linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/smp.c
   4 *
   5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   6 */
   7#include <linux/module.h>
   8#include <linux/delay.h>
   9#include <linux/init.h>
  10#include <linux/spinlock.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/interrupt.h>
  15#include <linux/cache.h>
  16#include <linux/profile.h>
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/err.h>
  20#include <linux/cpu.h>
  21#include <linux/seq_file.h>
  22#include <linux/irq.h>
  23#include <linux/nmi.h>
  24#include <linux/percpu.h>
  25#include <linux/clockchips.h>
  26#include <linux/completion.h>
  27#include <linux/cpufreq.h>
  28#include <linux/irq_work.h>
  29
  30#include <linux/atomic.h>
  31#include <asm/bugs.h>
  32#include <asm/smp.h>
  33#include <asm/cacheflush.h>
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
  36#include <asm/exception.h>
  37#include <asm/idmap.h>
  38#include <asm/topology.h>
  39#include <asm/mmu_context.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/procinfo.h>
  43#include <asm/processor.h>
  44#include <asm/sections.h>
  45#include <asm/tlbflush.h>
  46#include <asm/ptrace.h>
  47#include <asm/smp_plat.h>
  48#include <asm/virt.h>
  49#include <asm/mach/arch.h>
  50#include <asm/mpu.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/ipi.h>
  54
  55/*
  56 * as from 2.5, kernels no longer have an init_tasks structure
  57 * so we need some other way of telling a new secondary core
  58 * where to place its SVC stack
  59 */
  60struct secondary_data secondary_data;
  61
  62enum ipi_msg_type {
  63        IPI_WAKEUP,
  64        IPI_TIMER,
  65        IPI_RESCHEDULE,
  66        IPI_CALL_FUNC,
  67        IPI_CPU_STOP,
  68        IPI_IRQ_WORK,
  69        IPI_COMPLETION,
  70        /*
  71         * CPU_BACKTRACE is special and not included in NR_IPI
  72         * or tracable with trace_ipi_*
  73         */
  74        IPI_CPU_BACKTRACE,
  75        /*
  76         * SGI8-15 can be reserved by secure firmware, and thus may
  77         * not be usable by the kernel. Please keep the above limited
  78         * to at most 8 entries.
  79         */
  80};
  81
  82static DECLARE_COMPLETION(cpu_running);
  83
  84static struct smp_operations smp_ops __ro_after_init;
  85
  86void __init smp_set_ops(const struct smp_operations *ops)
  87{
  88        if (ops)
  89                smp_ops = *ops;
  90};
  91
  92static unsigned long get_arch_pgd(pgd_t *pgd)
  93{
  94#ifdef CONFIG_ARM_LPAE
  95        return __phys_to_pfn(virt_to_phys(pgd));
  96#else
  97        return virt_to_phys(pgd);
  98#endif
  99}
 100
 101#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 102static int secondary_biglittle_prepare(unsigned int cpu)
 103{
 104        if (!cpu_vtable[cpu])
 105                cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
 106
 107        return cpu_vtable[cpu] ? 0 : -ENOMEM;
 108}
 109
 110static void secondary_biglittle_init(void)
 111{
 112        init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
 113}
 114#else
 115static int secondary_biglittle_prepare(unsigned int cpu)
 116{
 117        return 0;
 118}
 119
 120static void secondary_biglittle_init(void)
 121{
 122}
 123#endif
 124
 125int __cpu_up(unsigned int cpu, struct task_struct *idle)
 126{
 127        int ret;
 128
 129        if (!smp_ops.smp_boot_secondary)
 130                return -ENOSYS;
 131
 132        ret = secondary_biglittle_prepare(cpu);
 133        if (ret)
 134                return ret;
 135
 136        /*
 137         * We need to tell the secondary core where to find
 138         * its stack and the page tables.
 139         */
 140        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 141#ifdef CONFIG_ARM_MPU
 142        secondary_data.mpu_rgn_info = &mpu_rgn_info;
 143#endif
 144
 145#ifdef CONFIG_MMU
 146        secondary_data.pgdir = virt_to_phys(idmap_pgd);
 147        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 148#endif
 149        sync_cache_w(&secondary_data);
 150
 151        /*
 152         * Now bring the CPU into our world.
 153         */
 154        ret = smp_ops.smp_boot_secondary(cpu, idle);
 155        if (ret == 0) {
 156                /*
 157                 * CPU was successfully started, wait for it
 158                 * to come online or time out.
