linux/virt/kvm/arm/vgic/vgic-its.c
<<
>>
Prefs
   1/*
   2 * GICv3 ITS emulation
   3 *
   4 * Copyright (C) 2015,2016 ARM Ltd.
   5 * Author: Andre Przywara <andre.przywara@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/cpu.h>
  21#include <linux/kvm.h>
  22#include <linux/kvm_host.h>
  23#include <linux/interrupt.h>
  24#include <linux/list.h>
  25#include <linux/uaccess.h>
  26#include <linux/list_sort.h>
  27
  28#include <linux/irqchip/arm-gic-v3.h>
  29
  30#include <asm/kvm_emulate.h>
  31#include <asm/kvm_arm.h>
  32#include <asm/kvm_mmu.h>
  33
  34#include "vgic.h"
  35#include "vgic-mmio.h"
  36
  37static int vgic_its_save_tables_v0(struct vgic_its *its);
  38static int vgic_its_restore_tables_v0(struct vgic_its *its);
  39static int vgic_its_commit_v0(struct vgic_its *its);
  40static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  41                             struct kvm_vcpu *filter_vcpu, bool needs_inv);
  42
  43/*
  44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  45 * If this LPI is already mapped on another ITS, we increase its refcount
  46 * and return a pointer to the existing structure.
  47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  48 * This function returns a pointer to the _unlocked_ structure.
  49 */
  50static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  51                                     struct kvm_vcpu *vcpu)
  52{
  53        struct vgic_dist *dist = &kvm->arch.vgic;
  54        struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  55        unsigned long flags;
  56        int ret;
  57
  58        /* In this case there is no put, since we keep the reference. */
  59        if (irq)
  60                return irq;
  61
  62        irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  63        if (!irq)
  64                return ERR_PTR(-ENOMEM);
  65
  66        INIT_LIST_HEAD(&irq->lpi_list);
  67        INIT_LIST_HEAD(&irq->ap_list);
  68        spin_lock_init(&irq->irq_lock);
  69
  70        irq->config = VGIC_CONFIG_EDGE;
  71        kref_init(&irq->refcount);
  72        irq->intid = intid;
  73        irq->target_vcpu = vcpu;
  74        irq->group = 1;
  75
  76        spin_lock_irqsave(&dist->lpi_list_lock, flags);
  77
  78        /*
  79         * There could be a race with another vgic_add_lpi(), so we need to
  80         * check that we don't add a second list entry with the same LPI.
  81         */
  82        list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  83                if (oldirq->intid != intid)
  84                        continue;
  85
  86                /* Someone was faster with adding this LPI, lets use that. */
  87                kfree(irq);
  88                irq = oldirq;
  89
  90                /*
  91                 * This increases the refcount, the caller is expected to
  92                 * call vgic_put_irq() on the returned pointer once it's
  93                 * finished with the IRQ.
  94                 */
  95                vgic_get_irq_kref(irq);
  96
  97                goto out_unlock;
  98        }
  99
 100        list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
 101        dist->lpi_list_count++;
 102
 103out_unlock:
 104        spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 105
 106        /*
 107         * We "cache" the configuration table entries in our struct vgic_irq's.
 108         * However we only have those structs for mapped IRQs, so we read in
 109         * the respective config data from memory here upon mapping the LPI.
 110         */
 111        ret = update_lpi_config(kvm, irq, NULL, false);
 112        if (ret)
 113                return ERR_PTR(ret);
 114
 115        ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 116        if (ret)
 117                return ERR_PTR(ret);
 118
 119        return irq;
 120}
 121
 122struct its_device {
 123        struct list_head dev_list;
 124
 125        /* the head for the list of ITTEs */
 126        struct list_head itt_head;
 127        u32 num_eventid_bits;
 128        gpa_t itt_addr;
 129        u32 device_id;
 130};
 131
 132#define COLLECTION_NOT_MAPPED ((u32)~0)
 133
 134struct its_collection {
 135        struct list_head coll_list;
 136
 137        u32 collection_id;
 138        u32 target_addr;
 139};
 140
 141#define its_is_collection_mapped(coll) ((coll) && \
 142                                ((coll)->target_addr != COLLECTION_NOT_MAPPED))
 143
 144struct its_ite {
 145        struct list_head ite_list;
 146
 147        struct vgic_irq *irq;
 148        struct its_collection *collection;
 149        u32 event_id;
 150};
 151
 152/**
 153 * struct vgic_its_abi - ITS abi ops and settings
 154 * @cte_esz: collection table entry size
 155 * @dte_esz: device table entry size
 156 * @ite_esz: interrupt translation table entry size
 157 * @save tables: save the ITS tables into guest RAM
 158 * @restore_tables: restore the ITS internal structs from tables
 159 *  stored in guest RAM
 160 * @commit: initialize the registers which expose the ABI settings,
 161 *  especially the entry sizes
 162 */
 163struct vgic_its_abi {
 164        int cte_esz;
 165        int dte_esz;
 166        int ite_esz;
 167        int (*save_tables)(struct vgic_its *its);
 168        int (*restore_tables)(struct vgic_its *its);
 169        int (*commit)(struct vgic_its *its);
 170};
 171
 172#define ABI_0_ESZ       8
 173#define ESZ_MAX         ABI_0_ESZ
 174
 175static const struct vgic_its_abi its_table_abi_versions[] = {
 176        [0] = {
 177         .cte_esz = ABI_0_ESZ,
 178         .dte_esz = ABI_0_ESZ,
 179         .ite_esz = ABI_0_ESZ,
 180         .save_tables = vgic_its_save_tables_v0,
 181         .restore_tables = vgic_its_restore_tables_v0,
 182         .commit = vgic_its_commit_v0,
 183        },
 184};
 185
 186#define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
 187
 188inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 189{
 190        return &its_table_abi_versions[its->abi_rev];
 191}
 192
 193static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
 194{
 195        const struct vgic_its_abi *abi;
 196
 197        its->abi_rev = rev;
 198        abi = vgic_its_get_abi(its);
 199        return abi->commit(its);
 200}
 201
 202/*
 203 * Find and returns a device in the device table for an ITS.
 204 * Must be called with the its_lock mutex held.
 205 */
 206static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 207{
 208        struct its_device *device;
 209
 210        list_for_each_entry(device, &its->device_list, dev_list)
 211                if (device_id == device->device_id)
 212                        return device;
 213
 214        return NULL;
 215}
 216
 217/*
 218 * Find and returns an interrupt translation table entry (ITTE) for a given
 219 * Device ID/Event ID pair on an ITS.
 220 * Must be called with the its_lock mutex held.
 221 */
 222static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 223                                  u32 event_id)
 224{
 225        struct its_device *device;
 226        struct its_ite *ite;
 227
 228        device = find_its_device(its, device_id);
 229        if (device == NULL)
 230                return NULL;
 231
 232        list_for_each_entry(ite, &device->itt_head, ite_list)
 233                if (ite->event_id == event_id)
 234                        return ite;
 235
 236        return NULL;
 237}
 238
 239/* To be used as an iterator this macro misses the enclosing parentheses */
 240#define for_each_lpi_its(dev, ite, its) \
 241        list_for_each_entry(dev, &(its)->device_list, dev_list) \
 242                list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 243
 244/*
 245 * We only implement 48 bits of PA at the moment, although the ITS
 246 * supports more. Let's be restrictive here.
 247 */
 248#define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
 249#define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
 250
 251#define GIC_LPI_OFFSET 8192
 252
 253#define VITS_TYPER_IDBITS 16
 254#define VITS_TYPER_DEVBITS 16
 255#define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
 256#define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
 257
 258/*
 259 * Finds and returns a collection in the ITS collection table.
 260 * Must be called with the its_lock mutex held.
 261 */
 262static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 263{
 264        struct its_collection *collection;
 265
 266        list_for_each_entry(collection, &its->collection_list, coll_list) {
 267                if (coll_id == collection->collection_id)
 268                        return collection;
 269        }
 270
 271        return NULL;
 272}
 273
 274#define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
 275#define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
 276
 277/*
 278 * Reads the configuration data for a given LPI from guest memory and
 279 * updates the fields in struct vgic_irq.
 280 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 281 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 282 */
 283static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 284                             struct kvm_vcpu *filter_vcpu, bool needs_inv)
 285{
 286        u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 287        u8 prop;
 288        int ret;
 289        unsigned long flags;
 290
 291        ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 292                                  &prop, 1);
 293
 294        if (ret)
 295                return ret;
 296
 297        spin_lock_irqsave(&irq->irq_lock, flags);
 298
 299        if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 300                irq->priority = LPI_PROP_PRIORITY(prop);
 301                irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 302
 303                if (!irq->hw) {
 304                        vgic_queue_irq_unlock(kvm, irq, flags);
 305                        return 0;
 306                }
 307        }
 308
 309        spin_unlock_irqrestore(&irq->irq_lock, flags);
 310
 311        if (irq->hw)
 312                return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
 313
 314        return 0;
 315}
 316
 317/*
 318 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 319 * enumerate those LPIs without holding any lock.
