linux/arch/arm64/include/asm/cpufeature.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
   4 */
   5
   6#ifndef __ASM_CPUFEATURE_H
   7#define __ASM_CPUFEATURE_H
   8
   9#include <asm/cpucaps.h>
  10#include <asm/cputype.h>
  11#include <asm/hwcap.h>
  12#include <asm/sysreg.h>
  13
  14#define MAX_CPU_FEATURES        64
  15#define cpu_feature(x)          KERNEL_HWCAP_ ## x
  16
  17#ifndef __ASSEMBLY__
  18
  19#include <linux/bug.h>
  20#include <linux/jump_label.h>
  21#include <linux/kernel.h>
  22
  23/*
  24 * CPU feature register tracking
  25 *
  26 * The safe value of a CPUID feature field is dependent on the implications
  27 * of the values assigned to it by the architecture. Based on the relationship
  28 * between the values, the features are classified into 3 types - LOWER_SAFE,
  29 * HIGHER_SAFE and EXACT.
  30 *
  31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
  32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
  33 * a field when EXACT is specified, failing which, the safe value specified
  34 * in the table is chosen.
  35 */
  36
  37enum ftr_type {
  38        FTR_EXACT,                      /* Use a predefined safe value */
  39        FTR_LOWER_SAFE,                 /* Smaller value is safe */
  40        FTR_HIGHER_SAFE,                /* Bigger value is safe */
  41        FTR_HIGHER_OR_ZERO_SAFE,        /* Bigger value is safe, but 0 is biggest */
  42};
  43
  44#define FTR_STRICT      true    /* SANITY check strict matching required */
  45#define FTR_NONSTRICT   false   /* SANITY check ignored */
  46
  47#define FTR_SIGNED      true    /* Value should be treated as signed */
  48#define FTR_UNSIGNED    false   /* Value should be treated as unsigned */
  49
  50#define FTR_VISIBLE     true    /* Feature visible to the user space */
  51#define FTR_HIDDEN      false   /* Feature is hidden from the user */
  52
  53#define FTR_VISIBLE_IF_IS_ENABLED(config)               \
  54        (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
  55
  56struct arm64_ftr_bits {
  57        bool            sign;   /* Value is signed ? */
  58        bool            visible;
  59        bool            strict; /* CPU Sanity check: strict matching required ? */
  60        enum ftr_type   type;
  61        u8              shift;
  62        u8              width;
  63        s64             safe_val; /* safe value for FTR_EXACT features */
  64};
  65
  66/*
  67 * @arm64_ftr_reg - Feature register
  68 * @strict_mask         Bits which should match across all CPUs for sanity.
  69 * @sys_val             Safe value across the CPUs (system view)
  70 */
  71struct arm64_ftr_reg {
  72        const char                      *name;
  73        u64                             strict_mask;
  74        u64                             user_mask;
  75        u64                             sys_val;
  76        u64                             user_val;
  77        const struct arm64_ftr_bits     *ftr_bits;
  78};
  79
  80extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
  81
  82/*
  83 * CPU capabilities:
  84 *
  85 * We use arm64_cpu_capabilities to represent system features, errata work
  86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
  87 * ELF HWCAPs (which are exposed to user).
  88 *
  89 * To support systems with heterogeneous CPUs, we need to make sure that we
  90 * detect the capabilities correctly on the system and take appropriate
  91 * measures to ensure there are no incompatibilities.
  92 *
  93 * This comment tries to explain how we treat the capabilities.
  94 * Each capability has the following list of attributes :
  95 *
  96 * 1) Scope of Detection : The system detects a given capability by
  97 *    performing some checks at runtime. This could be, e.g, checking the
  98 *    value of a field in CPU ID feature register or checking the cpu
  99 *    model. The capability provides a call back ( @matches() ) to
 100 *    perform the check. Scope defines how the checks should be performed.
 101 *    There are three cases:
 102 *
 103 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
 104 *        matches. This implies, we have to run the check on all the
 105 *        booting CPUs, until the system decides that state of the
 106 *        capability is finalised. (See section 2 below)
 107 *              Or
 108 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
 109 *        matches. This implies, we run the check only once, when the
 110 *        system decides to finalise the state of the capability. If the
 111 *        capability relies on a field in one of the CPU ID feature
 112 *        registers, we use the sanitised value of the register from the
 113 *        CPU feature infrastructure to make the decision.
 114 *              Or
 115 *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
 116 *        feature. This category is for features that are "finalised"
 117 *        (or used) by the kernel very early even before the SMP cpus
 118 *        are brought up.
