linux/virt/kvm/arm/vgic/vgic-v3.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License version 2 as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program. If not, see <http://www.gnu.org/licenses/>.
  13 */
  14
  15#include <linux/irqchip/arm-gic-v3.h>
  16#include <linux/kvm.h>
  17#include <linux/kvm_host.h>
  18#include <kvm/arm_vgic.h>
  19#include <asm/kvm_hyp.h>
  20#include <asm/kvm_mmu.h>
  21#include <asm/kvm_asm.h>
  22
  23#include "vgic.h"
  24
  25static bool group0_trap;
  26static bool group1_trap;
  27static bool common_trap;
  28static bool gicv4_enable;
  29
  30void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
  31{
  32        struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
  33
  34        cpuif->vgic_hcr |= ICH_HCR_UIE;
  35}
  36
  37static bool lr_signals_eoi_mi(u64 lr_val)
  38{
  39        return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
  40               !(lr_val & ICH_LR_HW);
  41}
  42
  43void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
  44{
  45        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  46        struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
  47        u32 model = vcpu->kvm->arch.vgic.vgic_model;
  48        int lr;
  49
  50        DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
  51
  52        cpuif->vgic_hcr &= ~ICH_HCR_UIE;
  53
  54        for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
  55                u64 val = cpuif->vgic_lr[lr];
  56                u32 intid, cpuid;
  57                struct vgic_irq *irq;
  58                bool is_v2_sgi = false;
  59
  60                cpuid = val & GICH_LR_PHYSID_CPUID;
  61                cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
  62
  63                if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
  64                        intid = val & ICH_LR_VIRTUAL_ID_MASK;
  65                } else {
  66                        intid = val & GICH_LR_VIRTUALID;
  67                        is_v2_sgi = vgic_irq_is_sgi(intid);
  68                }
  69
  70                /* Notify fds when the guest EOI'ed a level-triggered IRQ */
  71                if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
  72                        kvm_notify_acked_irq(vcpu->kvm, 0,
  73                                             intid - VGIC_NR_PRIVATE_IRQS);
  74
  75                irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
  76                if (!irq)       /* An LPI could have been unmapped. */
  77                        continue;
  78
  79                spin_lock(&irq->irq_lock);
  80
  81                /* Always preserve the active bit */
  82                irq->active = !!(val & ICH_LR_ACTIVE_BIT);
  83
  84                if (irq->active && is_v2_sgi)
  85                        irq->active_source = cpuid;
  86
  87                /* Edge is the only case where we preserve the pending bit */
  88                if (irq->config == VGIC_CONFIG_EDGE &&
  89                    (val & ICH_LR_PENDING_BIT)) {
  90                        irq->pending_latch = true;
  91
  92                        if (is_v2_sgi)
  93                                irq->source |= (1 << cpuid);
  94                }
  95
  96                /*
  97                 * Clear soft pending state when level irqs have been acked.
  98                 */
  99                if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
 100                        irq->pending_latch = false;
 101
 102                /*
 103                 * Level-triggered mapped IRQs are special because we only
 104                 * observe rising edges as input to the VGIC.
 105                 *
 106                 * If the guest never acked the interrupt we have to sample
 107                 * the physical line and set the line level, because the
 108                 * device state could have changed or we simply need to
 109                 * process the still pending interrupt later.
 110                 *
 111                 * If this causes us to lower the level, we have to also clear
 112                 * the physical active state, since we will otherwise never be
 113                 * told when the interrupt becomes asserted again.