 159                 */
 160                wait_for_completion_timeout(&cpu_running,
 161                                                 msecs_to_jiffies(1000));
 162
 163                if (!cpu_online(cpu)) {
 164                        pr_crit("CPU%u: failed to come online\n", cpu);
 165                        ret = -EIO;
 166                }
 167        } else {
 168                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 169        }
 170
 171
 172        memset(&secondary_data, 0, sizeof(secondary_data));
 173        return ret;
 174}
 175
 176/* platform specific SMP operations */
 177void __init smp_init_cpus(void)
 178{
 179        if (smp_ops.smp_init_cpus)
 180                smp_ops.smp_init_cpus();
 181}
 182
 183int platform_can_secondary_boot(void)
 184{
 185        return !!smp_ops.smp_boot_secondary;
 186}
 187
 188int platform_can_cpu_hotplug(void)
 189{
 190#ifdef CONFIG_HOTPLUG_CPU
 191        if (smp_ops.cpu_kill)
 192                return 1;
 193#endif
 194
 195        return 0;
 196}
 197
 198#ifdef CONFIG_HOTPLUG_CPU
 199static int platform_cpu_kill(unsigned int cpu)
 200{
 201        if (smp_ops.cpu_kill)
 202                return smp_ops.cpu_kill(cpu);
 203        return 1;
 204}
 205
 206static int platform_cpu_disable(unsigned int cpu)
 207{
 208        if (smp_ops.cpu_disable)
 209                return smp_ops.cpu_disable(cpu);
 210
 211        return 0;
 212}
 213
 214int platform_can_hotplug_cpu(unsigned int cpu)
 215{
 216        /* cpu_die must be specified to support hotplug */
 217        if (!smp_ops.cpu_die)
 218                return 0;
 219
 220        if (smp_ops.cpu_can_disable)
 221                return smp_ops.cpu_can_disable(cpu);
 222
 223        /*
 224         * By default, allow disabling all CPUs except the first one,
 225         * since this is special on a lot of platforms, e.g. because
 226         * of clock tick interrupts.
 227         */
 228        return cpu != 0;
 229}
 230
 231/*
 232 * __cpu_disable runs on the processor to be shutdown.
 233 */
 234int __cpu_disable(void)
 235{
 236        unsigned int cpu = smp_processor_id();
 237        int ret;
 238
 239        ret = platform_cpu_disable(cpu);
 240        if (ret)
 241                return ret;
 242
 243        /*
 244         * Take this CPU offline.  Once we clear this, we can't return,
 245         * and we must not schedule until we're ready to give up the cpu.
 246         */
 247        set_cpu_online(cpu, false);
 248
 249        /*
 250         * OK - migrate IRQs away from this CPU
 251         */
 252        irq_migrate_all_off_this_cpu();
 253
 254        /*
 255         * Flush user cache and TLB mappings, and then remove this CPU
 256         * from the vm mask set of all processes.
 257         *
 258         * Caches are flushed to the Level of Unification Inner Shareable
 259         * to write-back dirty lines to unified caches shared by all CPUs.
 260         */
 261        flush_cache_louis();
 262        local_flush_tlb_all();
 263
 264        return 0;
 265}
 266
 267/*
 268 * called on the thread which is asking for a CPU to be shutdown -
 269 * waits until shutdown has completed, or it is timed out.
 270 */
 271void __cpu_die(unsigned int cpu)
 272{
 273        if (!cpu_wait_death(cpu, 5)) {
 274                pr_err("CPU%u: cpu didn't die\n", cpu);
 275                return;
 276        }
 277        pr_debug("CPU%u: shutdown\n", cpu);
 278
 279        clear_tasks_mm_cpumask(cpu);
 280        /*
 281         * platform_cpu_kill() is generally expected to do the powering off
 282         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 283         * be done by the CPU which is dying in preference to supporting
 284         * this call, but that means there is _no_ synchronisation between
 285         * the requesting CPU and the dying CPU actually losing power.
 286         */
 287        if (!platform_cpu_kill(cpu))
 288                pr_err("CPU%u: unable to kill\n", cpu);
 289}
 290
 291/*
 292 * Called from the idle thread for the CPU which has been shutdown.
 293 *
 294 * Note that we disable IRQs here, but do not re-enable them
 295 * before returning to the caller. This is also the behaviour
 296 * of the other hotplug-cpu capable cores, so presumably coming
 297 * out of idle fixes this.
