linux/arch/powerpc/kvm/book3s_hv_rm_mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/hugetlb.h>
  12#include <linux/module.h>
  13#include <linux/log2.h>
  14#include <linux/sizes.h>
  15
  16#include <asm/trace.h>
  17#include <asm/kvm_ppc.h>
  18#include <asm/kvm_book3s.h>
  19#include <asm/book3s/64/mmu-hash.h>
  20#include <asm/hvcall.h>
  21#include <asm/synch.h>
  22#include <asm/ppc-opcode.h>
  23#include <asm/pte-walk.h>
  24
  25/* Translate address of a vmalloc'd thing to a linear map address */
  26static void *real_vmalloc_addr(void *x)
  27{
  28        unsigned long addr = (unsigned long) x;
  29        pte_t *p;
  30        /*
  31         * assume we don't have huge pages in vmalloc space...
  32         * So don't worry about THP collapse/split. Called
  33         * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
  34         */
  35        p = find_init_mm_pte(addr, NULL);
  36        if (!p || !pte_present(*p))
  37                return NULL;
  38        addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  39        return __va(addr);
  40}
  41
  42/* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  43static int global_invalidates(struct kvm *kvm)
  44{
  45        int global;
  46        int cpu;
  47
  48        /*
  49         * If there is only one vcore, and it's currently running,
  50         * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
  51         * we can use tlbiel as long as we mark all other physical
  52         * cores as potentially having stale TLB entries for this lpid.
  53         * Otherwise, don't use tlbiel.
  54         */
  55        if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
  56                global = 0;
  57        else
  58                global = 1;
  59
  60        if (!global) {
  61                /* any other core might now have stale TLB entries... */
  62                smp_wmb();
  63                cpumask_setall(&kvm->arch.need_tlb_flush);
  64                cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
  65                /*
  66                 * On POWER9, threads are independent but the TLB is shared,
  67                 * so use the bit for the first thread to represent the core.
  68                 */
  69                if (cpu_has_feature(CPU_FTR_ARCH_300))
  70                        cpu = cpu_first_thread_sibling(cpu);
  71                cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
  72        }
  73
  74        return global;
  75}
  76
  77/*
  78 * Add this HPTE into the chain for the real page.
  79 * Must be called with the chain locked; it unlocks the chain.
  80 */
  81void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  82                             unsigned long *rmap, long pte_index, int realmode)
  83{
  84        struct revmap_entry *head, *tail;
  85        unsigned long i;
  86
  87        if (*rmap & KVMPPC_RMAP_PRESENT) {
  88                i = *rmap & KVMPPC_RMAP_INDEX;
  89                head = &kvm->arch.hpt.rev[i];
  90                if (realmode)
  91                        head = real_vmalloc_addr(head);
  92                tail = &kvm->arch.hpt.rev[head->back];
  93                if (realmode)
  94                        tail = real_vmalloc_addr(tail);
  95                rev->forw = i;
  96                rev->back = head->back;
  97                tail->forw = pte_index;
  98                head->back = pte_index;
  99        } else {
 100                rev->forw = rev->back = pte_index;
 101                *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
 102                        pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
 103        }
 104        unlock_rmap(rmap);
 105}
 106EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
 107
 108/* Update the dirty bitmap of a memslot */
 109void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
 110                             unsigned long gfn, unsigned long psize)
 111{
 112        unsigned long npages;
 113
 114        if (!psize || !memslot->dirty_bitmap)
 115                return;
 116        npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
 117        gfn -= memslot->base_gfn;
 118        set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
 119}
 120EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
 121
 122static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
 123                                unsigned long hpte_v, unsigned long hpte_gr)
 124{
 125        struct kvm_memory_slot *memslot;
 126        unsigned long gfn;
 127        unsigned long psize;
 128
 129        psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
 130        gfn = hpte_rpn(hpte_gr, psize);
 131        memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 132        if (memslot && memslot->dirty_bitmap)
 133                kvmppc_update_dirty_map(memslot, gfn, psize);
 134}
 135
 136/* Returns a pointer to the revmap entry for the page mapped by a HPTE */
