1060 * be used as an exaggerated estimate.
1061 */
1062static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1063                                   u32 start_seq, u32 end_seq)
1064{
1065        /* Too far in future, or reversed (interpretation is ambiguous) */
1066        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1067                return false;
1068
1069        /* Nasty start_seq wrap-around check (see comments above) */
1070        if (!before(start_seq, tp->snd_nxt))
1071                return false;
1072
1073        /* In outstanding window? ...This is valid exit for D-SACKs too.
1074         * start_seq == snd_una is non-sensical (see comments above)
1075         */
1076        if (after(start_seq, tp->snd_una))
1077                return true;
1078
1079        if (!is_dsack || !tp->undo_marker)
1080                return false;
1081
1082        /* ...Then it's D-SACK, and must reside below snd_una completely */
1083        if (after(end_seq, tp->snd_una))
1084                return false;
1085
1086        if (!before(start_seq, tp->undo_marker))
1087                return true;
1088
1089        /* Too old */
1090        if (!after(end_seq, tp->undo_marker))
1091                return false;
1092
1093        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1094         *   start_seq < undo_marker and end_seq >= undo_marker.
1095         */
1096        return !before(start_seq, end_seq - tp->max_window);
1097}
1098
1099static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1100                            struct tcp_sack_block_wire *sp, int num_sacks,
1101                            u32 prior_snd_una)
1102{
1103        struct tcp_sock *tp = tcp_sk(sk);
1104        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1105        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1106        bool dup_sack = false;
1107
1108        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1109                dup_sack = true;
1110                tcp_dsack_seen(tp);
1111                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1112        } else if (num_sacks > 1) {
1113                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1114                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1115
1116                if (!after(end_seq_0, end_seq_1) &&
1117                    !before(start_seq_0, start_seq_1)) {
1118                        dup_sack = true;
1119                        tcp_dsack_seen(tp);
1120                        NET_INC_STATS(sock_net(sk),
1121                                        LINUX_MIB_TCPDSACKOFORECV);
1122                }
1123        }
1124
1125        /* D-SACK for already forgotten data... Do dumb counting. */
1126        if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1127            !after(end_seq_0, prior_snd_una) &&
1128            after(end_seq_0, tp->undo_marker))
1129                tp->undo_retrans--;
1130
1131        return dup_sack;
1132}
1133
1134struct tcp_sacktag_state {
1135        u32     reord;
1136        /* Timestamps for earliest and latest never-retransmitted segment
1137         * that was SACKed. RTO needs the earliest RTT to stay conservative,
1138         * but congestion control should still get an accurate delay signal.
1139         */
1140        u64     first_sackt;
1141        u64     last_sackt;
1142        struct rate_sample *rate;
1143        int     flag;
1144        unsigned int mss_now;
1145};
1146
1147/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1148 * the incoming SACK may not exactly match but we can find smaller MSS
1149 * aligned portion of it that matches. Therefore we might need to fragment
1150 * which may fail and creates some hassle (caller must handle error case
1151 * returns).
1152 *
1153 * FIXME: this could be merged to shift decision code
1154 */
1155static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1156                                  u32 start_seq, u32 end_seq)
1157{
1158        int err;
1159        bool in_sack;
1160        unsigned int pkt_len;
1161        unsigned int mss;
1162
1163        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1164                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1165
1166        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1167            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1168                mss = tcp_skb_mss(skb);
1169                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1170
1171                if (!in_sack) {
1172                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1173                        if (pkt_len < mss)
1174                                pkt_len = mss;
1175                } else {
1176                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1177                        if (pkt_len < mss)
1178                                return -EINVAL;
1179                }
1180
1181                /* Round if necessary so that SACKs cover only full MSSes
1182                 * and/or the remaining small portion (if present)
1183                 */
1184                if (pkt_len > mss) {
1185                        unsigned int new_len = (pkt_len / mss) * mss;
1186                        if (!in_sack && new_len < pkt_len)
1187                                new_len += mss;
1188                        pkt_len = new_len;
1189                }
1190
1191                if (pkt_len >= skb->len && !in_sack)
1192                        return 0;
1193
1194                err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1195                                   pkt_len, mss, GFP_ATOMIC);
1196                if (err < 0)
1197                        return err;
1198        }
1199
1200        return in_sack;
1201}
1202
1203/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1204static u8 tcp_sacktag_one(struct sock *sk,
1205                          struct tcp_sacktag_state *state, u8 sacked,
1206                          u32 start_seq, u32 end_seq,
1207                          int dup_sack, int pcount,
1208                          u64 xmit_time)
1209{
1210        struct tcp_sock *tp = tcp_sk(sk);
1211
1212        /* Account D-SACK for retransmitted packet. */
1213        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1214                if (tp->undo_marker && tp->undo_retrans > 0 &&
1215                    after(end_seq, tp->undo_marker))
1216                        tp->undo_retrans--;
1217                if ((sacked & TCPCB_SACKED_ACKED) &&
1218                    before(start_seq, state->reord))
1219                                state->reord = start_seq;
1220        }
1221
1222        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1223        if (!after(end_seq, tp->snd_una))
1224                return sacked;
1225
1226        if (!(sacked & TCPCB_SACKED_ACKED)) {
1227                tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1228
1229                if (sacked & TCPCB_SACKED_RETRANS) {
1230                        /* If the segment is not tagged as lost,
1231                         * we do not clear RETRANS, believing
1232                         * that retransmission is still in flight.
1233                         */
1234                        if (sacked & TCPCB_LOST) {
1235                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1236                                tp->lost_out -= pcount;
1237                                tp->retrans_out -= pcount;
1238                        }
1239                } else {
1240                        if (!(sacked & TCPCB_RETRANS)) {
1241                                /* New sack for not retransmitted frame,
1242                                 * which was in hole. It is reordering.
1243                                 */
1244                                if (before(start_seq,
1245                                           tcp_highest_sack_seq(tp)) &&
1246                                    before(start_seq, state->reord))
1247                                        state->reord = start_seq;
1248
1249                                if (!after(end_seq, tp->high_seq))
1250                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1251                                if (state->first_sackt == 0)
1252                                        state->first_sackt = xmit_time;
1253                                state->last_sackt = xmit_time;
1254                        }
1255
1256                        if (sacked & TCPCB_LOST) {
1257                                sacked &= ~TCPCB_LOST;
1258                                tp->lost_out -= pcount;
1259                        }
1260                }
1261
1262                sacked |= TCPCB_SACKED_ACKED;
1263                state->flag |= FLAG_DATA_SACKED;
1264                tp->sacked_out += pcount;
1265                tp->delivered += pcount;  /* Out-of-order packets delivered */
1266
1267                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1268                if (tp->lost_skb_hint &&
1269                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1270                        tp->lost_cnt_hint += pcount;
1271        }
1272
1273        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1274         * frames and clear it. undo_retrans is decreased above, L|R frames
1275         * are accounted above as well.
1276         */
1277        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1278                sacked &= ~TCPCB_SACKED_RETRANS;
1279                tp->retrans_out -= pcount;
1280        }
1281
1282        return sacked;
1283}
1284
1285/* Shift newly-SACKed bytes from this skb to the immediately previous
1286 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1287 */
1288static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1289                            struct sk_buff *skb,
1290                            struct tcp_sacktag_state *state,
1291                            unsigned int pcount, int shifted, int mss,
1292                            bool dup_sack)
1293{
1294        struct tcp_sock *tp = tcp_sk(sk);
1295        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1296        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1297
1298        BUG_ON(!pcount);
1299
1300        /* Adjust counters and hints for the newly sacked sequence
1301         * range but discard the return value since prev is already
1302         * marked. We must tag the range first because the seq
1303         * advancement below implicitly advances
1304         * tcp_highest_sack_seq() when skb is highest_sack.
1305         */
1306        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1307                        start_seq, end_seq, dup_sack, pcount,
1308                        skb->skb_mstamp);
1309        tcp_rate_skb_delivered(sk, skb, state->rate);
1310
1311        if (skb == tp->lost_skb_hint)
1312                tp->lost_cnt_hint += pcount;
1313
1314        TCP_SKB_CB(prev)->end_seq += shifted;
1315        TCP_SKB_CB(skb)->seq += shifted;
1316
1317        tcp_skb_pcount_add(prev, pcount);
1318        BUG_ON(tcp_skb_pcount(skb) < pcount);
1319        tcp_skb_pcount_add(skb, -pcount);
1320
1321        /* When we're adding to gso_segs == 1, gso_size will be zero,
1322         * in theory this shouldn't be necessary but as long as DSACK
1323         * code can come after this skb later on it's better to keep
1324         * setting gso_size to something.
1325         */
1326        if (!TCP_SKB_CB(prev)->tcp_gso_size)
1327                TCP_SKB_CB(prev)->tcp_gso_size = mss;
1328
1329        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1330        if (tcp_skb_pcount(skb) <= 1)
1331                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1332
1333        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1334        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1335
1336        if (skb->len > 0) {
1337                BUG_ON(!tcp_skb_pcount(skb));
1338                NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1339                return false;
1340        }
1341
1342        /* Whole SKB was eaten :-) */
1343
1344        if (skb == tp->retransmit_skb_hint)
1345                tp->retransmit_skb_hint = prev;
1346        if (skb == tp->lost_skb_hint) {
1347                tp->lost_skb_hint = prev;
1348                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1349        }
1350
1351        TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1352        TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1353        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1354                TCP_SKB_CB(prev)->end_seq++;
1355
1356        if (skb == tcp_highest_sack(sk))
1357                tcp_advance_highest_sack(sk, skb);
1358
1359        tcp_skb_collapse_tstamp(prev, skb);
1360        if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1361                TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1362
1363        tcp_rtx_queue_unlink_and_free(skb, sk);
1364
1365        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1366
1367        return true;
1368}
1369
1370/* I wish gso_size would have a bit more sane initialization than
1371 * something-or-zero which complicates things
1372 */
1373static int tcp_skb_seglen(const struct sk_buff *skb)
1374{
1375        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1376}
1377
1378/* Shifting pages past head area doesn't work */
1379static int skb_can_shift(const struct sk_buff *skb)
1380{
1381        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1382}
1383
1384/* Try collapsing SACK blocks spanning across multiple skbs to a single
1385 * skb.
1386 */
1387static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1388                                          struct tcp_sacktag_state *state,
1389                                          u32 start_seq, u32 end_seq,
1390                                          bool dup_sack)
1391{
1392        struct tcp_sock *tp = tcp_sk(sk);
1393        struct sk_buff *prev;
1394        int mss;
1395        int pcount = 0;
1396        int len;
1397        int in_sack;
1398
1399        /* Normally R but no L won't result in plain S */
1400        if (!dup_sack &&
1401            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1402                goto fallback;
1403        if (!skb_can_shift(skb))
1404                goto fallback;
1405        /* This frame is about to be dropped (was ACKed). */
1406        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1407                goto fallback;
1408
1409        /* Can only happen with delayed DSACK + discard craziness */
1410        prev = skb_rb_prev(skb);
1411        if (!prev)
1412                goto fallback;
1413
1414        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1415                goto fallback;
1416
1417        if (!tcp_skb_can_collapse_to(prev))
1418                goto fallback;
1419
1420        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1421                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1422
1423        if (in_sack) {
1424                len = skb->len;
1425                pcount = tcp_skb_pcount(skb);
1426                mss = tcp_skb_seglen(skb);
1427
1428                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1429                 * drop this restriction as unnecessary
1430                 */
1431                if (mss != tcp_skb_seglen(prev))
1432                        goto fallback;
1433        } else {
1434                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1435                        goto noop;
1436                /* CHECKME: This is non-MSS split case only?, this will
1437                 * cause skipped skbs due to advancing loop btw, original
1438                 * has that feature too
1439                 */
1440                if (tcp_skb_pcount(skb) <= 1)
1441                        goto noop;
1442
1443                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1444                if (!in_sack) {
1445                        /* TODO: head merge to next could be attempted here
1446                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1447                         * though it might not be worth of the additional hassle
1448                         *
1449                         * ...we can probably just fallback to what was done
1450                         * previously. We could try merging non-SACKed ones
1451                         * as well but it probably isn't going to buy off
1452                         * because later SACKs might again split them, and
1453                         * it would make skb timestamp tracking considerably
1454                         * harder problem.
1455                         */
1456                        goto fallback;
1457                }
1458
1459                len = end_seq - TCP_SKB_CB(skb)->seq;
1460                BUG_ON(len < 0);
1461                BUG_ON(len > skb->len);
1462
1463                /* MSS boundaries should be honoured or else pcount will
1464                 * severely break even though it makes things bit trickier.
1465                 * Optimize common case to avoid most of the divides
1466                 */
1467                mss = tcp_skb_mss(skb);
1468
1469                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1470                 * drop this restriction as unnecessary
1471                 */
1472                if (mss != tcp_skb_seglen(prev))
1473                        goto fallback;
1474
1475                if (len == mss) {
1476                        pcount = 1;
1477                } else if (len < mss) {
1478                        goto noop;
1479                } else {
1480                        pcount = len / mss;
1481                        len = pcount * mss;
1482                }
1483        }
1484
1485        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1486        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1487                goto fallback;
1488
1489        if (!skb_shift(prev, skb, len))
1490                goto fallback;
1491        if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1492                goto out;
1493
1494        /* Hole filled allows collapsing with the next as well, this is very
1495         * useful when hole on every nth skb pattern happens
1496         */
1497        skb = skb_rb_next(prev);
1498        if (!skb)
1499                goto out;
1500
1501        if (!skb_can_shift(skb) ||
1502            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1503            (mss != tcp_skb_seglen(skb)))
1504                goto out;
1505
1506        len = skb->len;
1507        if (skb_shift(prev, skb, len)) {
1508                pcount += tcp_skb_pcount(skb);
1509                tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1510                                len, mss, 0);
1511        }
1512
1513out:
1514        return prev;
1515
1516noop:
1517        return skb;
1518
1519fallback:
1520        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1521        return NULL;
1522}
1523
1524static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1525                                        struct tcp_sack_block *next_dup,
1526                                        struct tcp_sacktag_state *state,
1527                                        u32 start_seq, u32 end_seq,
1528                                        bool dup_sack_in)
1529{
1530        struct tcp_sock *tp = tcp_sk(sk);
1531        struct sk_buff *tmp;
1532
1533        skb_rbtree_walk_from(skb) {
1534                int in_sack = 0;
1535                bool dup_sack = dup_sack_in;
1536
1537                /* queue is in-order => we can short-circuit the walk early */
1538                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1539                        break;
1540
1541                if (next_dup  &&
1542                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1543                        in_sack = tcp_match_skb_to_sack(sk, skb,
1544                                                        next_dup->start_seq,
1545                                                        next_dup->end_seq);
1546                        if (in_sack > 0)
1547                                dup_sack = true;
1548                }
1549
1550                /* skb reference here is a bit tricky to get right, since
1551                 * shifting can eat and free both this skb and the next,
1552                 * so not even _safe variant of the loop is enough.
1553                 */
1554                if (in_sack <= 0) {
1555                        tmp = tcp_shift_skb_data(sk, skb, state,
1556                                                 start_seq, end_seq, dup_sack);
1557                        if (tmp) {
1558                                if (tmp != skb) {
1559                                        skb = tmp;
1560                                        continue;
1561                                }
1562
1563                                in_sack = 0;
1564                        } else {
1565                                in_sack = tcp_match_skb_to_sack(sk, skb,
1566                                                                start_seq,
1567                                                                end_seq);
1568                        }
1569                }
1570
1571                if (unlikely(in_sack < 0))
1572                        break;
1573
1574                if (in_sack) {
1575                        TCP_SKB_CB(skb)->sacked =
1576                                tcp_sacktag_one(sk,
1577                                                state,
1578                                                TCP_SKB_CB(skb)->sacked,
1579                                                TCP_SKB_CB(skb)->seq,
1580                                                TCP_SKB_CB(skb)->end_seq,
1581                                                dup_sack,
1582                                                tcp_skb_pcount(skb),
1583                                                skb->skb_mstamp);
1584                        tcp_rate_skb_delivered(sk, skb, state->rate);
1585                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1586                                list_del_init(&skb->tcp_tsorted_anchor);
1587
1588                        if (!before(TCP_SKB_CB(skb)->seq,
1589                                    tcp_highest_sack_seq(tp)))
1590                                tcp_advance_highest_sack(sk, skb);
1591                }
1592        }
1593        return skb;
1594}
1595
1596static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1597                                           struct tcp_sacktag_state *state,
1598                                           u32 seq)
1599{
1600        struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1601        struct sk_buff *skb;
1602
1603        while (*p) {
1604                parent = *p;
1605                skb = rb_to_skb(parent);
1606                if (before(seq, TCP_SKB_CB(skb)->seq)) {
1607                        p = &parent->rb_left;
1608                        continue;
1609                }
1610                if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1611                        p = &parent->rb_right;
1612                        continue;
1613                }
1614                return skb;
1615        }
1616        return NULL;
1617}
1618
1619static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1620                                        struct tcp_sacktag_state *state,
1621                                        u32 skip_to_seq)
1622{
1623        if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1624                return skb;
1625
1626        return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1627}
1628
1629static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1630                                                struct sock *sk,
1631                                                struct tcp_sack_block *next_dup,
1632                                                struct tcp_sacktag_state *state,
1633                                                u32 skip_to_seq)
1634{
1635        if (!next_dup)
1636                return skb;
1637
1638        if (before(next_dup->start_seq, skip_to_seq)) {
1639                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1640                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1641                                       next_dup->start_seq, next_dup->end_seq,
1642                                       1);
1643        }
1644
1645        return skb;
1646}
1647
1648static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1649{
1650        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651}
1652
1653static int
1654tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1655                        u32 prior_snd_una, struct tcp_sacktag_state *state)
1656{
1657        struct tcp_sock *tp = tcp_sk(sk);
1658        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1659                                    TCP_SKB_CB(ack_skb)->sacked);
1660        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1661        struct tcp_sack_block sp[TCP_NUM_SACKS];
1662        struct tcp_sack_block *cache;
1663        struct sk_buff *skb;
1664        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1665        int used_sacks;
1666        bool found_dup_sack = false;
1667        int i, j;
1668        int first_sack_index;
1669
1670        state->flag = 0;
1671        state->reord = tp->snd_nxt;
1672
1673        if (!tp->sacked_out)
1674                tcp_highest_sack_reset(sk);
1675
1676        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1677                                         num_sacks, prior_snd_una);
1678        if (found_dup_sack) {
1679                state->flag |= FLAG_DSACKING_ACK;
1680                tp->delivered++; /* A spurious retransmission is delivered */
1681        }
1682
1683        /* Eliminate too old ACKs, but take into
1684         * account more or less fresh ones, they can
1685         * contain valid SACK info.
1686         */
1687        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688                return 0;
1689
1690        if (!tp->packets_out)
1691                goto out;
1692
1693        used_sacks = 0;
1694        first_sack_index = 0;
1695        for (i = 0; i < num_sacks; i++) {
1696                bool dup_sack = !i && found_dup_sack;
1697
1698                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1699                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1700
1701                if (!tcp_is_sackblock_valid(tp, dup_sack,
1702                                            sp[used_sacks].start_seq,
1703                                            sp[used_sacks].end_seq)) {
1704                        int mib_idx;
1705
1706                        if (dup_sack) {
1707                                if (!tp->undo_marker)
1708                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1709                                else
1710                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1711                        } else {
1712                                /* Don't count olds caused by ACK reordering */
1713                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1714                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1715                                        continue;
1716                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717                        }
1718
1719                        NET_INC_STATS(sock_net(sk), mib_idx);
1720                        if (i == 0)
1721                                first_sack_index = -1;
1722                        continue;
1723                }
1724
1725                /* Ignore very old stuff early */
1726                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1727                        continue;
1728
1729                used_sacks++;
1730        }
1731
1732        /* order SACK blocks to allow in order walk of the retrans queue */
1733        for (i = used_sacks - 1; i > 0; i--) {
1734                for (j = 0; j < i; j++) {
1735                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1736                                swap(sp[j], sp[j + 1]);
1737
1738                                /* Track where the first SACK block goes to */
1739                                if (j == first_sack_index)
1740                                        first_sack_index = j + 1;
1741                        }
1742                }
1743        }
1744
1745        state->mss_now = tcp_current_mss(sk);
1746        skb = NULL;
1747        i = 0;
1748
1749        if (!tp->sacked_out) {
1750                /* It's already past, so skip checking against it */
1751                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1752        } else {
1753                cache = tp->recv_sack_cache;
1754                /* Skip empty blocks in at head of the cache */
1755                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1756                       !cache->end_seq)
1757                        cache++;
1758        }
1759
1760        while (i < used_sacks) {
1761                u32 start_seq = sp[i].start_seq;
1762                u32 end_seq = sp[i].end_seq;
1763                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1764                struct tcp_sack_block *next_dup = NULL;
1765
1766                if (found_dup_sack && ((i + 1) == first_sack_index))
1767                        next_dup = &sp[i + 1];
1768
1769                /* Skip too early cached blocks */
1770                while (tcp_sack_cache_ok(tp, cache) &&
1771                       !before(start_seq, cache->end_seq))
1772                        cache++;
1773
1774                /* Can skip some work by looking recv_sack_cache? */
1775                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1776                    after(end_seq, cache->start_seq)) {
1777
1778                        /* Head todo? */
1779                        if (before(start_seq, cache->start_seq)) {
1780                                skb = tcp_sacktag_skip(skb, sk, state,
1781                                                       start_seq);
1782                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1783                                                       state,
1784                                                       start_seq,
1785                                                       cache->start_seq,
1786                                                       dup_sack);
1787                        }
1788
1789                        /* Rest of the block already fully processed? */
1790                        if (!after(end_seq, cache->end_seq))
1791                                goto advance_sp;
1792
1793                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1794                                                       state,
1795                                                       cache->end_seq);
1796
1797                        /* ...tail remains todo... */
1798                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1799                                /* ...but better entrypoint exists! */
1800                                skb = tcp_highest_sack(sk);
1801                                if (!skb)
1802                                        break;
1803                                cache++;
1804                                goto walk;
1805                        }
1806
1807                        skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1808                        /* Check overlap against next cached too (past this one already) */
1809                        cache++;
1810                        continue;
1811                }
1812
1813                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1814                        skb = tcp_highest_sack(sk);
1815                        if (!skb)
1816                                break;
1817                }
1818                skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1819
1820walk:
1821                skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1822                                       start_seq, end_seq, dup_sack);
1823
1824advance_sp:
1825                i++;
1826        }
1827
1828        /* Clear the head of the cache sack blocks so we can skip it next time */
1829        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1830                tp->recv_sack_cache[i].start_seq = 0;
1831                tp->recv_sack_cache[i].end_seq = 0;
1832        }
1833        for (j = 0; j < used_sacks; j++)
1834                tp->recv_sack_cache[i++] = sp[j];
1835
1836        if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1837                tcp_check_sack_reordering(sk, state->reord, 0);
1838
1839        tcp_verify_left_out(tp);
1840out:
1841
1842#if FASTRETRANS_DEBUG > 0
1843        WARN_ON((int)tp->sacked_out < 0);
1844        WARN_ON((int)tp->lost_out < 0);
1845        WARN_ON((int)tp->retrans_out < 0);
1846        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1847#endif
1848        return state->flag;
1849}
1850
1851/* Limits sacked_out so that sum with lost_out isn't ever larger than
1852 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1853 */
1854static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1855{
1856        u32 holes;
1857
1858        holes = max(tp->lost_out, 1U);
1859        holes = min(holes, tp->packets_out);
1860
1861        if ((tp->sacked_out + holes) > tp->packets_out) {
1862                tp->sacked_out = tp->packets_out - holes;
1863                return true;
1864        }
1865        return false;
1866}
1867
1868/* If we receive more dupacks than we expected counting segments
1869 * in assumption of absent reordering, interpret this as reordering.