 298 */
 299void arch_cpu_idle_dead(void)
 300{
 301        unsigned int cpu = smp_processor_id();
 302
 303        idle_task_exit();
 304
 305        local_irq_disable();
 306
 307        /*
 308         * Flush the data out of the L1 cache for this CPU.  This must be
 309         * before the completion to ensure that data is safely written out
 310         * before platform_cpu_kill() gets called - which may disable
 311         * *this* CPU and power down its cache.
 312         */
 313        flush_cache_louis();
 314
 315        /*
 316         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 317         * this returns, power and/or clocks can be removed at any point
 318         * from this CPU and its cache by platform_cpu_kill().
 319         */
 320        (void)cpu_report_death();
 321
 322        /*
 323         * Ensure that the cache lines associated with that completion are
 324         * written out.  This covers the case where _this_ CPU is doing the
 325         * powering down, to ensure that the completion is visible to the
 326         * CPU waiting for this one.
 327         */
 328        flush_cache_louis();
 329
 330        /*
 331         * The actual CPU shutdown procedure is at least platform (if not
 332         * CPU) specific.  This may remove power, or it may simply spin.
 333         *
 334         * Platforms are generally expected *NOT* to return from this call,
 335         * although there are some which do because they have no way to
 336         * power down the CPU.  These platforms are the _only_ reason we
 337         * have a return path which uses the fragment of assembly below.
 338         *
 339         * The return path should not be used for platforms which can
 340         * power off the CPU.
 341         */
 342        if (smp_ops.cpu_die)
 343                smp_ops.cpu_die(cpu);
 344
 345        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 346                cpu);
 347
 348        /*
 349         * Do not return to the idle loop - jump back to the secondary
 350         * cpu initialisation.  There's some initialisation which needs
 351         * to be repeated to undo the effects of taking the CPU offline.
 352         */
 353        __asm__("mov    sp, %0\n"
 354        "       mov     fp, #0\n"
 355        "       b       secondary_start_kernel"
 356                :
 357                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 358}
 359#endif /* CONFIG_HOTPLUG_CPU */
 360
 361/*
 362 * Called by both boot and secondaries to move global data into
 363 * per-processor storage.
 364 */
 365static void smp_store_cpu_info(unsigned int cpuid)
 366{
 367        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 368
 369        cpu_info->loops_per_jiffy = loops_per_jiffy;
 370        cpu_info->cpuid = read_cpuid_id();
 371
 372        store_cpu_topology(cpuid);
 373        check_cpu_icache_size(cpuid);
 374}
 375
 376/*
 377 * This is the secondary CPU boot entry.  We're using this CPUs
 378 * idle thread stack, but a set of temporary page tables.
 379 */
 380asmlinkage void secondary_start_kernel(void)
 381{
 382        struct mm_struct *mm = &init_mm;
 383        unsigned int cpu;
 384
 385        secondary_biglittle_init();
 386
 387        /*
 388         * The identity mapping is uncached (strongly ordered), so
 389         * switch away from it before attempting any exclusive accesses.
 390         */
 391        cpu_switch_mm(mm->pgd, mm);
 392        local_flush_bp_all();
 393        enter_lazy_tlb(mm, current);
 394        local_flush_tlb_all();
 395
 396        /*
 397         * All kernel threads share the same mm context; grab a
 398         * reference and switch to it.
 399         */
 400        cpu = smp_processor_id();
 401        mmgrab(mm);
 402        current->active_mm = mm;
 403        cpumask_set_cpu(cpu, mm_cpumask(mm));
 404
 405        cpu_init();
 406
 407#ifndef CONFIG_MMU
 408        setup_vectors_base();
 409#endif
 410        pr_debug("CPU%u: Booted secondary processor\n", cpu);
 411
 412        preempt_disable();
 413        trace_hardirqs_off();
 414
 415        /*
 416         * Give the platform a chance to do its own initialisation.
 417         */
 418        if (smp_ops.smp_secondary_init)
 419                smp_ops.smp_secondary_init(cpu);
 420
 421        notify_cpu_starting(cpu);
 422
 423        calibrate_delay();
 424
 425        smp_store_cpu_info(cpu);
 426
 427        /*
 428         * OK, now it's safe to let the boot CPU continue.  Wait for
 429         * the CPU migration code to notice that the CPU is online
 430         * before we continue - which happens after __cpu_up returns.