 119 *
 120 *    The process of detection is usually denoted by "update" capability
 121 *    state in the code.
 122 *
 123 * 2) Finalise the state : The kernel should finalise the state of a
 124 *    capability at some point during its execution and take necessary
 125 *    actions if any. Usually, this is done, after all the boot-time
 126 *    enabled CPUs are brought up by the kernel, so that it can make
 127 *    better decision based on the available set of CPUs. However, there
 128 *    are some special cases, where the action is taken during the early
 129 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
 130 *    Virtualisation Host Extensions). The kernel usually disallows any
 131 *    changes to the state of a capability once it finalises the capability
 132 *    and takes any action, as it may be impossible to execute the actions
 133 *    safely. A CPU brought up after a capability is "finalised" is
 134 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
 135 *    CPUs are treated "late CPUs" for capabilities determined by the boot
 136 *    CPU.
 137 *
 138 *    At the moment there are two passes of finalising the capabilities.
 139 *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
 140 *         setup_boot_cpu_capabilities().
 141 *      b) Everything except (a) - Run via setup_system_capabilities().
 142 *
 143 * 3) Verification: When a CPU is brought online (e.g, by user or by the
 144 *    kernel), the kernel should make sure that it is safe to use the CPU,
 145 *    by verifying that the CPU is compliant with the state of the
 146 *    capabilities finalised already. This happens via :
 147 *
 148 *      secondary_start_kernel()-> check_local_cpu_capabilities()
 149 *
 150 *    As explained in (2) above, capabilities could be finalised at
 151 *    different points in the execution. Each newly booted CPU is verified
 152 *    against the capabilities that have been finalised by the time it
 153 *    boots.
 154 *
 155 *      a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
 156 *      except for the primary boot CPU.
 157 *
 158 *      b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
 159 *      user after the kernel boot are verified against the capability.
 160 *
 161 *    If there is a conflict, the kernel takes an action, based on the
 162 *    severity (e.g, a CPU could be prevented from booting or cause a
 163 *    kernel panic). The CPU is allowed to "affect" the state of the
 164 *    capability, if it has not been finalised already. See section 5
 165 *    for more details on conflicts.
 166 *
 167 * 4) Action: As mentioned in (2), the kernel can take an action for each
 168 *    detected capability, on all CPUs on the system. Appropriate actions
 169 *    include, turning on an architectural feature, modifying the control
 170 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
 171 *    alternatives. The kernel patching is batched and performed at later
 172 *    point. The actions are always initiated only after the capability
 173 *    is finalised. This is usally denoted by "enabling" the capability.
 174 *    The actions are initiated as follows :
 175 *      a) Action is triggered on all online CPUs, after the capability is
 176 *      finalised, invoked within the stop_machine() context from
 177 *      enable_cpu_capabilitie().
 178 *
 179 *      b) Any late CPU, brought up after (1), the action is triggered via:
 180 *
 181 *        check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
 182 *
 183 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
 184 *    the system state, we could have the following combinations :
 185 *
 186 *              x-----------------------------x
 187 *              | Type  | System   | Late CPU |
 188 *              |-----------------------------|
 189 *              |  a    |   y      |    n     |
 190 *              |-----------------------------|
 191 *              |  b    |   n      |    y     |
 192 *              x-----------------------------x
 193 *
 194 *     Two separate flag bits are defined to indicate whether each kind of
 195 *     conflict can be allowed:
 196 *              ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
 197 *              ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
 198 *
 199 *     Case (a) is not permitted for a capability that the system requires
 200 *     all CPUs to have in order for the capability to be enabled. This is
 201 *     typical for capabilities that represent enhanced functionality.
 202 *
 203 *     Case (b) is not permitted for a capability that must be enabled
 204 *     during boot if any CPU in the system requires it in order to run
 205 *     safely. This is typical for erratum work arounds that cannot be
 206 *     enabled after the corresponding capability is finalised.
 207 *
 208 *     In some non-typical cases either both (a) and (b), or neither,
 209 *     should be permitted. This can be described by including neither
 210 *     or both flags in the capability's type field.
 211 */
 212
 213
 214/*
 215 * Decide how the capability is detected.
 216 * On any local CPU vs System wide vs the primary boot CPU
 217 */
 218#define ARM64_CPUCAP_SCOPE_LOCAL_CPU            ((u16)BIT(0))
 219#define ARM64_CPUCAP_SCOPE_SYSTEM               ((u16)BIT(1))
 220/*
 221 * The capabilitiy is detected on the Boot CPU and is used by kernel
 222 * during early boot. i.e, the capability should be "detected" and
 223 * "enabled" as early as possibly on all booting CPUs.