1870 * The only another reason could be bug in receiver TCP.
1871 */
1872static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1873{
1874        struct tcp_sock *tp = tcp_sk(sk);
1875
1876        if (!tcp_limit_reno_sacked(tp))
1877                return;
1878
1879        tp->reordering = min_t(u32, tp->packets_out + addend,
1880                               sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1881        tp->reord_seen++;
1882        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1883}
1884
1885/* Emulate SACKs for SACKless connection: account for a new dupack. */
1886
1887static void tcp_add_reno_sack(struct sock *sk)
1888{
1889        struct tcp_sock *tp = tcp_sk(sk);
1890        u32 prior_sacked = tp->sacked_out;
1891
1892        tp->sacked_out++;
1893        tcp_check_reno_reordering(sk, 0);
1894        if (tp->sacked_out > prior_sacked)
1895                tp->delivered++; /* Some out-of-order packet is delivered */
1896        tcp_verify_left_out(tp);
1897}
1898
1899/* Account for ACK, ACKing some data in Reno Recovery phase. */
1900
1901static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1902{
1903        struct tcp_sock *tp = tcp_sk(sk);
1904
1905        if (acked > 0) {
1906                /* One ACK acked hole. The rest eat duplicate ACKs. */
1907                tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1908                if (acked - 1 >= tp->sacked_out)
1909                        tp->sacked_out = 0;
1910                else
1911                        tp->sacked_out -= acked - 1;
1912        }
1913        tcp_check_reno_reordering(sk, acked);
1914        tcp_verify_left_out(tp);
1915}
1916
1917static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1918{
1919        tp->sacked_out = 0;
1920}
1921
1922void tcp_clear_retrans(struct tcp_sock *tp)
1923{
1924        tp->retrans_out = 0;
1925        tp->lost_out = 0;
1926        tp->undo_marker = 0;
1927        tp->undo_retrans = -1;
1928        tp->sacked_out = 0;
1929}
1930
1931static inline void tcp_init_undo(struct tcp_sock *tp)
1932{
1933        tp->undo_marker = tp->snd_una;
1934        /* Retransmission still in flight may cause DSACKs later. */
1935        tp->undo_retrans = tp->retrans_out ? : -1;
1936}
1937
1938static bool tcp_is_rack(const struct sock *sk)
1939{
1940        return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1941}
1942
1943/* If we detect SACK reneging, forget all SACK information
1944 * and reset tags completely, otherwise preserve SACKs. If receiver
1945 * dropped its ofo queue, we will know this due to reneging detection.
1946 */
1947static void tcp_timeout_mark_lost(struct sock *sk)
1948{
1949        struct tcp_sock *tp = tcp_sk(sk);
1950        struct sk_buff *skb, *head;
1951        bool is_reneg;                  /* is receiver reneging on SACKs? */
1952
1953        head = tcp_rtx_queue_head(sk);
1954        is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1955        if (is_reneg) {
1956                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1957                tp->sacked_out = 0;
1958                /* Mark SACK reneging until we recover from this loss event. */
1959                tp->is_sack_reneg = 1;
1960        } else if (tcp_is_reno(tp)) {
1961                tcp_reset_reno_sack(tp);
1962        }
1963
1964        skb = head;
1965        skb_rbtree_walk_from(skb) {
1966                if (is_reneg)
1967                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1968                else if (tcp_is_rack(sk) && skb != head &&
1969                         tcp_rack_skb_timeout(tp, skb, 0) > 0)
1970                        continue; /* Don't mark recently sent ones lost yet */
1971                tcp_mark_skb_lost(sk, skb);
1972        }
1973        tcp_verify_left_out(tp);
1974        tcp_clear_all_retrans_hints(tp);
1975}
1976
1977/* Enter Loss state. */
1978void tcp_enter_loss(struct sock *sk)
1979{
1980        const struct inet_connection_sock *icsk = inet_csk(sk);
1981        struct tcp_sock *tp = tcp_sk(sk);
1982        struct net *net = sock_net(sk);
1983        bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1984
1985        tcp_timeout_mark_lost(sk);
1986
1987        /* Reduce ssthresh if it has not yet been made inside this window. */
1988        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1989            !after(tp->high_seq, tp->snd_una) ||
1990            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1991                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1992                tp->prior_cwnd = tp->snd_cwnd;
1993                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1994                tcp_ca_event(sk, CA_EVENT_LOSS);
1995                tcp_init_undo(tp);
1996        }
1997        tp->snd_cwnd       = tcp_packets_in_flight(tp) + 1;
1998        tp->snd_cwnd_cnt   = 0;
1999        tp->snd_cwnd_stamp = tcp_jiffies32;
2000
2001        /* Timeout in disordered state after receiving substantial DUPACKs
2002         * suggests that the degree of reordering is over-estimated.
2003         */
2004        if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2005            tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2006                tp->reordering = min_t(unsigned int, tp->reordering,
2007                                       net->ipv4.sysctl_tcp_reordering);
2008        tcp_set_ca_state(sk, TCP_CA_Loss);
2009        tp->high_seq = tp->snd_nxt;
2010        tcp_ecn_queue_cwr(tp);
2011
2012        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2013         * loss recovery is underway except recurring timeout(s) on
2014         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2015         */
2016        tp->frto = net->ipv4.sysctl_tcp_frto &&
2017                   (new_recovery || icsk->icsk_retransmits) &&
2018                   !inet_csk(sk)->icsk_mtup.probe_size;
2019}
2020
2021/* If ACK arrived pointing to a remembered SACK, it means that our
2022 * remembered SACKs do not reflect real state of receiver i.e.
2023 * receiver _host_ is heavily congested (or buggy).
2024 *
2025 * To avoid big spurious retransmission bursts due to transient SACK
2026 * scoreboard oddities that look like reneging, we give the receiver a
2027 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2028 * restore sanity to the SACK scoreboard. If the apparent reneging
2029 * persists until this RTO then we'll clear the SACK scoreboard.
2030 */
2031static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2032{
2033        if (flag & FLAG_SACK_RENEGING) {
2034                struct tcp_sock *tp = tcp_sk(sk);
2035                unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2036                                          msecs_to_jiffies(10));
2037
2038                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2039                                          delay, TCP_RTO_MAX);
2040                return true;
2041        }
2042        return false;
2043}
2044
2045/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2046 * counter when SACK is enabled (without SACK, sacked_out is used for
2047 * that purpose).
2048 *
2049 * With reordering, holes may still be in flight, so RFC3517 recovery
2050 * uses pure sacked_out (total number of SACKed segments) even though
2051 * it violates the RFC that uses duplicate ACKs, often these are equal
2052 * but when e.g. out-of-window ACKs or packet duplication occurs,
2053 * they differ. Since neither occurs due to loss, TCP should really
2054 * ignore them.
2055 */
2056static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2057{
2058        return tp->sacked_out + 1;
2059}
2060
2061/* Linux NewReno/SACK/ECN state machine.
2062 * --------------------------------------
2063 *
2064 * "Open"       Normal state, no dubious events, fast path.
2065 * "Disorder"   In all the respects it is "Open",
2066 *              but requires a bit more attention. It is entered when
2067 *              we see some SACKs or dupacks. It is split of "Open"
2068 *              mainly to move some processing from fast path to slow one.
2069 * "CWR"        CWND was reduced due to some Congestion Notification event.
2070 *              It can be ECN, ICMP source quench, local device congestion.
2071 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2072 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2073 *
2074 * tcp_fastretrans_alert() is entered:
2075 * - each incoming ACK, if state is not "Open"
2076 * - when arrived ACK is unusual, namely:
2077 *      * SACK
2078 *      * Duplicate ACK.
2079 *      * ECN ECE.
2080 *
2081 * Counting packets in flight is pretty simple.
2082 *
2083 *      in_flight = packets_out - left_out + retrans_out
2084 *
2085 *      packets_out is SND.NXT-SND.UNA counted in packets.
2086 *
2087 *      retrans_out is number of retransmitted segments.
2088 *
2089 *      left_out is number of segments left network, but not ACKed yet.
2090 *
2091 *              left_out = sacked_out + lost_out
2092 *
2093 *     sacked_out: Packets, which arrived to receiver out of order
2094 *                 and hence not ACKed. With SACKs this number is simply
2095 *                 amount of SACKed data. Even without SACKs
2096 *                 it is easy to give pretty reliable estimate of this number,
2097 *                 counting duplicate ACKs.
2098 *
2099 *       lost_out: Packets lost by network. TCP has no explicit
2100 *                 "loss notification" feedback from network (for now).
2101 *                 It means that this number can be only _guessed_.
2102 *                 Actually, it is the heuristics to predict lossage that
2103 *                 distinguishes different algorithms.
2104 *
2105 *      F.e. after RTO, when all the queue is considered as lost,
2106 *      lost_out = packets_out and in_flight = retrans_out.
2107 *
2108 *              Essentially, we have now a few algorithms detecting
2109 *              lost packets.
2110 *
2111 *              If the receiver supports SACK:
2112 *
2113 *              RFC6675/3517: It is the conventional algorithm. A packet is
2114 *              considered lost if the number of higher sequence packets
2115 *              SACKed is greater than or equal the DUPACK thoreshold
2116 *              (reordering). This is implemented in tcp_mark_head_lost and
2117 *              tcp_update_scoreboard.
2118 *
2119 *              RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2120 *              (2017-) that checks timing instead of counting DUPACKs.
2121 *              Essentially a packet is considered lost if it's not S/ACKed
2122 *              after RTT + reordering_window, where both metrics are
2123 *              dynamically measured and adjusted. This is implemented in
2124 *              tcp_rack_mark_lost.
2125 *
2126 *              If the receiver does not support SACK:
2127 *
2128 *              NewReno (RFC6582): in Recovery we assume that one segment
2129 *              is lost (classic Reno). While we are in Recovery and
2130 *              a partial ACK arrives, we assume that one more packet
2131 *              is lost (NewReno). This heuristics are the same in NewReno
2132 *              and SACK.
2133 *
2134 * Really tricky (and requiring careful tuning) part of algorithm
2135 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2136 * The first determines the moment _when_ we should reduce CWND and,
2137 * hence, slow down forward transmission. In fact, it determines the moment
2138 * when we decide that hole is caused by loss, rather than by a reorder.
2139 *
2140 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2141 * holes, caused by lost packets.
2142 *
2143 * And the most logically complicated part of algorithm is undo
2144 * heuristics. We detect false retransmits due to both too early
2145 * fast retransmit (reordering) and underestimated RTO, analyzing
2146 * timestamps and D-SACKs. When we detect that some segments were
2147 * retransmitted by mistake and CWND reduction was wrong, we undo
2148 * window reduction and abort recovery phase. This logic is hidden
2149 * inside several functions named tcp_try_undo_<something>.
2150 */
2151
2152/* This function decides, when we should leave Disordered state
2153 * and enter Recovery phase, reducing congestion window.
2154 *
2155 * Main question: may we further continue forward transmission
2156 * with the same cwnd?
2157 */
2158static bool tcp_time_to_recover(struct sock *sk, int flag)
2159{
2160        struct tcp_sock *tp = tcp_sk(sk);
2161
2162        /* Trick#1: The loss is proven. */
2163        if (tp->lost_out)
2164                return true;
2165
2166        /* Not-A-Trick#2 : Classic rule... */
2167        if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2168                return true;
2169
2170        return false;
2171}
2172
2173/* Detect loss in event "A" above by marking head of queue up as lost.
2174 * For non-SACK(Reno) senders, the first "packets" number of segments
2175 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2176 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2177 * the maximum SACKed segments to pass before reaching this limit.
2178 */
2179static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2180{
2181        struct tcp_sock *tp = tcp_sk(sk);
2182        struct sk_buff *skb;
2183        int cnt, oldcnt, lost;
2184        unsigned int mss;
2185        /* Use SACK to deduce losses of new sequences sent during recovery */
2186        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2187
2188        WARN_ON(packets > tp->packets_out);
2189        skb = tp->lost_skb_hint;
2190        if (skb) {
2191                /* Head already handled? */
2192                if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2193                        return;
2194                cnt = tp->lost_cnt_hint;
2195        } else {
2196                skb = tcp_rtx_queue_head(sk);
2197                cnt = 0;
2198        }
2199
2200        skb_rbtree_walk_from(skb) {
2201                /* TODO: do this better */
2202                /* this is not the most efficient way to do this... */
2203                tp->lost_skb_hint = skb;
2204                tp->lost_cnt_hint = cnt;
2205
2206                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2207                        break;
2208
2209                oldcnt = cnt;
2210                if (tcp_is_reno(tp) ||
2211                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2212                        cnt += tcp_skb_pcount(skb);
2213
2214                if (cnt > packets) {
2215                        if (tcp_is_sack(tp) ||
2216                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2217                            (oldcnt >= packets))
2218                                break;
2219
2220                        mss = tcp_skb_mss(skb);
2221                        /* If needed, chop off the prefix to mark as lost. */
2222                        lost = (packets - oldcnt) * mss;
2223                        if (lost < skb->len &&
2224                            tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2225                                         lost, mss, GFP_ATOMIC) < 0)
2226                                break;
2227                        cnt = packets;
2228                }
2229
2230                tcp_skb_mark_lost(tp, skb);
2231
2232                if (mark_head)
2233                        break;
2234        }
2235        tcp_verify_left_out(tp);
2236}
2237
2238/* Account newly detected lost packet(s) */
2239
2240static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241{
2242        struct tcp_sock *tp = tcp_sk(sk);
2243
2244        if (tcp_is_sack(tp)) {
2245                int sacked_upto = tp->sacked_out - tp->reordering;
2246                if (sacked_upto >= 0)
2247                        tcp_mark_head_lost(sk, sacked_upto, 0);
2248                else if (fast_rexmit)
2249                        tcp_mark_head_lost(sk, 1, 1);
2250        }
2251}
2252
2253static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2254{
2255        return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2256               before(tp->rx_opt.rcv_tsecr, when);
2257}
2258
2259/* skb is spurious retransmitted if the returned timestamp echo
2260 * reply is prior to the skb transmission time
2261 */
2262static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2263                                     const struct sk_buff *skb)
2264{
2265        return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2266               tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2267}
2268
2269/* Nothing was retransmitted or returned timestamp is less
2270 * than timestamp of the first retransmission.
2271 */
2272static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2273{
2274        return !tp->retrans_stamp ||
2275               tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2276}
2277
2278/* Undo procedures. */
2279
2280/* We can clear retrans_stamp when there are no retransmissions in the
2281 * window. It would seem that it is trivially available for us in
2282 * tp->retrans_out, however, that kind of assumptions doesn't consider
2283 * what will happen if errors occur when sending retransmission for the
2284 * second time. ...It could the that such segment has only
2285 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2286 * the head skb is enough except for some reneging corner cases that
2287 * are not worth the effort.
2288 *
2289 * Main reason for all this complexity is the fact that connection dying
2290 * time now depends on the validity of the retrans_stamp, in particular,
2291 * that successive retransmissions of a segment must not advance
2292 * retrans_stamp under any conditions.
2293 */
2294static bool tcp_any_retrans_done(const struct sock *sk)
2295{
2296        const struct tcp_sock *tp = tcp_sk(sk);
2297        struct sk_buff *skb;
2298
2299        if (tp->retrans_out)
2300                return true;
2301
2302        skb = tcp_rtx_queue_head(sk);
2303        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2304                return true;
2305
2306        return false;
2307}
2308
2309static void DBGUNDO(struct sock *sk, const char *msg)
2310{
2311#if FASTRETRANS_DEBUG > 1
2312        struct tcp_sock *tp = tcp_sk(sk);
2313        struct inet_sock *inet = inet_sk(sk);
2314
2315        if (sk->sk_family == AF_INET) {
2316                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2317                         msg,
2318                         &inet->inet_daddr, ntohs(inet->inet_dport),
2319                         tp->snd_cwnd, tcp_left_out(tp),
2320                         tp->snd_ssthresh, tp->prior_ssthresh,
2321                         tp->packets_out);
2322        }
2323#if IS_ENABLED(CONFIG_IPV6)
2324        else if (sk->sk_family == AF_INET6) {
2325                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2326                         msg,
2327                         &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2328                         tp->snd_cwnd, tcp_left_out(tp),
2329                         tp->snd_ssthresh, tp->prior_ssthresh,
2330                         tp->packets_out);
2331        }
2332#endif
2333#endif
2334}
2335
2336static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2337{
2338        struct tcp_sock *tp = tcp_sk(sk);
2339
2340        if (unmark_loss) {
2341                struct sk_buff *skb;
2342
2343                skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2344                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2345                }
2346                tp->lost_out = 0;
2347                tcp_clear_all_retrans_hints(tp);
2348        }
2349
2350        if (tp->prior_ssthresh) {
2351                const struct inet_connection_sock *icsk = inet_csk(sk);
2352
2353                tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2354
2355                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2356                        tp->snd_ssthresh = tp->prior_ssthresh;
2357                        tcp_ecn_withdraw_cwr(tp);
2358                }
2359        }
2360        tp->snd_cwnd_stamp = tcp_jiffies32;
2361        tp->undo_marker = 0;
2362        tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2363}
2364
2365static inline bool tcp_may_undo(const struct tcp_sock *tp)
2366{
2367        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2368}
2369
2370/* People celebrate: "We love our President!" */
2371static bool tcp_try_undo_recovery(struct sock *sk)
2372{
2373        struct tcp_sock *tp = tcp_sk(sk);
2374
2375        if (tcp_may_undo(tp)) {
2376                int mib_idx;
2377
2378                /* Happy end! We did not retransmit anything
2379                 * or our original transmission succeeded.
2380                 */
2381                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2382                tcp_undo_cwnd_reduction(sk, false);
2383                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2384                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2385                else
2386                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2387
2388                NET_INC_STATS(sock_net(sk), mib_idx);
2389        } else if (tp->rack.reo_wnd_persist) {
2390                tp->rack.reo_wnd_persist--;
2391        }
2392        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393                /* Hold old state until something *above* high_seq
2394                 * is ACKed. For Reno it is MUST to prevent false
2395                 * fast retransmits (RFC2582). SACK TCP is safe. */
2396                if (!tcp_any_retrans_done(sk))
2397                        tp->retrans_stamp = 0;
2398                return true;
2399        }
2400        tcp_set_ca_state(sk, TCP_CA_Open);
2401        tp->is_sack_reneg = 0;
2402        return false;
2403}
2404
2405/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2406static bool tcp_try_undo_dsack(struct sock *sk)
2407{
2408        struct tcp_sock *tp = tcp_sk(sk);
2409
2410        if (tp->undo_marker && !tp->undo_retrans) {
2411                tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2412                                               tp->rack.reo_wnd_persist + 1);
2413                DBGUNDO(sk, "D-SACK");
2414                tcp_undo_cwnd_reduction(sk, false);
2415                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2416                return true;
2417        }
2418        return false;
2419}
2420
2421/* Undo during loss recovery after partial ACK or using F-RTO. */
2422static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2423{
2424        struct tcp_sock *tp = tcp_sk(sk);
2425
2426        if (frto_undo || tcp_may_undo(tp)) {
2427                tcp_undo_cwnd_reduction(sk, true);
2428
2429                DBGUNDO(sk, "partial loss");
2430                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2431                if (frto_undo)
2432                        NET_INC_STATS(sock_net(sk),
2433                                        LINUX_MIB_TCPSPURIOUSRTOS);
2434                inet_csk(sk)->icsk_retransmits = 0;
2435                if (frto_undo || tcp_is_sack(tp)) {
2436                        tcp_set_ca_state(sk, TCP_CA_Open);
2437                        tp->is_sack_reneg = 0;
2438                }
2439                return true;
2440        }
2441        return false;
2442}
2443
2444/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2445 * It computes the number of packets to send (sndcnt) based on packets newly
2446 * delivered:
2447 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2448 *      cwnd reductions across a full RTT.