 320 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 321 */
 322int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
 323{
 324        struct vgic_dist *dist = &kvm->arch.vgic;
 325        struct vgic_irq *irq;
 326        unsigned long flags;
 327        u32 *intids;
 328        int irq_count, i = 0;
 329
 330        /*
 331         * There is an obvious race between allocating the array and LPIs
 332         * being mapped/unmapped. If we ended up here as a result of a
 333         * command, we're safe (locks are held, preventing another
 334         * command). If coming from another path (such as enabling LPIs),
 335         * we must be careful not to overrun the array.
 336         */
 337        irq_count = READ_ONCE(dist->lpi_list_count);
 338        intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 339        if (!intids)
 340                return -ENOMEM;
 341
 342        spin_lock_irqsave(&dist->lpi_list_lock, flags);
 343        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 344                if (i == irq_count)
 345                        break;
 346                /* We don't need to "get" the IRQ, as we hold the list lock. */
 347                if (vcpu && irq->target_vcpu != vcpu)
 348                        continue;
 349                intids[i++] = irq->intid;
 350        }
 351        spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 352
 353        *intid_ptr = intids;
 354        return i;
 355}
 356
 357static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
 358{
 359        int ret = 0;
 360        unsigned long flags;
 361
 362        spin_lock_irqsave(&irq->irq_lock, flags);
 363        irq->target_vcpu = vcpu;
 364        spin_unlock_irqrestore(&irq->irq_lock, flags);
 365
 366        if (irq->hw) {
 367                struct its_vlpi_map map;
 368
 369                ret = its_get_vlpi(irq->host_irq, &map);
 370                if (ret)
 371                        return ret;
 372
 373                map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 374
 375                ret = its_map_vlpi(irq->host_irq, &map);
 376        }
 377
 378        return ret;
 379}
 380
 381/*
 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 383 * is targeting) to the VGIC's view, which deals with target VCPUs.
 384 * Needs to be called whenever either the collection for a LPIs has
 385 * changed or the collection itself got retargeted.
 386 */
 387static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 388{
 389        struct kvm_vcpu *vcpu;
 390
 391        if (!its_is_collection_mapped(ite->collection))
 392                return;
 393
 394        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 395        update_affinity(ite->irq, vcpu);
 396}
 397
 398/*
 399 * Updates the target VCPU for every LPI targeting this collection.
 400 * Must be called with the its_lock mutex held.
 401 */
 402static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 403                                       struct its_collection *coll)
 404{
 405        struct its_device *device;
 406        struct its_ite *ite;
 407
 408        for_each_lpi_its(device, ite, its) {
 409                if (!ite->collection || coll != ite->collection)
 410                        continue;
 411
 412                update_affinity_ite(kvm, ite);
 413        }
 414}
 415
 416static u32 max_lpis_propbaser(u64 propbaser)
 417{
 418        int nr_idbits = (propbaser & 0x1f) + 1;
 419
 420        return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 421}
 422
 423/*
 424 * Sync the pending table pending bit of LPIs targeting @vcpu
 425 * with our own data structures. This relies on the LPI being
 426 * mapped before.
 427 */
 428static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 429{
 430        gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 431        struct vgic_irq *irq;
 432        int last_byte_offset = -1;
 433        int ret = 0;
 434        u32 *intids;
 435        int nr_irqs, i;
 436        unsigned long flags;
 437        u8 pendmask;
 438
 439        nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
 440        if (nr_irqs < 0)
 441                return nr_irqs;
 442
 443        for (i = 0; i < nr_irqs; i++) {
 444                int byte_offset, bit_nr;
 445
 446                byte_offset = intids[i] / BITS_PER_BYTE;
 447                bit_nr = intids[i] % BITS_PER_BYTE;
 448
 449                /*
 450                 * For contiguously allocated LPIs chances are we just read
 451                 * this very same byte in the last iteration. Reuse that.
 452                 */
 453                if (byte_offset != last_byte_offset) {
 454                        ret = kvm_read_guest_lock(vcpu->kvm,
 455                                                  pendbase + byte_offset,
 456                                                  &pendmask, 1);
 457                        if (ret) {
 458                                kfree(intids);
 459                                return ret;
 460                        }
 461                        last_byte_offset = byte_offset;
 462                }
 463
 464                irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 465                spin_lock_irqsave(&irq->irq_lock, flags);
 466                irq->pending_latch = pendmask & (1U << bit_nr);
 467                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 468                vgic_put_irq(vcpu->kvm, irq);
 469        }
 470
 471        kfree(intids);
 472
 473        return ret;
 474}
 475
 476static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 477                                              struct vgic_its *its,
 478                                              gpa_t addr, unsigned int len)
 479{
 480        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 481        u64 reg = GITS_TYPER_PLPIS;
 482
 483        /*
 484         * We use linear CPU numbers for redistributor addressing,
 485         * so GITS_TYPER.PTA is 0.
 486         * Also we force all PROPBASER registers to be the same, so
 487         * CommonLPIAff is 0 as well.
 488         * To avoid memory waste in the guest, we keep the number of IDBits and
 489         * DevBits low - as least for the time being.
 490         */
 491        reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 492        reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 493        reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 494
 495        return extract_bytes(reg, addr & 7, len);
 496}
 497
 498static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 499                                             struct vgic_its *its,
 500                                             gpa_t addr, unsigned int len)
 501{
 502        u32 val;
 503
 504        val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 505        val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 506        return val;
 507}
 508
 509static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 510                                            struct vgic_its *its,
 511                                            gpa_t addr, unsigned int len,
 512                                            unsigned long val)
 513{
 514        u32 rev = GITS_IIDR_REV(val);
 515
 516        if (rev >= NR_ITS_ABIS)
 517                return -EINVAL;
 518        return vgic_its_set_abi(its, rev);
 519}
 520
 521static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 522                                               struct vgic_its *its,
 523                                               gpa_t addr, unsigned int len)
 524{
 525        switch (addr & 0xffff) {
 526        case GITS_PIDR0:
 527                return 0x92;    /* part number, bits[7:0] */
 528        case GITS_PIDR1:
 529                return 0xb4;    /* part number, bits[11:8] */
 530        case GITS_PIDR2:
 531                return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 532        case GITS_PIDR4:
 533                return 0x40;    /* This is a 64K software visible page */
 534        /* The following are the ID registers for (any) GIC. */
 535        case GITS_CIDR0:
 536                return 0x0d;
 537        case GITS_CIDR1:
 538                return 0xf0;
 539        case GITS_CIDR2:
 540                return 0x05;
 541        case GITS_CIDR3:
 542                return 0xb1;
 543        }
 544
 545        return 0;
 546}
 547
 548int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
 549                         u32 devid, u32 eventid, struct vgic_irq **irq)
 550{
 551        struct kvm_vcpu *vcpu;
 552        struct its_ite *ite;
 553
 554        if (!its->enabled)
 555                return -EBUSY;
 556
 557        ite = find_ite(its, devid, eventid);
 558        if (!ite || !its_is_collection_mapped(ite->collection))
 559                return E_ITS_INT_UNMAPPED_INTERRUPT;
 560
 561        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 562        if (!vcpu)
 563                return E_ITS_INT_UNMAPPED_INTERRUPT;
 564
 565        if (!vcpu->arch.vgic_cpu.lpis_enabled)
 566                return -EBUSY;
 567
 568        *irq = ite->irq;
 569        return 0;
 570}
 571
 572struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
 573{
 574        u64 address;
 575        struct kvm_io_device *kvm_io_dev;
 576        struct vgic_io_device *iodev;
 577
 578        if (!vgic_has_its(kvm))
 579                return ERR_PTR(-ENODEV);
 580
 581        if (!(msi->flags & KVM_MSI_VALID_DEVID))
 582                return ERR_PTR(-EINVAL);
 583
 584        address = (u64)msi->address_hi << 32 | msi->address_lo;
 585
 586        kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 587        if (!kvm_io_dev)
 588                return ERR_PTR(-EINVAL);
 589
 590        if (kvm_io_dev->ops != &kvm_io_gic_ops)
 591                return ERR_PTR(-EINVAL);
 592
 593        iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
 594        if (iodev->iodev_type != IODEV_ITS)
 595                return ERR_PTR(-EINVAL);
 596
 597        return iodev->its;
 598}
 599
 600/*
 601 * Find the target VCPU and the LPI number for a given devid/eventid pair
 602 * and make this IRQ pending, possibly injecting it.
 603 * Must be called with the its_lock mutex held.
 604 * Returns 0 on success, a positive error value for any ITS mapping
 605 * related errors and negative error values for generic errors.
 606 */
 607static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 608                                u32 devid, u32 eventid)
 609{
 610        struct vgic_irq *irq = NULL;
 611        unsigned long flags;
 612        int err;
 613
 614        err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
 615        if (err)
 616                return err;
 617
 618        if (irq->hw)
 619                return irq_set_irqchip_state(irq->host_irq,
 620                                             IRQCHIP_STATE_PENDING, true);
 621
 622        spin_lock_irqsave(&irq->irq_lock, flags);
 623        irq->pending_latch = true;
 624        vgic_queue_irq_unlock(kvm, irq, flags);
 625
 626        return 0;
 627}
 628
 629/*
 630 * Queries the KVM IO bus framework to get the ITS pointer from the given
 631 * doorbell address.
 632 * We then call vgic_its_trigger_msi() with the decoded data.