 137static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
 138                                      unsigned long hpte_gr,
 139                                      struct kvm_memory_slot **memslotp,
 140                                      unsigned long *gfnp)
 141{
 142        struct kvm_memory_slot *memslot;
 143        unsigned long *rmap;
 144        unsigned long gfn;
 145
 146        gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
 147        memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 148        if (memslotp)
 149                *memslotp = memslot;
 150        if (gfnp)
 151                *gfnp = gfn;
 152        if (!memslot)
 153                return NULL;
 154
 155        rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
 156        return rmap;
 157}
 158
 159/* Remove this HPTE from the chain for a real page */
 160static void remove_revmap_chain(struct kvm *kvm, long pte_index,
 161                                struct revmap_entry *rev,
 162                                unsigned long hpte_v, unsigned long hpte_r)
 163{
 164        struct revmap_entry *next, *prev;
 165        unsigned long ptel, head;
 166        unsigned long *rmap;
 167        unsigned long rcbits;
 168        struct kvm_memory_slot *memslot;
 169        unsigned long gfn;
 170
 171        rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
 172        ptel = rev->guest_rpte |= rcbits;
 173        rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
 174        if (!rmap)
 175                return;
 176        lock_rmap(rmap);
 177
 178        head = *rmap & KVMPPC_RMAP_INDEX;
 179        next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
 180        prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
 181        next->back = rev->back;
 182        prev->forw = rev->forw;
 183        if (head == pte_index) {
 184                head = rev->forw;
 185                if (head == pte_index)
 186                        *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 187                else
 188                        *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
 189        }
 190        *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 191        if (rcbits & HPTE_R_C)
 192                kvmppc_update_dirty_map(memslot, gfn,
 193                                        kvmppc_actual_pgsz(hpte_v, hpte_r));
 194        unlock_rmap(rmap);
 195}
 196
 197long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
 198                       long pte_index, unsigned long pteh, unsigned long ptel,
 199                       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
 200{
 201        unsigned long i, pa, gpa, gfn, psize;
 202        unsigned long slot_fn, hva;
 203        __be64 *hpte;
 204        struct revmap_entry *rev;
 205        unsigned long g_ptel;
 206        struct kvm_memory_slot *memslot;
 207        unsigned hpage_shift;
 208        bool is_ci;
 209        unsigned long *rmap;
 210        pte_t *ptep;
 211        unsigned int writing;
 212        unsigned long mmu_seq;
 213        unsigned long rcbits, irq_flags = 0;
 214
 215        if (kvm_is_radix(kvm))
 216                return H_FUNCTION;
 217        psize = kvmppc_actual_pgsz(pteh, ptel);
 218        if (!psize)
 219                return H_PARAMETER;
 220        writing = hpte_is_writable(ptel);
 221        pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
 222        ptel &= ~HPTE_GR_RESERVED;
 223        g_ptel = ptel;
 224
 225        /* used later to detect if we might have been invalidated */
 226        mmu_seq = kvm->mmu_notifier_seq;
 227        smp_rmb();
 228
 229        /* Find the memslot (if any) for this address */
 230        gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
 231        gfn = gpa >> PAGE_SHIFT;
 232        memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 233        pa = 0;
 234        is_ci = false;
 235        rmap = NULL;
 236        if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
 237                /* Emulated MMIO - mark this with key=31 */
 238                pteh |= HPTE_V_ABSENT;
 239                ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
 240                goto do_insert;
 241        }
 242
 243        /* Check if the requested page fits entirely in the memslot. */
 244        if (!slot_is_aligned(memslot, psize))
 245                return H_PARAMETER;
 246        slot_fn = gfn - memslot->base_gfn;
 247        rmap = &memslot->arch.rmap[slot_fn];
 248
 249        /* Translate to host virtual address */
 250        hva = __gfn_to_hva_memslot(memslot, gfn);
 251        /*
 252         * If we had a page table table change after lookup, we would
 253         * retry via mmu_notifier_retry.
 254         */
 255        if (!realmode)
 256                local_irq_save(irq_flags);
 257        /*
 258         * If called in real mode we have MSR_EE = 0. Otherwise
 259         * we disable irq above.