2449 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2450 *      But when the retransmits are acked without further losses, PRR
2451 *      slow starts cwnd up to ssthresh to speed up the recovery.
2452 */
2453static void tcp_init_cwnd_reduction(struct sock *sk)
2454{
2455        struct tcp_sock *tp = tcp_sk(sk);
2456
2457        tp->high_seq = tp->snd_nxt;
2458        tp->tlp_high_seq = 0;
2459        tp->snd_cwnd_cnt = 0;
2460        tp->prior_cwnd = tp->snd_cwnd;
2461        tp->prr_delivered = 0;
2462        tp->prr_out = 0;
2463        tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2464        tcp_ecn_queue_cwr(tp);
2465}
2466
2467void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2468{
2469        struct tcp_sock *tp = tcp_sk(sk);
2470        int sndcnt = 0;
2471        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2472
2473        if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2474                return;
2475
2476        tp->prr_delivered += newly_acked_sacked;
2477        if (delta < 0) {
2478                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2479                               tp->prior_cwnd - 1;
2480                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2481        } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2482                   !(flag & FLAG_LOST_RETRANS)) {
2483                sndcnt = min_t(int, delta,
2484                               max_t(int, tp->prr_delivered - tp->prr_out,
2485                                     newly_acked_sacked) + 1);
2486        } else {
2487                sndcnt = min(delta, newly_acked_sacked);
2488        }
2489        /* Force a fast retransmit upon entering fast recovery */
2490        sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2491        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2492}
2493
2494static inline void tcp_end_cwnd_reduction(struct sock *sk)
2495{
2496        struct tcp_sock *tp = tcp_sk(sk);
2497
2498        if (inet_csk(sk)->icsk_ca_ops->cong_control)
2499                return;
2500
2501        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2502        if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2503            (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2504                tp->snd_cwnd = tp->snd_ssthresh;
2505                tp->snd_cwnd_stamp = tcp_jiffies32;
2506        }
2507        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2508}
2509
2510/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2511void tcp_enter_cwr(struct sock *sk)
2512{
2513        struct tcp_sock *tp = tcp_sk(sk);
2514
2515        tp->prior_ssthresh = 0;
2516        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2517                tp->undo_marker = 0;
2518                tcp_init_cwnd_reduction(sk);
2519                tcp_set_ca_state(sk, TCP_CA_CWR);
2520        }
2521}
2522EXPORT_SYMBOL(tcp_enter_cwr);
2523
2524static void tcp_try_keep_open(struct sock *sk)
2525{
2526        struct tcp_sock *tp = tcp_sk(sk);
2527        int state = TCP_CA_Open;
2528
2529        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2530                state = TCP_CA_Disorder;
2531
2532        if (inet_csk(sk)->icsk_ca_state != state) {
2533                tcp_set_ca_state(sk, state);
2534                tp->high_seq = tp->snd_nxt;
2535        }
2536}
2537
2538static void tcp_try_to_open(struct sock *sk, int flag)
2539{
2540        struct tcp_sock *tp = tcp_sk(sk);
2541
2542        tcp_verify_left_out(tp);
2543
2544        if (!tcp_any_retrans_done(sk))
2545                tp->retrans_stamp = 0;
2546
2547        if (flag & FLAG_ECE)
2548                tcp_enter_cwr(sk);
2549
2550        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2551                tcp_try_keep_open(sk);
2552        }
2553}
2554
2555static void tcp_mtup_probe_failed(struct sock *sk)
2556{
2557        struct inet_connection_sock *icsk = inet_csk(sk);
2558
2559        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2560        icsk->icsk_mtup.probe_size = 0;
2561        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2562}
2563
2564static void tcp_mtup_probe_success(struct sock *sk)
2565{
2566        struct tcp_sock *tp = tcp_sk(sk);
2567        struct inet_connection_sock *icsk = inet_csk(sk);
2568
2569        /* FIXME: breaks with very large cwnd */
2570        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2571        tp->snd_cwnd = tp->snd_cwnd *
2572                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2573                       icsk->icsk_mtup.probe_size;
2574        tp->snd_cwnd_cnt = 0;
2575        tp->snd_cwnd_stamp = tcp_jiffies32;
2576        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2577
2578        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2579        icsk->icsk_mtup.probe_size = 0;
2580        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2581        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2582}
2583
2584/* Do a simple retransmit without using the backoff mechanisms in
2585 * tcp_timer. This is used for path mtu discovery.
2586 * The socket is already locked here.
2587 */
2588void tcp_simple_retransmit(struct sock *sk)
2589{
2590        const struct inet_connection_sock *icsk = inet_csk(sk);
2591        struct tcp_sock *tp = tcp_sk(sk);
2592        struct sk_buff *skb;
2593        unsigned int mss = tcp_current_mss(sk);
2594
2595        skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2596                if (tcp_skb_seglen(skb) > mss &&
2597                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2598                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2599                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2600                                tp->retrans_out -= tcp_skb_pcount(skb);
2601                        }
2602                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2603                }
2604        }
2605
2606        tcp_clear_retrans_hints_partial(tp);
2607
2608        if (!tp->lost_out)
2609                return;
2610
2611        if (tcp_is_reno(tp))
2612                tcp_limit_reno_sacked(tp);
2613
2614        tcp_verify_left_out(tp);
2615
2616        /* Don't muck with the congestion window here.
2617         * Reason is that we do not increase amount of _data_
2618         * in network, but units changed and effective
2619         * cwnd/ssthresh really reduced now.
2620         */
2621        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2622                tp->high_seq = tp->snd_nxt;
2623                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2624                tp->prior_ssthresh = 0;
2625                tp->undo_marker = 0;
2626                tcp_set_ca_state(sk, TCP_CA_Loss);
2627        }
2628        tcp_xmit_retransmit_queue(sk);
2629}
2630EXPORT_SYMBOL(tcp_simple_retransmit);
2631
2632void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2633{
2634        struct tcp_sock *tp = tcp_sk(sk);
2635        int mib_idx;
2636
2637        if (tcp_is_reno(tp))
2638                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2639        else
2640                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2641
2642        NET_INC_STATS(sock_net(sk), mib_idx);
2643
2644        tp->prior_ssthresh = 0;
2645        tcp_init_undo(tp);
2646
2647        if (!tcp_in_cwnd_reduction(sk)) {
2648                if (!ece_ack)
2649                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2650                tcp_init_cwnd_reduction(sk);
2651        }
2652        tcp_set_ca_state(sk, TCP_CA_Recovery);
2653}
2654
2655/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2656 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2657 */
2658static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2659                             int *rexmit)
2660{
2661        struct tcp_sock *tp = tcp_sk(sk);
2662        bool recovered = !before(tp->snd_una, tp->high_seq);
2663
2664        if ((flag & FLAG_SND_UNA_ADVANCED) &&
2665            tcp_try_undo_loss(sk, false))
2666                return;
2667
2668        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2669                /* Step 3.b. A timeout is spurious if not all data are
2670                 * lost, i.e., never-retransmitted data are (s)acked.
2671                 */
2672                if ((flag & FLAG_ORIG_SACK_ACKED) &&
2673                    tcp_try_undo_loss(sk, true))
2674                        return;
2675
2676                if (after(tp->snd_nxt, tp->high_seq)) {
2677                        if (flag & FLAG_DATA_SACKED || is_dupack)
2678                                tp->frto = 0; /* Step 3.a. loss was real */
2679                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2680                        tp->high_seq = tp->snd_nxt;
2681                        /* Step 2.b. Try send new data (but deferred until cwnd
2682                         * is updated in tcp_ack()). Otherwise fall back to
2683                         * the conventional recovery.
2684                         */
2685                        if (!tcp_write_queue_empty(sk) &&
2686                            after(tcp_wnd_end(tp), tp->snd_nxt)) {
2687                                *rexmit = REXMIT_NEW;
2688                                return;
2689                        }
2690                        tp->frto = 0;
2691                }
2692        }
2693
2694        if (recovered) {
2695                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2696                tcp_try_undo_recovery(sk);
2697                return;
2698        }
2699        if (tcp_is_reno(tp)) {
2700                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2701                 * delivered. Lower inflight to clock out (re)tranmissions.
2702                 */
2703                if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2704                        tcp_add_reno_sack(sk);
2705                else if (flag & FLAG_SND_UNA_ADVANCED)
2706                        tcp_reset_reno_sack(tp);
2707        }
2708        *rexmit = REXMIT_LOST;
2709}
2710
2711/* Undo during fast recovery after partial ACK. */
2712static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2713{
2714        struct tcp_sock *tp = tcp_sk(sk);
2715
2716        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2717                /* Plain luck! Hole if filled with delayed
2718                 * packet, rather than with a retransmit. Check reordering.
2719                 */
2720                tcp_check_sack_reordering(sk, prior_snd_una, 1);
2721
2722                /* We are getting evidence that the reordering degree is higher
2723                 * than we realized. If there are no retransmits out then we
2724                 * can undo. Otherwise we clock out new packets but do not
2725                 * mark more packets lost or retransmit more.
2726                 */
2727                if (tp->retrans_out)
2728                        return true;
2729
2730                if (!tcp_any_retrans_done(sk))
2731                        tp->retrans_stamp = 0;
2732
2733                DBGUNDO(sk, "partial recovery");
2734                tcp_undo_cwnd_reduction(sk, true);
2735                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2736                tcp_try_keep_open(sk);
2737                return true;
2738        }
2739        return false;
2740}
2741
2742static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2743{
2744        struct tcp_sock *tp = tcp_sk(sk);
2745
2746        if (tcp_rtx_queue_empty(sk))
2747                return;
2748
2749        if (unlikely(tcp_is_reno(tp))) {
2750                tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2751        } else if (tcp_is_rack(sk)) {
2752                u32 prior_retrans = tp->retrans_out;
2753
2754                tcp_rack_mark_lost(sk);
2755                if (prior_retrans > tp->retrans_out)
2756                        *ack_flag |= FLAG_LOST_RETRANS;
2757        }
2758}
2759
2760static bool tcp_force_fast_retransmit(struct sock *sk)
2761{
2762        struct tcp_sock *tp = tcp_sk(sk);
2763
2764        return after(tcp_highest_sack_seq(tp),
2765                     tp->snd_una + tp->reordering * tp->mss_cache);
2766}
2767
2768/* Process an event, which can update packets-in-flight not trivially.
2769 * Main goal of this function is to calculate new estimate for left_out,
2770 * taking into account both packets sitting in receiver's buffer and
2771 * packets lost by network.
2772 *
2773 * Besides that it updates the congestion state when packet loss or ECN
2774 * is detected. But it does not reduce the cwnd, it is done by the
2775 * congestion control later.
2776 *
2777 * It does _not_ decide what to send, it is made in function
2778 * tcp_xmit_retransmit_queue().
2779 */
2780static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2781                                  bool is_dupack, int *ack_flag, int *rexmit)
2782{
2783        struct inet_connection_sock *icsk = inet_csk(sk);
2784        struct tcp_sock *tp = tcp_sk(sk);
2785        int fast_rexmit = 0, flag = *ack_flag;
2786        bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2787                                     tcp_force_fast_retransmit(sk));
2788
2789        if (!tp->packets_out && tp->sacked_out)
2790                tp->sacked_out = 0;
2791
2792        /* Now state machine starts.
2793         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2794        if (flag & FLAG_ECE)
2795                tp->prior_ssthresh = 0;
2796
2797        /* B. In all the states check for reneging SACKs. */
2798        if (tcp_check_sack_reneging(sk, flag))
2799                return;
2800
2801        /* C. Check consistency of the current state. */
2802        tcp_verify_left_out(tp);
2803
2804        /* D. Check state exit conditions. State can be terminated
2805         *    when high_seq is ACKed. */
2806        if (icsk->icsk_ca_state == TCP_CA_Open) {
2807                WARN_ON(tp->retrans_out != 0);
2808                tp->retrans_stamp = 0;
2809        } else if (!before(tp->snd_una, tp->high_seq)) {
2810                switch (icsk->icsk_ca_state) {
2811                case TCP_CA_CWR:
2812                        /* CWR is to be held something *above* high_seq
2813                         * is ACKed for CWR bit to reach receiver. */
2814                        if (tp->snd_una != tp->high_seq) {
2815                                tcp_end_cwnd_reduction(sk);
2816                                tcp_set_ca_state(sk, TCP_CA_Open);
2817                        }
2818                        break;
2819
2820                case TCP_CA_Recovery:
2821                        if (tcp_is_reno(tp))
2822                                tcp_reset_reno_sack(tp);
2823                        if (tcp_try_undo_recovery(sk))
2824                                return;
2825                        tcp_end_cwnd_reduction(sk);
2826                        break;
2827                }
2828        }
2829
2830        /* E. Process state. */
2831        switch (icsk->icsk_ca_state) {
2832        case TCP_CA_Recovery:
2833                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2834                        if (tcp_is_reno(tp) && is_dupack)
2835                                tcp_add_reno_sack(sk);
2836                } else {
2837                        if (tcp_try_undo_partial(sk, prior_snd_una))
2838                                return;
2839                        /* Partial ACK arrived. Force fast retransmit. */
2840                        do_lost = tcp_is_reno(tp) ||
2841                                  tcp_force_fast_retransmit(sk);
2842                }
2843                if (tcp_try_undo_dsack(sk)) {
2844                        tcp_try_keep_open(sk);
2845                        return;
2846                }
2847                tcp_identify_packet_loss(sk, ack_flag);
2848                break;
2849        case TCP_CA_Loss:
2850                tcp_process_loss(sk, flag, is_dupack, rexmit);
2851                tcp_identify_packet_loss(sk, ack_flag);
2852                if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2853                      (*ack_flag & FLAG_LOST_RETRANS)))
2854                        return;
2855                /* Change state if cwnd is undone or retransmits are lost */
2856                /* fall through */
2857        default:
2858                if (tcp_is_reno(tp)) {
2859                        if (flag & FLAG_SND_UNA_ADVANCED)
2860                                tcp_reset_reno_sack(tp);
2861                        if (is_dupack)
2862                                tcp_add_reno_sack(sk);
2863                }
2864
2865                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866                        tcp_try_undo_dsack(sk);
2867
2868                tcp_identify_packet_loss(sk, ack_flag);
2869                if (!tcp_time_to_recover(sk, flag)) {
2870                        tcp_try_to_open(sk, flag);
2871                        return;
2872                }
2873
2874                /* MTU probe failure: don't reduce cwnd */
2875                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2876                    icsk->icsk_mtup.probe_size &&
2877                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2878                        tcp_mtup_probe_failed(sk);
2879                        /* Restores the reduction we did in tcp_mtup_probe() */
2880                        tp->snd_cwnd++;
2881                        tcp_simple_retransmit(sk);
2882                        return;
2883                }
2884
2885                /* Otherwise enter Recovery state */
2886                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2887                fast_rexmit = 1;
2888        }
2889
2890        if (!tcp_is_rack(sk) && do_lost)
2891                tcp_update_scoreboard(sk, fast_rexmit);
2892        *rexmit = REXMIT_LOST;
2893}
2894
2895static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2896{
2897        u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2898        struct tcp_sock *tp = tcp_sk(sk);
2899
2900        if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2901                /* If the remote keeps returning delayed ACKs, eventually
2902                 * the min filter would pick it up and overestimate the
2903                 * prop. delay when it expires. Skip suspected delayed ACKs.
2904                 */
2905                return;
2906        }
2907        minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2908                           rtt_us ? : jiffies_to_usecs(1));
2909}
2910
2911static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2912                               long seq_rtt_us, long sack_rtt_us,
2913                               long ca_rtt_us, struct rate_sample *rs)
2914{
2915        const struct tcp_sock *tp = tcp_sk(sk);
2916
2917        /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2918         * broken middle-boxes or peers may corrupt TS-ECR fields. But
2919         * Karn's algorithm forbids taking RTT if some retransmitted data
2920         * is acked (RFC6298).
2921         */
2922        if (seq_rtt_us < 0)
2923                seq_rtt_us = sack_rtt_us;
2924
2925        /* RTTM Rule: A TSecr value received in a segment is used to
2926         * update the averaged RTT measurement only if the segment
2927         * acknowledges some new data, i.e., only if it advances the
2928         * left edge of the send window.
2929         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2930         */
2931        if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2932            flag & FLAG_ACKED) {
2933                u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2934                u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2935
2936                seq_rtt_us = ca_rtt_us = delta_us;
2937        }
2938        rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2939        if (seq_rtt_us < 0)
2940                return false;
2941
2942        /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2943         * always taken together with ACK, SACK, or TS-opts. Any negative
2944         * values will be skipped with the seq_rtt_us < 0 check above.
2945         */
2946        tcp_update_rtt_min(sk, ca_rtt_us, flag);
2947        tcp_rtt_estimator(sk, seq_rtt_us);
2948        tcp_set_rto(sk);
2949
2950        /* RFC6298: only reset backoff on valid RTT measurement. */
2951        inet_csk(sk)->icsk_backoff = 0;
2952        return true;
2953}
2954
2955/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2956void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2957{
2958        struct rate_sample rs;
2959        long rtt_us = -1L;
2960
2961        if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2962                rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2963
2964        tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2965}
2966
2967
2968static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2969{
2970        const struct inet_connection_sock *icsk = inet_csk(sk);
2971
2972        icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2973        tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2974}
2975
2976/* Restart timer after forward progress on connection.
2977 * RFC2988 recommends to restart timer to now+rto.
2978 */
2979void tcp_rearm_rto(struct sock *sk)
2980{
2981        const struct inet_connection_sock *icsk = inet_csk(sk);
2982        struct tcp_sock *tp = tcp_sk(sk);
2983
2984        /* If the retrans timer is currently being used by Fast Open
2985         * for SYN-ACK retrans purpose, stay put.
2986         */
2987        if (tp->fastopen_rsk)
2988                return;
2989
2990        if (!tp->packets_out) {
2991                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2992        } else {
2993                u32 rto = inet_csk(sk)->icsk_rto;
2994                /* Offset the time elapsed after installing regular RTO */
2995                if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2996                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2997                        s64 delta_us = tcp_rto_delta_us(sk);
2998                        /* delta_us may not be positive if the socket is locked
2999                         * when the retrans timer fires and is rescheduled.
3000                         */
3001                        rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3002                }
3003                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3004                                          TCP_RTO_MAX);
3005        }
3006}
3007
3008/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3009static void tcp_set_xmit_timer(struct sock *sk)
3010{
3011        if (!tcp_schedule_loss_probe(sk, true))
3012                tcp_rearm_rto(sk);
3013}
3014
3015/* If we get here, the whole TSO packet has not been acked. */
3016static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3017{
3018        struct tcp_sock *tp = tcp_sk(sk);
3019        u32 packets_acked;
3020
3021        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3022
3023        packets_acked = tcp_skb_pcount(skb);
3024        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3025                return 0;
3026        packets_acked -= tcp_skb_pcount(skb);
3027
3028        if (packets_acked) {
3029                BUG_ON(tcp_skb_pcount(skb) == 0);
3030                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3031        }
3032
3033        return packets_acked;
3034}
3035
3036static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3037                           u32 prior_snd_una)
3038{
3039        const struct skb_shared_info *shinfo;
3040
3041        /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3042        if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3043                return;
3044
3045        shinfo = skb_shinfo(skb);
3046        if (!before(shinfo->tskey, prior_snd_una) &&
3047            before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3048                tcp_skb_tsorted_save(skb) {
3049                        __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3050                } tcp_skb_tsorted_restore(skb);
3051        }
3052}
3053
3054/* Remove acknowledged frames from the retransmission queue. If our packet
3055 * is before the ack sequence we can discard it as it's confirmed to have
3056 * arrived at the other end.