 633 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 634 */
 635int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 636{
 637        struct vgic_its *its;
 638        int ret;
 639
 640        its = vgic_msi_to_its(kvm, msi);
 641        if (IS_ERR(its))
 642                return PTR_ERR(its);
 643
 644        mutex_lock(&its->its_lock);
 645        ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
 646        mutex_unlock(&its->its_lock);
 647
 648        if (ret < 0)
 649                return ret;
 650
 651        /*
 652         * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 653         * if the guest has blocked the MSI. So we map any LPI mapping
 654         * related error to that.
 655         */
 656        if (ret)
 657                return 0;
 658        else
 659                return 1;
 660}
 661
 662/* Requires the its_lock to be held. */
 663static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 664{
 665        list_del(&ite->ite_list);
 666
 667        /* This put matches the get in vgic_add_lpi. */
 668        if (ite->irq) {
 669                if (ite->irq->hw)
 670                        WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
 671
 672                vgic_put_irq(kvm, ite->irq);
 673        }
 674
 675        kfree(ite);
 676}
 677
 678static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 679{
 680        return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 681}
 682
 683#define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
 684#define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
 685#define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 686#define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
 687#define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
 688#define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
 689#define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 690#define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
 691#define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
 692
 693/*
 694 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 695 * Must be called with the its_lock mutex held.
 696 */
 697static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 698                                       u64 *its_cmd)
 699{
 700        u32 device_id = its_cmd_get_deviceid(its_cmd);
 701        u32 event_id = its_cmd_get_id(its_cmd);
 702        struct its_ite *ite;
 703
 704
 705        ite = find_ite(its, device_id, event_id);
 706        if (ite && ite->collection) {
 707                /*
 708                 * Though the spec talks about removing the pending state, we
 709                 * don't bother here since we clear the ITTE anyway and the
 710                 * pending state is a property of the ITTE struct.
 711                 */
 712                its_free_ite(kvm, ite);
 713                return 0;
 714        }
 715
 716        return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 717}
 718
 719/*
 720 * The MOVI command moves an ITTE to a different collection.
 721 * Must be called with the its_lock mutex held.
 722 */
 723static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 724                                    u64 *its_cmd)
 725{
 726        u32 device_id = its_cmd_get_deviceid(its_cmd);
 727        u32 event_id = its_cmd_get_id(its_cmd);
 728        u32 coll_id = its_cmd_get_collection(its_cmd);
 729        struct kvm_vcpu *vcpu;
 730        struct its_ite *ite;
 731        struct its_collection *collection;
 732
 733        ite = find_ite(its, device_id, event_id);
 734        if (!ite)
 735                return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 736
 737        if (!its_is_collection_mapped(ite->collection))
 738                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 739
 740        collection = find_collection(its, coll_id);
 741        if (!its_is_collection_mapped(collection))
 742                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 743
 744        ite->collection = collection;
 745        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 746
 747        return update_affinity(ite->irq, vcpu);
 748}
 749
 750/*
 751 * Check whether an ID can be stored into the corresponding guest table.
 752 * For a direct table this is pretty easy, but gets a bit nasty for
 753 * indirect tables. We check whether the resulting guest physical address
 754 * is actually valid (covered by a memslot and guest accessible).
 755 * For this we have to read the respective first level entry.
 756 */
 757static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 758                              gpa_t *eaddr)
 759{
 760        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 761        u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 762        int esz = GITS_BASER_ENTRY_SIZE(baser);
 763        int index;
 764        gfn_t gfn;
 765
 766        switch (type) {
 767        case GITS_BASER_TYPE_DEVICE:
 768                if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 769                        return false;
 770                break;
 771        case GITS_BASER_TYPE_COLLECTION:
 772                /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 773                if (id >= BIT_ULL(16))
 774                        return false;
 775                break;
 776        default:
 777                return false;
 778        }
 779
 780        if (!(baser & GITS_BASER_INDIRECT)) {
 781                phys_addr_t addr;
 782
 783                if (id >= (l1_tbl_size / esz))
 784                        return false;
 785
 786                addr = BASER_ADDRESS(baser) + id * esz;
 787                gfn = addr >> PAGE_SHIFT;
 788
 789                if (eaddr)
 790                        *eaddr = addr;
 791                return kvm_is_visible_gfn(its->dev->kvm, gfn);
 792        }
 793
 794        /* calculate and check the index into the 1st level */
 795        index = id / (SZ_64K / esz);
 796        if (index >= (l1_tbl_size / sizeof(u64)))
 797                return false;
 798
 799        /* Each 1st level entry is represented by a 64-bit value. */
 800        if (kvm_read_guest_lock(its->dev->kvm,
 801                           BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
 802                           &indirect_ptr, sizeof(indirect_ptr)))
 803                return false;
 804
 805        indirect_ptr = le64_to_cpu(indirect_ptr);
 806
 807        /* check the valid bit of the first level entry */
 808        if (!(indirect_ptr & BIT_ULL(63)))
 809                return false;
 810
 811        /*
 812         * Mask the guest physical address and calculate the frame number.
 813         * Any address beyond our supported 48 bits of PA will be caught
 814         * by the actual check in the final step.
 815         */
 816        indirect_ptr &= GENMASK_ULL(51, 16);
 817
 818        /* Find the address of the actual entry */
 819        index = id % (SZ_64K / esz);
 820        indirect_ptr += index * esz;
 821        gfn = indirect_ptr >> PAGE_SHIFT;
 822
 823        if (eaddr)
 824                *eaddr = indirect_ptr;
 825        return kvm_is_visible_gfn(its->dev->kvm, gfn);
 826}
 827
 828static int vgic_its_alloc_collection(struct vgic_its *its,
 829                                     struct its_collection **colp,
 830                                     u32 coll_id)
 831{
 832        struct its_collection *collection;
 833
 834        if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 835                return E_ITS_MAPC_COLLECTION_OOR;
 836
 837        collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 838        if (!collection)
 839                return -ENOMEM;
 840
 841        collection->collection_id = coll_id;
 842        collection->target_addr = COLLECTION_NOT_MAPPED;
 843
 844        list_add_tail(&collection->coll_list, &its->collection_list);
 845        *colp = collection;
 846
 847        return 0;
 848}
 849
 850static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 851{
 852        struct its_collection *collection;
 853        struct its_device *device;
 854        struct its_ite *ite;
 855
 856        /*
 857         * Clearing the mapping for that collection ID removes the
 858         * entry from the list. If there wasn't any before, we can
 859         * go home early.
 860         */
 861        collection = find_collection(its, coll_id);
 862        if (!collection)
 863                return;
 864
 865        for_each_lpi_its(device, ite, its)
 866                if (ite->collection &&
 867                    ite->collection->collection_id == coll_id)
 868                        ite->collection = NULL;
 869
 870        list_del(&collection->coll_list);
 871        kfree(collection);
 872}
 873
 874/* Must be called with its_lock mutex held */
 875static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
 876                                          struct its_collection *collection,
 877                                          u32 event_id)
 878{
 879        struct its_ite *ite;
 880
 881        ite = kzalloc(sizeof(*ite), GFP_KERNEL);
 882        if (!ite)
 883                return ERR_PTR(-ENOMEM);
 884
 885        ite->event_id   = event_id;
 886        ite->collection = collection;
 887
 888        list_add_tail(&ite->ite_list, &device->itt_head);
 889        return ite;
 890}
 891
 892/*
 893 * The MAPTI and MAPI commands map LPIs to ITTEs.
 894 * Must be called with its_lock mutex held.
 895 */
 896static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
 897                                    u64 *its_cmd)
 898{
 899        u32 device_id = its_cmd_get_deviceid(its_cmd);
 900        u32 event_id = its_cmd_get_id(its_cmd);
 901        u32 coll_id = its_cmd_get_collection(its_cmd);
 902        struct its_ite *ite;
 903        struct kvm_vcpu *vcpu = NULL;
 904        struct its_device *device;
 905        struct its_collection *collection, *new_coll = NULL;
 906        struct vgic_irq *irq;
 907        int lpi_nr;
 908
 909        device = find_its_device(its, device_id);
 910        if (!device)
 911                return E_ITS_MAPTI_UNMAPPED_DEVICE;
 912
 913        if (event_id >= BIT_ULL(device->num_eventid_bits))
 914                return E_ITS_MAPTI_ID_OOR;
 915
 916        if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
 917                lpi_nr = its_cmd_get_physical_id(its_cmd);
 918        else
 919                lpi_nr = event_id;
 920        if (lpi_nr < GIC_LPI_OFFSET ||
 921            lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
 922                return E_ITS_MAPTI_PHYSICALID_OOR;
 923
 924        /* If there is an existing mapping, behavior is UNPREDICTABLE. */
 925        if (find_ite(its, device_id, event_id))
 926                return 0;
 927
 928        collection = find_collection(its, coll_id);
 929        if (!collection) {
 930                int ret = vgic_its_alloc_collection(its, &collection, coll_id);
 931                if (ret)
 932                        return ret;
 933                new_coll = collection;
 934        }
 935
 936        ite = vgic_its_alloc_ite(device, collection, event_id);
 937        if (IS_ERR(ite)) {
 938                if (new_coll)
 939                        vgic_its_free_collection(its, coll_id);
 940                return PTR_ERR(ite);
 941        }
 942
 943        if (its_is_collection_mapped(collection))
 944                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 945
 946        irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
 947        if (IS_ERR(irq)) {
 948                if (new_coll)
 949                        vgic_its_free_collection(its, coll_id);
 950                its_free_ite(kvm, ite);
 951                return PTR_ERR(irq);
 952        }
 953        ite->irq = irq;
 954
 955        return 0;
 956}
 957
 958/* Requires the its_lock to be held. */
 959static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
 960{
 961        struct its_ite *ite, *temp;
 962
 963        /*
 964         * The spec says that unmapping a device with still valid
 965         * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
 966         * since we cannot leave the memory unreferenced.