 260         */
 261        ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
 262        if (ptep) {
 263                pte_t pte;
 264                unsigned int host_pte_size;
 265
 266                if (hpage_shift)
 267                        host_pte_size = 1ul << hpage_shift;
 268                else
 269                        host_pte_size = PAGE_SIZE;
 270                /*
 271                 * We should always find the guest page size
 272                 * to <= host page size, if host is using hugepage
 273                 */
 274                if (host_pte_size < psize) {
 275                        if (!realmode)
 276                                local_irq_restore(flags);
 277                        return H_PARAMETER;
 278                }
 279                pte = kvmppc_read_update_linux_pte(ptep, writing);
 280                if (pte_present(pte) && !pte_protnone(pte)) {
 281                        if (writing && !__pte_write(pte))
 282                                /* make the actual HPTE be read-only */
 283                                ptel = hpte_make_readonly(ptel);
 284                        is_ci = pte_ci(pte);
 285                        pa = pte_pfn(pte) << PAGE_SHIFT;
 286                        pa |= hva & (host_pte_size - 1);
 287                        pa |= gpa & ~PAGE_MASK;
 288                }
 289        }
 290        if (!realmode)
 291                local_irq_restore(irq_flags);
 292
 293        ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
 294        ptel |= pa;
 295
 296        if (pa)
 297                pteh |= HPTE_V_VALID;
 298        else {
 299                pteh |= HPTE_V_ABSENT;
 300                ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 301        }
 302
 303        /*If we had host pte mapping then  Check WIMG */
 304        if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
 305                if (is_ci)
 306                        return H_PARAMETER;
 307                /*
 308                 * Allow guest to map emulated device memory as
 309                 * uncacheable, but actually make it cacheable.
 310                 */
 311                ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
 312                ptel |= HPTE_R_M;
 313        }
 314
 315        /* Find and lock the HPTEG slot to use */
 316 do_insert:
 317        if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 318                return H_PARAMETER;
 319        if (likely((flags & H_EXACT) == 0)) {
 320                pte_index &= ~7UL;
 321                hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 322                for (i = 0; i < 8; ++i) {
 323                        if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
 324                            try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
 325                                          HPTE_V_ABSENT))
 326                                break;
 327                        hpte += 2;
 328                }
 329                if (i == 8) {
 330                        /*
 331                         * Since try_lock_hpte doesn't retry (not even stdcx.
 332                         * failures), it could be that there is a free slot
 333                         * but we transiently failed to lock it.  Try again,
 334                         * actually locking each slot and checking it.
 335                         */
 336                        hpte -= 16;
 337                        for (i = 0; i < 8; ++i) {
 338                                u64 pte;
 339                                while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 340                                        cpu_relax();
 341                                pte = be64_to_cpu(hpte[0]);
 342                                if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
 343                                        break;
 344                                __unlock_hpte(hpte, pte);
 345                                hpte += 2;
 346                        }
 347                        if (i == 8)
 348                                return H_PTEG_FULL;
 349                }
 350                pte_index += i;
 351        } else {
 352                hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 353                if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
 354                                   HPTE_V_ABSENT)) {
 355                        /* Lock the slot and check again */
 356                        u64 pte;
 357
 358                        while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 359                                cpu_relax();
 360                        pte = be64_to_cpu(hpte[0]);