3057 */
3058static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3059                               u32 prior_snd_una,
3060                               struct tcp_sacktag_state *sack)
3061{
3062        const struct inet_connection_sock *icsk = inet_csk(sk);
3063        u64 first_ackt, last_ackt;
3064        struct tcp_sock *tp = tcp_sk(sk);
3065        u32 prior_sacked = tp->sacked_out;
3066        u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3067        struct sk_buff *skb, *next;
3068        bool fully_acked = true;
3069        long sack_rtt_us = -1L;
3070        long seq_rtt_us = -1L;
3071        long ca_rtt_us = -1L;
3072        u32 pkts_acked = 0;
3073        u32 last_in_flight = 0;
3074        bool rtt_update;
3075        int flag = 0;
3076
3077        first_ackt = 0;
3078
3079        for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3080                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3081                const u32 start_seq = scb->seq;
3082                u8 sacked = scb->sacked;
3083                u32 acked_pcount;
3084
3085                tcp_ack_tstamp(sk, skb, prior_snd_una);
3086
3087                /* Determine how many packets and what bytes were acked, tso and else */
3088                if (after(scb->end_seq, tp->snd_una)) {
3089                        if (tcp_skb_pcount(skb) == 1 ||
3090                            !after(tp->snd_una, scb->seq))
3091                                break;
3092
3093                        acked_pcount = tcp_tso_acked(sk, skb);
3094                        if (!acked_pcount)
3095                                break;
3096                        fully_acked = false;
3097                } else {
3098                        acked_pcount = tcp_skb_pcount(skb);
3099                }
3100
3101                if (unlikely(sacked & TCPCB_RETRANS)) {
3102                        if (sacked & TCPCB_SACKED_RETRANS)
3103                                tp->retrans_out -= acked_pcount;
3104                        flag |= FLAG_RETRANS_DATA_ACKED;
3105                } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3106                        last_ackt = skb->skb_mstamp;
3107                        WARN_ON_ONCE(last_ackt == 0);
3108                        if (!first_ackt)
3109                                first_ackt = last_ackt;
3110
3111                        last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3112                        if (before(start_seq, reord))
3113                                reord = start_seq;
3114                        if (!after(scb->end_seq, tp->high_seq))
3115                                flag |= FLAG_ORIG_SACK_ACKED;
3116                }
3117
3118                if (sacked & TCPCB_SACKED_ACKED) {
3119                        tp->sacked_out -= acked_pcount;
3120                } else if (tcp_is_sack(tp)) {
3121                        tp->delivered += acked_pcount;
3122                        if (!tcp_skb_spurious_retrans(tp, skb))
3123                                tcp_rack_advance(tp, sacked, scb->end_seq,
3124                                                 skb->skb_mstamp);
3125                }
3126                if (sacked & TCPCB_LOST)
3127                        tp->lost_out -= acked_pcount;
3128
3129                tp->packets_out -= acked_pcount;
3130                pkts_acked += acked_pcount;
3131                tcp_rate_skb_delivered(sk, skb, sack->rate);
3132
3133                /* Initial outgoing SYN's get put onto the write_queue
3134                 * just like anything else we transmit.  It is not
3135                 * true data, and if we misinform our callers that
3136                 * this ACK acks real data, we will erroneously exit
3137                 * connection startup slow start one packet too
3138                 * quickly.  This is severely frowned upon behavior.
3139                 */
3140                if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3141                        flag |= FLAG_DATA_ACKED;
3142                } else {
3143                        flag |= FLAG_SYN_ACKED;
3144                        tp->retrans_stamp = 0;
3145                }
3146
3147                if (!fully_acked)
3148                        break;
3149
3150                next = skb_rb_next(skb);
3151                if (unlikely(skb == tp->retransmit_skb_hint))
3152                        tp->retransmit_skb_hint = NULL;
3153                if (unlikely(skb == tp->lost_skb_hint))
3154                        tp->lost_skb_hint = NULL;
3155                tcp_rtx_queue_unlink_and_free(skb, sk);
3156        }
3157
3158        if (!skb)
3159                tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3160
3161        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162                tp->snd_up = tp->snd_una;
3163
3164        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165                flag |= FLAG_SACK_RENEGING;
3166
3167        if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3168                seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3169                ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3170
3171                if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3172                    last_in_flight && !prior_sacked && fully_acked &&
3173                    sack->rate->prior_delivered + 1 == tp->delivered &&
3174                    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3175                        /* Conservatively mark a delayed ACK. It's typically
3176                         * from a lone runt packet over the round trip to
3177                         * a receiver w/o out-of-order or CE events.
3178                         */
3179                        flag |= FLAG_ACK_MAYBE_DELAYED;
3180                }
3181        }
3182        if (sack->first_sackt) {
3183                sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3184                ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3185        }
3186        rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3187                                        ca_rtt_us, sack->rate);
3188
3189        if (flag & FLAG_ACKED) {
3190                flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3191                if (unlikely(icsk->icsk_mtup.probe_size &&
3192                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3193                        tcp_mtup_probe_success(sk);
3194                }
3195
3196                if (tcp_is_reno(tp)) {
3197                        tcp_remove_reno_sacks(sk, pkts_acked);
3198
3199                        /* If any of the cumulatively ACKed segments was
3200                         * retransmitted, non-SACK case cannot confirm that
3201                         * progress was due to original transmission due to
3202                         * lack of TCPCB_SACKED_ACKED bits even if some of
3203                         * the packets may have been never retransmitted.
3204                         */
3205                        if (flag & FLAG_RETRANS_DATA_ACKED)
3206                                flag &= ~FLAG_ORIG_SACK_ACKED;
3207                } else {
3208                        int delta;
3209
3210                        /* Non-retransmitted hole got filled? That's reordering */
3211                        if (before(reord, prior_fack))
3212                                tcp_check_sack_reordering(sk, reord, 0);
3213
3214                        delta = prior_sacked - tp->sacked_out;
3215                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3216                }
3217        } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3218                   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3219                /* Do not re-arm RTO if the sack RTT is measured from data sent
3220                 * after when the head was last (re)transmitted. Otherwise the
3221                 * timeout may continue to extend in loss recovery.
3222                 */
3223                flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3224        }
3225
3226        if (icsk->icsk_ca_ops->pkts_acked) {
3227                struct ack_sample sample = { .pkts_acked = pkts_acked,
3228                                             .rtt_us = sack->rate->rtt_us,
3229                                             .in_flight = last_in_flight };
3230
3231                icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3232        }
3233
3234#if FASTRETRANS_DEBUG > 0
3235        WARN_ON((int)tp->sacked_out < 0);
3236        WARN_ON((int)tp->lost_out < 0);
3237        WARN_ON((int)tp->retrans_out < 0);
3238        if (!tp->packets_out && tcp_is_sack(tp)) {
3239                icsk = inet_csk(sk);
3240                if (tp->lost_out) {
3241                        pr_debug("Leak l=%u %d\n",
3242                                 tp->lost_out, icsk->icsk_ca_state);
3243                        tp->lost_out = 0;
3244                }
3245                if (tp->sacked_out) {
3246                        pr_debug("Leak s=%u %d\n",
3247                                 tp->sacked_out, icsk->icsk_ca_state);
3248                        tp->sacked_out = 0;
3249                }
3250                if (tp->retrans_out) {
3251                        pr_debug("Leak r=%u %d\n",
3252                                 tp->retrans_out, icsk->icsk_ca_state);
3253                        tp->retrans_out = 0;
3254                }
3255        }
3256#endif
3257        return flag;
3258}
3259
3260static void tcp_ack_probe(struct sock *sk)
3261{
3262        struct inet_connection_sock *icsk = inet_csk(sk);
3263        struct sk_buff *head = tcp_send_head(sk);
3264        const struct tcp_sock *tp = tcp_sk(sk);
3265
3266        /* Was it a usable window open? */
3267        if (!head)
3268                return;
3269        if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3270                icsk->icsk_backoff = 0;
3271                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3272                /* Socket must be waked up by subsequent tcp_data_snd_check().
3273                 * This function is not for random using!
3274                 */
3275        } else {
3276                unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3277
3278                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3279                                          when, TCP_RTO_MAX);
3280        }
3281}
3282
3283static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3284{
3285        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3286                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3287}
3288
3289/* Decide wheather to run the increase function of congestion control. */
3290static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3291{
3292        /* If reordering is high then always grow cwnd whenever data is
3293         * delivered regardless of its ordering. Otherwise stay conservative
3294         * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3295         * new SACK or ECE mark may first advance cwnd here and later reduce
3296         * cwnd in tcp_fastretrans_alert() based on more states.
3297         */
3298        if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3299                return flag & FLAG_FORWARD_PROGRESS;
3300
3301        return flag & FLAG_DATA_ACKED;
3302}
3303
3304/* The "ultimate" congestion control function that aims to replace the rigid
3305 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3306 * It's called toward the end of processing an ACK with precise rate
3307 * information. All transmission or retransmission are delayed afterwards.
3308 */
3309static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3310                             int flag, const struct rate_sample *rs)
3311{
3312        const struct inet_connection_sock *icsk = inet_csk(sk);
3313
3314        if (icsk->icsk_ca_ops->cong_control) {
3315                icsk->icsk_ca_ops->cong_control(sk, rs);
3316                return;
3317        }
3318
3319        if (tcp_in_cwnd_reduction(sk)) {
3320                /* Reduce cwnd if state mandates */
3321                tcp_cwnd_reduction(sk, acked_sacked, flag);
3322        } else if (tcp_may_raise_cwnd(sk, flag)) {
3323                /* Advance cwnd if state allows */
3324                tcp_cong_avoid(sk, ack, acked_sacked);
3325        }
3326        tcp_update_pacing_rate(sk);
3327}
3328
3329/* Check that window update is acceptable.
3330 * The function assumes that snd_una<=ack<=snd_next.
3331 */
3332static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3333                                        const u32 ack, const u32 ack_seq,
3334                                        const u32 nwin)
3335{
3336        return  after(ack, tp->snd_una) ||
3337                after(ack_seq, tp->snd_wl1) ||
3338                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3339}
3340
3341/* If we update tp->snd_una, also update tp->bytes_acked */
3342static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3343{
3344        u32 delta = ack - tp->snd_una;
3345
3346        sock_owned_by_me((struct sock *)tp);
3347        tp->bytes_acked += delta;
3348        tp->snd_una = ack;
3349}
3350
3351/* If we update tp->rcv_nxt, also update tp->bytes_received */
3352static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3353{
3354        u32 delta = seq - tp->rcv_nxt;
3355
3356        sock_owned_by_me((struct sock *)tp);
3357        tp->bytes_received += delta;
3358        tp->rcv_nxt = seq;
3359}
3360
3361/* Update our send window.
3362 *
3363 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3364 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3365 */
3366static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3367                                 u32 ack_seq)
3368{
3369        struct tcp_sock *tp = tcp_sk(sk);
3370        int flag = 0;
3371        u32 nwin = ntohs(tcp_hdr(skb)->window);
3372
3373        if (likely(!tcp_hdr(skb)->syn))
3374                nwin <<= tp->rx_opt.snd_wscale;
3375
3376        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3377                flag |= FLAG_WIN_UPDATE;
3378                tcp_update_wl(tp, ack_seq);
3379
3380                if (tp->snd_wnd != nwin) {
3381                        tp->snd_wnd = nwin;
3382
3383                        /* Note, it is the only place, where
3384                         * fast path is recovered for sending TCP.
3385                         */
3386                        tp->pred_flags = 0;
3387                        tcp_fast_path_check(sk);
3388
3389                        if (!tcp_write_queue_empty(sk))
3390                                tcp_slow_start_after_idle_check(sk);
3391
3392                        if (nwin > tp->max_window) {
3393                                tp->max_window = nwin;
3394                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3395                        }
3396                }
3397        }
3398
3399        tcp_snd_una_update(tp, ack);
3400
3401        return flag;
3402}
3403
3404static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3405                                   u32 *last_oow_ack_time)
3406{
3407        if (*last_oow_ack_time) {
3408                s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3409
3410                if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3411                        NET_INC_STATS(net, mib_idx);
3412                        return true;    /* rate-limited: don't send yet! */
3413                }
3414        }
3415
3416        *last_oow_ack_time = tcp_jiffies32;
3417
3418        return false;   /* not rate-limited: go ahead, send dupack now! */
3419}
3420
3421/* Return true if we're currently rate-limiting out-of-window ACKs and
3422 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3423 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3424 * attacks that send repeated SYNs or ACKs for the same connection. To
3425 * do this, we do not send a duplicate SYNACK or ACK if the remote
3426 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3427 */
3428bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3429                          int mib_idx, u32 *last_oow_ack_time)
3430{
3431        /* Data packets without SYNs are not likely part of an ACK loop. */
3432        if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3433            !tcp_hdr(skb)->syn)
3434                return false;
3435
3436        return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3437}
3438
3439/* RFC 5961 7 [ACK Throttling] */
3440static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3441{
3442        /* unprotected vars, we dont care of overwrites */
3443        static u32 challenge_timestamp;
3444        static unsigned int challenge_count;
3445        struct tcp_sock *tp = tcp_sk(sk);
3446        struct net *net = sock_net(sk);
3447        u32 count, now;
3448
3449        /* First check our per-socket dupack rate limit. */
3450        if (__tcp_oow_rate_limited(net,
3451                                   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3452                                   &tp->last_oow_ack_time))
3453                return;
3454
3455        /* Then check host-wide RFC 5961 rate limit. */
3456        now = jiffies / HZ;
3457        if (now != challenge_timestamp) {
3458                u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3459                u32 half = (ack_limit + 1) >> 1;
3460
3461                challenge_timestamp = now;
3462                WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3463        }
3464        count = READ_ONCE(challenge_count);
3465        if (count > 0) {
3466                WRITE_ONCE(challenge_count, count - 1);
3467                NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3468                tcp_send_ack(sk);
3469        }
3470}
3471
3472static void tcp_store_ts_recent(struct tcp_sock *tp)
3473{
3474        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3475        tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3476}
3477
3478static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3479{
3480        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3481                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3482                 * extra check below makes sure this can only happen
3483                 * for pure ACK frames.  -DaveM
3484                 *
3485                 * Not only, also it occurs for expired timestamps.
3486                 */
3487
3488                if (tcp_paws_check(&tp->rx_opt, 0))
3489                        tcp_store_ts_recent(tp);
3490        }
3491}
3492
3493/* This routine deals with acks during a TLP episode.
3494 * We mark the end of a TLP episode on receiving TLP dupack or when
3495 * ack is after tlp_high_seq.
3496 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3497 */
3498static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3499{
3500        struct tcp_sock *tp = tcp_sk(sk);
3501
3502        if (before(ack, tp->tlp_high_seq))
3503                return;
3504
3505        if (flag & FLAG_DSACKING_ACK) {
3506                /* This DSACK means original and TLP probe arrived; no loss */
3507                tp->tlp_high_seq = 0;
3508        } else if (after(ack, tp->tlp_high_seq)) {
3509                /* ACK advances: there was a loss, so reduce cwnd. Reset
3510                 * tlp_high_seq in tcp_init_cwnd_reduction()
3511                 */
3512                tcp_init_cwnd_reduction(sk);
3513                tcp_set_ca_state(sk, TCP_CA_CWR);
3514                tcp_end_cwnd_reduction(sk);
3515                tcp_try_keep_open(sk);
3516                NET_INC_STATS(sock_net(sk),
3517                                LINUX_MIB_TCPLOSSPROBERECOVERY);
3518        } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3519                             FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3520                /* Pure dupack: original and TLP probe arrived; no loss */
3521                tp->tlp_high_seq = 0;
3522        }
3523}
3524
3525static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3526{
3527        const struct inet_connection_sock *icsk = inet_csk(sk);
3528
3529        if (icsk->icsk_ca_ops->in_ack_event)
3530                icsk->icsk_ca_ops->in_ack_event(sk, flags);
3531}
3532
3533/* Congestion control has updated the cwnd already. So if we're in
3534 * loss recovery then now we do any new sends (for FRTO) or
3535 * retransmits (for CA_Loss or CA_recovery) that make sense.
3536 */
3537static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3538{
3539        struct tcp_sock *tp = tcp_sk(sk);
3540
3541        if (rexmit == REXMIT_NONE)
3542                return;
3543
3544        if (unlikely(rexmit == 2)) {
3545                __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3546                                          TCP_NAGLE_OFF);
3547                if (after(tp->snd_nxt, tp->high_seq))
3548                        return;
3549                tp->frto = 0;
3550        }
3551        tcp_xmit_retransmit_queue(sk);
3552}
3553
3554/* Returns the number of packets newly acked or sacked by the current ACK */
3555static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3556{
3557        const struct net *net = sock_net(sk);
3558        struct tcp_sock *tp = tcp_sk(sk);
3559        u32 delivered;
3560
3561        delivered = tp->delivered - prior_delivered;
3562        NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3563        if (flag & FLAG_ECE) {
3564                tp->delivered_ce += delivered;
3565                NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3566        }
3567        return delivered;
3568}
3569
3570/* This routine deals with incoming acks, but not outgoing ones. */
3571static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3572{
3573        struct inet_connection_sock *icsk = inet_csk(sk);
3574        struct tcp_sock *tp = tcp_sk(sk);
3575        struct tcp_sacktag_state sack_state;
3576        struct rate_sample rs = { .prior_delivered = 0 };
3577        u32 prior_snd_una = tp->snd_una;
3578        bool is_sack_reneg = tp->is_sack_reneg;
3579        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3580        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3581        bool is_dupack = false;
3582        int prior_packets = tp->packets_out;
3583        u32 delivered = tp->delivered;
3584        u32 lost = tp->lost;
3585        int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3586        u32 prior_fack;
3587
3588        sack_state.first_sackt = 0;
3589        sack_state.rate = &rs;
3590
3591        /* We very likely will need to access rtx queue. */
3592        prefetch(sk->tcp_rtx_queue.rb_node);
3593
3594        /* If the ack is older than previous acks
3595         * then we can probably ignore it.
3596         */
3597        if (before(ack, prior_snd_una)) {
3598                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3599                if (before(ack, prior_snd_una - tp->max_window)) {
3600                        if (!(flag & FLAG_NO_CHALLENGE_ACK))
3601                                tcp_send_challenge_ack(sk, skb);
3602                        return -1;
3603                }
3604                goto old_ack;
3605        }
3606
3607        /* If the ack includes data we haven't sent yet, discard
3608         * this segment (RFC793 Section 3.9).
3609         */
3610        if (after(ack, tp->snd_nxt))
3611                goto invalid_ack;
3612
3613        if (after(ack, prior_snd_una)) {
3614                flag |= FLAG_SND_UNA_ADVANCED;
3615                icsk->icsk_retransmits = 0;
3616
3617#if IS_ENABLED(CONFIG_TLS_DEVICE)
3618                if (static_branch_unlikely(&clean_acked_data_enabled))
3619                        if (icsk->icsk_clean_acked)
3620                                icsk->icsk_clean_acked(sk, ack);
3621#endif
3622        }
3623
3624        prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3625        rs.prior_in_flight = tcp_packets_in_flight(tp);
3626
3627        /* ts_recent update must be made after we are sure that the packet
3628         * is in window.
3629         */
3630        if (flag & FLAG_UPDATE_TS_RECENT)
3631                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3632
3633        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3634                /* Window is constant, pure forward advance.
3635                 * No more checks are required.
3636                 * Note, we use the fact that SND.UNA>=SND.WL2.
3637                 */
3638                tcp_update_wl(tp, ack_seq);
3639                tcp_snd_una_update(tp, ack);
3640                flag |= FLAG_WIN_UPDATE;
3641
3642                tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3643
3644                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3645        } else {
3646                u32 ack_ev_flags = CA_ACK_SLOWPATH;
3647
3648                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3649                        flag |= FLAG_DATA;
3650                else
3651                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3652
3653                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3654
3655                if (TCP_SKB_CB(skb)->sacked)
3656                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3657                                                        &sack_state);
3658
3659                if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3660                        flag |= FLAG_ECE;
3661                        ack_ev_flags |= CA_ACK_ECE;
3662                }
3663
3664                if (flag & FLAG_WIN_UPDATE)
3665                        ack_ev_flags |= CA_ACK_WIN_UPDATE;
3666
3667                tcp_in_ack_event(sk, ack_ev_flags);
3668        }
3669
3670        /* We passed data and got it acked, remove any soft error
3671         * log. Something worked...
3672         */
3673        sk->sk_err_soft = 0;
3674        icsk->icsk_probes_out = 0;
3675        tp->rcv_tstamp = tcp_jiffies32;
3676        if (!prior_packets)
3677                goto no_queue;
3678
3679        /* See if we can take anything off of the retransmit queue. */
3680        flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3681
3682        tcp_rack_update_reo_wnd(sk, &rs);
3683
3684        if (tp->tlp_high_seq)
3685                tcp_process_tlp_ack(sk, ack, flag);
3686        /* If needed, reset TLP/RTO timer; RACK may later override this. */
3687        if (flag & FLAG_SET_XMIT_TIMER)
3688                tcp_set_xmit_timer(sk);
3689
3690        if (tcp_ack_is_dubious(sk, flag)) {
3691                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3692                tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3693                                      &rexmit);
3694        }
3695
3696        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3697                sk_dst_confirm(sk);
3698
3699        delivered = tcp_newly_delivered(sk, delivered, flag);
3700        lost = tp->lost - lost;                 /* freshly marked lost */
3701        rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3702        tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3703        tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3704        tcp_xmit_recovery(sk, rexmit);
3705        return 1;
3706
3707no_queue:
3708        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3709        if (flag & FLAG_DSACKING_ACK) {
3710                tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3711                                      &rexmit);
3712                tcp_newly_delivered(sk, delivered, flag);
3713        }
3714        /* If this ack opens up a zero window, clear backoff.  It was
3715         * being used to time the probes, and is probably far higher than
3716         * it needs to be for normal retransmission.
3717         */
3718        tcp_ack_probe(sk);
3719
3720        if (tp->tlp_high_seq)
3721                tcp_process_tlp_ack(sk, ack, flag);
3722        return 1;
3723
3724invalid_ack:
3725        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3726        return -1;
3727
3728old_ack:
3729        /* If data was SACKed, tag it and see if we should send more data.
3730         * If data was DSACKed, see if we can undo a cwnd reduction.