 967         */
 968        list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
 969                its_free_ite(kvm, ite);
 970
 971        list_del(&device->dev_list);
 972        kfree(device);
 973}
 974
 975/* its lock must be held */
 976static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
 977{
 978        struct its_device *cur, *temp;
 979
 980        list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
 981                vgic_its_free_device(kvm, cur);
 982}
 983
 984/* its lock must be held */
 985static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
 986{
 987        struct its_collection *cur, *temp;
 988
 989        list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
 990                vgic_its_free_collection(its, cur->collection_id);
 991}
 992
 993/* Must be called with its_lock mutex held */
 994static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
 995                                                u32 device_id, gpa_t itt_addr,
 996                                                u8 num_eventid_bits)
 997{
 998        struct its_device *device;
 999
1000        device = kzalloc(sizeof(*device), GFP_KERNEL);
1001        if (!device)
1002                return ERR_PTR(-ENOMEM);
1003
1004        device->device_id = device_id;
1005        device->itt_addr = itt_addr;
1006        device->num_eventid_bits = num_eventid_bits;
1007        INIT_LIST_HEAD(&device->itt_head);
1008
1009        list_add_tail(&device->dev_list, &its->device_list);
1010        return device;
1011}
1012
1013/*
1014 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1015 * Must be called with the its_lock mutex held.
1016 */
1017static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1018                                    u64 *its_cmd)
1019{
1020        u32 device_id = its_cmd_get_deviceid(its_cmd);
1021        bool valid = its_cmd_get_validbit(its_cmd);
1022        u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1023        gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1024        struct its_device *device;
1025
1026        if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1027                return E_ITS_MAPD_DEVICE_OOR;
1028
1029        if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1030                return E_ITS_MAPD_ITTSIZE_OOR;
1031
1032        device = find_its_device(its, device_id);
1033
1034        /*
1035         * The spec says that calling MAPD on an already mapped device
1036         * invalidates all cached data for this device. We implement this
1037         * by removing the mapping and re-establishing it.
1038         */
1039        if (device)
1040                vgic_its_free_device(kvm, device);
1041
1042        /*
1043         * The spec does not say whether unmapping a not-mapped device
1044         * is an error, so we are done in any case.
1045         */
1046        if (!valid)
1047                return 0;
1048
1049        device = vgic_its_alloc_device(its, device_id, itt_addr,
1050                                       num_eventid_bits);
1051
1052        return PTR_ERR_OR_ZERO(device);
1053}
1054
1055/*
1056 * The MAPC command maps collection IDs to redistributors.
1057 * Must be called with the its_lock mutex held.
1058 */
1059static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1060                                    u64 *its_cmd)
1061{
1062        u16 coll_id;
1063        u32 target_addr;
1064        struct its_collection *collection;
1065        bool valid;
1066
1067        valid = its_cmd_get_validbit(its_cmd);
1068        coll_id = its_cmd_get_collection(its_cmd);
1069        target_addr = its_cmd_get_target_addr(its_cmd);
1070
1071        if (target_addr >= atomic_read(&kvm->online_vcpus))
1072                return E_ITS_MAPC_PROCNUM_OOR;
1073
1074        if (!valid) {
1075                vgic_its_free_collection(its, coll_id);
1076        } else {
1077                collection = find_collection(its, coll_id);
1078
1079                if (!collection) {
1080                        int ret;
1081
1082                        ret = vgic_its_alloc_collection(its, &collection,
1083                                                        coll_id);
1084                        if (ret)
1085                                return ret;
1086                        collection->target_addr = target_addr;
1087                } else {
1088                        collection->target_addr = target_addr;
1089                        update_affinity_collection(kvm, its, collection);
1090                }
1091        }
1092
1093        return 0;
1094}
1095
1096/*
1097 * The CLEAR command removes the pending state for a particular LPI.
1098 * Must be called with the its_lock mutex held.
1099 */
1100static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1101                                     u64 *its_cmd)
1102{
1103        u32 device_id = its_cmd_get_deviceid(its_cmd);
1104        u32 event_id = its_cmd_get_id(its_cmd);
1105        struct its_ite *ite;
1106
1107
1108        ite = find_ite(its, device_id, event_id);
1109        if (!ite)
1110                return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1111
1112        ite->irq->pending_latch = false;
1113
1114        if (ite->irq->hw)
1115                return irq_set_irqchip_state(ite->irq->host_irq,
1116                                             IRQCHIP_STATE_PENDING, false);
1117
1118        return 0;
1119}
1120
1121/*
1122 * The INV command syncs the configuration bits from the memory table.
1123 * Must be called with the its_lock mutex held.
1124 */
1125static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1126                                   u64 *its_cmd)
1127{
1128        u32 device_id = its_cmd_get_deviceid(its_cmd);
1129        u32 event_id = its_cmd_get_id(its_cmd);
1130        struct its_ite *ite;
1131
1132
1133        ite = find_ite(its, device_id, event_id);
1134        if (!ite)
1135                return E_ITS_INV_UNMAPPED_INTERRUPT;
1136
1137        return update_lpi_config(kvm, ite->irq, NULL, true);
1138}
1139
1140/*
1141 * The INVALL command requests flushing of all IRQ data in this collection.
1142 * Find the VCPU mapped to that collection, then iterate over the VM's list
1143 * of mapped LPIs and update the configuration for each IRQ which targets
1144 * the specified vcpu. The configuration will be read from the in-memory
1145 * configuration table.
1146 * Must be called with the its_lock mutex held.
1147 */
1148static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1149                                      u64 *its_cmd)
1150{
1151        u32 coll_id = its_cmd_get_collection(its_cmd);
1152        struct its_collection *collection;
1153        struct kvm_vcpu *vcpu;
1154        struct vgic_irq *irq;
1155        u32 *intids;
1156        int irq_count, i;
1157
1158        collection = find_collection(its, coll_id);
1159        if (!its_is_collection_mapped(collection))
1160                return E_ITS_INVALL_UNMAPPED_COLLECTION;
1161
1162        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1163
1164        irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1165        if (irq_count < 0)
1166                return irq_count;
1167
1168        for (i = 0; i < irq_count; i++) {
1169                irq = vgic_get_irq(kvm, NULL, intids[i]);
1170                if (!irq)
1171                        continue;
1172                update_lpi_config(kvm, irq, vcpu, false);
1173                vgic_put_irq(kvm, irq);
1174        }
1175
1176        kfree(intids);
1177
1178        if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1179                its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1180
1181        return 0;
1182}
1183
1184/*
1185 * The MOVALL command moves the pending state of all IRQs targeting one
1186 * redistributor to another. We don't hold the pending state in the VCPUs,
1187 * but in the IRQs instead, so there is really not much to do for us here.
1188 * However the spec says that no IRQ must target the old redistributor
1189 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1190 * This command affects all LPIs in the system that target that redistributor.
1191 */
1192static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1193                                      u64 *its_cmd)
1194{
1195        u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1196        u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1197        struct kvm_vcpu *vcpu1, *vcpu2;
1198        struct vgic_irq *irq;
1199        u32 *intids;
1200        int irq_count, i;
1201
1202        if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1203            target2_addr >= atomic_read(&kvm->online_vcpus))
1204                return E_ITS_MOVALL_PROCNUM_OOR;
1205
1206        if (target1_addr == target2_addr)
1207                return 0;
1208
1209        vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1210        vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1211
1212        irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1213        if (irq_count < 0)
1214                return irq_count;
1215
1216        for (i = 0; i < irq_count; i++) {
1217                irq = vgic_get_irq(kvm, NULL, intids[i]);
1218
1219                update_affinity(irq, vcpu2);
1220
1221                vgic_put_irq(kvm, irq);
1222        }
1223
1224        kfree(intids);
1225        return 0;
1226}
1227
1228/*
1229 * The INT command injects the LPI associated with that DevID/EvID pair.
1230 * Must be called with the its_lock mutex held.
1231 */
1232static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1233                                   u64 *its_cmd)
1234{
1235        u32 msi_data = its_cmd_get_id(its_cmd);
1236        u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1237
1238        return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1239}
1240
1241/*
1242 * This function is called with the its_cmd lock held, but the ITS data
1243 * structure lock dropped.