 361                        if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
 362                                __unlock_hpte(hpte, pte);
 363                                return H_PTEG_FULL;
 364                        }
 365                }
 366        }
 367
 368        /* Save away the guest's idea of the second HPTE dword */
 369        rev = &kvm->arch.hpt.rev[pte_index];
 370        if (realmode)
 371                rev = real_vmalloc_addr(rev);
 372        if (rev) {
 373                rev->guest_rpte = g_ptel;
 374                note_hpte_modification(kvm, rev);
 375        }
 376
 377        /* Link HPTE into reverse-map chain */
 378        if (pteh & HPTE_V_VALID) {
 379                if (realmode)
 380                        rmap = real_vmalloc_addr(rmap);
 381                lock_rmap(rmap);
 382                /* Check for pending invalidations under the rmap chain lock */
 383                if (mmu_notifier_retry(kvm, mmu_seq)) {
 384                        /* inval in progress, write a non-present HPTE */
 385                        pteh |= HPTE_V_ABSENT;
 386                        pteh &= ~HPTE_V_VALID;
 387                        ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 388                        unlock_rmap(rmap);
 389                } else {
 390                        kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
 391                                                realmode);
 392                        /* Only set R/C in real HPTE if already set in *rmap */
 393                        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 394                        ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 395                }
 396        }
 397
 398        /* Convert to new format on P9 */
 399        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 400                ptel = hpte_old_to_new_r(pteh, ptel);
 401                pteh = hpte_old_to_new_v(pteh);
 402        }
 403        hpte[1] = cpu_to_be64(ptel);
 404
 405        /* Write the first HPTE dword, unlocking the HPTE and making it valid */
 406        eieio();
 407        __unlock_hpte(hpte, pteh);
 408        asm volatile("ptesync" : : : "memory");
 409
 410        *pte_idx_ret = pte_index;
 411        return H_SUCCESS;
 412}
 413EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
 414
 415long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
 416                    long pte_index, unsigned long pteh, unsigned long ptel)
 417{
 418        return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
 419                                 vcpu->arch.pgdir, true,
 420                                 &vcpu->arch.regs.gpr[4]);
 421}
 422
 423#ifdef __BIG_ENDIAN__
 424#define LOCK_TOKEN      (*(u32 *)(&get_paca()->lock_token))
 425#else
 426#define LOCK_TOKEN      (*(u32 *)(&get_paca()->paca_index))
 427#endif
 428
 429static inline int is_mmio_hpte(unsigned long v, unsigned long r)
 430{
 431        return ((v & HPTE_V_ABSENT) &&
 432                (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
 433                (HPTE_R_KEY_HI | HPTE_R_KEY_LO));
 434}
 435
 436static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
 437{
 438
 439        if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
 440                /* Radix flush for a hash guest */
 441
 442                unsigned long rb,rs,prs,r,ric;
 443
 444                rb = PPC_BIT(52); /* IS = 2 */
 445                rs = 0;  /* lpid = 0 */
 446                prs = 0; /* partition scoped */
 447                r = 1;   /* radix format */
 448                ric = 0; /* RIC_FLSUH_TLB */
 449
 450                /*
 451                 * Need the extra ptesync to make sure we don't
 452                 * re-order the tlbie
 453                 */
 454                asm volatile("ptesync": : :"memory");
 455                asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
 456                             : : "r"(rb), "i"(r), "i"(prs),
 457                               "i"(ric), "r"(rs) : "memory");
 458        }
 459
 460        if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
 461                asm volatile("ptesync": : :"memory");
 462                asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
 463                             "r" (rb_value), "r" (lpid));
 464        }
 465}
 466
 467static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
 468                      long npages, int global, bool need_sync)
 469{
 470        long i;
 471
 472        /*
 473         * We use the POWER9 5-operand versions of tlbie and tlbiel here.
 474         * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
 475         * the RS field, this is backwards-compatible with P7 and P8.