3731         */
3732        if (TCP_SKB_CB(skb)->sacked) {
3733                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3734                                                &sack_state);
3735                tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3736                                      &rexmit);
3737                tcp_newly_delivered(sk, delivered, flag);
3738                tcp_xmit_recovery(sk, rexmit);
3739        }
3740
3741        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3742        return 0;
3743}
3744
3745static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3746                                      bool syn, struct tcp_fastopen_cookie *foc,
3747                                      bool exp_opt)
3748{
3749        /* Valid only in SYN or SYN-ACK with an even length.  */
3750        if (!foc || !syn || len < 0 || (len & 1))
3751                return;
3752
3753        if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3754            len <= TCP_FASTOPEN_COOKIE_MAX)
3755                memcpy(foc->val, cookie, len);
3756        else if (len != 0)
3757                len = -1;
3758        foc->len = len;
3759        foc->exp = exp_opt;
3760}
3761
3762static void smc_parse_options(const struct tcphdr *th,
3763                              struct tcp_options_received *opt_rx,
3764                              const unsigned char *ptr,
3765                              int opsize)
3766{
3767#if IS_ENABLED(CONFIG_SMC)
3768        if (static_branch_unlikely(&tcp_have_smc)) {
3769                if (th->syn && !(opsize & 1) &&
3770                    opsize >= TCPOLEN_EXP_SMC_BASE &&
3771                    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3772                        opt_rx->smc_ok = 1;
3773        }
3774#endif
3775}
3776
3777/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3778 * But, this can also be called on packets in the established flow when
3779 * the fast version below fails.
3780 */
3781void tcp_parse_options(const struct net *net,
3782                       const struct sk_buff *skb,
3783                       struct tcp_options_received *opt_rx, int estab,
3784                       struct tcp_fastopen_cookie *foc)
3785{
3786        const unsigned char *ptr;
3787        const struct tcphdr *th = tcp_hdr(skb);
3788        int length = (th->doff * 4) - sizeof(struct tcphdr);
3789
3790        ptr = (const unsigned char *)(th + 1);
3791        opt_rx->saw_tstamp = 0;
3792
3793        while (length > 0) {
3794                int opcode = *ptr++;
3795                int opsize;
3796
3797                switch (opcode) {
3798                case TCPOPT_EOL:
3799                        return;
3800                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3801                        length--;
3802                        continue;
3803                default:
3804                        opsize = *ptr++;
3805                        if (opsize < 2) /* "silly options" */
3806                                return;
3807                        if (opsize > length)
3808                                return; /* don't parse partial options */
3809                        switch (opcode) {
3810                        case TCPOPT_MSS:
3811                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3812                                        u16 in_mss = get_unaligned_be16(ptr);
3813                                        if (in_mss) {
3814                                                if (opt_rx->user_mss &&
3815                                                    opt_rx->user_mss < in_mss)
3816                                                        in_mss = opt_rx->user_mss;
3817                                                opt_rx->mss_clamp = in_mss;
3818                                        }
3819                                }
3820                                break;
3821                        case TCPOPT_WINDOW:
3822                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3823                                    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3824                                        __u8 snd_wscale = *(__u8 *)ptr;
3825                                        opt_rx->wscale_ok = 1;
3826                                        if (snd_wscale > TCP_MAX_WSCALE) {
3827                                                net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3828                                                                     __func__,
3829                                                                     snd_wscale,
3830                                                                     TCP_MAX_WSCALE);
3831                                                snd_wscale = TCP_MAX_WSCALE;
3832                                        }
3833                                        opt_rx->snd_wscale = snd_wscale;
3834                                }
3835                                break;
3836                        case TCPOPT_TIMESTAMP:
3837                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3838                                    ((estab && opt_rx->tstamp_ok) ||
3839                                     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3840                                        opt_rx->saw_tstamp = 1;
3841                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3842                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3843                                }
3844                                break;
3845                        case TCPOPT_SACK_PERM:
3846                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3847                                    !estab && net->ipv4.sysctl_tcp_sack) {
3848                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3849                                        tcp_sack_reset(opt_rx);
3850                                }
3851                                break;
3852
3853                        case TCPOPT_SACK:
3854                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3855                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3856                                   opt_rx->sack_ok) {
3857                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3858                                }
3859                                break;
3860#ifdef CONFIG_TCP_MD5SIG
3861                        case TCPOPT_MD5SIG:
3862                                /*
3863                                 * The MD5 Hash has already been
3864                                 * checked (see tcp_v{4,6}_do_rcv()).
3865                                 */
3866                                break;
3867#endif
3868                        case TCPOPT_FASTOPEN:
3869                                tcp_parse_fastopen_option(
3870                                        opsize - TCPOLEN_FASTOPEN_BASE,
3871                                        ptr, th->syn, foc, false);
3872                                break;
3873
3874                        case TCPOPT_EXP:
3875                                /* Fast Open option shares code 254 using a
3876                                 * 16 bits magic number.
3877                                 */
3878                                if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3879                                    get_unaligned_be16(ptr) ==
3880                                    TCPOPT_FASTOPEN_MAGIC)
3881                                        tcp_parse_fastopen_option(opsize -
3882                                                TCPOLEN_EXP_FASTOPEN_BASE,
3883                                                ptr + 2, th->syn, foc, true);
3884                                else
3885                                        smc_parse_options(th, opt_rx, ptr,
3886                                                          opsize);
3887                                break;
3888
3889                        }
3890                        ptr += opsize-2;
3891                        length -= opsize;
3892                }
3893        }
3894}
3895EXPORT_SYMBOL(tcp_parse_options);
3896
3897static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3898{
3899        const __be32 *ptr = (const __be32 *)(th + 1);
3900
3901        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3902                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3903                tp->rx_opt.saw_tstamp = 1;
3904                ++ptr;
3905                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3906                ++ptr;
3907                if (*ptr)
3908                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3909                else
3910                        tp->rx_opt.rcv_tsecr = 0;
3911                return true;
3912        }
3913        return false;
3914}
3915
3916/* Fast parse options. This hopes to only see timestamps.
3917 * If it is wrong it falls back on tcp_parse_options().
3918 */
3919static bool tcp_fast_parse_options(const struct net *net,
3920                                   const struct sk_buff *skb,
3921                                   const struct tcphdr *th, struct tcp_sock *tp)
3922{
3923        /* In the spirit of fast parsing, compare doff directly to constant
3924         * values.  Because equality is used, short doff can be ignored here.
3925         */
3926        if (th->doff == (sizeof(*th) / 4)) {
3927                tp->rx_opt.saw_tstamp = 0;
3928                return false;
3929        } else if (tp->rx_opt.tstamp_ok &&
3930                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3931                if (tcp_parse_aligned_timestamp(tp, th))
3932                        return true;
3933        }
3934
3935        tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3936        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3937                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3938
3939        return true;
3940}
3941
3942#ifdef CONFIG_TCP_MD5SIG
3943/*
3944 * Parse MD5 Signature option
3945 */
3946const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3947{
3948        int length = (th->doff << 2) - sizeof(*th);
3949        const u8 *ptr = (const u8 *)(th + 1);
3950
3951        /* If not enough data remaining, we can short cut */
3952        while (length >= TCPOLEN_MD5SIG) {
3953                int opcode = *ptr++;
3954                int opsize;
3955
3956                switch (opcode) {
3957                case TCPOPT_EOL:
3958                        return NULL;
3959                case TCPOPT_NOP:
3960                        length--;
3961                        continue;
3962                default:
3963                        opsize = *ptr++;
3964                        if (opsize < 2 || opsize > length)
3965                                return NULL;
3966                        if (opcode == TCPOPT_MD5SIG)
3967                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3968                }
3969                ptr += opsize - 2;
3970                length -= opsize;
3971        }
3972        return NULL;
3973}
3974EXPORT_SYMBOL(tcp_parse_md5sig_option);
3975#endif
3976
3977/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3978 *
3979 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3980 * it can pass through stack. So, the following predicate verifies that
3981 * this segment is not used for anything but congestion avoidance or
3982 * fast retransmit. Moreover, we even are able to eliminate most of such
3983 * second order effects, if we apply some small "replay" window (~RTO)
3984 * to timestamp space.
3985 *
3986 * All these measures still do not guarantee that we reject wrapped ACKs
3987 * on networks with high bandwidth, when sequence space is recycled fastly,
3988 * but it guarantees that such events will be very rare and do not affect
3989 * connection seriously. This doesn't look nice, but alas, PAWS is really
3990 * buggy extension.
3991 *
3992 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3993 * states that events when retransmit arrives after original data are rare.
3994 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3995 * the biggest problem on large power networks even with minor reordering.
3996 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3997 * up to bandwidth of 18Gigabit/sec. 8) ]
3998 */
3999
4000static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4001{
4002        const struct tcp_sock *tp = tcp_sk(sk);
4003        const struct tcphdr *th = tcp_hdr(skb);
4004        u32 seq = TCP_SKB_CB(skb)->seq;
4005        u32 ack = TCP_SKB_CB(skb)->ack_seq;
4006
4007        return (/* 1. Pure ACK with correct sequence number. */
4008                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4009
4010                /* 2. ... and duplicate ACK. */
4011                ack == tp->snd_una &&
4012
4013                /* 3. ... and does not update window. */
4014                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4015
4016                /* 4. ... and sits in replay window. */
4017                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4018}
4019
4020static inline bool tcp_paws_discard(const struct sock *sk,
4021                                   const struct sk_buff *skb)
4022{
4023        const struct tcp_sock *tp = tcp_sk(sk);
4024
4025        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4026               !tcp_disordered_ack(sk, skb);
4027}
4028
4029/* Check segment sequence number for validity.
4030 *
4031 * Segment controls are considered valid, if the segment
4032 * fits to the window after truncation to the window. Acceptability
4033 * of data (and SYN, FIN, of course) is checked separately.
4034 * See tcp_data_queue(), for example.
4035 *
4036 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4037 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4038 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4039 * (borrowed from freebsd)
4040 */
4041
4042static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4043{
4044        return  !before(end_seq, tp->rcv_wup) &&
4045                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4046}
4047
4048/* When we get a reset we do this. */
4049void tcp_reset(struct sock *sk)
4050{
4051        trace_tcp_receive_reset(sk);
4052
4053        /* We want the right error as BSD sees it (and indeed as we do). */
4054        switch (sk->sk_state) {
4055        case TCP_SYN_SENT:
4056                sk->sk_err = ECONNREFUSED;
4057                break;
4058        case TCP_CLOSE_WAIT:
4059                sk->sk_err = EPIPE;
4060                break;
4061        case TCP_CLOSE:
4062                return;
4063        default:
4064                sk->sk_err = ECONNRESET;
4065        }
4066        /* This barrier is coupled with smp_rmb() in tcp_poll() */
4067        smp_wmb();
4068
4069        tcp_write_queue_purge(sk);
4070        tcp_done(sk);
4071
4072        if (!sock_flag(sk, SOCK_DEAD))
4073                sk->sk_error_report(sk);
4074}
4075
4076/*
4077 *      Process the FIN bit. This now behaves as it is supposed to work
4078 *      and the FIN takes effect when it is validly part of sequence
4079 *      space. Not before when we get holes.
4080 *
4081 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4082 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4083 *      TIME-WAIT)
4084 *
4085 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4086 *      close and we go into CLOSING (and later onto TIME-WAIT)
4087 *
4088 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4089 */
4090void tcp_fin(struct sock *sk)
4091{
4092        struct tcp_sock *tp = tcp_sk(sk);
4093
4094        inet_csk_schedule_ack(sk);
4095
4096        sk->sk_shutdown |= RCV_SHUTDOWN;
4097        sock_set_flag(sk, SOCK_DONE);
4098
4099        switch (sk->sk_state) {
4100        case TCP_SYN_RECV:
4101        case TCP_ESTABLISHED:
4102                /* Move to CLOSE_WAIT */
4103                tcp_set_state(sk, TCP_CLOSE_WAIT);
4104                inet_csk(sk)->icsk_ack.pingpong = 1;
4105                break;
4106
4107        case TCP_CLOSE_WAIT:
4108        case TCP_CLOSING:
4109                /* Received a retransmission of the FIN, do
4110                 * nothing.
4111                 */
4112                break;
4113        case TCP_LAST_ACK:
4114                /* RFC793: Remain in the LAST-ACK state. */
4115                break;
4116
4117        case TCP_FIN_WAIT1:
4118                /* This case occurs when a simultaneous close
4119                 * happens, we must ack the received FIN and
4120                 * enter the CLOSING state.
4121                 */
4122                tcp_send_ack(sk);
4123                tcp_set_state(sk, TCP_CLOSING);
4124                break;
4125        case TCP_FIN_WAIT2:
4126                /* Received a FIN -- send ACK and enter TIME_WAIT. */
4127                tcp_send_ack(sk);
4128                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4129                break;
4130        default:
4131                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4132                 * cases we should never reach this piece of code.
4133                 */
4134                pr_err("%s: Impossible, sk->sk_state=%d\n",
4135                       __func__, sk->sk_state);
4136                break;
4137        }
4138
4139        /* It _is_ possible, that we have something out-of-order _after_ FIN.
4140         * Probably, we should reset in this case. For now drop them.
4141         */
4142        skb_rbtree_purge(&tp->out_of_order_queue);
4143        if (tcp_is_sack(tp))
4144                tcp_sack_reset(&tp->rx_opt);
4145        sk_mem_reclaim(sk);
4146
4147        if (!sock_flag(sk, SOCK_DEAD)) {
4148                sk->sk_state_change(sk);
4149
4150                /* Do not send POLL_HUP for half duplex close. */
4151                if (sk->sk_shutdown == SHUTDOWN_MASK ||
4152                    sk->sk_state == TCP_CLOSE)
4153                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4154                else
4155                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4156        }
4157}
4158
4159static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4160                                  u32 end_seq)
4161{
4162        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4163                if (before(seq, sp->start_seq))
4164                        sp->start_seq = seq;
4165                if (after(end_seq, sp->end_seq))
4166                        sp->end_seq = end_seq;
4167                return true;
4168        }
4169        return false;
4170}
4171
4172static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4173{
4174        struct tcp_sock *tp = tcp_sk(sk);
4175
4176        if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4177                int mib_idx;
4178
4179                if (before(seq, tp->rcv_nxt))
4180                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4181                else
4182                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4183
4184                NET_INC_STATS(sock_net(sk), mib_idx);
4185
4186                tp->rx_opt.dsack = 1;
4187                tp->duplicate_sack[0].start_seq = seq;
4188                tp->duplicate_sack[0].end_seq = end_seq;
4189        }
4190}
4191
4192static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4193{
4194        struct tcp_sock *tp = tcp_sk(sk);
4195
4196        if (!tp->rx_opt.dsack)
4197                tcp_dsack_set(sk, seq, end_seq);
4198        else
4199                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4200}
4201
4202static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4203{
4204        struct tcp_sock *tp = tcp_sk(sk);
4205
4206        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4207            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4208                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4209                tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4210
4211                if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4212                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4213
4214                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4215                                end_seq = tp->rcv_nxt;
4216                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4217                }
4218        }
4219
4220        tcp_send_ack(sk);
4221}
4222
4223/* These routines update the SACK block as out-of-order packets arrive or
4224 * in-order packets close up the sequence space.
4225 */
4226static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4227{
4228        int this_sack;
4229        struct tcp_sack_block *sp = &tp->selective_acks[0];
4230        struct tcp_sack_block *swalk = sp + 1;
4231
4232        /* See if the recent change to the first SACK eats into
4233         * or hits the sequence space of other SACK blocks, if so coalesce.
4234         */
4235        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4236                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4237                        int i;
4238
4239                        /* Zap SWALK, by moving every further SACK up by one slot.
4240                         * Decrease num_sacks.
4241                         */
4242                        tp->rx_opt.num_sacks--;
4243                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4244                                sp[i] = sp[i + 1];
4245                        continue;
4246                }
4247                this_sack++, swalk++;
4248        }
4249}
4250
4251static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4252{
4253        struct tcp_sock *tp = tcp_sk(sk);
4254        struct tcp_sack_block *sp = &tp->selective_acks[0];
4255        int cur_sacks = tp->rx_opt.num_sacks;
4256        int this_sack;
4257
4258        if (!cur_sacks)
4259                goto new_sack;
4260
4261        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4262                if (tcp_sack_extend(sp, seq, end_seq)) {
4263                        /* Rotate this_sack to the first one. */
4264                        for (; this_sack > 0; this_sack--, sp--)
4265                                swap(*sp, *(sp - 1));
4266                        if (cur_sacks > 1)
4267                                tcp_sack_maybe_coalesce(tp);
4268                        return;
4269                }
4270        }
4271
4272        /* Could not find an adjacent existing SACK, build a new one,
4273         * put it at the front, and shift everyone else down.  We
4274         * always know there is at least one SACK present already here.
4275         *
4276         * If the sack array is full, forget about the last one.
4277         */
4278        if (this_sack >= TCP_NUM_SACKS) {
4279                if (tp->compressed_ack)
4280                        tcp_send_ack(sk);
4281                this_sack--;
4282                tp->rx_opt.num_sacks--;
4283                sp--;
4284        }
4285        for (; this_sack > 0; this_sack--, sp--)
4286                *sp = *(sp - 1);
4287
4288new_sack:
4289        /* Build the new head SACK, and we're done. */
4290        sp->start_seq = seq;
4291        sp->end_seq = end_seq;
4292        tp->rx_opt.num_sacks++;
4293}
4294
4295/* RCV.NXT advances, some SACKs should be eaten. */
4296
4297static void tcp_sack_remove(struct tcp_sock *tp)
4298{
4299        struct tcp_sack_block *sp = &tp->selective_acks[0];
4300        int num_sacks = tp->rx_opt.num_sacks;
4301        int this_sack;
4302
4303        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4304        if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4305                tp->rx_opt.num_sacks = 0;
4306                return;
4307        }
4308
4309        for (this_sack = 0; this_sack < num_sacks;) {
4310                /* Check if the start of the sack is covered by RCV.NXT. */
4311                if (!before(tp->rcv_nxt, sp->start_seq)) {
4312                        int i;
4313
4314                        /* RCV.NXT must cover all the block! */
4315                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4316
4317                        /* Zap this SACK, by moving forward any other SACKS. */
4318                        for (i = this_sack+1; i < num_sacks; i++)
4319                                tp->selective_acks[i-1] = tp->selective_acks[i];
4320                        num_sacks--;
4321                        continue;
4322                }
4323                this_sack++;
4324                sp++;
4325        }
4326        tp->rx_opt.num_sacks = num_sacks;
4327}
4328
4329/**
4330 * tcp_try_coalesce - try to merge skb to prior one
4331 * @sk: socket
4332 * @dest: destination queue
4333 * @to: prior buffer
4334 * @from: buffer to add in queue
4335 * @fragstolen: pointer to boolean
4336 *
4337 * Before queueing skb @from after @to, try to merge them
4338 * to reduce overall memory use and queue lengths, if cost is small.
4339 * Packets in ofo or receive queues can stay a long time.
4340 * Better try to coalesce them right now to avoid future collapses.
4341 * Returns true if caller should free @from instead of queueing it
4342 */
4343static bool tcp_try_coalesce(struct sock *sk,
4344                             struct sk_buff *to,
4345                             struct sk_buff *from,
4346                             bool *fragstolen)
4347{
4348        int delta;
4349
4350        *fragstolen = false;
4351
4352        /* Its possible this segment overlaps with prior segment in queue */
4353        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4354                return false;
4355
4356#ifdef CONFIG_TLS_DEVICE
4357        if (from->decrypted != to->decrypted)
4358                return false;
4359#endif
4360
4361        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4362                return false;
4363
4364        atomic_add(delta, &sk->sk_rmem_alloc);
4365        sk_mem_charge(sk, delta);
4366        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4367        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4368        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4369        TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4370
4371        if (TCP_SKB_CB(from)->has_rxtstamp) {
4372                TCP_SKB_CB(to)->has_rxtstamp = true;
4373                to->tstamp = from->tstamp;
4374        }
4375
4376        return true;
4377}
4378
4379static bool tcp_ooo_try_coalesce(struct sock *sk,
4380                             struct sk_buff *to,
4381                             struct sk_buff *from,
4382                             bool *fragstolen)
4383{
4384        bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4385
4386        /* In case tcp_drop() is called later, update to->gso_segs */
4387        if (res) {
4388                u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4389                               max_t(u16, 1, skb_shinfo(from)->gso_segs);
4390
4391                skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4392        }
4393        return res;
4394}
4395
4396static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4397{
4398        sk_drops_add(sk, skb);
4399        __kfree_skb(skb);
4400}
4401
4402/* This one checks to see if we can put data from the
4403 * out_of_order queue into the receive_queue.
4404 */
4405static void tcp_ofo_queue(struct sock *sk)
4406{
4407        struct tcp_sock *tp = tcp_sk(sk);
4408        __u32 dsack_high = tp->rcv_nxt;
4409        bool fin, fragstolen, eaten;
4410        struct sk_buff *skb, *tail;
4411        struct rb_node *p;
4412
4413        p = rb_first(&tp->out_of_order_queue);
4414        while (p) {
4415                skb = rb_to_skb(p);
4416                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4417                        break;
4418
4419                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4420                        __u32 dsack = dsack_high;
4421                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4422                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4423                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4424                }
4425                p = rb_next(p);
4426                rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4427
4428                if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4429                        SOCK_DEBUG(sk, "ofo packet was already received\n");
4430                        tcp_drop(sk, skb);
4431                        continue;
4432                }
4433                SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4434                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4435                           TCP_SKB_CB(skb)->end_seq);
4436
4437                tail = skb_peek_tail(&sk->sk_receive_queue);
4438                eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4439                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4440                fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4441                if (!eaten)
4442                        __skb_queue_tail(&sk->sk_receive_queue, skb);
4443                else
4444                        kfree_skb_partial(skb, fragstolen);
4445
4446                if (unlikely(fin)) {
4447                        tcp_fin(sk);
4448                        /* tcp_fin() purges tp->out_of_order_queue,
4449                         * so we must end this loop right now.
