linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include "callchain.h"
   7#include "debug.h"
   8#include "event.h"
   9#include "evsel.h"
  10#include "hist.h"
  11#include "machine.h"
  12#include "map.h"
  13#include "sort.h"
  14#include "strlist.h"
  15#include "thread.h"
  16#include "vdso.h"
  17#include <stdbool.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <unistd.h>
  21#include "unwind.h"
  22#include "linux/hash.h"
  23#include "asm/bug.h"
  24
  25#include "sane_ctype.h"
  26#include <symbol/kallsyms.h>
  27#include <linux/mman.h>
  28
  29static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  30
  31static void dsos__init(struct dsos *dsos)
  32{
  33        INIT_LIST_HEAD(&dsos->head);
  34        dsos->root = RB_ROOT;
  35        init_rwsem(&dsos->lock);
  36}
  37
  38static void machine__threads_init(struct machine *machine)
  39{
  40        int i;
  41
  42        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  43                struct threads *threads = &machine->threads[i];
  44                threads->entries = RB_ROOT;
  45                init_rwsem(&threads->lock);
  46                threads->nr = 0;
  47                INIT_LIST_HEAD(&threads->dead);
  48                threads->last_match = NULL;
  49        }
  50}
  51
  52static int machine__set_mmap_name(struct machine *machine)
  53{
  54        if (machine__is_host(machine))
  55                machine->mmap_name = strdup("[kernel.kallsyms]");
  56        else if (machine__is_default_guest(machine))
  57                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  58        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  59                          machine->pid) < 0)
  60                machine->mmap_name = NULL;
  61
  62        return machine->mmap_name ? 0 : -ENOMEM;
  63}
  64
  65int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  66{
  67        int err = -ENOMEM;
  68
  69        memset(machine, 0, sizeof(*machine));
  70        map_groups__init(&machine->kmaps, machine);
  71        RB_CLEAR_NODE(&machine->rb_node);
  72        dsos__init(&machine->dsos);
  73
  74        machine__threads_init(machine);
  75
  76        machine->vdso_info = NULL;
  77        machine->env = NULL;
  78
  79        machine->pid = pid;
  80
  81        machine->id_hdr_size = 0;
  82        machine->kptr_restrict_warned = false;
  83        machine->comm_exec = false;
  84        machine->kernel_start = 0;
  85        machine->vmlinux_map = NULL;
  86
  87        machine->root_dir = strdup(root_dir);
  88        if (machine->root_dir == NULL)
  89                return -ENOMEM;
  90
  91        if (machine__set_mmap_name(machine))
  92                goto out;
  93
  94        if (pid != HOST_KERNEL_ID) {
  95                struct thread *thread = machine__findnew_thread(machine, -1,
  96                                                                pid);
  97                char comm[64];
  98
  99                if (thread == NULL)
 100                        goto out;
 101
 102                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 103                thread__set_comm(thread, comm, 0);
 104                thread__put(thread);
 105        }
 106
 107        machine->current_tid = NULL;
 108        err = 0;
 109
 110out:
 111        if (err) {
 112                zfree(&machine->root_dir);
 113                zfree(&machine->mmap_name);
 114        }
 115        return 0;
 116}
 117
 118struct machine *machine__new_host(void)
 119{
 120        struct machine *machine = malloc(sizeof(*machine));
 121
 122        if (machine != NULL) {
 123                machine__init(machine, "", HOST_KERNEL_ID);
 124
 125                if (machine__create_kernel_maps(machine) < 0)
 126                        goto out_delete;
 127        }
 128
 129        return machine;
 130out_delete:
 131        free(machine);
 132        return NULL;
 133}
 134
 135struct machine *machine__new_kallsyms(void)
 136{
 137        struct machine *machine = machine__new_host();
 138        /*
 139         * FIXME:
 140         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
 141         *    ask for not using the kcore parsing code, once this one is fixed
 142         *    to create a map per module.
 143         */
 144        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 145                machine__delete(machine);
 146                machine = NULL;
 147        }
 148
 149        return machine;
 150}
 151
 152static void dsos__purge(struct dsos *dsos)
 153{
 154        struct dso *pos, *n;
 155
 156        down_write(&dsos->lock);
 157
 158        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 159                RB_CLEAR_NODE(&pos->rb_node);
 160                pos->root = NULL;
 161                list_del_init(&pos->node);
 162                dso__put(pos);
 163        }
 164
 165        up_write(&dsos->lock);
 166}
 167
 168static void dsos__exit(struct dsos *dsos)
 169{
 170        dsos__purge(dsos);
 171        exit_rwsem(&dsos->lock);
 172}
 173
 174void machine__delete_threads(struct machine *machine)
 175{
 176        struct rb_node *nd;
 177        int i;
 178
 179        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 180                struct threads *threads = &machine->threads[i];
 181                down_write(&threads->lock);
 182                nd = rb_first(&threads->entries);
 183                while (nd) {
 184                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 185
 186                        nd = rb_next(nd);
 187                        __machine__remove_thread(machine, t, false);
 188                }
 189                up_write(&threads->lock);
 190        }
 191}
 192
 193void machine__exit(struct machine *machine)
 194{
 195        int i;
 196
 197        if (machine == NULL)
 198                return;
 199
 200        machine__destroy_kernel_maps(machine);
 201        map_groups__exit(&machine->kmaps);
 202        dsos__exit(&machine->dsos);
 203        machine__exit_vdso(machine);
 204        zfree(&machine->root_dir);
 205        zfree(&machine->mmap_name);
 206        zfree(&machine->current_tid);
 207
 208        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 209                struct threads *threads = &machine->threads[i];
 210                exit_rwsem(&threads->lock);
 211        }
 212}
 213
 214void machine__delete(struct machine *machine)
 215{
 216        if (machine) {
 217                machine__exit(machine);
 218                free(machine);
 219        }
 220}
 221
 222void machines__init(struct machines *machines)
 223{
 224        machine__init(&machines->host, "", HOST_KERNEL_ID);
 225        machines->guests = RB_ROOT;
 226}
 227
 228void machines__exit(struct machines *machines)
 229{
 230        machine__exit(&machines->host);
 231        /* XXX exit guest */
 232}
 233
 234struct machine *machines__add(struct machines *machines, pid_t pid,
 235                              const char *root_dir)
 236{
 237        struct rb_node **p = &machines->guests.rb_node;
 238        struct rb_node *parent = NULL;
 239        struct machine *pos, *machine = malloc(sizeof(*machine));
 240
 241        if (machine == NULL)
 242                return NULL;
 243
 244        if (machine__init(machine, root_dir, pid) != 0) {
 245                free(machine);
 246                return NULL;
 247        }
 248
 249        while (*p != NULL) {
 250                parent = *p;
 251                pos = rb_entry(parent, struct machine, rb_node);
 252                if (pid < pos->pid)
 253                        p = &(*p)->rb_left;
 254                else
 255                        p = &(*p)->rb_right;
 256        }
 257
 258        rb_link_node(&machine->rb_node, parent, p);
 259        rb_insert_color(&machine->rb_node, &machines->guests);
 260
 261        return machine;
 262}
 263
 264void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 265{
 266        struct rb_node *nd;
 267
 268        machines->host.comm_exec = comm_exec;
 269
 270        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 271                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 272
 273                machine->comm_exec = comm_exec;
 274        }
 275}
 276
 277struct machine *machines__find(struct machines *machines, pid_t pid)
 278{
 279        struct rb_node **p = &machines->guests.rb_node;
 280        struct rb_node *parent = NULL;
 281        struct machine *machine;
 282        struct machine *default_machine = NULL;
 283
 284        if (pid == HOST_KERNEL_ID)
 285                return &machines->host;
 286
 287        while (*p != NULL) {
 288                parent = *p;
 289                machine = rb_entry(parent, struct machine, rb_node);
 290                if (pid < machine->pid)
 291                        p = &(*p)->rb_left;
 292                else if (pid > machine->pid)
 293                        p = &(*p)->rb_right;
 294                else
 295                        return machine;
 296                if (!machine->pid)
 297                        default_machine = machine;
 298        }
 299
 300        return default_machine;
 301}
 302
 303struct machine *machines__findnew(struct machines *machines, pid_t pid)
 304{
 305        char path[PATH_MAX];
 306        const char *root_dir = "";
 307        struct machine *machine = machines__find(machines, pid);
 308
 309        if (machine && (machine->pid == pid))
 310                goto out;
 311
 312        if ((pid != HOST_KERNEL_ID) &&
 313            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 314            (symbol_conf.guestmount)) {
 315                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 316                if (access(path, R_OK)) {
 317                        static struct strlist *seen;
 318
 319                        if (!seen)
 320                                seen = strlist__new(NULL, NULL);
 321
 322                        if (!strlist__has_entry(seen, path)) {
 323                                pr_err("Can't access file %s\n", path);
 324                                strlist__add(seen, path);
 325                        }
 326                        machine = NULL;
 327                        goto out;
 328                }
 329                root_dir = path;
 330        }
 331
 332        machine = machines__add(machines, pid, root_dir);
 333out:
 334        return machine;
 335}
 336
 337void machines__process_guests(struct machines *machines,
 338                              machine__process_t process, void *data)
 339{
 340        struct rb_node *nd;
 341
 342        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 343                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 344                process(pos, data);
 345        }
 346}
 347
 348void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 349{
 350        struct rb_node *node;
 351        struct machine *machine;
 352
 353        machines->host.id_hdr_size = id_hdr_size;
 354
 355        for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 356                machine = rb_entry(node, struct machine, rb_node);
 357                machine->id_hdr_size = id_hdr_size;
 358        }
 359
 360        return;
 361}
 362
 363static void machine__update_thread_pid(struct machine *machine,
 364                                       struct thread *th, pid_t pid)
 365{
 366        struct thread *leader;
 367
 368        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 369                return;
 370
 371        th->pid_ = pid;
 372
 373        if (th->pid_ == th->tid)
 374                return;
 375
 376        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 377        if (!leader)
 378                goto out_err;
 379
 380        if (!leader->mg)
 381                leader->mg = map_groups__new(machine);
 382
 383        if (!leader->mg)
 384                goto out_err;
 385
 386        if (th->mg == leader->mg)
 387                return;
 388
 389        if (th->mg) {
 390                /*
 391                 * Maps are created from MMAP events which provide the pid and
 392                 * tid.  Consequently there never should be any maps on a thread
 393                 * with an unknown pid.  Just print an error if there are.