 224 */
 225#define ARM64_CPUCAP_SCOPE_BOOT_CPU             ((u16)BIT(2))
 226#define ARM64_CPUCAP_SCOPE_MASK                 \
 227        (ARM64_CPUCAP_SCOPE_SYSTEM      |       \
 228         ARM64_CPUCAP_SCOPE_LOCAL_CPU   |       \
 229         ARM64_CPUCAP_SCOPE_BOOT_CPU)
 230
 231#define SCOPE_SYSTEM                            ARM64_CPUCAP_SCOPE_SYSTEM
 232#define SCOPE_LOCAL_CPU                         ARM64_CPUCAP_SCOPE_LOCAL_CPU
 233#define SCOPE_BOOT_CPU                          ARM64_CPUCAP_SCOPE_BOOT_CPU
 234#define SCOPE_ALL                               ARM64_CPUCAP_SCOPE_MASK
 235
 236/*
 237 * Is it permitted for a late CPU to have this capability when system
 238 * hasn't already enabled it ?
 239 */
 240#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU     ((u16)BIT(4))
 241/* Is it safe for a late CPU to miss this capability when system has it */
 242#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU      ((u16)BIT(5))
 243
 244/*
 245 * CPU errata workarounds that need to be enabled at boot time if one or
 246 * more CPUs in the system requires it. When one of these capabilities
 247 * has been enabled, it is safe to allow any CPU to boot that doesn't
 248 * require the workaround. However, it is not safe if a "late" CPU
 249 * requires a workaround and the system hasn't enabled it already.
 250 */
 251#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM          \
 252        (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
 253/*
 254 * CPU feature detected at boot time based on system-wide value of a
 255 * feature. It is safe for a late CPU to have this feature even though
 256 * the system hasn't enabled it, although the feature will not be used
 257 * by Linux in this case. If the system has enabled this feature already,
 258 * then every late CPU must have it.
 259 */
 260#define ARM64_CPUCAP_SYSTEM_FEATURE     \
 261        (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
 262/*
 263 * CPU feature detected at boot time based on feature of one or more CPUs.
 264 * All possible conflicts for a late CPU are ignored.
 265 */
 266#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE             \
 267        (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
 268         ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU     |       \
 269         ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
 270
 271/*
 272 * CPU feature detected at boot time, on one or more CPUs. A late CPU
 273 * is not allowed to have the capability when the system doesn't have it.
 274 * It is Ok for a late CPU to miss the feature.
 275 */
 276#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE  \
 277        (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
 278         ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
 279
 280/*
 281 * CPU feature used early in the boot based on the boot CPU. All secondary
 282 * CPUs must match the state of the capability as detected by the boot CPU.
 283 */
 284#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
 285
 286struct arm64_cpu_capabilities {
 287        const char *desc;
 288        u16 capability;
 289        u16 type;
 290        bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
 291        /*
 292         * Take the appropriate actions to configure this capability
 293         * for this CPU. If the capability is detected by the kernel
 294         * this will be called on all the CPUs in the system,
 295         * including the hotplugged CPUs, regardless of whether the
 296         * capability is available on that specific CPU. This is
 297         * useful for some capabilities (e.g, working around CPU
 298         * errata), where all the CPUs must take some action (e.g,
 299         * changing system control/configuration). Thus, if an action
 300         * is required only if the CPU has the capability, then the
 301         * routine must check it before taking any action.
 302         */
 303        void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
 304        union {
 305                struct {        /* To be used for erratum handling only */
 306                        struct midr_range midr_range;
 307                        const struct arm64_midr_revidr {
 308                                u32 midr_rv;            /* revision/variant */
 309                                u32 revidr_mask;
 310                        } * const fixed_revs;
 311                };
 312
 313                const struct midr_range *midr_range_list;
 314                struct {        /* Feature register checking */
 315                        u32 sys_reg;
 316                        u8 field_pos;
 317                        u8 min_field_value;
 318                        u8 hwcap_type;
 319                        bool sign;
 320                        unsigned long hwcap;
 321                };
 322        };
 323
 324        /*
 325         * An optional list of "matches/cpu_enable" pair for the same
 326         * "capability" of the same "type" as described by the parent.
 327         * Only matches(), cpu_enable() and fields relevant to these
 328         * methods are significant in the list. The cpu_enable is
 329         * invoked only if the corresponding entry "matches()".
 330         * However, if a cpu_enable() method is associated
 331         * with multiple matches(), care should be taken that either
 332         * the match criteria are mutually exclusive, or that the
 333         * method is robust against being called multiple times.