4450                         */
4451                        break;
4452                }
4453        }
4454}
4455
4456static bool tcp_prune_ofo_queue(struct sock *sk);
4457static int tcp_prune_queue(struct sock *sk);
4458
4459static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4460                                 unsigned int size)
4461{
4462        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4463            !sk_rmem_schedule(sk, skb, size)) {
4464
4465                if (tcp_prune_queue(sk) < 0)
4466                        return -1;
4467
4468                while (!sk_rmem_schedule(sk, skb, size)) {
4469                        if (!tcp_prune_ofo_queue(sk))
4470                                return -1;
4471                }
4472        }
4473        return 0;
4474}
4475
4476static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4477{
4478        struct tcp_sock *tp = tcp_sk(sk);
4479        struct rb_node **p, *parent;
4480        struct sk_buff *skb1;
4481        u32 seq, end_seq;
4482        bool fragstolen;
4483
4484        tcp_ecn_check_ce(sk, skb);
4485
4486        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4487                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4488                tcp_drop(sk, skb);
4489                return;
4490        }
4491
4492        /* Disable header prediction. */
4493        tp->pred_flags = 0;
4494        inet_csk_schedule_ack(sk);
4495
4496        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4497        seq = TCP_SKB_CB(skb)->seq;
4498        end_seq = TCP_SKB_CB(skb)->end_seq;
4499        SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4500                   tp->rcv_nxt, seq, end_seq);
4501
4502        p = &tp->out_of_order_queue.rb_node;
4503        if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4504                /* Initial out of order segment, build 1 SACK. */
4505                if (tcp_is_sack(tp)) {
4506                        tp->rx_opt.num_sacks = 1;
4507                        tp->selective_acks[0].start_seq = seq;
4508                        tp->selective_acks[0].end_seq = end_seq;
4509                }
4510                rb_link_node(&skb->rbnode, NULL, p);
4511                rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4512                tp->ooo_last_skb = skb;
4513                goto end;
4514        }
4515
4516        /* In the typical case, we are adding an skb to the end of the list.
4517         * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4518         */
4519        if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4520                                 skb, &fragstolen)) {
4521coalesce_done:
4522                tcp_grow_window(sk, skb);
4523                kfree_skb_partial(skb, fragstolen);
4524                skb = NULL;
4525                goto add_sack;
4526        }
4527        /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4528        if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4529                parent = &tp->ooo_last_skb->rbnode;
4530                p = &parent->rb_right;
4531                goto insert;
4532        }
4533
4534        /* Find place to insert this segment. Handle overlaps on the way. */
4535        parent = NULL;
4536        while (*p) {
4537                parent = *p;
4538                skb1 = rb_to_skb(parent);
4539                if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4540                        p = &parent->rb_left;
4541                        continue;
4542                }
4543                if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4544                        if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4545                                /* All the bits are present. Drop. */
4546                                NET_INC_STATS(sock_net(sk),
4547                                              LINUX_MIB_TCPOFOMERGE);
4548                                tcp_drop(sk, skb);
4549                                skb = NULL;
4550                                tcp_dsack_set(sk, seq, end_seq);
4551                                goto add_sack;
4552                        }
4553                        if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4554                                /* Partial overlap. */
4555                                tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4556                        } else {
4557                                /* skb's seq == skb1's seq and skb covers skb1.
4558                                 * Replace skb1 with skb.
4559                                 */
4560                                rb_replace_node(&skb1->rbnode, &skb->rbnode,
4561                                                &tp->out_of_order_queue);
4562                                tcp_dsack_extend(sk,
4563                                                 TCP_SKB_CB(skb1)->seq,
4564                                                 TCP_SKB_CB(skb1)->end_seq);
4565                                NET_INC_STATS(sock_net(sk),
4566                                              LINUX_MIB_TCPOFOMERGE);
4567                                tcp_drop(sk, skb1);
4568                                goto merge_right;
4569                        }
4570                } else if (tcp_ooo_try_coalesce(sk, skb1,
4571                                                skb, &fragstolen)) {
4572                        goto coalesce_done;
4573                }
4574                p = &parent->rb_right;
4575        }
4576insert:
4577        /* Insert segment into RB tree. */
4578        rb_link_node(&skb->rbnode, parent, p);
4579        rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4580
4581merge_right:
4582        /* Remove other segments covered by skb. */
4583        while ((skb1 = skb_rb_next(skb)) != NULL) {
4584                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4585                        break;
4586                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4587                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4588                                         end_seq);
4589                        break;
4590                }
4591                rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4592                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4593                                 TCP_SKB_CB(skb1)->end_seq);
4594                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4595                tcp_drop(sk, skb1);
4596        }
4597        /* If there is no skb after us, we are the last_skb ! */
4598        if (!skb1)
4599                tp->ooo_last_skb = skb;
4600
4601add_sack:
4602        if (tcp_is_sack(tp))
4603                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4604end:
4605        if (skb) {
4606                tcp_grow_window(sk, skb);
4607                skb_condense(skb);
4608                skb_set_owner_r(skb, sk);
4609        }
4610}
4611
4612static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4613                  bool *fragstolen)
4614{
4615        int eaten;
4616        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4617
4618        __skb_pull(skb, hdrlen);
4619        eaten = (tail &&
4620                 tcp_try_coalesce(sk, tail,
4621                                  skb, fragstolen)) ? 1 : 0;
4622        tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4623        if (!eaten) {
4624                __skb_queue_tail(&sk->sk_receive_queue, skb);
4625                skb_set_owner_r(skb, sk);
4626        }
4627        return eaten;
4628}
4629
4630int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4631{
4632        struct sk_buff *skb;
4633        int err = -ENOMEM;
4634        int data_len = 0;
4635        bool fragstolen;
4636
4637        if (size == 0)
4638                return 0;
4639
4640        if (size > PAGE_SIZE) {
4641                int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4642
4643                data_len = npages << PAGE_SHIFT;
4644                size = data_len + (size & ~PAGE_MASK);
4645        }
4646        skb = alloc_skb_with_frags(size - data_len, data_len,
4647                                   PAGE_ALLOC_COSTLY_ORDER,
4648                                   &err, sk->sk_allocation);
4649        if (!skb)
4650                goto err;
4651
4652        skb_put(skb, size - data_len);
4653        skb->data_len = data_len;
4654        skb->len = size;
4655
4656        if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4657                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4658                goto err_free;
4659        }
4660
4661        err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4662        if (err)
4663                goto err_free;
4664
4665        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4666        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4667        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4668
4669        if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4670                WARN_ON_ONCE(fragstolen); /* should not happen */
4671                __kfree_skb(skb);
4672        }
4673        return size;
4674
4675err_free:
4676        kfree_skb(skb);
4677err:
4678        return err;
4679
4680}
4681
4682void tcp_data_ready(struct sock *sk)
4683{
4684        const struct tcp_sock *tp = tcp_sk(sk);
4685        int avail = tp->rcv_nxt - tp->copied_seq;
4686
4687        if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4688                return;
4689
4690        sk->sk_data_ready(sk);
4691}
4692
4693static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4694{
4695        struct tcp_sock *tp = tcp_sk(sk);
4696        bool fragstolen;
4697        int eaten;
4698
4699        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4700                __kfree_skb(skb);
4701                return;
4702        }
4703        skb_dst_drop(skb);
4704        __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4705
4706        tcp_ecn_accept_cwr(sk, skb);
4707
4708        tp->rx_opt.dsack = 0;
4709
4710        /*  Queue data for delivery to the user.
4711         *  Packets in sequence go to the receive queue.
4712         *  Out of sequence packets to the out_of_order_queue.
4713         */
4714        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4715                if (tcp_receive_window(tp) == 0) {
4716                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4717                        goto out_of_window;
4718                }
4719
4720                /* Ok. In sequence. In window. */
4721queue_and_out:
4722                if (skb_queue_len(&sk->sk_receive_queue) == 0)
4723                        sk_forced_mem_schedule(sk, skb->truesize);
4724                else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4725                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4726                        goto drop;
4727                }
4728
4729                eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4730                if (skb->len)
4731                        tcp_event_data_recv(sk, skb);
4732                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4733                        tcp_fin(sk);
4734
4735                if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4736                        tcp_ofo_queue(sk);
4737
4738                        /* RFC5681. 4.2. SHOULD send immediate ACK, when
4739                         * gap in queue is filled.
4740                         */
4741                        if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4742                                inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4743                }
4744
4745                if (tp->rx_opt.num_sacks)
4746                        tcp_sack_remove(tp);
4747
4748                tcp_fast_path_check(sk);
4749
4750                if (eaten > 0)
4751                        kfree_skb_partial(skb, fragstolen);
4752                if (!sock_flag(sk, SOCK_DEAD))
4753                        tcp_data_ready(sk);
4754                return;
4755        }
4756
4757        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4758                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4759                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4760                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4761
4762out_of_window:
4763                tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4764                inet_csk_schedule_ack(sk);
4765drop:
4766                tcp_drop(sk, skb);
4767                return;
4768        }
4769
4770        /* Out of window. F.e. zero window probe. */
4771        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4772                goto out_of_window;
4773
4774        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4775                /* Partial packet, seq < rcv_next < end_seq */
4776                SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4777                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4778                           TCP_SKB_CB(skb)->end_seq);
4779
4780                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4781
4782                /* If window is closed, drop tail of packet. But after
4783                 * remembering D-SACK for its head made in previous line.
4784                 */
4785                if (!tcp_receive_window(tp)) {
4786                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4787                        goto out_of_window;
4788                }
4789                goto queue_and_out;
4790        }
4791
4792        tcp_data_queue_ofo(sk, skb);
4793}
4794
4795static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4796{
4797        if (list)
4798                return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4799
4800        return skb_rb_next(skb);
4801}
4802
4803static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4804                                        struct sk_buff_head *list,
4805                                        struct rb_root *root)
4806{
4807        struct sk_buff *next = tcp_skb_next(skb, list);
4808
4809        if (list)
4810                __skb_unlink(skb, list);
4811        else
4812                rb_erase(&skb->rbnode, root);
4813
4814        __kfree_skb(skb);
4815        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4816
4817        return next;
4818}
4819
4820/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4821void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4822{
4823        struct rb_node **p = &root->rb_node;
4824        struct rb_node *parent = NULL;
4825        struct sk_buff *skb1;
4826
4827        while (*p) {
4828                parent = *p;
4829                skb1 = rb_to_skb(parent);
4830                if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4831                        p = &parent->rb_left;
4832                else
4833                        p = &parent->rb_right;
4834        }
4835        rb_link_node(&skb->rbnode, parent, p);
4836        rb_insert_color(&skb->rbnode, root);
4837}
4838
4839/* Collapse contiguous sequence of skbs head..tail with
4840 * sequence numbers start..end.
4841 *
4842 * If tail is NULL, this means until the end of the queue.
4843 *
4844 * Segments with FIN/SYN are not collapsed (only because this
4845 * simplifies code)
4846 */
4847static void
4848tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4849             struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4850{
4851        struct sk_buff *skb = head, *n;
4852        struct sk_buff_head tmp;
4853        bool end_of_skbs;
4854
4855        /* First, check that queue is collapsible and find
4856         * the point where collapsing can be useful.
4857         */
4858restart:
4859        for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4860                n = tcp_skb_next(skb, list);
4861
4862                /* No new bits? It is possible on ofo queue. */
4863                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4864                        skb = tcp_collapse_one(sk, skb, list, root);
4865                        if (!skb)
4866                                break;
4867                        goto restart;
4868                }
4869
4870                /* The first skb to collapse is:
4871                 * - not SYN/FIN and
4872                 * - bloated or contains data before "start" or
4873                 *   overlaps to the next one.
4874                 */
4875                if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4876                    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4877                     before(TCP_SKB_CB(skb)->seq, start))) {
4878                        end_of_skbs = false;
4879                        break;
4880                }
4881
4882                if (n && n != tail &&
4883                    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4884                        end_of_skbs = false;
4885                        break;
4886                }
4887
4888                /* Decided to skip this, advance start seq. */
4889                start = TCP_SKB_CB(skb)->end_seq;
4890        }
4891        if (end_of_skbs ||
4892            (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4893                return;
4894
4895        __skb_queue_head_init(&tmp);
4896
4897        while (before(start, end)) {
4898                int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4899                struct sk_buff *nskb;
4900
4901                nskb = alloc_skb(copy, GFP_ATOMIC);
4902                if (!nskb)
4903                        break;
4904
4905                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4906#ifdef CONFIG_TLS_DEVICE
4907                nskb->decrypted = skb->decrypted;
4908#endif
4909                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4910                if (list)
4911                        __skb_queue_before(list, skb, nskb);
4912                else
4913                        __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4914                skb_set_owner_r(nskb, sk);
4915
4916                /* Copy data, releasing collapsed skbs. */
4917                while (copy > 0) {
4918                        int offset = start - TCP_SKB_CB(skb)->seq;
4919                        int size = TCP_SKB_CB(skb)->end_seq - start;
4920
4921                        BUG_ON(offset < 0);
4922                        if (size > 0) {
4923                                size = min(copy, size);
4924                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4925                                        BUG();
4926                                TCP_SKB_CB(nskb)->end_seq += size;
4927                                copy -= size;
4928                                start += size;
4929                        }
4930                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4931                                skb = tcp_collapse_one(sk, skb, list, root);
4932                                if (!skb ||
4933                                    skb == tail ||
4934                                    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4935                                        goto end;
4936#ifdef CONFIG_TLS_DEVICE
4937                                if (skb->decrypted != nskb->decrypted)
4938                                        goto end;
4939#endif
4940                        }
4941                }
4942        }
4943end:
4944        skb_queue_walk_safe(&tmp, skb, n)
4945                tcp_rbtree_insert(root, skb);
4946}
4947
4948/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4949 * and tcp_collapse() them until all the queue is collapsed.
4950 */
4951static void tcp_collapse_ofo_queue(struct sock *sk)
4952{
4953        struct tcp_sock *tp = tcp_sk(sk);
4954        u32 range_truesize, sum_tiny = 0;
4955        struct sk_buff *skb, *head;
4956        u32 start, end;
4957
4958        skb = skb_rb_first(&tp->out_of_order_queue);
4959new_range:
4960        if (!skb) {
4961                tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4962                return;
4963        }
4964        start = TCP_SKB_CB(skb)->seq;
4965        end = TCP_SKB_CB(skb)->end_seq;
4966        range_truesize = skb->truesize;
4967
4968        for (head = skb;;) {
4969                skb = skb_rb_next(skb);
4970
4971                /* Range is terminated when we see a gap or when
4972                 * we are at the queue end.
4973                 */
4974                if (!skb ||
4975                    after(TCP_SKB_CB(skb)->seq, end) ||
4976                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4977                        /* Do not attempt collapsing tiny skbs */
4978                        if (range_truesize != head->truesize ||
4979                            end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4980                                tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4981                                             head, skb, start, end);
4982                        } else {
4983                                sum_tiny += range_truesize;
4984                                if (sum_tiny > sk->sk_rcvbuf >> 3)
4985                                        return;
4986                        }
4987                        goto new_range;
4988                }
4989
4990                range_truesize += skb->truesize;
4991                if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4992                        start = TCP_SKB_CB(skb)->seq;
4993                if (after(TCP_SKB_CB(skb)->end_seq, end))
4994                        end = TCP_SKB_CB(skb)->end_seq;
4995        }
4996}
4997
4998/*
4999 * Clean the out-of-order queue to make room.
5000 * We drop high sequences packets to :
5001 * 1) Let a chance for holes to be filled.
5002 * 2) not add too big latencies if thousands of packets sit there.
5003 *    (But if application shrinks SO_RCVBUF, we could still end up
5004 *     freeing whole queue here)
5005 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5006 *
5007 * Return true if queue has shrunk.
5008 */
5009static bool tcp_prune_ofo_queue(struct sock *sk)
5010{
5011        struct tcp_sock *tp = tcp_sk(sk);
5012        struct rb_node *node, *prev;
5013        int goal;
5014
5015        if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5016                return false;
5017
5018        NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5019        goal = sk->sk_rcvbuf >> 3;
5020        node = &tp->ooo_last_skb->rbnode;
5021        do {
5022                prev = rb_prev(node);
5023                rb_erase(node, &tp->out_of_order_queue);
5024                goal -= rb_to_skb(node)->truesize;
5025                tcp_drop(sk, rb_to_skb(node));
5026                if (!prev || goal <= 0) {
5027                        sk_mem_reclaim(sk);
5028                        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5029                            !tcp_under_memory_pressure(sk))
5030                                break;
5031                        goal = sk->sk_rcvbuf >> 3;
5032                }
5033                node = prev;
5034        } while (node);
5035        tp->ooo_last_skb = rb_to_skb(prev);
5036
5037        /* Reset SACK state.  A conforming SACK implementation will
5038         * do the same at a timeout based retransmit.  When a connection
5039         * is in a sad state like this, we care only about integrity
5040         * of the connection not performance.
5041         */
5042        if (tp->rx_opt.sack_ok)
5043                tcp_sack_reset(&tp->rx_opt);
5044        return true;
5045}
5046
5047/* Reduce allocated memory if we can, trying to get
5048 * the socket within its memory limits again.
5049 *
5050 * Return less than zero if we should start dropping frames
5051 * until the socket owning process reads some of the data
5052 * to stabilize the situation.
5053 */
5054static int tcp_prune_queue(struct sock *sk)
5055{
5056        struct tcp_sock *tp = tcp_sk(sk);
5057
5058        SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5059
5060        NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5061
5062        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5063                tcp_clamp_window(sk);
5064        else if (tcp_under_memory_pressure(sk))
5065                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5066
5067        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5068                return 0;
5069
5070        tcp_collapse_ofo_queue(sk);
5071        if (!skb_queue_empty(&sk->sk_receive_queue))
5072                tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5073                             skb_peek(&sk->sk_receive_queue),
5074                             NULL,
5075                             tp->copied_seq, tp->rcv_nxt);
5076        sk_mem_reclaim(sk);
5077
5078        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5079                return 0;
5080
5081        /* Collapsing did not help, destructive actions follow.
5082         * This must not ever occur. */
5083
5084        tcp_prune_ofo_queue(sk);
5085
5086        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5087                return 0;
5088
5089        /* If we are really being abused, tell the caller to silently
5090         * drop receive data on the floor.  It will get retransmitted
5091         * and hopefully then we'll have sufficient space.
5092         */
5093        NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5094
5095        /* Massive buffer overcommit. */
5096        tp->pred_flags = 0;
5097        return -1;
5098}
5099
5100static bool tcp_should_expand_sndbuf(const struct sock *sk)
5101{
5102        const struct tcp_sock *tp = tcp_sk(sk);
5103
5104        /* If the user specified a specific send buffer setting, do
5105         * not modify it.
5106         */
5107        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5108                return false;
5109
5110        /* If we are under global TCP memory pressure, do not expand.  */
5111        if (tcp_under_memory_pressure(sk))
5112                return false;
5113
5114        /* If we are under soft global TCP memory pressure, do not expand.  */
5115        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5116                return false;
5117
5118        /* If we filled the congestion window, do not expand.  */
5119        if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5120                return false;
5121
5122        return true;
5123}
5124
5125/* When incoming ACK allowed to free some skb from write_queue,
5126 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5127 * on the exit from tcp input handler.
5128 *
5129 * PROBLEM: sndbuf expansion does not work well with largesend.
5130 */
5131static void tcp_new_space(struct sock *sk)
5132{
5133        struct tcp_sock *tp = tcp_sk(sk);
5134
5135        if (tcp_should_expand_sndbuf(sk)) {
5136                tcp_sndbuf_expand(sk);
5137                tp->snd_cwnd_stamp = tcp_jiffies32;
5138        }
5139
5140        sk->sk_write_space(sk);
5141}
5142
5143static void tcp_check_space(struct sock *sk)
5144{
5145        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5146                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5147                /* pairs with tcp_poll() */
5148                smp_mb();
5149                if (sk->sk_socket &&
5150                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5151                        tcp_new_space(sk);
5152                        if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5153                                tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5154                }
5155        }
5156}
5157
5158static inline void tcp_data_snd_check(struct sock *sk)
5159{
5160        tcp_push_pending_frames(sk);
5161        tcp_check_space(sk);
5162}
5163
5164/*
5165 * Check if sending an ack is needed.
5166 */
5167static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5168{
5169        struct tcp_sock *tp = tcp_sk(sk);
5170        unsigned long rtt, delay;
5171
5172            /* More than one full frame received... */
5173        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5174             /* ... and right edge of window advances far enough.
5175              * (tcp_recvmsg() will send ACK otherwise).
5176              * If application uses SO_RCVLOWAT, we want send ack now if
5177              * we have not received enough bytes to satisfy the condition.
5178              */
5179            (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5180             __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5181            /* We ACK each frame or... */
5182            tcp_in_quickack_mode(sk) ||
5183            /* Protocol state mandates a one-time immediate ACK */
5184            inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5185send_now:
5186                tcp_send_ack(sk);
5187                return;
5188        }
5189
5190        if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5191                tcp_send_delayed_ack(sk);
5192                return;
5193        }
5194
5195        if (!tcp_is_sack(tp) ||
5196            tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5197                goto send_now;
5198        tp->compressed_ack++;
5199
5200        if (hrtimer_is_queued(&tp->compressed_ack_timer))
5201                return;
5202
5203        /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5204
5205        rtt = tp->rcv_rtt_est.rtt_us;
5206        if (tp->srtt_us && tp->srtt_us < rtt)
5207                rtt = tp->srtt_us;
5208
5209        delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5210                      rtt * (NSEC_PER_USEC >> 3)/20);
5211        sock_hold(sk);
5212        hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5213                      HRTIMER_MODE_REL_PINNED_SOFT);
5214}
5215
5216static inline void tcp_ack_snd_check(struct sock *sk)
5217{
5218        if (!inet_csk_ack_scheduled(sk)) {
5219                /* We sent a data segment already. */
5220                return;
5221        }
5222        __tcp_ack_snd_check(sk, 1);
5223}
5224
5225/*
5226 *      This routine is only called when we have urgent data
5227 *      signaled. Its the 'slow' part of tcp_urg. It could be
5228 *      moved inline now as tcp_urg is only called from one
5229 *      place. We handle URGent data wrong. We have to - as
5230 *      BSD still doesn't use the correction from RFC961.