 394                 */
 395                if (!map_groups__empty(th->mg))
 396                        pr_err("Discarding thread maps for %d:%d\n",
 397                               th->pid_, th->tid);
 398                map_groups__put(th->mg);
 399        }
 400
 401        th->mg = map_groups__get(leader->mg);
 402out_put:
 403        thread__put(leader);
 404        return;
 405out_err:
 406        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 407        goto out_put;
 408}
 409
 410/*
 411 * Front-end cache - TID lookups come in blocks,
 412 * so most of the time we dont have to look up
 413 * the full rbtree:
 414 */
 415static struct thread*
 416__threads__get_last_match(struct threads *threads, struct machine *machine,
 417                          int pid, int tid)
 418{
 419        struct thread *th;
 420
 421        th = threads->last_match;
 422        if (th != NULL) {
 423                if (th->tid == tid) {
 424                        machine__update_thread_pid(machine, th, pid);
 425                        return thread__get(th);
 426                }
 427
 428                threads->last_match = NULL;
 429        }
 430
 431        return NULL;
 432}
 433
 434static struct thread*
 435threads__get_last_match(struct threads *threads, struct machine *machine,
 436                        int pid, int tid)
 437{
 438        struct thread *th = NULL;
 439
 440        if (perf_singlethreaded)
 441                th = __threads__get_last_match(threads, machine, pid, tid);
 442
 443        return th;
 444}
 445
 446static void
 447__threads__set_last_match(struct threads *threads, struct thread *th)
 448{
 449        threads->last_match = th;
 450}
 451
 452static void
 453threads__set_last_match(struct threads *threads, struct thread *th)
 454{
 455        if (perf_singlethreaded)
 456                __threads__set_last_match(threads, th);
 457}
 458
 459/*
 460 * Caller must eventually drop thread->refcnt returned with a successful
 461 * lookup/new thread inserted.
 462 */
 463static struct thread *____machine__findnew_thread(struct machine *machine,
 464                                                  struct threads *threads,
 465                                                  pid_t pid, pid_t tid,
 466                                                  bool create)
 467{
 468        struct rb_node **p = &threads->entries.rb_node;
 469        struct rb_node *parent = NULL;
 470        struct thread *th;
 471
 472        th = threads__get_last_match(threads, machine, pid, tid);
 473        if (th)
 474                return th;
 475
 476        while (*p != NULL) {
 477                parent = *p;
 478                th = rb_entry(parent, struct thread, rb_node);
 479
 480                if (th->tid == tid) {
 481                        threads__set_last_match(threads, th);
 482                        machine__update_thread_pid(machine, th, pid);
 483                        return thread__get(th);
 484                }
 485
 486                if (tid < th->tid)
 487                        p = &(*p)->rb_left;
 488                else
 489                        p = &(*p)->rb_right;
 490        }
 491
 492        if (!create)
 493                return NULL;
 494
 495        th = thread__new(pid, tid);
 496        if (th != NULL) {
 497                rb_link_node(&th->rb_node, parent, p);
 498                rb_insert_color(&th->rb_node, &threads->entries);
 499
 500                /*
 501                 * We have to initialize map_groups separately
 502                 * after rb tree is updated.
 503                 *
 504                 * The reason is that we call machine__findnew_thread
 505                 * within thread__init_map_groups to find the thread
 506                 * leader and that would screwed the rb tree.
 507                 */
 508                if (thread__init_map_groups(th, machine)) {
 509                        rb_erase_init(&th->rb_node, &threads->entries);
 510                        RB_CLEAR_NODE(&th->rb_node);
 511                        thread__put(th);
 512                        return NULL;
 513                }
 514                /*
 515                 * It is now in the rbtree, get a ref
 516                 */
 517                thread__get(th);
 518                threads__set_last_match(threads, th);
 519                ++threads->nr;
 520        }
 521
 522        return th;
 523}
 524
 525struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 526{
 527        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 528}
 529
 530struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 531                                       pid_t tid)
 532{
 533        struct threads *threads = machine__threads(machine, tid);
 534        struct thread *th;
 535
 536        down_write(&threads->lock);
 537        th = __machine__findnew_thread(machine, pid, tid);
 538        up_write(&threads->lock);
 539        return th;
 540}
 541
 542struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 543                                    pid_t tid)
 544{
 545        struct threads *threads = machine__threads(machine, tid);
 546        struct thread *th;
 547
 548        down_read(&threads->lock);
 549        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 550        up_read(&threads->lock);
 551        return th;
 552}
 553
 554struct comm *machine__thread_exec_comm(struct machine *machine,
 555                                       struct thread *thread)
 556{
 557        if (machine->comm_exec)
 558                return thread__exec_comm(thread);
 559        else
 560                return thread__comm(thread);
 561}
 562
 563int machine__process_comm_event(struct machine *machine, union perf_event *event,
 564                                struct perf_sample *sample)
 565{
 566        struct thread *thread = machine__findnew_thread(machine,
 567                                                        event->comm.pid,
 568                                                        event->comm.tid);
 569        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 570        int err = 0;
 571
 572        if (exec)
 573                machine->comm_exec = true;
 574
 575        if (dump_trace)
 576                perf_event__fprintf_comm(event, stdout);
 577
 578        if (thread == NULL ||
 579            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 580                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 581                err = -1;
 582        }
 583
 584        thread__put(thread);
 585
 586        return err;
 587}
 588
 589int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 590                                      union perf_event *event,
 591                                      struct perf_sample *sample __maybe_unused)
 592{
 593        struct thread *thread = machine__findnew_thread(machine,
 594                                                        event->namespaces.pid,
 595                                                        event->namespaces.tid);
 596        int err = 0;
 597
 598        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 599                  "\nWARNING: kernel seems to support more namespaces than perf"
 600                  " tool.\nTry updating the perf tool..\n\n");
 601
 602        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 603                  "\nWARNING: perf tool seems to support more namespaces than"
 604                  " the kernel.\nTry updating the kernel..\n\n");
 605
 606        if (dump_trace)
 607                perf_event__fprintf_namespaces(event, stdout);
 608
 609        if (thread == NULL ||
 610            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 611                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 612                err = -1;
 613        }
 614
 615        thread__put(thread);
 616
 617        return err;
 618}
 619
 620int machine__process_lost_event(struct machine *machine __maybe_unused,
 621                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 622{
 623        dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 624                    event->lost.id, event->lost.lost);
 625        return 0;
 626}
 627
 628int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 629                                        union perf_event *event, struct perf_sample *sample)
 630{
 631        dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 632                    sample->id, event->lost_samples.lost);
 633        return 0;
 634}
 635
 636static struct dso *machine__findnew_module_dso(struct machine *machine,
 637                                               struct kmod_path *m,
 638                                               const char *filename)
 639{
 640        struct dso *dso;
 641
 642        down_write(&machine->dsos.lock);
 643
 644        dso = __dsos__find(&machine->dsos, m->name, true);
 645        if (!dso) {
 646                dso = __dsos__addnew(&machine->dsos, m->name);
 647                if (dso == NULL)
 648                        goto out_unlock;
 649
 650                dso__set_module_info(dso, m, machine);
 651                dso__set_long_name(dso, strdup(filename), true);
 652        }
 653
 654        dso__get(dso);
 655out_unlock:
 656        up_write(&machine->dsos.lock);
 657        return dso;
 658}
 659
 660int machine__process_aux_event(struct machine *machine __maybe_unused,
 661                               union perf_event *event)
 662{
 663        if (dump_trace)
 664                perf_event__fprintf_aux(event, stdout);
 665        return 0;
 666}
 667
 668int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 669                                        union perf_event *event)
 670{
 671        if (dump_trace)
 672                perf_event__fprintf_itrace_start(event, stdout);
 673        return 0;
 674}
 675
 676int machine__process_switch_event(struct machine *machine __maybe_unused,
 677                                  union perf_event *event)
 678{
 679        if (dump_trace)
 680                perf_event__fprintf_switch(event, stdout);
 681        return 0;
 682}
 683
 684static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 685{
 686        const char *dup_filename;
 687
 688        if (!filename || !dso || !dso->long_name)
 689                return;
 690        if (dso->long_name[0] != '[')
 691                return;
 692        if (!strchr(filename, '/'))
 693                return;
 694
 695        dup_filename = strdup(filename);
 696        if (!dup_filename)
 697                return;
 698
 699        dso__set_long_name(dso, dup_filename, true);
 700}
 701
 702struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 703                                        const char *filename)
 704{
 705        struct map *map = NULL;
 706        struct dso *dso = NULL;
 707        struct kmod_path m;
 708
 709        if (kmod_path__parse_name(&m, filename))
 710                return NULL;
 711
 712        map = map_groups__find_by_name(&machine->kmaps, m.name);
 713        if (map) {
 714                /*
 715                 * If the map's dso is an offline module, give dso__load()
 716                 * a chance to find the file path of that module by fixing
 717                 * long_name.