 114                 */
 115                if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
 116                        irq->line_level = vgic_get_phys_line_level(irq);
 117
 118                        if (!irq->line_level)
 119                                vgic_irq_set_phys_active(irq, false);
 120                }
 121
 122                spin_unlock(&irq->irq_lock);
 123                vgic_put_irq(vcpu->kvm, irq);
 124        }
 125
 126        vgic_cpu->used_lrs = 0;
 127}
 128
 129/* Requires the irq to be locked already */
 130void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
 131{
 132        u32 model = vcpu->kvm->arch.vgic.vgic_model;
 133        u64 val = irq->intid;
 134        bool allow_pending = true, is_v2_sgi;
 135
 136        is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
 137                     model == KVM_DEV_TYPE_ARM_VGIC_V2);
 138
 139        if (irq->active) {
 140                val |= ICH_LR_ACTIVE_BIT;
 141                if (is_v2_sgi)
 142                        val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
 143                if (vgic_irq_is_multi_sgi(irq)) {
 144                        allow_pending = false;
 145                        val |= ICH_LR_EOI;
 146                }
 147        }
 148
 149        if (irq->hw) {
 150                val |= ICH_LR_HW;
 151                val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
 152                /*
 153                 * Never set pending+active on a HW interrupt, as the
 154                 * pending state is kept at the physical distributor
 155                 * level.
 156                 */
 157                if (irq->active)
 158                        allow_pending = false;
 159        } else {
 160                if (irq->config == VGIC_CONFIG_LEVEL) {
 161                        val |= ICH_LR_EOI;
 162
 163                        /*
 164                         * Software resampling doesn't work very well
 165                         * if we allow P+A, so let's not do that.
 166                         */
 167                        if (irq->active)
 168                                allow_pending = false;
 169                }
 170        }
 171
 172        if (allow_pending && irq_is_pending(irq)) {
 173                val |= ICH_LR_PENDING_BIT;
 174
 175                if (irq->config == VGIC_CONFIG_EDGE)
 176                        irq->pending_latch = false;
 177
 178                if (vgic_irq_is_sgi(irq->intid) &&
 179                    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
 180                        u32 src = ffs(irq->source);
 181
 182                        BUG_ON(!src);
 183                        val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
 184                        irq->source &= ~(1 << (src - 1));
 185                        if (irq->source) {
 186                                irq->pending_latch = true;
 187                                val |= ICH_LR_EOI;
 188                        }
 189                }
 190        }
 191
 192        /*
 193         * Level-triggered mapped IRQs are special because we only observe
 194         * rising edges as input to the VGIC.  We therefore lower the line
 195         * level here, so that we can take new virtual IRQs.  See
 196         * vgic_v3_fold_lr_state for more info.
 197         */
 198        if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
 199                irq->line_level = false;
 200
 201        if (irq->group)
 202                val |= ICH_LR_GROUP;
 203
 204        val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
 205
 206        vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
 207}
 208
 209void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
 210{
 211        vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
 212}
 213
 214void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
 215{
 216        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 217        u32 model = vcpu->kvm->arch.vgic.vgic_model;
 218        u32 vmcr;
 219
 220        if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
 221                vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
 222                        ICH_VMCR_ACK_CTL_MASK;
 223                vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
 224                        ICH_VMCR_FIQ_EN_MASK;
 225        } else {
 226                /*
 227                 * When emulating GICv3 on GICv3 with SRE=1 on the
 228                 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
 229                 */
 230                vmcr = ICH_VMCR_FIQ_EN_MASK;
 231        }
 232
 233        vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
 234        vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
 235        vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
 236        vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
 237        vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
 238        vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
 239        vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
 240
 241        cpu_if->vgic_vmcr = vmcr;
 242}
 243
 244void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
 245{
 246        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 247        u32 model = vcpu->kvm->arch.vgic.vgic_model;
 248        u32 vmcr;
 249
 250        vmcr = cpu_if->vgic_vmcr;
 251
 252        if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
 253                vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
 254                        ICH_VMCR_ACK_CTL_SHIFT;
 255                vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
 256                        ICH_VMCR_FIQ_EN_SHIFT;
 257        } else {
 258                /*
 259                 * When emulating GICv3 on GICv3 with SRE=1 on the
 260                 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
 261                 */
 262                vmcrp->fiqen = 1;
 263                vmcrp->ackctl = 0;
 264        }
 265
 266        vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
 267        vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
 268        vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
 269        vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
 270        vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
 271        vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
 272        vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
 273}
 274
 275#define INITIAL_PENDBASER_VALUE                                           \
 276        (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
 277        GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
 278        GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
 279
 280void vgic_v3_enable(struct kvm_vcpu *vcpu)
 281{
 282        struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
 283
 284        /*
 285         * By forcing VMCR to zero, the GIC will restore the binary
 286         * points to their reset values. Anything else resets to zero
 287         * anyway.