1244 */
1245static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1246                                   u64 *its_cmd)
1247{
1248        int ret = -ENODEV;
1249
1250        mutex_lock(&its->its_lock);
1251        switch (its_cmd_get_command(its_cmd)) {
1252        case GITS_CMD_MAPD:
1253                ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1254                break;
1255        case GITS_CMD_MAPC:
1256                ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1257                break;
1258        case GITS_CMD_MAPI:
1259                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1260                break;
1261        case GITS_CMD_MAPTI:
1262                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1263                break;
1264        case GITS_CMD_MOVI:
1265                ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1266                break;
1267        case GITS_CMD_DISCARD:
1268                ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1269                break;
1270        case GITS_CMD_CLEAR:
1271                ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1272                break;
1273        case GITS_CMD_MOVALL:
1274                ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1275                break;
1276        case GITS_CMD_INT:
1277                ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1278                break;
1279        case GITS_CMD_INV:
1280                ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1281                break;
1282        case GITS_CMD_INVALL:
1283                ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1284                break;
1285        case GITS_CMD_SYNC:
1286                /* we ignore this command: we are in sync all of the time */
1287                ret = 0;
1288                break;
1289        }
1290        mutex_unlock(&its->its_lock);
1291
1292        return ret;
1293}
1294
1295static u64 vgic_sanitise_its_baser(u64 reg)
1296{
1297        reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1298                                  GITS_BASER_SHAREABILITY_SHIFT,
1299                                  vgic_sanitise_shareability);
1300        reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1301                                  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1302                                  vgic_sanitise_inner_cacheability);
1303        reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1304                                  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1305                                  vgic_sanitise_outer_cacheability);
1306
1307        /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1308        reg &= ~GENMASK_ULL(15, 12);
1309
1310        /* We support only one (ITS) page size: 64K */
1311        reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1312
1313        return reg;
1314}
1315
1316static u64 vgic_sanitise_its_cbaser(u64 reg)
1317{
1318        reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1319                                  GITS_CBASER_SHAREABILITY_SHIFT,
1320                                  vgic_sanitise_shareability);
1321        reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1322                                  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1323                                  vgic_sanitise_inner_cacheability);
1324        reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1325                                  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1326                                  vgic_sanitise_outer_cacheability);
1327
1328        /*
1329         * Sanitise the physical address to be 64k aligned.
1330         * Also limit the physical addresses to 48 bits.
1331         */
1332        reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1333
1334        return reg;
1335}
1336
1337static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1338                                               struct vgic_its *its,
1339                                               gpa_t addr, unsigned int len)
1340{
1341        return extract_bytes(its->cbaser, addr & 7, len);
1342}
1343
1344static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1345                                       gpa_t addr, unsigned int len,
1346                                       unsigned long val)
1347{
1348        /* When GITS_CTLR.Enable is 1, this register is RO. */
1349        if (its->enabled)
1350                return;
1351
1352        mutex_lock(&its->cmd_lock);
1353        its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1354        its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1355        its->creadr = 0;
1356        /*
1357         * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1358         * it to CREADR to make sure we start with an empty command buffer.
1359         */
1360        its->cwriter = its->creadr;
1361        mutex_unlock(&its->cmd_lock);
1362}
1363
1364#define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1365#define ITS_CMD_SIZE                    32
1366#define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1367
1368/* Must be called with the cmd_lock held. */
1369static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1370{
1371        gpa_t cbaser;
1372        u64 cmd_buf[4];
1373
1374        /* Commands are only processed when the ITS is enabled. */
1375        if (!its->enabled)
1376                return;
1377
1378        cbaser = CBASER_ADDRESS(its->cbaser);
1379
1380        while (its->cwriter != its->creadr) {
1381                int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1382                                              cmd_buf, ITS_CMD_SIZE);
1383                /*
1384                 * If kvm_read_guest() fails, this could be due to the guest
1385                 * programming a bogus value in CBASER or something else going
1386                 * wrong from which we cannot easily recover.
1387                 * According to section 6.3.2 in the GICv3 spec we can just
1388                 * ignore that command then.
1389                 */
1390                if (!ret)
1391                        vgic_its_handle_command(kvm, its, cmd_buf);
1392
1393                its->creadr += ITS_CMD_SIZE;
1394                if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1395                        its->creadr = 0;
1396        }
1397}
1398
1399/*
1400 * By writing to CWRITER the guest announces new commands to be processed.
1401 * To avoid any races in the first place, we take the its_cmd lock, which
1402 * protects our ring buffer variables, so that there is only one user
1403 * per ITS handling commands at a given time.
1404 */
1405static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1406                                        gpa_t addr, unsigned int len,
1407                                        unsigned long val)
1408{
1409        u64 reg;
1410
1411        if (!its)
1412                return;
1413
1414        mutex_lock(&its->cmd_lock);
1415
1416        reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1417        reg = ITS_CMD_OFFSET(reg);
1418        if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1419                mutex_unlock(&its->cmd_lock);
1420                return;
1421        }
1422        its->cwriter = reg;
1423
1424        vgic_its_process_commands(kvm, its);
1425
1426        mutex_unlock(&its->cmd_lock);
1427}
1428
1429static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1430                                                struct vgic_its *its,
1431                                                gpa_t addr, unsigned int len)
1432{
1433        return extract_bytes(its->cwriter, addr & 0x7, len);
1434}
1435
1436static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1437                                               struct vgic_its *its,
1438                                               gpa_t addr, unsigned int len)
1439{
1440        return extract_bytes(its->creadr, addr & 0x7, len);
1441}
1442
1443static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1444                                              struct vgic_its *its,
1445                                              gpa_t addr, unsigned int len,
1446                                              unsigned long val)
1447{
1448        u32 cmd_offset;
1449        int ret = 0;
1450
1451        mutex_lock(&its->cmd_lock);
1452
1453        if (its->enabled) {
1454                ret = -EBUSY;
1455                goto out;
1456        }
1457
1458        cmd_offset = ITS_CMD_OFFSET(val);
1459        if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1460                ret = -EINVAL;
1461                goto out;
1462        }
1463
1464        its->creadr = cmd_offset;
1465out:
1466        mutex_unlock(&its->cmd_lock);
1467        return ret;
1468}
1469
1470#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1471static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1472                                              struct vgic_its *its,
1473                                              gpa_t addr, unsigned int len)
1474{
1475        u64 reg;
1476
1477        switch (BASER_INDEX(addr)) {
1478        case 0:
1479                reg = its->baser_device_table;
1480                break;
1481        case 1:
1482                reg = its->baser_coll_table;
1483                break;
1484        default:
1485                reg = 0;
1486                break;
1487        }
1488
1489        return extract_bytes(reg, addr & 7, len);
1490}
1491
1492#define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1493static void vgic_mmio_write_its_baser(struct kvm *kvm,
1494                                      struct vgic_its *its,
1495                                      gpa_t addr, unsigned int len,
1496                                      unsigned long val)
1497{
1498        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1499        u64 entry_size, table_type;
1500        u64 reg, *regptr, clearbits = 0;
1501
1502        /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1503        if (its->enabled)
1504                return;
1505
1506        switch (BASER_INDEX(addr)) {
1507        case 0:
1508                regptr = &its->baser_device_table;
1509                entry_size = abi->dte_esz;
1510                table_type = GITS_BASER_TYPE_DEVICE;
1511                break;
1512        case 1:
1513                regptr = &its->baser_coll_table;
1514                entry_size = abi->cte_esz;
1515                table_type = GITS_BASER_TYPE_COLLECTION;
1516                clearbits = GITS_BASER_INDIRECT;
1517                break;
1518        default:
1519                return;
1520        }
1521
1522        reg = update_64bit_reg(*regptr, addr & 7, len, val);
1523        reg &= ~GITS_BASER_RO_MASK;
1524        reg &= ~clearbits;
1525
1526        reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1527        reg |= table_type << GITS_BASER_TYPE_SHIFT;
1528        reg = vgic_sanitise_its_baser(reg);
1529
1530        *regptr = reg;
1531
1532        if (!(reg & GITS_BASER_VALID)) {
1533                /* Take the its_lock to prevent a race with a save/restore */
1534                mutex_lock(&its->its_lock);
1535                switch (table_type) {
1536                case GITS_BASER_TYPE_DEVICE:
1537                        vgic_its_free_device_list(kvm, its);
1538                        break;
1539                case GITS_BASER_TYPE_COLLECTION:
1540                        vgic_its_free_collection_list(kvm, its);
1541                        break;
1542                }
1543                mutex_unlock(&its->its_lock);
1544        }
1545}
1546
1547static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1548                                             struct vgic_its *its,
1549                                             gpa_t addr, unsigned int len)
1550{
1551        u32 reg = 0;
1552
1553        mutex_lock(&its->cmd_lock);
1554        if (its->creadr == its->cwriter)
1555                reg |= GITS_CTLR_QUIESCENT;
1556        if (its->enabled)
1557                reg |= GITS_CTLR_ENABLE;
1558        mutex_unlock(&its->cmd_lock);
1559
1560        return reg;
1561}
1562
1563static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1564                                     gpa_t addr, unsigned int len,
1565                                     unsigned long val)
1566{
1567        mutex_lock(&its->cmd_lock);
1568
1569        /*
1570         * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1571         * device/collection BASER are invalid
1572         */
1573        if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1574                (!(its->baser_device_table & GITS_BASER_VALID) ||
1575                 !(its->baser_coll_table & GITS_BASER_VALID) ||
1576                 !(its->cbaser & GITS_CBASER_VALID)))
1577                goto out;
1578
1579        its->enabled = !!(val & GITS_CTLR_ENABLE);
1580
1581        /*
1582         * Try to process any pending commands. This function bails out early
1583         * if the ITS is disabled or no commands have been queued.