 718                 */
 719                dso__adjust_kmod_long_name(map->dso, filename);
 720                goto out;
 721        }
 722
 723        dso = machine__findnew_module_dso(machine, &m, filename);
 724        if (dso == NULL)
 725                goto out;
 726
 727        map = map__new2(start, dso);
 728        if (map == NULL)
 729                goto out;
 730
 731        map_groups__insert(&machine->kmaps, map);
 732
 733        /* Put the map here because map_groups__insert alread got it */
 734        map__put(map);
 735out:
 736        /* put the dso here, corresponding to  machine__findnew_module_dso */
 737        dso__put(dso);
 738        free(m.name);
 739        return map;
 740}
 741
 742size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 743{
 744        struct rb_node *nd;
 745        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 746
 747        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 748                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 749                ret += __dsos__fprintf(&pos->dsos.head, fp);
 750        }
 751
 752        return ret;
 753}
 754
 755size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 756                                     bool (skip)(struct dso *dso, int parm), int parm)
 757{
 758        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 759}
 760
 761size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 762                                     bool (skip)(struct dso *dso, int parm), int parm)
 763{
 764        struct rb_node *nd;
 765        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 766
 767        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 768                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 769                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 770        }
 771        return ret;
 772}
 773
 774size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 775{
 776        int i;
 777        size_t printed = 0;
 778        struct dso *kdso = machine__kernel_map(machine)->dso;
 779
 780        if (kdso->has_build_id) {
 781                char filename[PATH_MAX];
 782                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 783                                           false))
 784                        printed += fprintf(fp, "[0] %s\n", filename);
 785        }
 786
 787        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 788                printed += fprintf(fp, "[%d] %s\n",
 789                                   i + kdso->has_build_id, vmlinux_path[i]);
 790
 791        return printed;
 792}
 793
 794size_t machine__fprintf(struct machine *machine, FILE *fp)
 795{
 796        struct rb_node *nd;
 797        size_t ret;
 798        int i;
 799
 800        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 801                struct threads *threads = &machine->threads[i];
 802
 803                down_read(&threads->lock);
 804
 805                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 806
 807                for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
 808                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 809
 810                        ret += thread__fprintf(pos, fp);
 811                }
 812
 813                up_read(&threads->lock);
 814        }
 815        return ret;
 816}
 817
 818static struct dso *machine__get_kernel(struct machine *machine)
 819{
 820        const char *vmlinux_name = machine->mmap_name;
 821        struct dso *kernel;
 822
 823        if (machine__is_host(machine)) {
 824                if (symbol_conf.vmlinux_name)
 825                        vmlinux_name = symbol_conf.vmlinux_name;
 826
 827                kernel = machine__findnew_kernel(machine, vmlinux_name,
 828                                                 "[kernel]", DSO_TYPE_KERNEL);
 829        } else {
 830                if (symbol_conf.default_guest_vmlinux_name)
 831                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 832
 833                kernel = machine__findnew_kernel(machine, vmlinux_name,
 834                                                 "[guest.kernel]",
 835                                                 DSO_TYPE_GUEST_KERNEL);
 836        }
 837
 838        if (kernel != NULL && (!kernel->has_build_id))
 839                dso__read_running_kernel_build_id(kernel, machine);
 840
 841        return kernel;
 842}
 843
 844struct process_args {
 845        u64 start;
 846};
 847
 848void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 849                                    size_t bufsz)
 850{
 851        if (machine__is_default_guest(machine))
 852                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 853        else
 854                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 855}
 856
 857const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 858
 859/* Figure out the start address of kernel map from /proc/kallsyms.
 860 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 861 * symbol_name if it's not that important.
 862 */
 863static int machine__get_running_kernel_start(struct machine *machine,
 864                                             const char **symbol_name, u64 *start)
 865{
 866        char filename[PATH_MAX];
 867        int i, err = -1;
 868        const char *name;
 869        u64 addr = 0;
 870
 871        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 872
 873        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 874                return 0;
 875
 876        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 877                err = kallsyms__get_function_start(filename, name, &addr);
 878                if (!err)
 879                        break;
 880        }
 881
 882        if (err)
 883                return -1;
 884
 885        if (symbol_name)
 886                *symbol_name = name;
 887
 888        *start = addr;
 889        return 0;
 890}
 891
 892int machine__create_extra_kernel_map(struct machine *machine,
 893                                     struct dso *kernel,
 894                                     struct extra_kernel_map *xm)
 895{
 896        struct kmap *kmap;
 897        struct map *map;
 898
 899        map = map__new2(xm->start, kernel);
 900        if (!map)
 901                return -1;
 902
 903        map->end   = xm->end;
 904        map->pgoff = xm->pgoff;
 905
 906        kmap = map__kmap(map);
 907
 908        kmap->kmaps = &machine->kmaps;
 909        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
 910
 911        map_groups__insert(&machine->kmaps, map);
 912
 913        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
 914                  kmap->name, map->start, map->end);
 915
 916        map__put(map);
 917
 918        return 0;
 919}
 920
 921static u64 find_entry_trampoline(struct dso *dso)
 922{
 923        /* Duplicates are removed so lookup all aliases */
 924        const char *syms[] = {
 925                "_entry_trampoline",
 926                "__entry_trampoline_start",
 927                "entry_SYSCALL_64_trampoline",
 928        };
 929        struct symbol *sym = dso__first_symbol(dso);
 930        unsigned int i;
 931
 932        for (; sym; sym = dso__next_symbol(sym)) {
 933                if (sym->binding != STB_GLOBAL)
 934                        continue;
 935                for (i = 0; i < ARRAY_SIZE(syms); i++) {
 936                        if (!strcmp(sym->name, syms[i]))
 937                                return sym->start;
 938                }
 939        }
 940
 941        return 0;
 942}
 943
 944/*
 945 * These values can be used for kernels that do not have symbols for the entry
 946 * trampolines in kallsyms.
 947 */
 948#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
 949#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
 950#define X86_64_ENTRY_TRAMPOLINE         0x6000
 951
 952/* Map x86_64 PTI entry trampolines */
 953int machine__map_x86_64_entry_trampolines(struct machine *machine,
 954                                          struct dso *kernel)
 955{
 956        struct map_groups *kmaps = &machine->kmaps;
 957        struct maps *maps = &kmaps->maps;
 958        int nr_cpus_avail, cpu;
 959        bool found = false;
 960        struct map *map;
 961        u64 pgoff;
 962
 963        /*
 964         * In the vmlinux case, pgoff is a virtual address which must now be
 965         * mapped to a vmlinux offset.