 288         */
 289        vgic_v3->vgic_vmcr = 0;
 290
 291        /*
 292         * If we are emulating a GICv3, we do it in an non-GICv2-compatible
 293         * way, so we force SRE to 1 to demonstrate this to the guest.
 294         * Also, we don't support any form of IRQ/FIQ bypass.
 295         * This goes with the spec allowing the value to be RAO/WI.
 296         */
 297        if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
 298                vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
 299                                     ICC_SRE_EL1_DFB |
 300                                     ICC_SRE_EL1_SRE);
 301                vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
 302        } else {
 303                vgic_v3->vgic_sre = 0;
 304        }
 305
 306        vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
 307                                           ICH_VTR_ID_BITS_MASK) >>
 308                                           ICH_VTR_ID_BITS_SHIFT;
 309        vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
 310                                            ICH_VTR_PRI_BITS_MASK) >>
 311                                            ICH_VTR_PRI_BITS_SHIFT) + 1;
 312
 313        /* Get the show on the road... */
 314        vgic_v3->vgic_hcr = ICH_HCR_EN;
 315        if (group0_trap)
 316                vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
 317        if (group1_trap)
 318                vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
 319        if (common_trap)
 320                vgic_v3->vgic_hcr |= ICH_HCR_TC;
 321}
 322
 323int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
 324{
 325        struct kvm_vcpu *vcpu;
 326        int byte_offset, bit_nr;
 327        gpa_t pendbase, ptr;
 328        bool status;
 329        u8 val;
 330        int ret;
 331        unsigned long flags;
 332
 333retry:
 334        vcpu = irq->target_vcpu;
 335        if (!vcpu)
 336                return 0;
 337
 338        pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 339
 340        byte_offset = irq->intid / BITS_PER_BYTE;
 341        bit_nr = irq->intid % BITS_PER_BYTE;
 342        ptr = pendbase + byte_offset;
 343
 344        ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
 345        if (ret)
 346                return ret;
 347
 348        status = val & (1 << bit_nr);
 349
 350        spin_lock_irqsave(&irq->irq_lock, flags);
 351        if (irq->target_vcpu != vcpu) {
 352                spin_unlock_irqrestore(&irq->irq_lock, flags);
 353                goto retry;
 354        }
 355        irq->pending_latch = status;
 356        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 357
 358        if (status) {
 359                /* clear consumed data */
 360                val &= ~(1 << bit_nr);
 361                ret = kvm_write_guest(kvm, ptr, &val, 1);
 362                if (ret)
 363                        return ret;
 364        }
 365        return 0;
 366}
 367
 368/**
 369 * vgic_its_save_pending_tables - Save the pending tables into guest RAM
 370 * kvm lock and all vcpu lock must be held
 371 */
 372int vgic_v3_save_pending_tables(struct kvm *kvm)
 373{
 374        struct vgic_dist *dist = &kvm->arch.vgic;
 375        int last_byte_offset = -1;
 376        struct vgic_irq *irq;
 377        int ret;
 378        u8 val;
 379
 380        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 381                int byte_offset, bit_nr;
 382                struct kvm_vcpu *vcpu;
 383                gpa_t pendbase, ptr;
 384                bool stored;
 385
 386                vcpu = irq->target_vcpu;
 387                if (!vcpu)
 388                        continue;
 389
 390                pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 391
 392                byte_offset = irq->intid / BITS_PER_BYTE;
 393                bit_nr = irq->intid % BITS_PER_BYTE;
 394                ptr = pendbase + byte_offset;
 395
 396                if (byte_offset != last_byte_offset) {
 397                        ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
 398                        if (ret)
 399                                return ret;
 400                        last_byte_offset = byte_offset;
 401                }
 402
 403                stored = val & (1U << bit_nr);
 404                if (stored == irq->pending_latch)
 405                        continue;
 406
 407                if (irq->pending_latch)
 408                        val |= 1 << bit_nr;
 409                else
 410                        val &= ~(1 << bit_nr);
 411
 412                ret = kvm_write_guest(kvm, ptr, &val, 1);
 413                if (ret)
 414                        return ret;
 415        }
 416        return 0;
 417}
 418
 419/**
 420 * vgic_v3_rdist_overlap - check if a region overlaps with any
 421 * existing redistributor region
 422 *
 423 * @kvm: kvm handle
 424 * @base: base of the region
 425 * @size: size of region
 426 *
 427 * Return: true if there is an overlap
 428 */
 429bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
 430{
 431        struct vgic_dist *d = &kvm->arch.vgic;
 432        struct vgic_redist_region *rdreg;
 433
 434        list_for_each_entry(rdreg, &d->rd_regions, list) {
 435                if ((base + size > rdreg->base) &&
 436                        (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
 437                        return true;
 438        }
 439        return false;
 440}
 441
 442/*
 443 * Check for overlapping regions and for regions crossing the end of memory
 444 * for base addresses which have already been set.