5231 *      For 1003.1g we should support a new option TCP_STDURG to permit
5232 *      either form (or just set the sysctl tcp_stdurg).
5233 */
5234
5235static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5236{
5237        struct tcp_sock *tp = tcp_sk(sk);
5238        u32 ptr = ntohs(th->urg_ptr);
5239
5240        if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5241                ptr--;
5242        ptr += ntohl(th->seq);
5243
5244        /* Ignore urgent data that we've already seen and read. */
5245        if (after(tp->copied_seq, ptr))
5246                return;
5247
5248        /* Do not replay urg ptr.
5249         *
5250         * NOTE: interesting situation not covered by specs.
5251         * Misbehaving sender may send urg ptr, pointing to segment,
5252         * which we already have in ofo queue. We are not able to fetch
5253         * such data and will stay in TCP_URG_NOTYET until will be eaten
5254         * by recvmsg(). Seems, we are not obliged to handle such wicked
5255         * situations. But it is worth to think about possibility of some
5256         * DoSes using some hypothetical application level deadlock.
5257         */
5258        if (before(ptr, tp->rcv_nxt))
5259                return;
5260
5261        /* Do we already have a newer (or duplicate) urgent pointer? */
5262        if (tp->urg_data && !after(ptr, tp->urg_seq))
5263                return;
5264
5265        /* Tell the world about our new urgent pointer. */
5266        sk_send_sigurg(sk);
5267
5268        /* We may be adding urgent data when the last byte read was
5269         * urgent. To do this requires some care. We cannot just ignore
5270         * tp->copied_seq since we would read the last urgent byte again
5271         * as data, nor can we alter copied_seq until this data arrives
5272         * or we break the semantics of SIOCATMARK (and thus sockatmark())
5273         *
5274         * NOTE. Double Dutch. Rendering to plain English: author of comment
5275         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5276         * and expect that both A and B disappear from stream. This is _wrong_.
5277         * Though this happens in BSD with high probability, this is occasional.
5278         * Any application relying on this is buggy. Note also, that fix "works"
5279         * only in this artificial test. Insert some normal data between A and B and we will
5280         * decline of BSD again. Verdict: it is better to remove to trap
5281         * buggy users.
5282         */
5283        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5284            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5285                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5286                tp->copied_seq++;
5287                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5288                        __skb_unlink(skb, &sk->sk_receive_queue);
5289                        __kfree_skb(skb);
5290                }
5291        }
5292
5293        tp->urg_data = TCP_URG_NOTYET;
5294        tp->urg_seq = ptr;
5295
5296        /* Disable header prediction. */
5297        tp->pred_flags = 0;
5298}
5299
5300/* This is the 'fast' part of urgent handling. */
5301static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5302{
5303        struct tcp_sock *tp = tcp_sk(sk);
5304
5305        /* Check if we get a new urgent pointer - normally not. */
5306        if (th->urg)
5307                tcp_check_urg(sk, th);
5308
5309        /* Do we wait for any urgent data? - normally not... */
5310        if (tp->urg_data == TCP_URG_NOTYET) {
5311                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5312                          th->syn;
5313
5314                /* Is the urgent pointer pointing into this packet? */
5315                if (ptr < skb->len) {
5316                        u8 tmp;
5317                        if (skb_copy_bits(skb, ptr, &tmp, 1))
5318                                BUG();
5319                        tp->urg_data = TCP_URG_VALID | tmp;
5320                        if (!sock_flag(sk, SOCK_DEAD))
5321                                sk->sk_data_ready(sk);
5322                }
5323        }
5324}
5325
5326/* Accept RST for rcv_nxt - 1 after a FIN.
5327 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5328 * FIN is sent followed by a RST packet. The RST is sent with the same
5329 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5330 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5331 * ACKs on the closed socket. In addition middleboxes can drop either the
5332 * challenge ACK or a subsequent RST.
5333 */
5334static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5335{
5336        struct tcp_sock *tp = tcp_sk(sk);
5337
5338        return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5339                        (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5340                                               TCPF_CLOSING));
5341}
5342
5343/* Does PAWS and seqno based validation of an incoming segment, flags will
5344 * play significant role here.
5345 */
5346static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5347                                  const struct tcphdr *th, int syn_inerr)
5348{
5349        struct tcp_sock *tp = tcp_sk(sk);
5350        bool rst_seq_match = false;
5351
5352        /* RFC1323: H1. Apply PAWS check first. */
5353        if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5354            tp->rx_opt.saw_tstamp &&
5355            tcp_paws_discard(sk, skb)) {
5356                if (!th->rst) {
5357                        NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5358                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5359                                                  LINUX_MIB_TCPACKSKIPPEDPAWS,
5360                                                  &tp->last_oow_ack_time))
5361                                tcp_send_dupack(sk, skb);
5362                        goto discard;
5363                }
5364                /* Reset is accepted even if it did not pass PAWS. */
5365        }
5366
5367        /* Step 1: check sequence number */
5368        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5369                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5370                 * (RST) segments are validated by checking their SEQ-fields."
5371                 * And page 69: "If an incoming segment is not acceptable,
5372                 * an acknowledgment should be sent in reply (unless the RST
5373                 * bit is set, if so drop the segment and return)".
5374                 */
5375                if (!th->rst) {
5376                        if (th->syn)
5377                                goto syn_challenge;
5378                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5379                                                  LINUX_MIB_TCPACKSKIPPEDSEQ,
5380                                                  &tp->last_oow_ack_time))
5381                                tcp_send_dupack(sk, skb);
5382                } else if (tcp_reset_check(sk, skb)) {
5383                        tcp_reset(sk);
5384                }
5385                goto discard;
5386        }
5387
5388        /* Step 2: check RST bit */
5389        if (th->rst) {
5390                /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5391                 * FIN and SACK too if available):
5392                 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5393                 * the right-most SACK block,
5394                 * then
5395                 *     RESET the connection
5396                 * else
5397                 *     Send a challenge ACK
5398                 */
5399                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5400                    tcp_reset_check(sk, skb)) {
5401                        rst_seq_match = true;
5402                } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5403                        struct tcp_sack_block *sp = &tp->selective_acks[0];
5404                        int max_sack = sp[0].end_seq;
5405                        int this_sack;
5406
5407                        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5408                             ++this_sack) {
5409                                max_sack = after(sp[this_sack].end_seq,
5410                                                 max_sack) ?
5411                                        sp[this_sack].end_seq : max_sack;
5412                        }
5413
5414                        if (TCP_SKB_CB(skb)->seq == max_sack)
5415                                rst_seq_match = true;
5416                }
5417
5418                if (rst_seq_match)
5419                        tcp_reset(sk);
5420                else {
5421                        /* Disable TFO if RST is out-of-order
5422                         * and no data has been received
5423                         * for current active TFO socket
5424                         */
5425                        if (tp->syn_fastopen && !tp->data_segs_in &&
5426                            sk->sk_state == TCP_ESTABLISHED)
5427                                tcp_fastopen_active_disable(sk);
5428                        tcp_send_challenge_ack(sk, skb);
5429                }
5430                goto discard;
5431        }
5432
5433        /* step 3: check security and precedence [ignored] */
5434
5435        /* step 4: Check for a SYN
5436         * RFC 5961 4.2 : Send a challenge ack
5437         */
5438        if (th->syn) {
5439syn_challenge:
5440                if (syn_inerr)
5441                        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5442                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5443                tcp_send_challenge_ack(sk, skb);
5444                goto discard;
5445        }
5446
5447        return true;
5448
5449discard:
5450        tcp_drop(sk, skb);
5451        return false;
5452}
5453
5454/*
5455 *      TCP receive function for the ESTABLISHED state.
5456 *
5457 *      It is split into a fast path and a slow path. The fast path is
5458 *      disabled when:
5459 *      - A zero window was announced from us - zero window probing
5460 *        is only handled properly in the slow path.
5461 *      - Out of order segments arrived.
5462 *      - Urgent data is expected.
5463 *      - There is no buffer space left
5464 *      - Unexpected TCP flags/window values/header lengths are received
5465 *        (detected by checking the TCP header against pred_flags)
5466 *      - Data is sent in both directions. Fast path only supports pure senders
5467 *        or pure receivers (this means either the sequence number or the ack
5468 *        value must stay constant)
5469 *      - Unexpected TCP option.
5470 *
5471 *      When these conditions are not satisfied it drops into a standard
5472 *      receive procedure patterned after RFC793 to handle all cases.
5473 *      The first three cases are guaranteed by proper pred_flags setting,
5474 *      the rest is checked inline. Fast processing is turned on in
5475 *      tcp_data_queue when everything is OK.
5476 */
5477void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5478{
5479        const struct tcphdr *th = (const struct tcphdr *)skb->data;
5480        struct tcp_sock *tp = tcp_sk(sk);
5481        unsigned int len = skb->len;
5482
5483        /* TCP congestion window tracking */
5484        trace_tcp_probe(sk, skb);
5485
5486        tcp_mstamp_refresh(tp);
5487        if (unlikely(!sk->sk_rx_dst))
5488                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5489        /*
5490         *      Header prediction.
5491         *      The code loosely follows the one in the famous
5492         *      "30 instruction TCP receive" Van Jacobson mail.
5493         *
5494         *      Van's trick is to deposit buffers into socket queue
5495         *      on a device interrupt, to call tcp_recv function
5496         *      on the receive process context and checksum and copy
5497         *      the buffer to user space. smart...
5498         *
5499         *      Our current scheme is not silly either but we take the
5500         *      extra cost of the net_bh soft interrupt processing...
5501         *      We do checksum and copy also but from device to kernel.
5502         */
5503
5504        tp->rx_opt.saw_tstamp = 0;
5505
5506        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5507         *      if header_prediction is to be made
5508         *      'S' will always be tp->tcp_header_len >> 2
5509         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5510         *  turn it off (when there are holes in the receive
5511         *       space for instance)
5512         *      PSH flag is ignored.
5513         */
5514
5515        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5516            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5517            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5518                int tcp_header_len = tp->tcp_header_len;
5519
5520                /* Timestamp header prediction: tcp_header_len
5521                 * is automatically equal to th->doff*4 due to pred_flags
5522                 * match.
5523                 */
5524
5525                /* Check timestamp */
5526                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5527                        /* No? Slow path! */
5528                        if (!tcp_parse_aligned_timestamp(tp, th))
5529                                goto slow_path;
5530
5531                        /* If PAWS failed, check it more carefully in slow path */
5532                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5533                                goto slow_path;
5534
5535                        /* DO NOT update ts_recent here, if checksum fails
5536                         * and timestamp was corrupted part, it will result
5537                         * in a hung connection since we will drop all
5538                         * future packets due to the PAWS test.
5539                         */
5540                }
5541
5542                if (len <= tcp_header_len) {
5543                        /* Bulk data transfer: sender */
5544                        if (len == tcp_header_len) {
5545                                /* Predicted packet is in window by definition.
5546                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5547                                 * Hence, check seq<=rcv_wup reduces to:
5548                                 */
5549                                if (tcp_header_len ==
5550                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5551                                    tp->rcv_nxt == tp->rcv_wup)
5552                                        tcp_store_ts_recent(tp);
5553
5554                                /* We know that such packets are checksummed
5555                                 * on entry.
5556                                 */
5557                                tcp_ack(sk, skb, 0);
5558                                __kfree_skb(skb);
5559                                tcp_data_snd_check(sk);
5560                                /* When receiving pure ack in fast path, update
5561                                 * last ts ecr directly instead of calling
5562                                 * tcp_rcv_rtt_measure_ts()
5563                                 */
5564                                tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5565                                return;
5566                        } else { /* Header too small */
5567                                TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5568                                goto discard;
5569                        }
5570                } else {
5571                        int eaten = 0;
5572                        bool fragstolen = false;
5573
5574                        if (tcp_checksum_complete(skb))
5575                                goto csum_error;
5576
5577                        if ((int)skb->truesize > sk->sk_forward_alloc)
5578                                goto step5;
5579
5580                        /* Predicted packet is in window by definition.
5581                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5582                         * Hence, check seq<=rcv_wup reduces to:
5583                         */
5584                        if (tcp_header_len ==
5585                            (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5586                            tp->rcv_nxt == tp->rcv_wup)
5587                                tcp_store_ts_recent(tp);
5588
5589                        tcp_rcv_rtt_measure_ts(sk, skb);
5590
5591                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5592
5593                        /* Bulk data transfer: receiver */
5594                        eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5595                                              &fragstolen);
5596
5597                        tcp_event_data_recv(sk, skb);
5598
5599                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5600                                /* Well, only one small jumplet in fast path... */
5601                                tcp_ack(sk, skb, FLAG_DATA);
5602                                tcp_data_snd_check(sk);
5603                                if (!inet_csk_ack_scheduled(sk))
5604                                        goto no_ack;
5605                        }
5606
5607                        __tcp_ack_snd_check(sk, 0);
5608no_ack:
5609                        if (eaten)
5610                                kfree_skb_partial(skb, fragstolen);
5611                        tcp_data_ready(sk);
5612                        return;
5613                }
5614        }
5615
5616slow_path:
5617        if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5618                goto csum_error;
5619
5620        if (!th->ack && !th->rst && !th->syn)
5621                goto discard;
5622
5623        /*
5624         *      Standard slow path.
5625         */
5626
5627        if (!tcp_validate_incoming(sk, skb, th, 1))
5628                return;
5629
5630step5:
5631        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5632                goto discard;
5633
5634        tcp_rcv_rtt_measure_ts(sk, skb);
5635
5636        /* Process urgent data. */
5637        tcp_urg(sk, skb, th);
5638
5639        /* step 7: process the segment text */
5640        tcp_data_queue(sk, skb);
5641
5642        tcp_data_snd_check(sk);
5643        tcp_ack_snd_check(sk);
5644        return;
5645
5646csum_error:
5647        TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5648        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5649
5650discard:
5651        tcp_drop(sk, skb);
5652}
5653EXPORT_SYMBOL(tcp_rcv_established);
5654
5655void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5656{
5657        struct tcp_sock *tp = tcp_sk(sk);
5658        struct inet_connection_sock *icsk = inet_csk(sk);
5659
5660        tcp_set_state(sk, TCP_ESTABLISHED);
5661        icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5662
5663        if (skb) {
5664                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5665                security_inet_conn_established(sk, skb);
5666                sk_mark_napi_id(sk, skb);
5667        }
5668
5669        tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5670
5671        /* Prevent spurious tcp_cwnd_restart() on first data
5672         * packet.
5673         */
5674        tp->lsndtime = tcp_jiffies32;
5675
5676        if (sock_flag(sk, SOCK_KEEPOPEN))
5677                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5678
5679        if (!tp->rx_opt.snd_wscale)
5680                __tcp_fast_path_on(tp, tp->snd_wnd);
5681        else
5682                tp->pred_flags = 0;
5683}
5684
5685static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5686                                    struct tcp_fastopen_cookie *cookie)
5687{
5688        struct tcp_sock *tp = tcp_sk(sk);
5689        struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5690        u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5691        bool syn_drop = false;
5692
5693        if (mss == tp->rx_opt.user_mss) {
5694                struct tcp_options_received opt;
5695
5696                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5697                tcp_clear_options(&opt);
5698                opt.user_mss = opt.mss_clamp = 0;
5699                tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5700                mss = opt.mss_clamp;
5701        }
5702
5703        if (!tp->syn_fastopen) {
5704                /* Ignore an unsolicited cookie */
5705                cookie->len = -1;
5706        } else if (tp->total_retrans) {
5707                /* SYN timed out and the SYN-ACK neither has a cookie nor
5708                 * acknowledges data. Presumably the remote received only
5709                 * the retransmitted (regular) SYNs: either the original
5710                 * SYN-data or the corresponding SYN-ACK was dropped.
5711                 */
5712                syn_drop = (cookie->len < 0 && data);
5713        } else if (cookie->len < 0 && !tp->syn_data) {
5714                /* We requested a cookie but didn't get it. If we did not use
5715                 * the (old) exp opt format then try so next time (try_exp=1).
5716                 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5717                 */
5718                try_exp = tp->syn_fastopen_exp ? 2 : 1;
5719        }
5720
5721        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5722
5723        if (data) { /* Retransmit unacked data in SYN */
5724                skb_rbtree_walk_from(data) {
5725                        if (__tcp_retransmit_skb(sk, data, 1))
5726                                break;
5727                }
5728                tcp_rearm_rto(sk);
5729                NET_INC_STATS(sock_net(sk),
5730                                LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5731                return true;
5732        }
5733        tp->syn_data_acked = tp->syn_data;
5734        if (tp->syn_data_acked) {
5735                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5736                /* SYN-data is counted as two separate packets in tcp_ack() */
5737                if (tp->delivered > 1)
5738                        --tp->delivered;
5739        }
5740
5741        tcp_fastopen_add_skb(sk, synack);
5742
5743        return false;
5744}
5745
5746static void smc_check_reset_syn(struct tcp_sock *tp)
5747{
5748#if IS_ENABLED(CONFIG_SMC)
5749        if (static_branch_unlikely(&tcp_have_smc)) {
5750                if (tp->syn_smc && !tp->rx_opt.smc_ok)
5751                        tp->syn_smc = 0;
5752        }
5753#endif
5754}
5755
5756static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5757                                         const struct tcphdr *th)
5758{
5759        struct inet_connection_sock *icsk = inet_csk(sk);
5760        struct tcp_sock *tp = tcp_sk(sk);
5761        struct tcp_fastopen_cookie foc = { .len = -1 };
5762        int saved_clamp = tp->rx_opt.mss_clamp;
5763        bool fastopen_fail;
5764
5765        tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5766        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5767                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5768
5769        if (th->ack) {
5770                /* rfc793:
5771                 * "If the state is SYN-SENT then
5772                 *    first check the ACK bit
5773                 *      If the ACK bit is set
5774                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5775                 *        a reset (unless the RST bit is set, if so drop
5776                 *        the segment and return)"
5777                 */
5778                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5779                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5780                        goto reset_and_undo;
5781
5782                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5783                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5784                             tcp_time_stamp(tp))) {
5785                        NET_INC_STATS(sock_net(sk),
5786                                        LINUX_MIB_PAWSACTIVEREJECTED);
5787                        goto reset_and_undo;
5788                }
5789
5790                /* Now ACK is acceptable.
5791                 *
5792                 * "If the RST bit is set
5793                 *    If the ACK was acceptable then signal the user "error:
5794                 *    connection reset", drop the segment, enter CLOSED state,
5795                 *    delete TCB, and return."
5796                 */
5797
5798                if (th->rst) {
5799                        tcp_reset(sk);
5800                        goto discard;
5801                }
5802
5803                /* rfc793:
5804                 *   "fifth, if neither of the SYN or RST bits is set then
5805                 *    drop the segment and return."
5806                 *
5807                 *    See note below!
5808                 *                                        --ANK(990513)
5809                 */
5810                if (!th->syn)
5811                        goto discard_and_undo;
5812
5813                /* rfc793:
5814                 *   "If the SYN bit is on ...
5815                 *    are acceptable then ...
5816                 *    (our SYN has been ACKed), change the connection
5817                 *    state to ESTABLISHED..."
5818                 */
5819
5820                tcp_ecn_rcv_synack(tp, th);
5821
5822                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5823                tcp_ack(sk, skb, FLAG_SLOWPATH);
5824
5825                /* Ok.. it's good. Set up sequence numbers and
5826                 * move to established.
5827                 */
5828                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5829                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5830
5831                /* RFC1323: The window in SYN & SYN/ACK segments is
5832                 * never scaled.
5833                 */
5834                tp->snd_wnd = ntohs(th->window);
5835
5836                if (!tp->rx_opt.wscale_ok) {
5837                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5838                        tp->window_clamp = min(tp->window_clamp, 65535U);
5839                }
5840
5841                if (tp->rx_opt.saw_tstamp) {
5842                        tp->rx_opt.tstamp_ok       = 1;
5843                        tp->tcp_header_len =
5844                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5845                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5846                        tcp_store_ts_recent(tp);
5847                } else {
5848                        tp->tcp_header_len = sizeof(struct tcphdr);
5849                }
5850
5851                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5852                tcp_initialize_rcv_mss(sk);
5853
5854                /* Remember, tcp_poll() does not lock socket!
5855                 * Change state from SYN-SENT only after copied_seq
5856                 * is initialized. */
5857                tp->copied_seq = tp->rcv_nxt;
5858
5859                smc_check_reset_syn(tp);
5860
5861                smp_mb();
5862
5863                tcp_finish_connect(sk, skb);
5864
5865                fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5866                                tcp_rcv_fastopen_synack(sk, skb, &foc);
5867
5868                if (!sock_flag(sk, SOCK_DEAD)) {
5869                        sk->sk_state_change(sk);
5870                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5871                }
5872                if (fastopen_fail)
5873                        return -1;
5874                if (sk->sk_write_pending ||
5875                    icsk->icsk_accept_queue.rskq_defer_accept ||
5876                    icsk->icsk_ack.pingpong) {
5877                        /* Save one ACK. Data will be ready after
5878                         * several ticks, if write_pending is set.