 966         */
 967        for (map = maps__first(maps); map; map = map__next(map)) {
 968                struct kmap *kmap = __map__kmap(map);
 969                struct map *dest_map;
 970
 971                if (!kmap || !is_entry_trampoline(kmap->name))
 972                        continue;
 973
 974                dest_map = map_groups__find(kmaps, map->pgoff);
 975                if (dest_map != map)
 976                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
 977                found = true;
 978        }
 979        if (found || machine->trampolines_mapped)
 980                return 0;
 981
 982        pgoff = find_entry_trampoline(kernel);
 983        if (!pgoff)
 984                return 0;
 985
 986        nr_cpus_avail = machine__nr_cpus_avail(machine);
 987
 988        /* Add a 1 page map for each CPU's entry trampoline */
 989        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
 990                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
 991                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
 992                         X86_64_ENTRY_TRAMPOLINE;
 993                struct extra_kernel_map xm = {
 994                        .start = va,
 995                        .end   = va + page_size,
 996                        .pgoff = pgoff,
 997                };
 998
 999                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1000
1001                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1002                        return -1;
1003        }
1004
1005        machine->trampolines_mapped = nr_cpus_avail;
1006
1007        return 0;
1008}
1009
1010int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1011                                             struct dso *kernel __maybe_unused)
1012{
1013        return 0;
1014}
1015
1016static int
1017__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1018{
1019        struct kmap *kmap;
1020        struct map *map;
1021
1022        /* In case of renewal the kernel map, destroy previous one */
1023        machine__destroy_kernel_maps(machine);
1024
1025        machine->vmlinux_map = map__new2(0, kernel);
1026        if (machine->vmlinux_map == NULL)
1027                return -1;
1028
1029        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1030        map = machine__kernel_map(machine);
1031        kmap = map__kmap(map);
1032        if (!kmap)
1033                return -1;
1034
1035        kmap->kmaps = &machine->kmaps;
1036        map_groups__insert(&machine->kmaps, map);
1037
1038        return 0;
1039}
1040
1041void machine__destroy_kernel_maps(struct machine *machine)
1042{
1043        struct kmap *kmap;
1044        struct map *map = machine__kernel_map(machine);
1045
1046        if (map == NULL)
1047                return;
1048
1049        kmap = map__kmap(map);
1050        map_groups__remove(&machine->kmaps, map);
1051        if (kmap && kmap->ref_reloc_sym) {
1052                zfree((char **)&kmap->ref_reloc_sym->name);
1053                zfree(&kmap->ref_reloc_sym);
1054        }
1055
1056        map__zput(machine->vmlinux_map);
1057}
1058
1059int machines__create_guest_kernel_maps(struct machines *machines)
1060{
1061        int ret = 0;
1062        struct dirent **namelist = NULL;
1063        int i, items = 0;
1064        char path[PATH_MAX];
1065        pid_t pid;
1066        char *endp;
1067
1068        if (symbol_conf.default_guest_vmlinux_name ||
1069            symbol_conf.default_guest_modules ||
1070            symbol_conf.default_guest_kallsyms) {
1071                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1072        }
1073
1074        if (symbol_conf.guestmount) {
1075                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1076                if (items <= 0)
1077                        return -ENOENT;
1078                for (i = 0; i < items; i++) {
1079                        if (!isdigit(namelist[i]->d_name[0])) {
1080                                /* Filter out . and .. */
1081                                continue;
1082                        }
1083                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1084                        if ((*endp != '\0') ||
1085                            (endp == namelist[i]->d_name) ||
1086                            (errno == ERANGE)) {
1087                                pr_debug("invalid directory (%s). Skipping.\n",
1088                                         namelist[i]->d_name);
1089                                continue;
1090                        }
1091                        sprintf(path, "%s/%s/proc/kallsyms",
1092                                symbol_conf.guestmount,
1093                                namelist[i]->d_name);
1094                        ret = access(path, R_OK);
1095                        if (ret) {
1096                                pr_debug("Can't access file %s\n", path);
1097                                goto failure;
1098                        }
1099                        machines__create_kernel_maps(machines, pid);
1100                }
1101failure:
1102                free(namelist);
1103        }
1104
1105        return ret;
1106}
1107
1108void machines__destroy_kernel_maps(struct machines *machines)
1109{
1110        struct rb_node *next = rb_first(&machines->guests);
1111
1112        machine__destroy_kernel_maps(&machines->host);
1113
1114        while (next) {
1115                struct machine *pos = rb_entry(next, struct machine, rb_node);
1116
1117                next = rb_next(&pos->rb_node);
1118                rb_erase(&pos->rb_node, &machines->guests);
1119                machine__delete(pos);
1120        }
1121}
1122
1123int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1124{
1125        struct machine *machine = machines__findnew(machines, pid);
1126
1127        if (machine == NULL)
1128                return -1;
1129
1130        return machine__create_kernel_maps(machine);
1131}
1132
1133int machine__load_kallsyms(struct machine *machine, const char *filename)
1134{
1135        struct map *map = machine__kernel_map(machine);
1136        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1137
1138        if (ret > 0) {
1139                dso__set_loaded(map->dso);
1140                /*
1141                 * Since /proc/kallsyms will have multiple sessions for the
1142                 * kernel, with modules between them, fixup the end of all
1143                 * sections.
1144                 */
1145                map_groups__fixup_end(&machine->kmaps);
1146        }
1147
1148        return ret;
1149}
1150
1151int machine__load_vmlinux_path(struct machine *machine)
1152{
1153        struct map *map = machine__kernel_map(machine);
1154        int ret = dso__load_vmlinux_path(map->dso, map);
1155
1156        if (ret > 0)
1157                dso__set_loaded(map->dso);
1158
1159        return ret;
1160}
1161
1162static char *get_kernel_version(const char *root_dir)
1163{
1164        char version[PATH_MAX];
1165        FILE *file;
1166        char *name, *tmp;
1167        const char *prefix = "Linux version ";
1168
1169        sprintf(version, "%s/proc/version", root_dir);
1170        file = fopen(version, "r");
1171        if (!file)
1172                return NULL;
1173
1174        version[0] = '\0';
1175        tmp = fgets(version, sizeof(version), file);
1176        fclose(file);
1177
1178        name = strstr(version, prefix);
1179        if (!name)
1180                return NULL;
1181        name += strlen(prefix);
1182        tmp = strchr(name, ' ');
1183        if (tmp)
1184                *tmp = '\0';
1185
1186        return strdup(name);
1187}
1188
1189static bool is_kmod_dso(struct dso *dso)
1190{
1191        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1192               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1193}
1194
1195static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1196                                       struct kmod_path *m)
1197{
1198        char *long_name;
1199        struct map *map = map_groups__find_by_name(mg, m->name);
1200
1201        if (map == NULL)
1202                return 0;
1203
1204        long_name = strdup(path);
1205        if (long_name == NULL)
1206                return -ENOMEM;
1207
1208        dso__set_long_name(map->dso, long_name, true);
1209        dso__kernel_module_get_build_id(map->dso, "");
1210
1211        /*
1212         * Full name could reveal us kmod compression, so
1213         * we need to update the symtab_type if needed.
1214         */
1215        if (m->comp && is_kmod_dso(map->dso)) {
1216                map->dso->symtab_type++;
1217                map->dso->comp = m->comp;
1218        }
1219
1220        return 0;
1221}
1222
1223static int map_groups__set_modules_path_dir(struct map_groups *mg,
1224                                const char *dir_name, int depth)
1225{
1226        struct dirent *dent;
1227        DIR *dir = opendir(dir_name);
1228        int ret = 0;
1229
1230        if (!dir) {
1231                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1232                return -1;
1233        }
1234
1235        while ((dent = readdir(dir)) != NULL) {
1236                char path[PATH_MAX];
1237                struct stat st;
1238
1239                /*sshfs might return bad dent->d_type, so we have to stat*/
1240                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1241                if (stat(path, &st))
1242                        continue;
1243
1244                if (S_ISDIR(st.st_mode)) {
1245                        if (!strcmp(dent->d_name, ".") ||
1246                            !strcmp(dent->d_name, ".."))
1247                                continue;
1248
1249                        /* Do not follow top-level source and build symlinks */
1250                        if (depth == 0) {
1251                                if (!strcmp(dent->d_name, "source") ||
1252                                    !strcmp(dent->d_name, "build"))
1253                                        continue;
1254                        }
1255
1256                        ret = map_groups__set_modules_path_dir(mg, path,
1257                                                               depth + 1);
1258                        if (ret < 0)
1259                                goto out;
1260                } else {
1261                        struct kmod_path m;
1262
1263                        ret = kmod_path__parse_name(&m, dent->d_name);
1264                        if (ret)
1265                                goto out;
1266
1267                        if (m.kmod)
1268                                ret = map_groups__set_module_path(mg, path, &m);
1269
1270                        free(m.name);
1271
1272                        if (ret)
1273                                goto out;
1274                }
1275        }
1276
1277out:
1278        closedir(dir);
1279        return ret;
1280}
1281
1282static int machine__set_modules_path(struct machine *machine)
1283{
1284        char *version;
1285        char modules_path[PATH_MAX];
1286
1287        version = get_kernel_version(machine->root_dir);
1288        if (!version)
1289                return -1;
1290
1291        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1292                 machine->root_dir, version);
1293        free(version);
1294
1295        return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1296}
1297int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1298                                const char *name __maybe_unused)
1299{
1300        return 0;
1301}
1302
1303static int machine__create_module(void *arg, const char *name, u64 start,
1304                                  u64 size)
1305{
1306        struct machine *machine = arg;
1307        struct map *map;
1308
1309        if (arch__fix_module_text_start(&start, name) < 0)
1310                return -1;
1311
1312        map = machine__findnew_module_map(machine, start, name);
1313        if (map == NULL)
1314                return -1;
1315        map->end = start + size;
1316
1317        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1318
1319        return 0;
1320}
1321
1322static int machine__create_modules(struct machine *machine)
1323{
1324        const char *modules;
1325        char path[PATH_MAX];
1326
1327        if (machine__is_default_guest(machine)) {
1328                modules = symbol_conf.default_guest_modules;
1329        } else {
1330                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1331                modules = path;
1332        }
1333
1334        if (symbol__restricted_filename(modules, "/proc/modules"))
1335                return -1;
1336
1337        if (modules__parse(modules, machine, machine__create_module))
1338                return -1;
1339
1340        if (!machine__set_modules_path(machine))
1341                return 0;
1342
1343        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1344
1345        return 0;
1346}
1347
1348static void machine__set_kernel_mmap(struct machine *machine,
1349                                     u64 start, u64 end)
1350{
1351        machine->vmlinux_map->start = start;
1352        machine->vmlinux_map->end   = end;
1353        /*
1354         * Be a bit paranoid here, some perf.data file came with
1355         * a zero sized synthesized MMAP event for the kernel.