 445 */
 446bool vgic_v3_check_base(struct kvm *kvm)
 447{
 448        struct vgic_dist *d = &kvm->arch.vgic;
 449        struct vgic_redist_region *rdreg;
 450
 451        if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 452            d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
 453                return false;
 454
 455        list_for_each_entry(rdreg, &d->rd_regions, list) {
 456                if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
 457                        rdreg->base)
 458                        return false;
 459        }
 460
 461        if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
 462                return true;
 463
 464        return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
 465                                      KVM_VGIC_V3_DIST_SIZE);
 466}
 467
 468/**
 469 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
 470 * which has free space to put a new rdist region.
 471 *
 472 * @rd_regions: redistributor region list head
 473 *
 474 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
 475 * Stride between redistributors is 0 and regions are filled in the index order.
 476 *
 477 * Return: the redist region handle, if any, that has space to map a new rdist
 478 * region.
 479 */
 480struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
 481{
 482        struct vgic_redist_region *rdreg;
 483
 484        list_for_each_entry(rdreg, rd_regions, list) {
 485                if (!vgic_v3_redist_region_full(rdreg))
 486                        return rdreg;
 487        }
 488        return NULL;
 489}
 490
 491struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
 492                                                           u32 index)
 493{
 494        struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
 495        struct vgic_redist_region *rdreg;
 496
 497        list_for_each_entry(rdreg, rd_regions, list) {
 498                if (rdreg->index == index)
 499                        return rdreg;
 500        }
 501        return NULL;
 502}
 503
 504
 505int vgic_v3_map_resources(struct kvm *kvm)
 506{
 507        struct vgic_dist *dist = &kvm->arch.vgic;
 508        struct kvm_vcpu *vcpu;
 509        int ret = 0;
 510        int c;
 511
 512        if (vgic_ready(kvm))
 513                goto out;
 514
 515        kvm_for_each_vcpu(c, vcpu, kvm) {
 516                struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 517
 518                if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
 519                        kvm_debug("vcpu %d redistributor base not set\n", c);
 520                        ret = -ENXIO;
 521                        goto out;
 522                }
 523        }
 524
 525        if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
 526                kvm_err("Need to set vgic distributor addresses first\n");
 527                ret = -ENXIO;
 528                goto out;
 529        }
 530
 531        if (!vgic_v3_check_base(kvm)) {
 532                kvm_err("VGIC redist and dist frames overlap\n");
 533                ret = -EINVAL;
 534                goto out;
 535        }
 536
 537        /*
 538         * For a VGICv3 we require the userland to explicitly initialize
 539         * the VGIC before we need to use it.