 476         */
 477        if (global) {
 478                if (need_sync)
 479                        asm volatile("ptesync" : : : "memory");
 480                for (i = 0; i < npages; ++i) {
 481                        asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
 482                                     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
 483                }
 484
 485                fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
 486                asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 487        } else {
 488                if (need_sync)
 489                        asm volatile("ptesync" : : : "memory");
 490                for (i = 0; i < npages; ++i) {
 491                        asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
 492                                     "r" (rbvalues[i]), "r" (0));
 493                }
 494                asm volatile("ptesync" : : : "memory");
 495        }
 496}
 497
 498long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
 499                        unsigned long pte_index, unsigned long avpn,
 500                        unsigned long *hpret)
 501{
 502        __be64 *hpte;
 503        unsigned long v, r, rb;
 504        struct revmap_entry *rev;
 505        u64 pte, orig_pte, pte_r;
 506
 507        if (kvm_is_radix(kvm))
 508                return H_FUNCTION;
 509        if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 510                return H_PARAMETER;
 511        hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 512        while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 513                cpu_relax();
 514        pte = orig_pte = be64_to_cpu(hpte[0]);
 515        pte_r = be64_to_cpu(hpte[1]);
 516        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 517                pte = hpte_new_to_old_v(pte, pte_r);
 518                pte_r = hpte_new_to_old_r(pte_r);
 519        }
 520        if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
 521            ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
 522            ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
 523                __unlock_hpte(hpte, orig_pte);
 524                return H_NOT_FOUND;
 525        }
 526
 527        rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 528        v = pte & ~HPTE_V_HVLOCK;
 529        if (v & HPTE_V_VALID) {
 530                hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
 531                rb = compute_tlbie_rb(v, pte_r, pte_index);
 532                do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
 533                /*
 534                 * The reference (R) and change (C) bits in a HPT
 535                 * entry can be set by hardware at any time up until
 536                 * the HPTE is invalidated and the TLB invalidation
 537                 * sequence has completed.  This means that when
 538                 * removing a HPTE, we need to re-read the HPTE after
 539                 * the invalidation sequence has completed in order to
 540                 * obtain reliable values of R and C.
 541                 */
 542                remove_revmap_chain(kvm, pte_index, rev, v,
 543                                    be64_to_cpu(hpte[1]));
 544        }
 545        r = rev->guest_rpte & ~HPTE_GR_RESERVED;
 546        note_hpte_modification(kvm, rev);
 547        unlock_hpte(hpte, 0);
 548
 549        if (is_mmio_hpte(v, pte_r))
 550                atomic64_inc(&kvm->arch.mmio_update);
 551
 552        if (v & HPTE_V_ABSENT)
 553                v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 554        hpret[0] = v;
 555        hpret[1] = r;
 556        return H_SUCCESS;
 557}
 558EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
 559
 560long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
 561                     unsigned long pte_index, unsigned long avpn)
 562{
 563        return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
 564                                  &vcpu->arch.regs.gpr[4]);
 565}
 566
 567long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
 568{
 569        struct kvm *kvm = vcpu->kvm;
 570        unsigned long *args = &vcpu->arch.regs.gpr[4];
 571        __be64 *hp, *hptes[4];
 572        unsigned long tlbrb[4];
 573        long int i, j, k, n, found, indexes[4];
 574        unsigned long flags, req, pte_index, rcbits;
 575        int global;
 576        long int ret = H_SUCCESS;
 577        struct revmap_entry *rev, *revs[4];
 578        u64 hp0, hp1;
 579
 580        if (kvm_is_radix(kvm))
 581                return H_FUNCTION;
 582        global = global_invalidates(kvm);
 583        for (i = 0; i < 4 && ret == H_SUCCESS; ) {
 584                n = 0;
 585                for (; i < 4; ++i) {
 586                        j = i * 2;
 587                        pte_index = args[j];
 588                        flags = pte_index >> 56;
 589                        pte_index &= ((1ul << 56) - 1);
 590                        req = flags >> 6;
 591                        flags &= 3;
 592                        if (req == 3) {         /* no more requests */
 593                                i = 4;
 594                                break;
 595                        }
 596                        if (req != 1 || flags == 3 ||
 597                            pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
 598                                /* parameter error */
 599                                args[j] = ((0xa0 | flags) << 56) + pte_index;
 600                                ret = H_PARAMETER;
 601                                break;
 602                        }
 603                        hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
 604                        /* to avoid deadlock, don't spin except for first */
 605                        if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
 606                                if (n)
 607                                        break;
 608                                while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
 609                                        cpu_relax();
 610                        }
 611                        found = 0;