5879                         *
5880                         * It may be deleted, but with this feature tcpdumps
5881                         * look so _wonderfully_ clever, that I was not able
5882                         * to stand against the temptation 8)     --ANK
5883                         */
5884                        inet_csk_schedule_ack(sk);
5885                        tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5886                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5887                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5888
5889discard:
5890                        tcp_drop(sk, skb);
5891                        return 0;
5892                } else {
5893                        tcp_send_ack(sk);
5894                }
5895                return -1;
5896        }
5897
5898        /* No ACK in the segment */
5899
5900        if (th->rst) {
5901                /* rfc793:
5902                 * "If the RST bit is set
5903                 *
5904                 *      Otherwise (no ACK) drop the segment and return."
5905                 */
5906
5907                goto discard_and_undo;
5908        }
5909
5910        /* PAWS check. */
5911        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5912            tcp_paws_reject(&tp->rx_opt, 0))
5913                goto discard_and_undo;
5914
5915        if (th->syn) {
5916                /* We see SYN without ACK. It is attempt of
5917                 * simultaneous connect with crossed SYNs.
5918                 * Particularly, it can be connect to self.
5919                 */
5920                tcp_set_state(sk, TCP_SYN_RECV);
5921
5922                if (tp->rx_opt.saw_tstamp) {
5923                        tp->rx_opt.tstamp_ok = 1;
5924                        tcp_store_ts_recent(tp);
5925                        tp->tcp_header_len =
5926                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5927                } else {
5928                        tp->tcp_header_len = sizeof(struct tcphdr);
5929                }
5930
5931                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5932                tp->copied_seq = tp->rcv_nxt;
5933                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5934
5935                /* RFC1323: The window in SYN & SYN/ACK segments is
5936                 * never scaled.
5937                 */
5938                tp->snd_wnd    = ntohs(th->window);
5939                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5940                tp->max_window = tp->snd_wnd;
5941
5942                tcp_ecn_rcv_syn(tp, th);
5943
5944                tcp_mtup_init(sk);
5945                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5946                tcp_initialize_rcv_mss(sk);
5947
5948                tcp_send_synack(sk);
5949#if 0
5950                /* Note, we could accept data and URG from this segment.
5951                 * There are no obstacles to make this (except that we must
5952                 * either change tcp_recvmsg() to prevent it from returning data
5953                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5954                 *
5955                 * However, if we ignore data in ACKless segments sometimes,
5956                 * we have no reasons to accept it sometimes.
5957                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5958                 * is not flawless. So, discard packet for sanity.
5959                 * Uncomment this return to process the data.
5960                 */
5961                return -1;
5962#else
5963                goto discard;
5964#endif
5965        }
5966        /* "fifth, if neither of the SYN or RST bits is set then
5967         * drop the segment and return."
5968         */
5969
5970discard_and_undo:
5971        tcp_clear_options(&tp->rx_opt);
5972        tp->rx_opt.mss_clamp = saved_clamp;
5973        goto discard;
5974
5975reset_and_undo:
5976        tcp_clear_options(&tp->rx_opt);
5977        tp->rx_opt.mss_clamp = saved_clamp;
5978        return 1;
5979}
5980
5981/*
5982 *      This function implements the receiving procedure of RFC 793 for
5983 *      all states except ESTABLISHED and TIME_WAIT.
5984 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5985 *      address independent.
5986 */
5987
5988int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5989{
5990        struct tcp_sock *tp = tcp_sk(sk);
5991        struct inet_connection_sock *icsk = inet_csk(sk);
5992        const struct tcphdr *th = tcp_hdr(skb);
5993        struct request_sock *req;
5994        int queued = 0;
5995        bool acceptable;
5996
5997        switch (sk->sk_state) {
5998        case TCP_CLOSE:
5999                goto discard;
6000
6001        case TCP_LISTEN:
6002                if (th->ack)
6003                        return 1;
6004
6005                if (th->rst)
6006                        goto discard;
6007
6008                if (th->syn) {
6009                        if (th->fin)
6010                                goto discard;
6011                        /* It is possible that we process SYN packets from backlog,
6012                         * so we need to make sure to disable BH and RCU right there.
6013                         */
6014                        rcu_read_lock();
6015                        local_bh_disable();
6016                        acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6017                        local_bh_enable();
6018                        rcu_read_unlock();
6019
6020                        if (!acceptable)
6021                                return 1;
6022                        consume_skb(skb);
6023                        return 0;
6024                }
6025                goto discard;
6026
6027        case TCP_SYN_SENT:
6028                tp->rx_opt.saw_tstamp = 0;
6029                tcp_mstamp_refresh(tp);
6030                queued = tcp_rcv_synsent_state_process(sk, skb, th);
6031                if (queued >= 0)
6032                        return queued;
6033
6034                /* Do step6 onward by hand. */
6035                tcp_urg(sk, skb, th);
6036                __kfree_skb(skb);
6037                tcp_data_snd_check(sk);
6038                return 0;
6039        }
6040
6041        tcp_mstamp_refresh(tp);
6042        tp->rx_opt.saw_tstamp = 0;
6043        req = tp->fastopen_rsk;
6044        if (req) {
6045                bool req_stolen;
6046
6047                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6048                    sk->sk_state != TCP_FIN_WAIT1);
6049
6050                if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6051                        goto discard;
6052        }
6053
6054        if (!th->ack && !th->rst && !th->syn)
6055                goto discard;
6056
6057        if (!tcp_validate_incoming(sk, skb, th, 0))
6058                return 0;
6059
6060        /* step 5: check the ACK field */
6061        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6062                                      FLAG_UPDATE_TS_RECENT |
6063                                      FLAG_NO_CHALLENGE_ACK) > 0;
6064
6065        if (!acceptable) {
6066                if (sk->sk_state == TCP_SYN_RECV)
6067                        return 1;       /* send one RST */
6068                tcp_send_challenge_ack(sk, skb);
6069                goto discard;
6070        }
6071        switch (sk->sk_state) {
6072        case TCP_SYN_RECV:
6073                tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6074                if (!tp->srtt_us)
6075                        tcp_synack_rtt_meas(sk, req);
6076
6077                /* Once we leave TCP_SYN_RECV, we no longer need req
6078                 * so release it.
6079                 */
6080                if (req) {
6081                        inet_csk(sk)->icsk_retransmits = 0;
6082                        reqsk_fastopen_remove(sk, req, false);
6083                        /* Re-arm the timer because data may have been sent out.
6084                         * This is similar to the regular data transmission case
6085                         * when new data has just been ack'ed.
6086                         *
6087                         * (TFO) - we could try to be more aggressive and
6088                         * retransmitting any data sooner based on when they
6089                         * are sent out.
6090                         */
6091                        tcp_rearm_rto(sk);
6092                } else {
6093                        tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6094                        tp->copied_seq = tp->rcv_nxt;
6095                }
6096                smp_mb();
6097                tcp_set_state(sk, TCP_ESTABLISHED);
6098                sk->sk_state_change(sk);
6099
6100                /* Note, that this wakeup is only for marginal crossed SYN case.
6101                 * Passively open sockets are not waked up, because
6102                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6103                 */
6104                if (sk->sk_socket)
6105                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6106
6107                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6108                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6109                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6110
6111                if (tp->rx_opt.tstamp_ok)
6112                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6113
6114                if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6115                        tcp_update_pacing_rate(sk);
6116
6117                /* Prevent spurious tcp_cwnd_restart() on first data packet */
6118                tp->lsndtime = tcp_jiffies32;
6119
6120                tcp_initialize_rcv_mss(sk);
6121                tcp_fast_path_on(tp);
6122                break;
6123
6124        case TCP_FIN_WAIT1: {
6125                int tmo;
6126
6127                /* If we enter the TCP_FIN_WAIT1 state and we are a
6128                 * Fast Open socket and this is the first acceptable
6129                 * ACK we have received, this would have acknowledged
6130                 * our SYNACK so stop the SYNACK timer.
6131                 */
6132                if (req) {
6133                        /* We no longer need the request sock. */
6134                        reqsk_fastopen_remove(sk, req, false);
6135                        tcp_rearm_rto(sk);
6136                }
6137                if (tp->snd_una != tp->write_seq)
6138                        break;
6139
6140                tcp_set_state(sk, TCP_FIN_WAIT2);
6141                sk->sk_shutdown |= SEND_SHUTDOWN;
6142
6143                sk_dst_confirm(sk);
6144
6145                if (!sock_flag(sk, SOCK_DEAD)) {
6146                        /* Wake up lingering close() */
6147                        sk->sk_state_change(sk);
6148                        break;
6149                }
6150
6151                if (tp->linger2 < 0) {
6152                        tcp_done(sk);
6153                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6154                        return 1;
6155                }
6156                if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6157                    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6158                        /* Receive out of order FIN after close() */
6159                        if (tp->syn_fastopen && th->fin)
6160                                tcp_fastopen_active_disable(sk);
6161                        tcp_done(sk);
6162                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6163                        return 1;
6164                }
6165
6166                tmo = tcp_fin_time(sk);
6167                if (tmo > TCP_TIMEWAIT_LEN) {
6168                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6169                } else if (th->fin || sock_owned_by_user(sk)) {
6170                        /* Bad case. We could lose such FIN otherwise.
6171                         * It is not a big problem, but it looks confusing
6172                         * and not so rare event. We still can lose it now,
6173                         * if it spins in bh_lock_sock(), but it is really
6174                         * marginal case.
6175                         */
6176                        inet_csk_reset_keepalive_timer(sk, tmo);
6177                } else {
6178                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6179                        goto discard;
6180                }
6181                break;
6182        }
6183
6184        case TCP_CLOSING:
6185                if (tp->snd_una == tp->write_seq) {
6186                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6187                        goto discard;
6188                }
6189                break;
6190
6191        case TCP_LAST_ACK:
6192                if (tp->snd_una == tp->write_seq) {
6193                        tcp_update_metrics(sk);
6194                        tcp_done(sk);
6195                        goto discard;
6196                }
6197                break;
6198        }
6199
6200        /* step 6: check the URG bit */
6201        tcp_urg(sk, skb, th);
6202
6203        /* step 7: process the segment text */
6204        switch (sk->sk_state) {
6205        case TCP_CLOSE_WAIT:
6206        case TCP_CLOSING:
6207        case TCP_LAST_ACK:
6208                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6209                        break;
6210                /* fall through */
6211        case TCP_FIN_WAIT1:
6212        case TCP_FIN_WAIT2:
6213                /* RFC 793 says to queue data in these states,
6214                 * RFC 1122 says we MUST send a reset.
6215                 * BSD 4.4 also does reset.
6216                 */
6217                if (sk->sk_shutdown & RCV_SHUTDOWN) {
6218                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6219                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6220                                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6221                                tcp_reset(sk);
6222                                return 1;
6223                        }
6224                }
6225                /* Fall through */
6226        case TCP_ESTABLISHED:
6227                tcp_data_queue(sk, skb);
6228                queued = 1;
6229                break;
6230        }
6231
6232        /* tcp_data could move socket to TIME-WAIT */
6233        if (sk->sk_state != TCP_CLOSE) {
6234                tcp_data_snd_check(sk);
6235                tcp_ack_snd_check(sk);
6236        }
6237
6238        if (!queued) {
6239discard:
6240                tcp_drop(sk, skb);
6241        }
6242        return 0;
6243}
6244EXPORT_SYMBOL(tcp_rcv_state_process);
6245
6246static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6247{
6248        struct inet_request_sock *ireq = inet_rsk(req);
6249
6250        if (family == AF_INET)
6251                net_dbg_ratelimited("drop open request from %pI4/%u\n",
6252                                    &ireq->ir_rmt_addr, port);
6253#if IS_ENABLED(CONFIG_IPV6)
6254        else if (family == AF_INET6)
6255                net_dbg_ratelimited("drop open request from %pI6/%u\n",
6256                                    &ireq->ir_v6_rmt_addr, port);
6257#endif
6258}
6259
6260/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6261 *
6262 * If we receive a SYN packet with these bits set, it means a
6263 * network is playing bad games with TOS bits. In order to
6264 * avoid possible false congestion notifications, we disable
6265 * TCP ECN negotiation.
6266 *
6267 * Exception: tcp_ca wants ECN. This is required for DCTCP
6268 * congestion control: Linux DCTCP asserts ECT on all packets,
6269 * including SYN, which is most optimal solution; however,
6270 * others, such as FreeBSD do not.
6271 */
6272static void tcp_ecn_create_request(struct request_sock *req,
6273                                   const struct sk_buff *skb,
6274                                   const struct sock *listen_sk,
6275                                   const struct dst_entry *dst)
6276{
6277        const struct tcphdr *th = tcp_hdr(skb);
6278        const struct net *net = sock_net(listen_sk);
6279        bool th_ecn = th->ece && th->cwr;
6280        bool ect, ecn_ok;
6281        u32 ecn_ok_dst;
6282
6283        if (!th_ecn)
6284                return;
6285
6286        ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6287        ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6288        ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6289
6290        if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6291            (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6292            tcp_bpf_ca_needs_ecn((struct sock *)req))
6293                inet_rsk(req)->ecn_ok = 1;
6294}
6295
6296static void tcp_openreq_init(struct request_sock *req,
6297                             const struct tcp_options_received *rx_opt,
6298                             struct sk_buff *skb, const struct sock *sk)
6299{
6300        struct inet_request_sock *ireq = inet_rsk(req);
6301
6302        req->rsk_rcv_wnd = 0;           /* So that tcp_send_synack() knows! */
6303        req->cookie_ts = 0;
6304        tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6305        tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6306        tcp_rsk(req)->snt_synack = tcp_clock_us();
6307        tcp_rsk(req)->last_oow_ack_time = 0;
6308        req->mss = rx_opt->mss_clamp;
6309        req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6310        ireq->tstamp_ok = rx_opt->tstamp_ok;
6311        ireq->sack_ok = rx_opt->sack_ok;
6312        ireq->snd_wscale = rx_opt->snd_wscale;
6313        ireq->wscale_ok = rx_opt->wscale_ok;
6314        ireq->acked = 0;
6315        ireq->ecn_ok = 0;
6316        ireq->ir_rmt_port = tcp_hdr(skb)->source;
6317        ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6318        ireq->ir_mark = inet_request_mark(sk, skb);
6319#if IS_ENABLED(CONFIG_SMC)
6320        ireq->smc_ok = rx_opt->smc_ok;
6321#endif
6322}
6323
6324struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6325                                      struct sock *sk_listener,
6326                                      bool attach_listener)
6327{
6328        struct request_sock *req = reqsk_alloc(ops, sk_listener,
6329                                               attach_listener);
6330
6331        if (req) {
6332                struct inet_request_sock *ireq = inet_rsk(req);
6333
6334                ireq->ireq_opt = NULL;
6335#if IS_ENABLED(CONFIG_IPV6)
6336                ireq->pktopts = NULL;
6337#endif
6338                atomic64_set(&ireq->ir_cookie, 0);
6339                ireq->ireq_state = TCP_NEW_SYN_RECV;
6340                write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6341                ireq->ireq_family = sk_listener->sk_family;
6342        }
6343
6344        return req;
6345}
6346EXPORT_SYMBOL(inet_reqsk_alloc);
6347
6348/*
6349 * Return true if a syncookie should be sent
6350 */
6351static bool tcp_syn_flood_action(const struct sock *sk,
6352                                 const struct sk_buff *skb,
6353                                 const char *proto)
6354{
6355        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6356        const char *msg = "Dropping request";
6357        bool want_cookie = false;
6358        struct net *net = sock_net(sk);
6359
6360#ifdef CONFIG_SYN_COOKIES
6361        if (net->ipv4.sysctl_tcp_syncookies) {
6362                msg = "Sending cookies";
6363                want_cookie = true;
6364                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6365        } else
6366#endif
6367                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6368
6369        if (!queue->synflood_warned &&
6370            net->ipv4.sysctl_tcp_syncookies != 2 &&
6371            xchg(&queue->synflood_warned, 1) == 0)
6372                net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6373                                     proto, ntohs(tcp_hdr(skb)->dest), msg);
6374
6375        return want_cookie;
6376}
6377
6378static void tcp_reqsk_record_syn(const struct sock *sk,
6379                                 struct request_sock *req,
6380                                 const struct sk_buff *skb)
6381{
6382        if (tcp_sk(sk)->save_syn) {
6383                u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6384                u32 *copy;
6385
6386                copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6387                if (copy) {
6388                        copy[0] = len;
6389                        memcpy(&copy[1], skb_network_header(skb), len);
6390                        req->saved_syn = copy;
6391                }
6392        }
6393}
6394
6395int tcp_conn_request(struct request_sock_ops *rsk_ops,
6396                     const struct tcp_request_sock_ops *af_ops,
6397                     struct sock *sk, struct sk_buff *skb)
6398{
6399        struct tcp_fastopen_cookie foc = { .len = -1 };
6400        __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6401        struct tcp_options_received tmp_opt;
6402        struct tcp_sock *tp = tcp_sk(sk);
6403        struct net *net = sock_net(sk);
6404        struct sock *fastopen_sk = NULL;
6405        struct request_sock *req;
6406        bool want_cookie = false;
6407        struct dst_entry *dst;
6408        struct flowi fl;
6409
6410        /* TW buckets are converted to open requests without
6411         * limitations, they conserve resources and peer is
6412         * evidently real one.
6413         */
6414        if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6415             inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6416                want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6417                if (!want_cookie)
6418                        goto drop;
6419        }
6420
6421        if (sk_acceptq_is_full(sk)) {
6422                NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6423                goto drop;
6424        }
6425
6426        req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6427        if (!req)
6428                goto drop;
6429
6430        tcp_rsk(req)->af_specific = af_ops;
6431        tcp_rsk(req)->ts_off = 0;
6432
6433        tcp_clear_options(&tmp_opt);
6434        tmp_opt.mss_clamp = af_ops->mss_clamp;
6435        tmp_opt.user_mss  = tp->rx_opt.user_mss;
6436        tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6437                          want_cookie ? NULL : &foc);
6438
6439        if (want_cookie && !tmp_opt.saw_tstamp)
6440                tcp_clear_options(&tmp_opt);
6441
6442        if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6443                tmp_opt.smc_ok = 0;
6444
6445        tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6446        tcp_openreq_init(req, &tmp_opt, skb, sk);
6447        inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6448
6449        /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6450        inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6451
6452        af_ops->init_req(req, sk, skb);
6453
6454        if (security_inet_conn_request(sk, skb, req))
6455                goto drop_and_free;
6456
6457        if (tmp_opt.tstamp_ok)
6458                tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6459
6460        dst = af_ops->route_req(sk, &fl, req);
6461        if (!dst)
6462                goto drop_and_free;
6463
6464        if (!want_cookie && !isn) {
6465                /* Kill the following clause, if you dislike this way. */
6466                if (!net->ipv4.sysctl_tcp_syncookies &&
6467                    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6468                     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6469                    !tcp_peer_is_proven(req, dst)) {
6470                        /* Without syncookies last quarter of
6471                         * backlog is filled with destinations,
6472                         * proven to be alive.
6473                         * It means that we continue to communicate
6474                         * to destinations, already remembered
6475                         * to the moment of synflood.
6476                         */
6477                        pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6478                                    rsk_ops->family);
6479                        goto drop_and_release;
6480                }
6481
6482                isn = af_ops->init_seq(skb);
6483        }
6484
6485        tcp_ecn_create_request(req, skb, sk, dst);
6486
6487        if (want_cookie) {
6488                isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6489                req->cookie_ts = tmp_opt.tstamp_ok;
6490                if (!tmp_opt.tstamp_ok)
6491                        inet_rsk(req)->ecn_ok = 0;
6492        }
6493
6494        tcp_rsk(req)->snt_isn = isn;
6495        tcp_rsk(req)->txhash = net_tx_rndhash();
6496        tcp_openreq_init_rwin(req, sk, dst);
6497        sk_rx_queue_set(req_to_sk(req), skb);
6498        if (!want_cookie) {
6499                tcp_reqsk_record_syn(sk, req, skb);
6500                fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6501        }
6502        if (fastopen_sk) {
6503                af_ops->send_synack(fastopen_sk, dst, &fl, req,
6504                                    &foc, TCP_SYNACK_FASTOPEN);
6505                /* Add the child socket directly into the accept queue */
6506                inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6507                sk->sk_data_ready(sk);
6508                bh_unlock_sock(fastopen_sk);
6509                sock_put(fastopen_sk);
6510        } else {
6511                tcp_rsk(req)->tfo_listener = false;
6512                if (!want_cookie)
6513                        inet_csk_reqsk_queue_hash_add(sk, req,
6514                                tcp_timeout_init((struct sock *)req));
6515                af_ops->send_synack(sk, dst, &fl, req, &foc,
6516                                    !want_cookie ? TCP_SYNACK_NORMAL :
6517                                                   TCP_SYNACK_COOKIE);
6518                if (want_cookie) {
6519                        reqsk_free(req);
6520                        return 0;
6521                }
6522        }
6523        reqsk_put(req);
6524        return 0;
6525
6526drop_and_release:
6527        dst_release(dst);
6528drop_and_free:
6529        reqsk_free(req);
6530drop:
6531        tcp_listendrop(sk);
6532        return 0;
6533}
6534EXPORT_SYMBOL(tcp_conn_request);
6535