1584         */
1585        vgic_its_process_commands(kvm, its);
1586
1587out:
1588        mutex_unlock(&its->cmd_lock);
1589}
1590
1591#define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1592{                                                               \
1593        .reg_offset = off,                                      \
1594        .len = length,                                          \
1595        .access_flags = acc,                                    \
1596        .its_read = rd,                                         \
1597        .its_write = wr,                                        \
1598}
1599
1600#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1601{                                                               \
1602        .reg_offset = off,                                      \
1603        .len = length,                                          \
1604        .access_flags = acc,                                    \
1605        .its_read = rd,                                         \
1606        .its_write = wr,                                        \
1607        .uaccess_its_write = uwr,                               \
1608}
1609
1610static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1611                              gpa_t addr, unsigned int len, unsigned long val)
1612{
1613        /* Ignore */
1614}
1615
1616static struct vgic_register_region its_registers[] = {
1617        REGISTER_ITS_DESC(GITS_CTLR,
1618                vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1619                VGIC_ACCESS_32bit),
1620        REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1621                vgic_mmio_read_its_iidr, its_mmio_write_wi,
1622                vgic_mmio_uaccess_write_its_iidr, 4,
1623                VGIC_ACCESS_32bit),
1624        REGISTER_ITS_DESC(GITS_TYPER,
1625                vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1626                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1627        REGISTER_ITS_DESC(GITS_CBASER,
1628                vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1629                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1630        REGISTER_ITS_DESC(GITS_CWRITER,
1631                vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1632                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1633        REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1634                vgic_mmio_read_its_creadr, its_mmio_write_wi,
1635                vgic_mmio_uaccess_write_its_creadr, 8,
1636                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1637        REGISTER_ITS_DESC(GITS_BASER,
1638                vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1639                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1640        REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1641                vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1642                VGIC_ACCESS_32bit),
1643};
1644
1645/* This is called on setting the LPI enable bit in the redistributor. */
1646void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1647{
1648        if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1649                its_sync_lpi_pending_table(vcpu);
1650}
1651
1652static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1653                                   u64 addr)
1654{
1655        struct vgic_io_device *iodev = &its->iodev;
1656        int ret;
1657
1658        mutex_lock(&kvm->slots_lock);
1659        if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1660                ret = -EBUSY;
1661                goto out;
1662        }
1663
1664        its->vgic_its_base = addr;
1665        iodev->regions = its_registers;
1666        iodev->nr_regions = ARRAY_SIZE(its_registers);
1667        kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1668
1669        iodev->base_addr = its->vgic_its_base;
1670        iodev->iodev_type = IODEV_ITS;
1671        iodev->its = its;
1672        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1673                                      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1674out:
1675        mutex_unlock(&kvm->slots_lock);
1676
1677        return ret;
1678}
1679
1680#define INITIAL_BASER_VALUE                                               \
1681        (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1682         GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1683         GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1684         GITS_BASER_PAGE_SIZE_64K)
1685
1686#define INITIAL_PROPBASER_VALUE                                           \
1687        (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1688         GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1689         GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1690
1691static int vgic_its_create(struct kvm_device *dev, u32 type)
1692{
1693        struct vgic_its *its;
1694
1695        if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1696                return -ENODEV;
1697
1698        its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1699        if (!its)
1700                return -ENOMEM;
1701
1702        if (vgic_initialized(dev->kvm)) {
1703                int ret = vgic_v4_init(dev->kvm);
1704                if (ret < 0) {
1705                        kfree(its);
1706                        return ret;
1707                }
1708        }
1709
1710        mutex_init(&its->its_lock);
1711        mutex_init(&its->cmd_lock);
1712
1713        its->vgic_its_base = VGIC_ADDR_UNDEF;
1714
1715        INIT_LIST_HEAD(&its->device_list);
1716        INIT_LIST_HEAD(&its->collection_list);
1717
1718        dev->kvm->arch.vgic.msis_require_devid = true;
1719        dev->kvm->arch.vgic.has_its = true;
1720        its->enabled = false;
1721        its->dev = dev;
1722
1723        its->baser_device_table = INITIAL_BASER_VALUE                   |
1724                ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1725        its->baser_coll_table = INITIAL_BASER_VALUE |
1726                ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1727        dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1728
1729        dev->private = its;
1730
1731        return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1732}
1733
1734static void vgic_its_destroy(struct kvm_device *kvm_dev)
1735{
1736        struct kvm *kvm = kvm_dev->kvm;
1737        struct vgic_its *its = kvm_dev->private;
1738
1739        mutex_lock(&its->its_lock);
1740
1741        vgic_its_free_device_list(kvm, its);
1742        vgic_its_free_collection_list(kvm, its);
1743
1744        mutex_unlock(&its->its_lock);
1745        kfree(its);
1746}
1747
1748int vgic_its_has_attr_regs(struct kvm_device *dev,
1749                           struct kvm_device_attr *attr)
1750{
1751        const struct vgic_register_region *region;
1752        gpa_t offset = attr->attr;
1753        int align;
1754
1755        align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1756
1757        if (offset & align)
1758                return -EINVAL;
1759
1760        region = vgic_find_mmio_region(its_registers,
1761                                       ARRAY_SIZE(its_registers),
1762                                       offset);
1763        if (!region)
1764                return -ENXIO;
1765
1766        return 0;
1767}
1768
1769int vgic_its_attr_regs_access(struct kvm_device *dev,
1770                              struct kvm_device_attr *attr,
1771                              u64 *reg, bool is_write)
1772{
1773        const struct vgic_register_region *region;
1774        struct vgic_its *its;
1775        gpa_t addr, offset;
1776        unsigned int len;
1777        int align, ret = 0;
1778
1779        its = dev->private;
1780        offset = attr->attr;
1781
1782        /*
1783         * Although the spec supports upper/lower 32-bit accesses to
1784         * 64-bit ITS registers, the userspace ABI requires 64-bit
1785         * accesses to all 64-bit wide registers. We therefore only
1786         * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1787         * registers
1788         */
1789        if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1790                align = 0x3;
1791        else
1792                align = 0x7;
1793
1794        if (offset & align)
1795                return -EINVAL;
1796
1797        mutex_lock(&dev->kvm->lock);
1798
1799        if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1800                ret = -ENXIO;
1801                goto out;
1802        }
1803
1804        region = vgic_find_mmio_region(its_registers,
1805                                       ARRAY_SIZE(its_registers),
1806                                       offset);
1807        if (!region) {
1808                ret = -ENXIO;
1809                goto out;
1810        }
1811
1812        if (!lock_all_vcpus(dev->kvm)) {
1813                ret = -EBUSY;
1814                goto out;
1815        }
1816
1817        addr = its->vgic_its_base + offset;
1818
1819        len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1820
1821        if (is_write) {
1822                if (region->uaccess_its_write)
1823                        ret = region->uaccess_its_write(dev->kvm, its, addr,
1824                                                        len, *reg);
1825                else
1826                        region->its_write(dev->kvm, its, addr, len, *reg);
1827        } else {
1828                *reg = region->its_read(dev->kvm, its, addr, len);
1829        }
1830        unlock_all_vcpus(dev->kvm);
1831out:
1832        mutex_unlock(&dev->kvm->lock);
1833        return ret;
1834}
1835
1836static u32 compute_next_devid_offset(struct list_head *h,
1837                                     struct its_device *dev)
1838{
1839        struct its_device *next;
1840        u32 next_offset;
1841
1842        if (list_is_last(&dev->dev_list, h))
1843                return 0;
1844        next = list_next_entry(dev, dev_list);
1845        next_offset = next->device_id - dev->device_id;
1846
1847        return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1848}
1849
1850static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1851{
1852        struct its_ite *next;
1853        u32 next_offset;
1854
1855        if (list_is_last(&ite->ite_list, h))
1856                return 0;
1857        next = list_next_entry(ite, ite_list);
1858        next_offset = next->event_id - ite->event_id;
1859
1860        return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1861}
1862
1863/**
1864 * entry_fn_t - Callback called on a table entry restore path
1865 * @its: its handle
1866 * @id: id of the entry
1867 * @entry: pointer to the entry
1868 * @opaque: pointer to an opaque data
1869 *
1870 * Return: < 0 on error, 0 if last element was identified, id offset to next
1871 * element otherwise
1872 */
1873typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1874                          void *opaque);
1875
1876/**
1877 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1878 * to each entry
1879 *
1880 * @its: its handle
1881 * @base: base gpa of the table
1882 * @size: size of the table in bytes
1883 * @esz: entry size in bytes
1884 * @start_id: the ID of the first entry in the table
1885 * (non zero for 2d level tables)
1886 * @fn: function to apply on each entry
1887 *
1888 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1889 * (the last element may not be found on second level tables)
1890 */
1891static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1892                          int start_id, entry_fn_t fn, void *opaque)
1893{
1894        struct kvm *kvm = its->dev->kvm;
1895        unsigned long len = size;