 431         */
 432        set_cpu_online(cpu, true);
 433
 434        check_other_bugs();
 435
 436        complete(&cpu_running);
 437
 438        local_irq_enable();
 439        local_fiq_enable();
 440        local_abt_enable();
 441
 442        /*
 443         * OK, it's off to the idle thread for us
 444         */
 445        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 446}
 447
 448void __init smp_cpus_done(unsigned int max_cpus)
 449{
 450        int cpu;
 451        unsigned long bogosum = 0;
 452
 453        for_each_online_cpu(cpu)
 454                bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
 455
 456        printk(KERN_INFO "SMP: Total of %d processors activated "
 457               "(%lu.%02lu BogoMIPS).\n",
 458               num_online_cpus(),
 459               bogosum / (500000/HZ),
 460               (bogosum / (5000/HZ)) % 100);
 461
 462        hyp_mode_check();
 463}
 464
 465void __init smp_prepare_boot_cpu(void)
 466{
 467        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 468}
 469
 470void __init smp_prepare_cpus(unsigned int max_cpus)
 471{
 472        unsigned int ncores = num_possible_cpus();
 473
 474        init_cpu_topology();
 475
 476        smp_store_cpu_info(smp_processor_id());
 477
 478        /*
 479         * are we trying to boot more cores than exist?
 480         */
 481        if (max_cpus > ncores)
 482                max_cpus = ncores;
 483        if (ncores > 1 && max_cpus) {
 484                /*
 485                 * Initialise the present map, which describes the set of CPUs
 486                 * actually populated at the present time. A platform should
 487                 * re-initialize the map in the platforms smp_prepare_cpus()
 488                 * if present != possible (e.g. physical hotplug).
 489                 */
 490                init_cpu_present(cpu_possible_mask);
 491
 492                /*
 493                 * Initialise the SCU if there are more than one CPU
 494                 * and let them know where to start.
 495                 */
 496                if (smp_ops.smp_prepare_cpus)
 497                        smp_ops.smp_prepare_cpus(max_cpus);
 498        }
 499}
 500
 501static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 502
 503void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 504{
 505        if (!__smp_cross_call)
 506                __smp_cross_call = fn;
 507}
 508
 509struct ipi {
 510        const char *desc;
 511        void (*handler)(void);
 512};
 513
 514static void ipi_cpu_stop(void);
 515static void ipi_complete(void);
 516
 517#define IPI_DESC_STRING_IPI_WAKEUP "CPU wakeup interrupts"
 518#define IPI_DESC_STRING_IPI_TIMER "Timer broadcast interrupts"
 519#define IPI_DESC_STRING_IPI_RESCHEDULE "Rescheduling interrupts"
 520#define IPI_DESC_STRING_IPI_CALL_FUNC "Function call interrupts"
 521#define IPI_DESC_STRING_IPI_CPU_STOP "CPU stop interrupts"
 522#define IPI_DESC_STRING_IPI_IRQ_WORK "IRQ work interrupts"
 523#define IPI_DESC_STRING_IPI_COMPLETION "completion interrupts"
 524
 525#define IPI_DESC_STR(x) IPI_DESC_STRING_ ## x
 526
 527static const char* ipi_desc_strings[] __tracepoint_string =
 528                {
 529                        [IPI_WAKEUP] = IPI_DESC_STR(IPI_WAKEUP),
 530                        [IPI_TIMER] = IPI_DESC_STR(IPI_TIMER),
 531                        [IPI_RESCHEDULE] = IPI_DESC_STR(IPI_RESCHEDULE),
 532                        [IPI_CALL_FUNC] = IPI_DESC_STR(IPI_CALL_FUNC),
 533                        [IPI_CPU_STOP] = IPI_DESC_STR(IPI_CPU_STOP),
 534                        [IPI_IRQ_WORK] = IPI_DESC_STR(IPI_IRQ_WORK),
 535                        [IPI_COMPLETION] = IPI_DESC_STR(IPI_COMPLETION),
 536                };
 537
 538
 539static void tick_receive_broadcast_local(void)
 540{
 541        tick_receive_broadcast();
 542}
 543
 544static struct ipi ipi_types[NR_IPI] = {
 545#define S(x, f) [x].desc = IPI_DESC_STR(x), [x].handler = f
 546        S(IPI_WAKEUP, NULL),
 547#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 548        S(IPI_TIMER, tick_receive_broadcast_local),