1356         */
1357        if (start == 0 && end == 0)
1358                machine->vmlinux_map->end = ~0ULL;
1359}
1360
1361int machine__create_kernel_maps(struct machine *machine)
1362{
1363        struct dso *kernel = machine__get_kernel(machine);
1364        const char *name = NULL;
1365        struct map *map;
1366        u64 addr = 0;
1367        int ret;
1368
1369        if (kernel == NULL)
1370                return -1;
1371
1372        ret = __machine__create_kernel_maps(machine, kernel);
1373        if (ret < 0)
1374                goto out_put;
1375
1376        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1377                if (machine__is_host(machine))
1378                        pr_debug("Problems creating module maps, "
1379                                 "continuing anyway...\n");
1380                else
1381                        pr_debug("Problems creating module maps for guest %d, "
1382                                 "continuing anyway...\n", machine->pid);
1383        }
1384
1385        if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1386                if (name &&
1387                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1388                        machine__destroy_kernel_maps(machine);
1389                        ret = -1;
1390                        goto out_put;
1391                }
1392
1393                /* we have a real start address now, so re-order the kmaps */
1394                map = machine__kernel_map(machine);
1395
1396                map__get(map);
1397                map_groups__remove(&machine->kmaps, map);
1398
1399                /* assume it's the last in the kmaps */
1400                machine__set_kernel_mmap(machine, addr, ~0ULL);
1401
1402                map_groups__insert(&machine->kmaps, map);
1403                map__put(map);
1404        }
1405
1406        if (machine__create_extra_kernel_maps(machine, kernel))
1407                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1408
1409        /* update end address of the kernel map using adjacent module address */
1410        map = map__next(machine__kernel_map(machine));
1411        if (map)
1412                machine__set_kernel_mmap(machine, addr, map->start);
1413out_put:
1414        dso__put(kernel);
1415        return ret;
1416}
1417
1418static bool machine__uses_kcore(struct machine *machine)
1419{
1420        struct dso *dso;
1421
1422        list_for_each_entry(dso, &machine->dsos.head, node) {
1423                if (dso__is_kcore(dso))
1424                        return true;
1425        }
1426
1427        return false;
1428}
1429
1430static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1431                                             union perf_event *event)
1432{
1433        return machine__is(machine, "x86_64") &&
1434               is_entry_trampoline(event->mmap.filename);
1435}
1436
1437static int machine__process_extra_kernel_map(struct machine *machine,
1438                                             union perf_event *event)
1439{
1440        struct map *kernel_map = machine__kernel_map(machine);
1441        struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1442        struct extra_kernel_map xm = {
1443                .start = event->mmap.start,
1444                .end   = event->mmap.start + event->mmap.len,
1445                .pgoff = event->mmap.pgoff,
1446        };
1447
1448        if (kernel == NULL)
1449                return -1;
1450
1451        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1452
1453        return machine__create_extra_kernel_map(machine, kernel, &xm);
1454}
1455
1456static int machine__process_kernel_mmap_event(struct machine *machine,
1457                                              union perf_event *event)
1458{
1459        struct map *map;
1460        enum dso_kernel_type kernel_type;
1461        bool is_kernel_mmap;
1462
1463        /* If we have maps from kcore then we do not need or want any others */
1464        if (machine__uses_kcore(machine))
1465                return 0;
1466
1467        if (machine__is_host(machine))
1468                kernel_type = DSO_TYPE_KERNEL;
1469        else
1470                kernel_type = DSO_TYPE_GUEST_KERNEL;
1471
1472        is_kernel_mmap = memcmp(event->mmap.filename,
1473                                machine->mmap_name,
1474                                strlen(machine->mmap_name) - 1) == 0;
1475        if (event->mmap.filename[0] == '/' ||
1476            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1477                map = machine__findnew_module_map(machine, event->mmap.start,
1478                                                  event->mmap.filename);
1479                if (map == NULL)
1480                        goto out_problem;
1481
1482                map->end = map->start + event->mmap.len;
1483        } else if (is_kernel_mmap) {
1484                const char *symbol_name = (event->mmap.filename +
1485                                strlen(machine->mmap_name));
1486                /*
1487                 * Should be there already, from the build-id table in
1488                 * the header.
1489                 */
1490                struct dso *kernel = NULL;
1491                struct dso *dso;
1492
1493                down_read(&machine->dsos.lock);
1494
1495                list_for_each_entry(dso, &machine->dsos.head, node) {
1496
1497                        /*
1498                         * The cpumode passed to is_kernel_module is not the
1499                         * cpumode of *this* event. If we insist on passing
1500                         * correct cpumode to is_kernel_module, we should
1501                         * record the cpumode when we adding this dso to the
1502                         * linked list.
1503                         *
1504                         * However we don't really need passing correct
1505                         * cpumode.  We know the correct cpumode must be kernel
1506                         * mode (if not, we should not link it onto kernel_dsos
1507                         * list).
1508                         *
1509                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1510                         * is_kernel_module() treats it as a kernel cpumode.
1511                         */
1512
1513                        if (!dso->kernel ||
1514                            is_kernel_module(dso->long_name,
1515                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1516                                continue;
1517
1518
1519                        kernel = dso;
1520                        break;
1521                }
1522
1523                up_read(&machine->dsos.lock);
1524
1525                if (kernel == NULL)
1526                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1527                if (kernel == NULL)
1528                        goto out_problem;
1529
1530                kernel->kernel = kernel_type;
1531                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1532                        dso__put(kernel);
1533                        goto out_problem;
1534                }
1535
1536                if (strstr(kernel->long_name, "vmlinux"))
1537                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1538
1539                machine__set_kernel_mmap(machine, event->mmap.start,
1540                                         event->mmap.start + event->mmap.len);
1541
1542                /*
1543                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1544                 * symbol. Effectively having zero here means that at record
1545                 * time /proc/sys/kernel/kptr_restrict was non zero.
1546                 */
1547                if (event->mmap.pgoff != 0) {
1548                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1549                                                        symbol_name,
1550                                                        event->mmap.pgoff);
1551                }
1552
1553                if (machine__is_default_guest(machine)) {
1554                        /*
1555                         * preload dso of guest kernel and modules
1556                         */
1557                        dso__load(kernel, machine__kernel_map(machine));
1558                }
1559        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1560                return machine__process_extra_kernel_map(machine, event);
1561        }
1562        return 0;
1563out_problem:
1564        return -1;
1565}
1566
1567int machine__process_mmap2_event(struct machine *machine,
1568                                 union perf_event *event,
1569                                 struct perf_sample *sample)
1570{
1571        struct thread *thread;
1572        struct map *map;
1573        int ret = 0;
1574
1575        if (dump_trace)
1576                perf_event__fprintf_mmap2(event, stdout);
1577
1578        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1579            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1580                ret = machine__process_kernel_mmap_event(machine, event);
1581                if (ret < 0)
1582                        goto out_problem;
1583                return 0;
1584        }
1585
1586        thread = machine__findnew_thread(machine, event->mmap2.pid,
1587                                        event->mmap2.tid);
1588        if (thread == NULL)
1589                goto out_problem;
1590
1591        map = map__new(machine, event->mmap2.start,
1592                        event->mmap2.len, event->mmap2.pgoff,
1593                        event->mmap2.maj,
1594                        event->mmap2.min, event->mmap2.ino,
1595                        event->mmap2.ino_generation,
1596                        event->mmap2.prot,
1597                        event->mmap2.flags,
1598                        event->mmap2.filename, thread);
1599
1600        if (map == NULL)
1601                goto out_problem_map;
1602
1603        ret = thread__insert_map(thread, map);
1604        if (ret)
1605                goto out_problem_insert;
1606
1607        thread__put(thread);
1608        map__put(map);
1609        return 0;
1610
1611out_problem_insert:
1612        map__put(map);
1613out_problem_map:
1614        thread__put(thread);
1615out_problem:
1616        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1617        return 0;
1618}
1619
1620int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1621                                struct perf_sample *sample)
1622{
1623        struct thread *thread;
1624        struct map *map;
1625        u32 prot = 0;
1626        int ret = 0;
1627
1628        if (dump_trace)
1629                perf_event__fprintf_mmap(event, stdout);
1630
1631        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1632            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1633                ret = machine__process_kernel_mmap_event(machine, event);
1634                if (ret < 0)
1635                        goto out_problem;
1636                return 0;
1637        }
1638
1639        thread = machine__findnew_thread(machine, event->mmap.pid,
1640                                         event->mmap.tid);
1641        if (thread == NULL)
1642                goto out_problem;
1643
1644        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1645                prot = PROT_EXEC;
1646
1647        map = map__new(machine, event->mmap.start,
1648                        event->mmap.len, event->mmap.pgoff,
1649                        0, 0, 0, 0, prot, 0,
1650                        event->mmap.filename,
1651                        thread);
1652
1653        if (map == NULL)
1654                goto out_problem_map;
1655
1656        ret = thread__insert_map(thread, map);
1657        if (ret)
1658                goto out_problem_insert;
1659
1660        thread__put(thread);
1661        map__put(map);
1662        return 0;
1663
1664out_problem_insert:
1665        map__put(map);
1666out_problem_map:
1667        thread__put(thread);
1668out_problem:
1669        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1670        return 0;
1671}
1672
1673static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1674{
1675        struct threads *threads = machine__threads(machine, th->tid);
1676
1677        if (threads->last_match == th)
1678                threads__set_last_match(threads, NULL);
1679
1680        BUG_ON(refcount_read(&th->refcnt) == 0);
1681        if (lock)
1682                down_write(&threads->lock);
1683        rb_erase_init(&th->rb_node, &threads->entries);
1684        RB_CLEAR_NODE(&th->rb_node);
1685        --threads->nr;
1686        /*
1687         * Move it first to the dead_threads list, then drop the reference,
1688         * if this is the last reference, then the thread__delete destructor
1689         * will be called and we will remove it from the dead_threads list.