1896        int id = start_id;
1897        gpa_t gpa = base;
1898        char entry[ESZ_MAX];
1899        int ret;
1900
1901        memset(entry, 0, esz);
1902
1903        while (len > 0) {
1904                int next_offset;
1905                size_t byte_offset;
1906
1907                ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1908                if (ret)
1909                        return ret;
1910
1911                next_offset = fn(its, id, entry, opaque);
1912                if (next_offset <= 0)
1913                        return next_offset;
1914
1915                byte_offset = next_offset * esz;
1916                id += next_offset;
1917                gpa += byte_offset;
1918                len -= byte_offset;
1919        }
1920        return 1;
1921}
1922
1923/**
1924 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1925 */
1926static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1927                              struct its_ite *ite, gpa_t gpa, int ite_esz)
1928{
1929        struct kvm *kvm = its->dev->kvm;
1930        u32 next_offset;
1931        u64 val;
1932
1933        next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1934        val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1935               ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1936                ite->collection->collection_id;
1937        val = cpu_to_le64(val);
1938        return kvm_write_guest(kvm, gpa, &val, ite_esz);
1939}
1940
1941/**
1942 * vgic_its_restore_ite - restore an interrupt translation entry
1943 * @event_id: id used for indexing
1944 * @ptr: pointer to the ITE entry
1945 * @opaque: pointer to the its_device
1946 */
1947static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1948                                void *ptr, void *opaque)
1949{
1950        struct its_device *dev = (struct its_device *)opaque;
1951        struct its_collection *collection;
1952        struct kvm *kvm = its->dev->kvm;
1953        struct kvm_vcpu *vcpu = NULL;
1954        u64 val;
1955        u64 *p = (u64 *)ptr;
1956        struct vgic_irq *irq;
1957        u32 coll_id, lpi_id;
1958        struct its_ite *ite;
1959        u32 offset;
1960
1961        val = *p;
1962
1963        val = le64_to_cpu(val);
1964
1965        coll_id = val & KVM_ITS_ITE_ICID_MASK;
1966        lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1967
1968        if (!lpi_id)
1969                return 1; /* invalid entry, no choice but to scan next entry */
1970
1971        if (lpi_id < VGIC_MIN_LPI)
1972                return -EINVAL;
1973
1974        offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1975        if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1976                return -EINVAL;
1977
1978        collection = find_collection(its, coll_id);
1979        if (!collection)
1980                return -EINVAL;
1981
1982        ite = vgic_its_alloc_ite(dev, collection, event_id);
1983        if (IS_ERR(ite))
1984                return PTR_ERR(ite);
1985
1986        if (its_is_collection_mapped(collection))
1987                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1988
1989        irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1990        if (IS_ERR(irq))
1991                return PTR_ERR(irq);
1992        ite->irq = irq;
1993
1994        return offset;
1995}
1996
1997static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1998                            struct list_head *b)
1999{
2000        struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2001        struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2002
2003        if (itea->event_id < iteb->event_id)
2004                return -1;
2005        else
2006                return 1;
2007}
2008
2009static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2010{
2011        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2012        gpa_t base = device->itt_addr;
2013        struct its_ite *ite;
2014        int ret;
2015        int ite_esz = abi->ite_esz;
2016
2017        list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2018
2019        list_for_each_entry(ite, &device->itt_head, ite_list) {
2020                gpa_t gpa = base + ite->event_id * ite_esz;
2021
2022                /*
2023                 * If an LPI carries the HW bit, this means that this
2024                 * interrupt is controlled by GICv4, and we do not
2025                 * have direct access to that state. Let's simply fail
2026                 * the save operation...
2027                 */
2028                if (ite->irq->hw)
2029                        return -EACCES;
2030
2031                ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2032                if (ret)
2033                        return ret;
2034        }
2035        return 0;
2036}
2037
2038/**
2039 * vgic_its_restore_itt - restore the ITT of a device
2040 *
2041 * @its: its handle
2042 * @dev: device handle
2043 *
2044 * Return 0 on success, < 0 on error
2045 */
2046static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2047{
2048        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2049        gpa_t base = dev->itt_addr;
2050        int ret;
2051        int ite_esz = abi->ite_esz;
2052        size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2053
2054        ret = scan_its_table(its, base, max_size, ite_esz, 0,
2055                             vgic_its_restore_ite, dev);
2056
2057        /* scan_its_table returns +1 if all ITEs are invalid */
2058        if (ret > 0)
2059                ret = 0;
2060
2061        return ret;
2062}
2063
2064/**
2065 * vgic_its_save_dte - Save a device table entry at a given GPA
2066 *
2067 * @its: ITS handle
2068 * @dev: ITS device
2069 * @ptr: GPA
2070 */
2071static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2072                             gpa_t ptr, int dte_esz)
2073{
2074        struct kvm *kvm = its->dev->kvm;
2075        u64 val, itt_addr_field;
2076        u32 next_offset;
2077
2078        itt_addr_field = dev->itt_addr >> 8;
2079        next_offset = compute_next_devid_offset(&its->device_list, dev);
2080        val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2081               ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2082               (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2083                (dev->num_eventid_bits - 1));
2084        val = cpu_to_le64(val);
2085        return kvm_write_guest(kvm, ptr, &val, dte_esz);
2086}
2087
2088/**
2089 * vgic_its_restore_dte - restore a device table entry
2090 *
2091 * @its: its handle
2092 * @id: device id the DTE corresponds to
2093 * @ptr: kernel VA where the 8 byte DTE is located
2094 * @opaque: unused
2095 *
2096 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2097 * next dte otherwise
2098 */
2099static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2100                                void *ptr, void *opaque)
2101{
2102        struct its_device *dev;
2103        gpa_t itt_addr;
2104        u8 num_eventid_bits;
2105        u64 entry = *(u64 *)ptr;
2106        bool valid;
2107        u32 offset;
2108        int ret;
2109
2110        entry = le64_to_cpu(entry);
2111
2112        valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2113        num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2114        itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2115                        >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2116
2117        if (!valid)
2118                return 1;
2119
2120        /* dte entry is valid */
2121        offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2122
2123        dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2124        if (IS_ERR(dev))
2125                return PTR_ERR(dev);
2126
2127        ret = vgic_its_restore_itt(its, dev);
2128        if (ret) {
2129                vgic_its_free_device(its->dev->kvm, dev);
2130                return ret;
2131        }
2132
2133        return offset;
2134}
2135
2136static int vgic_its_device_cmp(void *priv, struct list_head *a,
2137                               struct list_head *b)
2138{
2139        struct its_device *deva = container_of(a, struct its_device, dev_list);
2140        struct its_device *devb = container_of(b, struct its_device, dev_list);
2141
2142        if (deva->device_id < devb->device_id)
2143                return -1;
2144        else
2145                return 1;
2146}
2147
2148/**
2149 * vgic_its_save_device_tables - Save the device table and all ITT
2150 * into guest RAM
2151 *
2152 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2153 * returns the GPA of the device entry
2154 */
2155static int vgic_its_save_device_tables(struct vgic_its *its)
2156{
2157        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2158        u64 baser = its->baser_device_table;
2159        struct its_device *dev;
2160        int dte_esz = abi->dte_esz;
2161
2162        if (!(baser & GITS_BASER_VALID))
2163                return 0;
2164
2165        list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2166
2167        list_for_each_entry(dev, &its->device_list, dev_list) {
2168                int ret;
2169                gpa_t eaddr;
2170
2171                if (!vgic_its_check_id(its, baser,
2172                                       dev->device_id, &eaddr))
2173                        return -EINVAL;
2174
2175                ret = vgic_its_save_itt(its, dev);
2176                if (ret)
2177                        return ret;
2178
2179                ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2180                if (ret)
2181                        return ret;
2182        }
2183        return 0;
2184}
2185
2186/**
2187 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2188 *
2189 * @its: its handle
2190 * @id: index of the entry in the L1 table
2191 * @addr: kernel VA
2192 * @opaque: unused
2193 *
2194 * L1 table entries are scanned by steps of 1 entry
2195 * Return < 0 if error, 0 if last dte was found when scanning the L2
2196 * table, +1 otherwise (meaning next L1 entry must be scanned)
2197 */
2198static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2199                         void *opaque)
2200{
2201        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2202        int l2_start_id = id * (SZ_64K / abi->dte_esz);
2203        u64 entry = *(u64 *)addr;
2204        int dte_esz = abi->dte_esz;
2205        gpa_t gpa;
2206        int ret;
2207
2208        entry = le64_to_cpu(entry);
2209
2210        if (!(entry & KVM_ITS_L1E_VALID_MASK))
2211                return 1;
2212
2213        gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2214
2215        ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2216                             l2_start_id, vgic_its_restore_dte, NULL);
2217
2218        return ret;
2219}
2220
2221/**
2222 * vgic_its_restore_device_tables - Restore the device table and all ITT
2223 * from guest RAM to internal data structs
2224 */
2225static int vgic_its_restore_device_tables(struct vgic_its *its)
2226{
2227        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2228        u64 baser = its->baser_device_table;
2229        int l1_esz, ret;
2230        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2231        gpa_t l1_gpa;
2232
2233        if (!(baser & GITS_BASER_VALID))
2234                return 0;
2235
2236        l1_gpa = BASER_ADDRESS(baser);
2237
2238        if (baser & GITS_BASER_INDIRECT) {
2239                l1_esz = GITS_LVL1_ENTRY_SIZE;
2240                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2241                                     handle_l1_dte, NULL);
2242        } else {
2243                l1_esz = abi->dte_esz;