 549#endif
 550        S(IPI_RESCHEDULE, scheduler_ipi),
 551        S(IPI_CALL_FUNC, generic_smp_call_function_interrupt),
 552        S(IPI_CPU_STOP, ipi_cpu_stop),
 553#ifdef CONFIG_IRQ_WORK
 554        S(IPI_IRQ_WORK, irq_work_run),
 555#endif
 556        S(IPI_COMPLETION, ipi_complete),
 557};
 558
 559static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 560{
 561        trace_ipi_raise_rcuidle(target, ipi_desc_strings[ipinr]);
 562        __smp_cross_call(target, ipinr);
 563}
 564
 565void show_ipi_list(struct seq_file *p, int prec)
 566{
 567        unsigned int cpu, i;
 568
 569        for (i = 0; i < NR_IPI; i++) {
 570                if (ipi_types[i].handler) {
 571                        seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 572                        for_each_present_cpu(cpu)
 573                                seq_printf(p, "%10u ",
 574                                        __get_irq_stat(cpu, ipi_irqs[i]));
 575                        seq_printf(p, " %s\n", ipi_types[i].desc);
 576                }
 577        }
 578}
 579
 580u64 smp_irq_stat_cpu(unsigned int cpu)
 581{
 582        u64 sum = 0;
 583        int i;
 584
 585        for (i = 0; i < NR_IPI; i++)
 586                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 587
 588        return sum;
 589}
 590
 591void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 592{
 593        smp_cross_call(mask, IPI_CALL_FUNC);
 594}
 595
 596void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 597{
 598        smp_cross_call(mask, IPI_WAKEUP);
 599}
 600
 601void arch_send_call_function_single_ipi(int cpu)
 602{
 603        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 604}
 605
 606#ifdef CONFIG_IRQ_WORK
 607void arch_irq_work_raise(void)
 608{
 609        if (arch_irq_work_has_interrupt())
 610                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 611}
 612#endif
 613
 614#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 615void tick_broadcast(const struct cpumask *mask)
 616{
 617        smp_cross_call(mask, IPI_TIMER);
 618}
 619#endif
 620
 621static DEFINE_RAW_SPINLOCK(stop_lock);
 622
 623/*
 624 * ipi_cpu_stop - handle IPI from smp_send_stop()
 625 */
 626static void ipi_cpu_stop(void)
 627{
 628        unsigned int cpu = smp_processor_id();
 629
 630        if (system_state <= SYSTEM_RUNNING) {
 631                raw_spin_lock(&stop_lock);
 632                pr_crit("CPU%u: stopping\n", cpu);
 633                dump_stack();
 634                raw_spin_unlock(&stop_lock);
 635        }
 636
 637        set_cpu_online(cpu, false);
 638
 639        local_fiq_disable();
 640        local_irq_disable();
 641
 642        while (1) {
 643                cpu_relax();
 644                wfe();
 645        }
 646}
 647
 648static DEFINE_PER_CPU(struct completion *, cpu_completion);
 649
 650int register_ipi_completion(struct completion *completion, int cpu)
 651{
 652        per_cpu(cpu_completion, cpu) = completion;
 653        return IPI_COMPLETION;
 654}
 655
 656static void ipi_complete(void)
 657{
 658        unsigned int cpu = smp_processor_id();
 659
 660        complete(per_cpu(cpu_completion, cpu));
 661}
 662
 663/*
 664 * Main handler for inter-processor interrupts
 665 */
 666asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 667{
 668        handle_IPI(ipinr, regs);
 669}
 670
 671void handle_IPI(int ipinr, struct pt_regs *regs)
 672{
 673        unsigned int cpu = smp_processor_id();
 674        struct pt_regs *old_regs = set_irq_regs(regs);
 675
 676        if (ipi_types[ipinr].handler) {
 677                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 678                irq_enter();
 679                (*ipi_types[ipinr].handler)();
 680                irq_exit();
 681        } else
 682                pr_debug("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
 683
 684        set_irq_regs(old_regs);
 685}
 686
 687/*
 688 * set_ipi_handler:
 689 * Interface provided for a kernel module to specify an IPI handler function.