1690         */
1691        list_add_tail(&th->node, &threads->dead);
1692        if (lock)
1693                up_write(&threads->lock);
1694        thread__put(th);
1695}
1696
1697void machine__remove_thread(struct machine *machine, struct thread *th)
1698{
1699        return __machine__remove_thread(machine, th, true);
1700}
1701
1702int machine__process_fork_event(struct machine *machine, union perf_event *event,
1703                                struct perf_sample *sample)
1704{
1705        struct thread *thread = machine__find_thread(machine,
1706                                                     event->fork.pid,
1707                                                     event->fork.tid);
1708        struct thread *parent = machine__findnew_thread(machine,
1709                                                        event->fork.ppid,
1710                                                        event->fork.ptid);
1711        int err = 0;
1712
1713        if (dump_trace)
1714                perf_event__fprintf_task(event, stdout);
1715
1716        /*
1717         * There may be an existing thread that is not actually the parent,
1718         * either because we are processing events out of order, or because the
1719         * (fork) event that would have removed the thread was lost. Assume the
1720         * latter case and continue on as best we can.
1721         */
1722        if (parent->pid_ != (pid_t)event->fork.ppid) {
1723                dump_printf("removing erroneous parent thread %d/%d\n",
1724                            parent->pid_, parent->tid);
1725                machine__remove_thread(machine, parent);
1726                thread__put(parent);
1727                parent = machine__findnew_thread(machine, event->fork.ppid,
1728                                                 event->fork.ptid);
1729        }
1730
1731        /* if a thread currently exists for the thread id remove it */
1732        if (thread != NULL) {
1733                machine__remove_thread(machine, thread);
1734                thread__put(thread);
1735        }
1736
1737        thread = machine__findnew_thread(machine, event->fork.pid,
1738                                         event->fork.tid);
1739
1740        if (thread == NULL || parent == NULL ||
1741            thread__fork(thread, parent, sample->time) < 0) {
1742                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1743                err = -1;
1744        }
1745        thread__put(thread);
1746        thread__put(parent);
1747
1748        return err;
1749}
1750
1751int machine__process_exit_event(struct machine *machine, union perf_event *event,
1752                                struct perf_sample *sample __maybe_unused)
1753{
1754        struct thread *thread = machine__find_thread(machine,
1755                                                     event->fork.pid,
1756                                                     event->fork.tid);
1757
1758        if (dump_trace)
1759                perf_event__fprintf_task(event, stdout);
1760
1761        if (thread != NULL) {
1762                thread__exited(thread);
1763                thread__put(thread);
1764        }
1765
1766        return 0;
1767}
1768
1769int machine__process_event(struct machine *machine, union perf_event *event,
1770                           struct perf_sample *sample)
1771{
1772        int ret;
1773
1774        switch (event->header.type) {
1775        case PERF_RECORD_COMM:
1776                ret = machine__process_comm_event(machine, event, sample); break;
1777        case PERF_RECORD_MMAP:
1778                ret = machine__process_mmap_event(machine, event, sample); break;
1779        case PERF_RECORD_NAMESPACES:
1780                ret = machine__process_namespaces_event(machine, event, sample); break;
1781        case PERF_RECORD_MMAP2:
1782                ret = machine__process_mmap2_event(machine, event, sample); break;
1783        case PERF_RECORD_FORK:
1784                ret = machine__process_fork_event(machine, event, sample); break;
1785        case PERF_RECORD_EXIT:
1786                ret = machine__process_exit_event(machine, event, sample); break;
1787        case PERF_RECORD_LOST:
1788                ret = machine__process_lost_event(machine, event, sample); break;
1789        case PERF_RECORD_AUX:
1790                ret = machine__process_aux_event(machine, event); break;
1791        case PERF_RECORD_ITRACE_START:
1792                ret = machine__process_itrace_start_event(machine, event); break;
1793        case PERF_RECORD_LOST_SAMPLES:
1794                ret = machine__process_lost_samples_event(machine, event, sample); break;
1795        case PERF_RECORD_SWITCH:
1796        case PERF_RECORD_SWITCH_CPU_WIDE:
1797                ret = machine__process_switch_event(machine, event); break;
1798        default:
1799                ret = -1;
1800                break;
1801        }
1802
1803        return ret;
1804}
1805
1806static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1807{
1808        if (!regexec(regex, sym->name, 0, NULL, 0))
1809                return 1;
1810        return 0;
1811}
1812
1813static void ip__resolve_ams(struct thread *thread,
1814                            struct addr_map_symbol *ams,
1815                            u64 ip)
1816{
1817        struct addr_location al;
1818
1819        memset(&al, 0, sizeof(al));
1820        /*
1821         * We cannot use the header.misc hint to determine whether a
1822         * branch stack address is user, kernel, guest, hypervisor.
1823         * Branches may straddle the kernel/user/hypervisor boundaries.
1824         * Thus, we have to try consecutively until we find a match
1825         * or else, the symbol is unknown
1826         */
1827        thread__find_cpumode_addr_location(thread, ip, &al);
1828
1829        ams->addr = ip;
1830        ams->al_addr = al.addr;
1831        ams->sym = al.sym;
1832        ams->map = al.map;
1833        ams->phys_addr = 0;
1834}
1835
1836static void ip__resolve_data(struct thread *thread,
1837                             u8 m, struct addr_map_symbol *ams,
1838                             u64 addr, u64 phys_addr)
1839{
1840        struct addr_location al;
1841
1842        memset(&al, 0, sizeof(al));
1843
1844        thread__find_symbol(thread, m, addr, &al);
1845
1846        ams->addr = addr;
1847        ams->al_addr = al.addr;
1848        ams->sym = al.sym;
1849        ams->map = al.map;
1850        ams->phys_addr = phys_addr;
1851}
1852
1853struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1854                                     struct addr_location *al)
1855{
1856        struct mem_info *mi = mem_info__new();
1857
1858        if (!mi)
1859                return NULL;
1860
1861        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1862        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1863                         sample->addr, sample->phys_addr);
1864        mi->data_src.val = sample->data_src;
1865
1866        return mi;
1867}
1868
1869static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1870{
1871        char *srcline = NULL;
1872
1873        if (!map || callchain_param.key == CCKEY_FUNCTION)
1874                return srcline;
1875
1876        srcline = srcline__tree_find(&map->dso->srclines, ip);
1877        if (!srcline) {
1878                bool show_sym = false;
1879                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1880
1881                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1882                                      sym, show_sym, show_addr, ip);
1883                srcline__tree_insert(&map->dso->srclines, ip, srcline);
1884        }
1885
1886        return srcline;
1887}
1888
1889struct iterations {
1890        int nr_loop_iter;
1891        u64 cycles;
1892};
1893
1894static int add_callchain_ip(struct thread *thread,
1895                            struct callchain_cursor *cursor,
1896                            struct symbol **parent,
1897                            struct addr_location *root_al,
1898                            u8 *cpumode,
1899                            u64 ip,
1900                            bool branch,
1901                            struct branch_flags *flags,
1902                            struct iterations *iter,
1903                            u64 branch_from)
1904{
1905        struct addr_location al;
1906        int nr_loop_iter = 0;
1907        u64 iter_cycles = 0;
1908        const char *srcline = NULL;
1909
1910        al.filtered = 0;
1911        al.sym = NULL;
1912        if (!cpumode) {
1913                thread__find_cpumode_addr_location(thread, ip, &al);
1914        } else {
1915                if (ip >= PERF_CONTEXT_MAX) {
1916                        switch (ip) {
1917                        case PERF_CONTEXT_HV:
1918                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1919                                break;
1920                        case PERF_CONTEXT_KERNEL:
1921                                *cpumode = PERF_RECORD_MISC_KERNEL;
1922                                break;
1923                        case PERF_CONTEXT_USER:
1924                                *cpumode = PERF_RECORD_MISC_USER;
1925                                break;
1926                        default:
1927                                pr_debug("invalid callchain context: "
1928                                         "%"PRId64"\n", (s64) ip);
1929                                /*
1930                                 * It seems the callchain is corrupted.
1931                                 * Discard all.