2244                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2245                                     vgic_its_restore_dte, NULL);
2246        }
2247
2248        /* scan_its_table returns +1 if all entries are invalid */
2249        if (ret > 0)
2250                ret = 0;
2251
2252        return ret;
2253}
2254
2255static int vgic_its_save_cte(struct vgic_its *its,
2256                             struct its_collection *collection,
2257                             gpa_t gpa, int esz)
2258{
2259        u64 val;
2260
2261        val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2262               ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2263               collection->collection_id);
2264        val = cpu_to_le64(val);
2265        return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2266}
2267
2268static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2269{
2270        struct its_collection *collection;
2271        struct kvm *kvm = its->dev->kvm;
2272        u32 target_addr, coll_id;
2273        u64 val;
2274        int ret;
2275
2276        BUG_ON(esz > sizeof(val));
2277        ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2278        if (ret)
2279                return ret;
2280        val = le64_to_cpu(val);
2281        if (!(val & KVM_ITS_CTE_VALID_MASK))
2282                return 0;
2283
2284        target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2285        coll_id = val & KVM_ITS_CTE_ICID_MASK;
2286
2287        if (target_addr >= atomic_read(&kvm->online_vcpus))
2288                return -EINVAL;
2289
2290        collection = find_collection(its, coll_id);
2291        if (collection)
2292                return -EEXIST;
2293        ret = vgic_its_alloc_collection(its, &collection, coll_id);
2294        if (ret)
2295                return ret;
2296        collection->target_addr = target_addr;
2297        return 1;
2298}
2299
2300/**
2301 * vgic_its_save_collection_table - Save the collection table into
2302 * guest RAM
2303 */
2304static int vgic_its_save_collection_table(struct vgic_its *its)
2305{
2306        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2307        u64 baser = its->baser_coll_table;
2308        gpa_t gpa = BASER_ADDRESS(baser);
2309        struct its_collection *collection;
2310        u64 val;
2311        size_t max_size, filled = 0;
2312        int ret, cte_esz = abi->cte_esz;
2313
2314        if (!(baser & GITS_BASER_VALID))
2315                return 0;
2316
2317        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2318
2319        list_for_each_entry(collection, &its->collection_list, coll_list) {
2320                ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2321                if (ret)
2322                        return ret;
2323                gpa += cte_esz;
2324                filled += cte_esz;
2325        }
2326
2327        if (filled == max_size)
2328                return 0;
2329
2330        /*
2331         * table is not fully filled, add a last dummy element
2332         * with valid bit unset
2333         */
2334        val = 0;
2335        BUG_ON(cte_esz > sizeof(val));
2336        ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2337        return ret;
2338}
2339
2340/**
2341 * vgic_its_restore_collection_table - reads the collection table
2342 * in guest memory and restores the ITS internal state. Requires the
2343 * BASER registers to be restored before.
2344 */
2345static int vgic_its_restore_collection_table(struct vgic_its *its)
2346{
2347        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2348        u64 baser = its->baser_coll_table;
2349        int cte_esz = abi->cte_esz;
2350        size_t max_size, read = 0;
2351        gpa_t gpa;
2352        int ret;
2353
2354        if (!(baser & GITS_BASER_VALID))
2355                return 0;
2356
2357        gpa = BASER_ADDRESS(baser);
2358
2359        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2360
2361        while (read < max_size) {
2362                ret = vgic_its_restore_cte(its, gpa, cte_esz);
2363                if (ret <= 0)
2364                        break;
2365                gpa += cte_esz;
2366                read += cte_esz;
2367        }
2368
2369        if (ret > 0)
2370                return 0;
2371
2372        return ret;
2373}
2374
2375/**
2376 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2377 * according to v0 ABI
2378 */
2379static int vgic_its_save_tables_v0(struct vgic_its *its)
2380{
2381        int ret;
2382
2383        ret = vgic_its_save_device_tables(its);
2384        if (ret)
2385                return ret;
2386
2387        return vgic_its_save_collection_table(its);
2388}
2389
2390/**
2391 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2392 * to internal data structs according to V0 ABI
2393 *
2394 */
2395static int vgic_its_restore_tables_v0(struct vgic_its *its)
2396{
2397        int ret;
2398
2399        ret = vgic_its_restore_collection_table(its);
2400        if (ret)
2401                return ret;
2402
2403        return vgic_its_restore_device_tables(its);
2404}
2405
2406static int vgic_its_commit_v0(struct vgic_its *its)
2407{
2408        const struct vgic_its_abi *abi;
2409
2410        abi = vgic_its_get_abi(its);
2411        its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2412        its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2413
2414        its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2415                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2416
2417        its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2418                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2419        return 0;
2420}
2421
2422static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2423{
2424        /* We need to keep the ABI specific field values */
2425        its->baser_coll_table &= ~GITS_BASER_VALID;
2426        its->baser_device_table &= ~GITS_BASER_VALID;
2427        its->cbaser = 0;
2428        its->creadr = 0;
2429        its->cwriter = 0;
2430        its->enabled = 0;
2431        vgic_its_free_device_list(kvm, its);
2432        vgic_its_free_collection_list(kvm, its);
2433}
2434
2435static int vgic_its_has_attr(struct kvm_device *dev,
2436                             struct kvm_device_attr *attr)
2437{
2438        switch (attr->group) {
2439        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2440                switch (attr->attr) {
2441                case KVM_VGIC_ITS_ADDR_TYPE:
2442                        return 0;
2443                }
2444                break;
2445        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2446                switch (attr->attr) {
2447                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2448                        return 0;
2449                case KVM_DEV_ARM_ITS_CTRL_RESET:
2450                        return 0;
2451                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2452                        return 0;
2453                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2454                        return 0;
2455                }
2456                break;
2457        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2458                return vgic_its_has_attr_regs(dev, attr);
2459        }
2460        return -ENXIO;
2461}
2462
2463static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2464{
2465        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2466        int ret = 0;
2467
2468        if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2469                return 0;
2470
2471        mutex_lock(&kvm->lock);
2472        mutex_lock(&its->its_lock);
2473
2474        if (!lock_all_vcpus(kvm)) {
2475                mutex_unlock(&its->its_lock);
2476                mutex_unlock(&kvm->lock);
2477                return -EBUSY;
2478        }
2479
2480        switch (attr) {
2481        case KVM_DEV_ARM_ITS_CTRL_RESET:
2482                vgic_its_reset(kvm, its);
2483                break;
2484        case KVM_DEV_ARM_ITS_SAVE_TABLES:
2485                ret = abi->save_tables(its);
2486                break;
2487        case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2488                ret = abi->restore_tables(its);
2489                break;
2490        }
2491
2492        unlock_all_vcpus(kvm);
2493        mutex_unlock(&its->its_lock);
2494        mutex_unlock(&kvm->lock);
2495        return ret;
2496}
2497
2498static int vgic_its_set_attr(struct kvm_device *dev,
2499                             struct kvm_device_attr *attr)
2500{
2501        struct vgic_its *its = dev->private;
2502        int ret;
2503
2504        switch (attr->group) {
2505        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2506                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2507                unsigned long type = (unsigned long)attr->attr;
2508                u64 addr;
2509
2510                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2511                        return -ENODEV;
2512
2513                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2514                        return -EFAULT;
2515
2516                ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2517                                        addr, SZ_64K);
2518                if (ret)
2519                        return ret;
2520
2521                return vgic_register_its_iodev(dev->kvm, its, addr);
2522        }
2523        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2524                return vgic_its_ctrl(dev->kvm, its, attr->attr);
2525        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2526                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2527                u64 reg;
2528
2529                if (get_user(reg, uaddr))
2530                        return -EFAULT;
2531
2532                return vgic_its_attr_regs_access(dev, attr, &reg, true);
2533        }
2534        }
2535        return -ENXIO;
2536}
2537
2538static int vgic_its_get_attr(struct kvm_device *dev,
2539                             struct kvm_device_attr *attr)
2540{
2541        switch (attr->group) {
2542        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2543                struct vgic_its *its = dev->private;
2544                u64 addr = its->vgic_its_base;
2545                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2546                unsigned long type = (unsigned long)attr->attr;
2547
2548                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2549                        return -ENODEV;
2550
2551                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2552                        return -EFAULT;
2553                break;
2554        }
2555        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2556                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2557                u64 reg;
2558                int ret;
2559
2560                ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2561                if (ret)
2562                        return ret;
2563                return put_user(reg, uaddr);
2564        }
2565        default:
2566                return -ENXIO;
2567        }
2568
2569        return 0;
2570}
2571
2572static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2573        .name = "kvm-arm-vgic-its",
2574        .create = vgic_its_create,
2575        .destroy = vgic_its_destroy,
2576        .set_attr = vgic_its_set_attr,
2577        .get_attr = vgic_its_get_attr,
2578        .has_attr = vgic_its_has_attr,
2579};
2580
2581int kvm_vgic_register_its_device(void)
2582{
2583        return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2584                                       KVM_DEV_TYPE_ARM_VGIC_ITS);
2585}
2586