 690 */
 691int set_ipi_handler(int ipinr, void *handler, char *desc)
 692{
 693        unsigned int cpu = smp_processor_id();
 694
 695        if (ipi_types[ipinr].handler) {
 696                pr_crit("CPU%u: IPI handler 0x%x already registered to %pf\n",
 697                                        cpu, ipinr, ipi_types[ipinr].handler);
 698                return -1;
 699        }
 700
 701        ipi_types[ipinr].handler = handler;
 702        ipi_types[ipinr].desc = desc;
 703
 704        return 0;
 705}
 706EXPORT_SYMBOL(set_ipi_handler);
 707
 708/*
 709 * clear_ipi_handler:
 710 * Interface provided for a kernel module to clear an IPI handler function.
 711 */
 712void clear_ipi_handler(int ipinr)
 713{
 714        ipi_types[ipinr].handler = NULL;
 715        ipi_types[ipinr].desc = NULL;
 716}
 717EXPORT_SYMBOL(clear_ipi_handler);
 718
 719void smp_send_reschedule(int cpu)
 720{
 721        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 722}
 723
 724void smp_send_stop(void)
 725{
 726        unsigned long timeout;
 727        struct cpumask mask;
 728
 729        cpumask_copy(&mask, cpu_online_mask);
 730        cpumask_clear_cpu(smp_processor_id(), &mask);
 731        if (!cpumask_empty(&mask))
 732                smp_cross_call(&mask, IPI_CPU_STOP);
 733
 734        /* Wait up to one second for other CPUs to stop */
 735        timeout = USEC_PER_SEC;
 736        while (num_online_cpus() > 1 && timeout--)
 737                udelay(1);
 738
 739        if (num_online_cpus() > 1)
 740                pr_warn("SMP: failed to stop secondary CPUs\n");
 741}
 742
 743/* In case panic() and panic() called at the same time on CPU1 and CPU2,
 744 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
 745 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
 746 * kdump fails. So split out the panic_smp_self_stop() and add
 747 * set_cpu_online(smp_processor_id(), false).
 748 */
 749void panic_smp_self_stop(void)
 750{
 751        pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
 752                 smp_processor_id());
 753        set_cpu_online(smp_processor_id(), false);
 754        while (1)
 755                cpu_relax();
 756}
 757
 758/*
 759 * not supported here
 760 */
 761int setup_profiling_timer(unsigned int multiplier)
 762{
 763        return -EINVAL;
 764}
 765
 766#ifdef CONFIG_CPU_FREQ
 767
 768static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 769static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 770static unsigned long global_l_p_j_ref;
 771static unsigned long global_l_p_j_ref_freq;
 772
 773static int cpufreq_callback(struct notifier_block *nb,
 774                                        unsigned long val, void *data)
 775{
 776        struct cpufreq_freqs *freq = data;
 777        struct cpumask *cpus = freq->policy->cpus;
 778        int cpu, first = cpumask_first(cpus);
 779        unsigned int lpj;
 780
 781        if (freq->flags & CPUFREQ_CONST_LOOPS)
 782                return NOTIFY_OK;
 783
 784        if (!per_cpu(l_p_j_ref, first)) {
 785                for_each_cpu(cpu, cpus) {
 786                        per_cpu(l_p_j_ref, cpu) =
 787                                per_cpu(cpu_data, cpu).loops_per_jiffy;
 788                        per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 789                }
 790
 791                if (!global_l_p_j_ref) {
 792                        global_l_p_j_ref = loops_per_jiffy;
 793                        global_l_p_j_ref_freq = freq->old;
 794                }
 795        }
 796
 797        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 798            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 799                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 800                                                global_l_p_j_ref_freq,
 801                                                freq->new);
 802
 803                lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
 804                                    per_cpu(l_p_j_ref_freq, first), freq->new);
 805                for_each_cpu(cpu, cpus)
 806                        per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
 807        }
 808        return NOTIFY_OK;
 809}
 810
 811static struct notifier_block cpufreq_notifier = {
 812        .notifier_call  = cpufreq_callback,
 813};
 814
 815static int __init register_cpufreq_notifier(void)
 816{
 817        return cpufreq_register_notifier(&cpufreq_notifier,
 818                                                CPUFREQ_TRANSITION_NOTIFIER);
 819}
 820core_initcall(register_cpufreq_notifier);
 821
 822#endif
 823
 824static void raise_nmi(cpumask_t *mask)
 825{
 826        __smp_cross_call(mask, IPI_CPU_BACKTRACE);
 827}
 828
 829void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
 830{
 831        nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
 832}
 833