 334         */
 335        const struct arm64_cpu_capabilities *match_list;
 336};
 337
 338static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
 339{
 340        return cap->type & ARM64_CPUCAP_SCOPE_MASK;
 341}
 342
 343static inline bool
 344cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
 345{
 346        return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
 347}
 348
 349static inline bool
 350cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
 351{
 352        return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
 353}
 354
 355/*
 356 * Generic helper for handling capabilties with multiple (match,enable) pairs
 357 * of call backs, sharing the same capability bit.
 358 * Iterate over each entry to see if at least one matches.
 359 */
 360static inline bool
 361cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
 362                               int scope)
 363{
 364        const struct arm64_cpu_capabilities *caps;
 365
 366        for (caps = entry->match_list; caps->matches; caps++)
 367                if (caps->matches(caps, scope))
 368                        return true;
 369
 370        return false;
 371}
 372
 373extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
 374extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
 375extern struct static_key_false arm64_const_caps_ready;
 376
 377/* ARM64 CAPS + alternative_cb */
 378#define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
 379extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
 380
 381#define for_each_available_cap(cap)             \
 382        for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
 383
 384bool this_cpu_has_cap(unsigned int cap);
 385void cpu_set_feature(unsigned int num);
 386bool cpu_have_feature(unsigned int num);
 387unsigned long cpu_get_elf_hwcap(void);
 388unsigned long cpu_get_elf_hwcap2(void);
 389
 390#define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
 391#define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
 392
 393/* System capability check for constant caps */
 394static __always_inline bool __cpus_have_const_cap(int num)
 395{
 396        if (num >= ARM64_NCAPS)
 397                return false;
 398        return static_branch_unlikely(&cpu_hwcap_keys[num]);
 399}
 400
 401static inline bool cpus_have_cap(unsigned int num)
 402{
 403        if (num >= ARM64_NCAPS)
 404                return false;
 405        return test_bit(num, cpu_hwcaps);
 406}
 407
 408static __always_inline bool cpus_have_const_cap(int num)
 409{
 410        if (static_branch_likely(&arm64_const_caps_ready))
 411                return __cpus_have_const_cap(num);
 412        else
 413                return cpus_have_cap(num);
 414}
 415
 416static inline void cpus_set_cap(unsigned int num)
 417{
 418        if (num >= ARM64_NCAPS) {
 419                pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
 420                        num, ARM64_NCAPS);
 421        } else {
 422                __set_bit(num, cpu_hwcaps);
 423        }
 424}
 425
 426static inline int __attribute_const__
 427cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
 428{
 429        return (s64)(features << (64 - width - field)) >> (64 - width);
 430}
 431
 432static inline int __attribute_const__
 433cpuid_feature_extract_signed_field(u64 features, int field)
 434{
 435        return cpuid_feature_extract_signed_field_width(features, field, 4);
 436}
 437
 438static inline unsigned int __attribute_const__
 439cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
 440{
 441        return (u64)(features << (64 - width - field)) >> (64 - width);
 442}
 443
 444static inline unsigned int __attribute_const__
 445cpuid_feature_extract_unsigned_field(u64 features, int field)
 446{
 447        return cpuid_feature_extract_unsigned_field_width(features, field, 4);
 448}
 449
 450static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
 451{
 452        return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
 453}
 454
 455static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
 456{
 457        return (reg->user_val | (reg->sys_val & reg->user_mask));
 458}
 459
 460static inline int __attribute_const__
 461cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
 462{
 463        return (sign) ?