1932                                 */
1933                                callchain_cursor_reset(cursor);
1934                                return 1;
1935                        }
1936                        return 0;
1937                }
1938                thread__find_symbol(thread, *cpumode, ip, &al);
1939        }
1940
1941        if (al.sym != NULL) {
1942                if (perf_hpp_list.parent && !*parent &&
1943                    symbol__match_regex(al.sym, &parent_regex))
1944                        *parent = al.sym;
1945                else if (have_ignore_callees && root_al &&
1946                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1947                        /* Treat this symbol as the root,
1948                           forgetting its callees. */
1949                        *root_al = al;
1950                        callchain_cursor_reset(cursor);
1951                }
1952        }
1953
1954        if (symbol_conf.hide_unresolved && al.sym == NULL)
1955                return 0;
1956
1957        if (iter) {
1958                nr_loop_iter = iter->nr_loop_iter;
1959                iter_cycles = iter->cycles;
1960        }
1961
1962        srcline = callchain_srcline(al.map, al.sym, al.addr);
1963        return callchain_cursor_append(cursor, ip, al.map, al.sym,
1964                                       branch, flags, nr_loop_iter,
1965                                       iter_cycles, branch_from, srcline);
1966}
1967
1968struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1969                                           struct addr_location *al)
1970{
1971        unsigned int i;
1972        const struct branch_stack *bs = sample->branch_stack;
1973        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1974
1975        if (!bi)
1976                return NULL;
1977
1978        for (i = 0; i < bs->nr; i++) {
1979                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1980                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1981                bi[i].flags = bs->entries[i].flags;
1982        }
1983        return bi;
1984}
1985
1986static void save_iterations(struct iterations *iter,
1987                            struct branch_entry *be, int nr)
1988{
1989        int i;
1990
1991        iter->nr_loop_iter = nr;
1992        iter->cycles = 0;
1993
1994        for (i = 0; i < nr; i++)
1995                iter->cycles += be[i].flags.cycles;
1996}
1997
1998#define CHASHSZ 127
1999#define CHASHBITS 7
2000#define NO_ENTRY 0xff
2001
2002#define PERF_MAX_BRANCH_DEPTH 127
2003
2004/* Remove loops. */
2005static int remove_loops(struct branch_entry *l, int nr,
2006                        struct iterations *iter)
2007{
2008        int i, j, off;
2009        unsigned char chash[CHASHSZ];
2010
2011        memset(chash, NO_ENTRY, sizeof(chash));
2012
2013        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2014
2015        for (i = 0; i < nr; i++) {
2016                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2017
2018                /* no collision handling for now */
2019                if (chash[h] == NO_ENTRY) {
2020                        chash[h] = i;
2021                } else if (l[chash[h]].from == l[i].from) {
2022                        bool is_loop = true;
2023                        /* check if it is a real loop */
2024                        off = 0;
2025                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2026                                if (l[j].from != l[i + off].from) {
2027                                        is_loop = false;
2028                                        break;
2029                                }
2030                        if (is_loop) {
2031                                j = nr - (i + off);
2032                                if (j > 0) {
2033                                        save_iterations(iter + i + off,
2034                                                l + i, off);
2035
2036                                        memmove(iter + i, iter + i + off,
2037                                                j * sizeof(*iter));
2038
2039                                        memmove(l + i, l + i + off,
2040                                                j * sizeof(*l));
2041                                }
2042
2043                                nr -= off;
2044                        }
2045                }
2046        }
2047        return nr;
2048}
2049
2050/*
2051 * Recolve LBR callstack chain sample
2052 * Return:
2053 * 1 on success get LBR callchain information
2054 * 0 no available LBR callchain information, should try fp
2055 * negative error code on other errors.
2056 */
2057static int resolve_lbr_callchain_sample(struct thread *thread,
2058                                        struct callchain_cursor *cursor,
2059                                        struct perf_sample *sample,
2060                                        struct symbol **parent,
2061                                        struct addr_location *root_al,
2062                                        int max_stack)
2063{
2064        struct ip_callchain *chain = sample->callchain;
2065        int chain_nr = min(max_stack, (int)chain->nr), i;
2066        u8 cpumode = PERF_RECORD_MISC_USER;
2067        u64 ip, branch_from = 0;
2068
2069        for (i = 0; i < chain_nr; i++) {
2070                if (chain->ips[i] == PERF_CONTEXT_USER)
2071                        break;
2072        }
2073
2074        /* LBR only affects the user callchain */
2075        if (i != chain_nr) {
2076                struct branch_stack *lbr_stack = sample->branch_stack;
2077                int lbr_nr = lbr_stack->nr, j, k;
2078                bool branch;
2079                struct branch_flags *flags;
2080                /*
2081                 * LBR callstack can only get user call chain.
2082                 * The mix_chain_nr is kernel call chain
2083                 * number plus LBR user call chain number.
2084                 * i is kernel call chain number,
2085                 * 1 is PERF_CONTEXT_USER,
2086                 * lbr_nr + 1 is the user call chain number.
2087                 * For details, please refer to the comments
2088                 * in callchain__printf
2089                 */
2090                int mix_chain_nr = i + 1 + lbr_nr + 1;
2091
2092                for (j = 0; j < mix_chain_nr; j++) {
2093                        int err;
2094                        branch = false;
2095                        flags = NULL;
2096
2097                        if (callchain_param.order == ORDER_CALLEE) {
2098                                if (j < i + 1)
2099                                        ip = chain->ips[j];
2100                                else if (j > i + 1) {
2101                                        k = j - i - 2;
2102                                        ip = lbr_stack->entries[k].from;
2103                                        branch = true;
2104                                        flags = &lbr_stack->entries[k].flags;
2105                                } else {
2106                                        ip = lbr_stack->entries[0].to;
2107                                        branch = true;
2108                                        flags = &lbr_stack->entries[0].flags;
2109                                        branch_from =
2110                                                lbr_stack->entries[0].from;
2111                                }
2112                        } else {
2113                                if (j < lbr_nr) {
2114                                        k = lbr_nr - j - 1;
2115                                        ip = lbr_stack->entries[k].from;
2116                                        branch = true;
2117                                        flags = &lbr_stack->entries[k].flags;
2118                                }
2119                                else if (j > lbr_nr)
2120                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
2121                                else {
2122                                        ip = lbr_stack->entries[0].to;
2123                                        branch = true;
2124                                        flags = &lbr_stack->entries[0].flags;
2125                                        branch_from =
2126                                                lbr_stack->entries[0].from;
2127                                }
2128                        }
2129
2130                        err = add_callchain_ip(thread, cursor, parent,
2131                                               root_al, &cpumode, ip,
2132                                               branch, flags, NULL,
2133                                               branch_from);
2134                        if (err)
2135                                return (err < 0) ? err : 0;
2136                }
2137                return 1;
2138        }
2139
2140        return 0;
2141}
2142
2143static int thread__resolve_callchain_sample(struct thread *thread,
2144                                            struct callchain_cursor *cursor,
2145                                            struct perf_evsel *evsel,
2146                                            struct perf_sample *sample,
2147                                            struct symbol **parent,
2148                                            struct addr_location *root_al,
2149                                            int max_stack)
2150{
2151        struct branch_stack *branch = sample->branch_stack;
2152        struct ip_callchain *chain = sample->callchain;
2153        int chain_nr = 0;
2154        u8 cpumode = PERF_RECORD_MISC_USER;
2155        int i, j, err, nr_entries;
2156        int skip_idx = -1;
2157        int first_call = 0;
2158
2159        if (chain)
2160                chain_nr = chain->nr;
2161
2162        if (perf_evsel__has_branch_callstack(evsel)) {
2163                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2164                                                   root_al, max_stack);
2165                if (err)
2166                        return (err < 0) ? err : 0;
2167        }
2168
2169        /*
2170         * Based on DWARF debug information, some architectures skip
2171         * a callchain entry saved by the kernel.
2172         */
2173        skip_idx = arch_skip_callchain_idx(thread, chain);
2174
2175        /*
2176         * Add branches to call stack for easier browsing. This gives
2177         * more context for a sample than just the callers.
2178         *
2179         * This uses individual histograms of paths compared to the
2180         * aggregated histograms the normal LBR mode uses.
2181         *
2182         * Limitations for now:
2183         * - No extra filters
2184         * - No annotations (should annotate somehow)
2185         */
2186
2187        if (branch && callchain_param.branch_callstack) {
2188                int nr = min(max_stack, (int)branch->nr);
2189                struct branch_entry be[nr];
2190                struct iterations iter[nr];
2191
2192                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2193                        pr_warning("corrupted branch chain. skipping...\n");
2194                        goto check_calls;
2195                }
2196
2197                for (i = 0; i < nr; i++) {
2198                        if (callchain_param.order == ORDER_CALLEE) {
2199                                be[i] = branch->entries[i];
2200
2201                                if (chain == NULL)
2202                                        continue;
2203
2204                                /*
2205                                 * Check for overlap into the callchain.
2206                                 * The return address is one off compared to
2207                                 * the branch entry. To adjust for this
2208                                 * assume the calling instruction is not longer
2209                                 * than 8 bytes.