 540         */
 541        if (!vgic_initialized(kvm)) {
 542                ret = -EBUSY;
 543                goto out;
 544        }
 545
 546        ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
 547        if (ret) {
 548                kvm_err("Unable to register VGICv3 dist MMIO regions\n");
 549                goto out;
 550        }
 551
 552        dist->ready = true;
 553
 554out:
 555        return ret;
 556}
 557
 558DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
 559
 560static int __init early_group0_trap_cfg(char *buf)
 561{
 562        return strtobool(buf, &group0_trap);
 563}
 564early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
 565
 566static int __init early_group1_trap_cfg(char *buf)
 567{
 568        return strtobool(buf, &group1_trap);
 569}
 570early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
 571
 572static int __init early_common_trap_cfg(char *buf)
 573{
 574        return strtobool(buf, &common_trap);
 575}
 576early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
 577
 578static int __init early_gicv4_enable(char *buf)
 579{
 580        return strtobool(buf, &gicv4_enable);
 581}
 582early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
 583
 584/**
 585 * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
 586 * @node:       pointer to the DT node
 587 *
 588 * Returns 0 if a GICv3 has been found, returns an error code otherwise
 589 */
 590int vgic_v3_probe(const struct gic_kvm_info *info)
 591{
 592        u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
 593        int ret;
 594
 595        /*
 596         * The ListRegs field is 5 bits, but there is a architectural
 597         * maximum of 16 list registers. Just ignore bit 4...
 598         */
 599        kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
 600        kvm_vgic_global_state.can_emulate_gicv2 = false;
 601        kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
 602
 603        /* GICv4 support? */
 604        if (info->has_v4) {
 605                kvm_vgic_global_state.has_gicv4 = gicv4_enable;
 606                kvm_info("GICv4 support %sabled\n",
 607                         gicv4_enable ? "en" : "dis");
 608        }
 609
 610        if (!info->vcpu.start) {
 611                kvm_info("GICv3: no GICV resource entry\n");
 612                kvm_vgic_global_state.vcpu_base = 0;
 613        } else if (!PAGE_ALIGNED(info->vcpu.start)) {
 614                pr_warn("GICV physical address 0x%llx not page aligned\n",
 615                        (unsigned long long)info->vcpu.start);
 616                kvm_vgic_global_state.vcpu_base = 0;
 617        } else {
 618                kvm_vgic_global_state.vcpu_base = info->vcpu.start;
 619                kvm_vgic_global_state.can_emulate_gicv2 = true;
 620                ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
 621                if (ret) {
 622                        kvm_err("Cannot register GICv2 KVM device.\n");
 623                        return ret;
 624                }
 625                kvm_info("vgic-v2@%llx\n", info->vcpu.start);
 626        }
 627        ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
 628        if (ret) {
 629                kvm_err("Cannot register GICv3 KVM device.\n");
 630                kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
 631                return ret;
 632        }
 633
 634        if (kvm_vgic_global_state.vcpu_base == 0)
 635                kvm_info("disabling GICv2 emulation\n");
 636
 637#ifdef CONFIG_ARM64
 638        if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
 639                group0_trap = true;
 640                group1_trap = true;
 641        }
 642#endif
 643
 644        if (group0_trap || group1_trap || common_trap) {
 645                kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
 646                         group0_trap ? "G0" : "",
 647                         group1_trap ? "G1" : "",
 648                         common_trap ? "C"  : "");
 649                static_branch_enable(&vgic_v3_cpuif_trap);
 650        }
 651
 652        kvm_vgic_global_state.vctrl_base = NULL;
 653        kvm_vgic_global_state.type = VGIC_V3;
 654        kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
 655
 656        return 0;
 657}
 658
 659void vgic_v3_load(struct kvm_vcpu *vcpu)
 660{
 661        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 662
 663        /*
 664         * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
 665         * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
 666         * VMCR_EL2 save/restore in the world switch.
 667         */
 668        if (likely(cpu_if->vgic_sre))
 669                kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
 670
 671        kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
 672
 673        if (has_vhe())
 674                __vgic_v3_activate_traps(vcpu);
 675}
 676
 677void vgic_v3_put(struct kvm_vcpu *vcpu)
 678{
 679        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 680
 681        if (likely(cpu_if->vgic_sre))
 682                cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
 683
 684        kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
 685
 686        if (has_vhe())
 687                __vgic_v3_deactivate_traps(vcpu);
 688}
 689