 464                cpuid_feature_extract_signed_field_width(features, field, width) :
 465                cpuid_feature_extract_unsigned_field_width(features, field, width);
 466}
 467
 468static inline int __attribute_const__
 469cpuid_feature_extract_field(u64 features, int field, bool sign)
 470{
 471        return cpuid_feature_extract_field_width(features, field, 4, sign);
 472}
 473
 474static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
 475{
 476        return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
 477}
 478
 479static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
 480{
 481        return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
 482                cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
 483}
 484
 485static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
 486{
 487        u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
 488
 489        return val == ID_AA64PFR0_EL0_32BIT_64BIT;
 490}
 491
 492static inline bool id_aa64pfr0_sve(u64 pfr0)
 493{
 494        u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
 495
 496        return val > 0;
 497}
 498
 499void __init setup_cpu_features(void);
 500void check_local_cpu_capabilities(void);
 501
 502u64 read_sanitised_ftr_reg(u32 id);
 503
 504static inline bool cpu_supports_mixed_endian_el0(void)
 505{
 506        return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
 507}
 508
 509static inline bool system_supports_32bit_el0(void)
 510{
 511        return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
 512}
 513
 514static inline bool system_supports_4kb_granule(void)
 515{
 516        u64 mmfr0;
 517        u32 val;
 518
 519        mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 520        val = cpuid_feature_extract_unsigned_field(mmfr0,
 521                                                ID_AA64MMFR0_TGRAN4_SHIFT);
 522
 523        return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
 524}
 525
 526static inline bool system_supports_64kb_granule(void)
 527{
 528        u64 mmfr0;
 529        u32 val;
 530
 531        mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 532        val = cpuid_feature_extract_unsigned_field(mmfr0,
 533                                                ID_AA64MMFR0_TGRAN64_SHIFT);
 534
 535        return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
 536}
 537
 538static inline bool system_supports_16kb_granule(void)
 539{
 540        u64 mmfr0;
 541        u32 val;
 542
 543        mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 544        val = cpuid_feature_extract_unsigned_field(mmfr0,
 545                                                ID_AA64MMFR0_TGRAN16_SHIFT);
 546
 547        return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
 548}
 549
 550static inline bool system_supports_mixed_endian_el0(void)
 551{
 552        return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
 553}
 554
 555static inline bool system_supports_mixed_endian(void)
 556{
 557        u64 mmfr0;
 558        u32 val;
 559
 560        mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 561        val = cpuid_feature_extract_unsigned_field(mmfr0,
 562                                                ID_AA64MMFR0_BIGENDEL_SHIFT);
 563
 564        return val == 0x1;
 565}
 566
 567static inline bool system_supports_fpsimd(void)
 568{
 569        return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
 570}
 571
 572static inline bool system_uses_ttbr0_pan(void)
 573{
 574        return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
 575                !cpus_have_const_cap(ARM64_HAS_PAN);
 576}
 577
 578static inline bool system_supports_sve(void)
 579{
 580        return IS_ENABLED(CONFIG_ARM64_SVE) &&
 581                cpus_have_const_cap(ARM64_SVE);
 582}
 583
 584static inline bool system_supports_cnp(void)
 585{
 586        return IS_ENABLED(CONFIG_ARM64_CNP) &&
 587                cpus_have_const_cap(ARM64_HAS_CNP);
 588}
 589
 590static inline bool system_supports_address_auth(void)
 591{
 592        return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
 593                (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
 594                 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
 595}
 596
 597static inline bool system_supports_generic_auth(void)
 598{
 599        return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
 600                (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
 601                 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
 602}
 603
 604static inline bool system_uses_irq_prio_masking(void)
 605{
 606        return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
 607               cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
 608}
 609
 610static inline bool system_has_prio_mask_debugging(void)
 611{
 612        return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
 613               system_uses_irq_prio_masking();
 614}
 615
 616#define ARM64_BP_HARDEN_UNKNOWN         -1
 617#define ARM64_BP_HARDEN_WA_NEEDED       0
 618#define ARM64_BP_HARDEN_NOT_REQUIRED    1
 619
 620int get_spectre_v2_workaround_state(void);
 621
 622#define ARM64_SSBD_UNKNOWN              -1
 623#define ARM64_SSBD_FORCE_DISABLE        0
 624#define ARM64_SSBD_KERNEL               1
 625#define ARM64_SSBD_FORCE_ENABLE         2
 626#define ARM64_SSBD_MITIGATED            3
 627
 628static inline int arm64_get_ssbd_state(void)
 629{
 630#ifdef CONFIG_ARM64_SSBD
 631        extern int ssbd_state;
 632        return ssbd_state;
 633#else
 634        return ARM64_SSBD_UNKNOWN;
 635#endif
 636}
 637
 638void arm64_set_ssbd_mitigation(bool state);
 639
 640extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
 641
 642static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
 643{
 644        switch (parange) {
 645        case 0: return 32;
 646        case 1: return 36;
 647        case 2: return 40;
 648        case 3: return 42;
 649        case 4: return 44;
 650        case 5: return 48;
 651        case 6: return 52;
 652        /*
 653         * A future PE could use a value unknown to the kernel.
 654         * However, by the "D10.1.4 Principles of the ID scheme
 655         * for fields in ID registers", ARM DDI 0487C.a, any new
 656         * value is guaranteed to be higher than what we know already.
 657         * As a safe limit, we return the limit supported by the kernel.
 658         */
 659        default: return CONFIG_ARM64_PA_BITS;
 660        }
 661}
 662#endif /* __ASSEMBLY__ */
 663
 664#endif
 665