2210                                 */
2211                                if (i == skip_idx ||
2212                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2213                                        first_call++;
2214                                else if (be[i].from < chain->ips[first_call] &&
2215                                    be[i].from >= chain->ips[first_call] - 8)
2216                                        first_call++;
2217                        } else
2218                                be[i] = branch->entries[branch->nr - i - 1];
2219                }
2220
2221                memset(iter, 0, sizeof(struct iterations) * nr);
2222                nr = remove_loops(be, nr, iter);
2223
2224                for (i = 0; i < nr; i++) {
2225                        err = add_callchain_ip(thread, cursor, parent,
2226                                               root_al,
2227                                               NULL, be[i].to,
2228                                               true, &be[i].flags,
2229                                               NULL, be[i].from);
2230
2231                        if (!err)
2232                                err = add_callchain_ip(thread, cursor, parent, root_al,
2233                                                       NULL, be[i].from,
2234                                                       true, &be[i].flags,
2235                                                       &iter[i], 0);
2236                        if (err == -EINVAL)
2237                                break;
2238                        if (err)
2239                                return err;
2240                }
2241
2242                if (chain_nr == 0)
2243                        return 0;
2244
2245                chain_nr -= nr;
2246        }
2247
2248check_calls:
2249        for (i = first_call, nr_entries = 0;
2250             i < chain_nr && nr_entries < max_stack; i++) {
2251                u64 ip;
2252
2253                if (callchain_param.order == ORDER_CALLEE)
2254                        j = i;
2255                else
2256                        j = chain->nr - i - 1;
2257
2258#ifdef HAVE_SKIP_CALLCHAIN_IDX
2259                if (j == skip_idx)
2260                        continue;
2261#endif
2262                ip = chain->ips[j];
2263
2264                if (ip < PERF_CONTEXT_MAX)
2265                       ++nr_entries;
2266
2267                err = add_callchain_ip(thread, cursor, parent,
2268                                       root_al, &cpumode, ip,
2269                                       false, NULL, NULL, 0);
2270
2271                if (err)
2272                        return (err < 0) ? err : 0;
2273        }
2274
2275        return 0;
2276}
2277
2278static int append_inlines(struct callchain_cursor *cursor,
2279                          struct map *map, struct symbol *sym, u64 ip)
2280{
2281        struct inline_node *inline_node;
2282        struct inline_list *ilist;
2283        u64 addr;
2284        int ret = 1;
2285
2286        if (!symbol_conf.inline_name || !map || !sym)
2287                return ret;
2288
2289        addr = map__map_ip(map, ip);
2290        addr = map__rip_2objdump(map, addr);
2291
2292        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2293        if (!inline_node) {
2294                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2295                if (!inline_node)
2296                        return ret;
2297                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2298        }
2299
2300        list_for_each_entry(ilist, &inline_node->val, list) {
2301                ret = callchain_cursor_append(cursor, ip, map,
2302                                              ilist->symbol, false,
2303                                              NULL, 0, 0, 0, ilist->srcline);
2304
2305                if (ret != 0)
2306                        return ret;
2307        }
2308
2309        return ret;
2310}
2311
2312static int unwind_entry(struct unwind_entry *entry, void *arg)
2313{
2314        struct callchain_cursor *cursor = arg;
2315        const char *srcline = NULL;
2316        u64 addr = entry->ip;
2317
2318        if (symbol_conf.hide_unresolved && entry->sym == NULL)
2319                return 0;
2320
2321        if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2322                return 0;
2323
2324        /*
2325         * Convert entry->ip from a virtual address to an offset in
2326         * its corresponding binary.
2327         */
2328        if (entry->map)
2329                addr = map__map_ip(entry->map, entry->ip);
2330
2331        srcline = callchain_srcline(entry->map, entry->sym, addr);
2332        return callchain_cursor_append(cursor, entry->ip,
2333                                       entry->map, entry->sym,
2334                                       false, NULL, 0, 0, 0, srcline);
2335}
2336
2337static int thread__resolve_callchain_unwind(struct thread *thread,
2338                                            struct callchain_cursor *cursor,
2339                                            struct perf_evsel *evsel,
2340                                            struct perf_sample *sample,
2341                                            int max_stack)
2342{
2343        /* Can we do dwarf post unwind? */
2344        if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2345              (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2346                return 0;
2347
2348        /* Bail out if nothing was captured. */
2349        if ((!sample->user_regs.regs) ||
2350            (!sample->user_stack.size))
2351                return 0;
2352
2353        return unwind__get_entries(unwind_entry, cursor,
2354                                   thread, sample, max_stack);
2355}
2356
2357int thread__resolve_callchain(struct thread *thread,
2358                              struct callchain_cursor *cursor,
2359                              struct perf_evsel *evsel,
2360                              struct perf_sample *sample,
2361                              struct symbol **parent,
2362                              struct addr_location *root_al,
2363                              int max_stack)
2364{
2365        int ret = 0;
2366
2367        callchain_cursor_reset(cursor);
2368
2369        if (callchain_param.order == ORDER_CALLEE) {
2370                ret = thread__resolve_callchain_sample(thread, cursor,
2371                                                       evsel, sample,
2372                                                       parent, root_al,
2373                                                       max_stack);
2374                if (ret)
2375                        return ret;
2376                ret = thread__resolve_callchain_unwind(thread, cursor,
2377                                                       evsel, sample,
2378                                                       max_stack);
2379        } else {
2380                ret = thread__resolve_callchain_unwind(thread, cursor,
2381                                                       evsel, sample,
2382                                                       max_stack);
2383                if (ret)
2384                        return ret;
2385                ret = thread__resolve_callchain_sample(thread, cursor,
2386                                                       evsel, sample,
2387                                                       parent, root_al,
2388                                                       max_stack);
2389        }
2390
2391        return ret;
2392}
2393
2394int machine__for_each_thread(struct machine *machine,
2395                             int (*fn)(struct thread *thread, void *p),
2396                             void *priv)
2397{
2398        struct threads *threads;
2399        struct rb_node *nd;
2400        struct thread *thread;
2401        int rc = 0;
2402        int i;
2403
2404        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2405                threads = &machine->threads[i];
2406                for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2407                        thread = rb_entry(nd, struct thread, rb_node);
2408                        rc = fn(thread, priv);
2409                        if (rc != 0)
2410                                return rc;
2411                }
2412
2413                list_for_each_entry(thread, &threads->dead, node) {
2414                        rc = fn(thread, priv);
2415                        if (rc != 0)
2416                                return rc;
2417                }
2418        }
2419        return rc;
2420}
2421
2422int machines__for_each_thread(struct machines *machines,
2423                              int (*fn)(struct thread *thread, void *p),
2424                              void *priv)
2425{
2426        struct rb_node *nd;
2427        int rc = 0;
2428
2429        rc = machine__for_each_thread(&machines->host, fn, priv);
2430        if (rc != 0)
2431                return rc;
2432
2433        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2434                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2435
2436                rc = machine__for_each_thread(machine, fn, priv);
2437                if (rc != 0)
2438                        return rc;
2439        }
2440        return rc;
2441}
2442
2443int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2444                                  struct target *target, struct thread_map *threads,
2445                                  perf_event__handler_t process, bool data_mmap,
2446                                  unsigned int proc_map_timeout,
2447                                  unsigned int nr_threads_synthesize)
2448{
2449        if (target__has_task(target))
2450                return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2451        else if (target__has_cpu(target))
2452                return perf_event__synthesize_threads(tool, process,
2453                                                      machine, data_mmap,
2454                                                      proc_map_timeout,
2455                                                      nr_threads_synthesize);
2456        /* command specified */
2457        return 0;
2458}
2459
2460pid_t machine__get_current_tid(struct machine *machine, int cpu)
2461{
2462        if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2463                return -1;
2464
2465        return machine->current_tid[cpu];
2466}
2467
2468int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2469                             pid_t tid)
2470{
2471        struct thread *thread;
2472
2473        if (cpu < 0)
2474                return -EINVAL;
2475
2476        if (!machine->current_tid) {
2477                int i;
2478
2479                machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2480                if (!machine->current_tid)
2481                        return -ENOMEM;
2482                for (i = 0; i < MAX_NR_CPUS; i++)
2483                        machine->current_tid[i] = -1;
2484        }
2485
2486        if (cpu >= MAX_NR_CPUS) {
2487                pr_err("Requested CPU %d too large. ", cpu);
2488                pr_err("Consider raising MAX_NR_CPUS\n");
2489                return -EINVAL;
2490        }
2491
2492        machine->current_tid[cpu] = tid;
2493
2494        thread = machine__findnew_thread(machine, pid, tid);
2495        if (!thread)
2496                return -ENOMEM;
2497
2498        thread->cpu = cpu;
2499        thread__put(thread);
2500
2501        return 0;
2502}
2503
2504/*
2505 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2506 * normalized arch is needed.
2507 */
2508bool machine__is(struct machine *machine, const char *arch)
2509{
2510        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2511}
2512
2513int machine__nr_cpus_avail(struct machine *machine)
2514{
2515        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2516}
2517
2518int machine__get_kernel_start(struct machine *machine)
2519{
2520        struct map *map = machine__kernel_map(machine);
2521        int err = 0;
2522
2523        /*
2524         * The only addresses above 2^63 are kernel addresses of a 64-bit
2525         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2526         * all addresses including kernel addresses are less than 2^32.  In
2527         * that case (32-bit system), if the kernel mapping is unknown, all
2528         * addresses will be assumed to be in user space - see
2529         * machine__kernel_ip().
2530         */
2531        machine->kernel_start = 1ULL << 63;
2532        if (map) {
2533                err = map__load(map);
2534                /*
2535                 * On x86_64, PTI entry trampolines are less than the
2536                 * start of kernel text, but still above 2^63. So leave
2537                 * kernel_start = 1ULL << 63 for x86_64.
2538                 */
2539                if (!err && !machine__is(machine, "x86_64"))
2540                        machine->kernel_start = map->start;
2541        }
2542        return err;
2543}
2544
2545struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2546{
2547        return dsos__findnew(&machine->dsos, filename);
2548}
2549
2550char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2551{
2552        struct machine *machine = vmachine;
2553        struct map *map;
2554        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2555
2556        if (sym == NULL)
2557                return NULL;
2558
2559        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2560        *addrp = map->unmap_ip(map, sym->start);
2561        return sym->name;
2562}
2563