 612                        hp0 = be64_to_cpu(hp[0]);
 613                        hp1 = be64_to_cpu(hp[1]);
 614                        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 615                                hp0 = hpte_new_to_old_v(hp0, hp1);
 616                                hp1 = hpte_new_to_old_r(hp1);
 617                        }
 618                        if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
 619                                switch (flags & 3) {
 620                                case 0:         /* absolute */
 621                                        found = 1;
 622                                        break;
 623                                case 1:         /* andcond */
 624                                        if (!(hp0 & args[j + 1]))
 625                                                found = 1;
 626                                        break;
 627                                case 2:         /* AVPN */
 628                                        if ((hp0 & ~0x7fUL) == args[j + 1])
 629                                                found = 1;
 630                                        break;
 631                                }
 632                        }
 633                        if (!found) {
 634                                hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
 635                                args[j] = ((0x90 | flags) << 56) + pte_index;
 636                                continue;
 637                        }
 638
 639                        args[j] = ((0x80 | flags) << 56) + pte_index;
 640                        rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 641                        note_hpte_modification(kvm, rev);
 642
 643                        if (!(hp0 & HPTE_V_VALID)) {
 644                                /* insert R and C bits from PTE */
 645                                rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
 646                                args[j] |= rcbits << (56 - 5);
 647                                hp[0] = 0;
 648                                if (is_mmio_hpte(hp0, hp1))
 649                                        atomic64_inc(&kvm->arch.mmio_update);
 650                                continue;
 651                        }
 652
 653                        /* leave it locked */
 654                        hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
 655                        tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
 656                        indexes[n] = j;
 657                        hptes[n] = hp;
 658                        revs[n] = rev;
 659                        ++n;
 660                }
 661
 662                if (!n)
 663                        break;
 664
 665                /* Now that we've collected a batch, do the tlbies */
 666                do_tlbies(kvm, tlbrb, n, global, true);
 667
 668                /* Read PTE low words after tlbie to get final R/C values */
 669                for (k = 0; k < n; ++k) {
 670                        j = indexes[k];
 671                        pte_index = args[j] & ((1ul << 56) - 1);
 672                        hp = hptes[k];
 673                        rev = revs[k];
 674                        remove_revmap_chain(kvm, pte_index, rev,
 675                                be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
 676                        rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
 677                        args[j] |= rcbits << (56 - 5);
 678                        __unlock_hpte(hp, 0);
 679                }
 680        }
 681
 682        return ret;
 683}
 684
 685long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
 686                      unsigned long pte_index, unsigned long avpn,
 687                      unsigned long va)
 688{
 689        struct kvm *kvm = vcpu->kvm;
 690        __be64 *hpte;
 691        struct revmap_entry *rev;
 692        unsigned long v, r, rb, mask, bits;
 693        u64 pte_v, pte_r;
 694
 695        if (kvm_is_radix(kvm))
 696                return H_FUNCTION;
 697        if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 698                return H_PARAMETER;
 699
 700        hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 701        while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 702                cpu_relax();
 703        v = pte_v = be64_to_cpu(hpte[0]);
 704        if (cpu_has_feature(CPU_FTR_ARCH_300))
 705                v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
 706        if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
 707            ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
 708                __unlock_hpte(hpte, pte_v);
 709                return H_NOT_FOUND;
 710        }
 711
 712        pte_r = be64_to_cpu(hpte[1]);
 713        bits = (flags << 55) & HPTE_R_PP0;
 714        bits |= (flags << 48) & HPTE_R_KEY_HI;
 715        bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
 716
 717        /* Update guest view of 2nd HPTE dword */
 718        mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
 719                HPTE_R_KEY_HI | HPTE_R_KEY_LO;
 720        rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 721        if (rev) {
 722                r = (rev->guest_rpte & ~mask) | bits;
 723                rev->guest_rpte = r;
 724                note_hpte_modification(kvm, rev);
 725        }
 726
 727        /* Update HPTE */
 728        if (v & HPTE_V_VALID) {
 729                /*
 730                 * If the page is valid, don't let it transition from
 731                 * readonly to writable.  If it should be writable, we'll
 732                 * take a trap and let the page fault code sort it out.
 733                 */
 734                r = (pte_r & ~mask) | bits;
 735                if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
 736                        r = hpte_make_readonly(r);
 737                /* If the PTE is changing, invalidate it first */
 738                if (r != pte_r) {
 739                        rb = compute_tlbie_rb(v, r, pte_index);
 740                        hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
 741                                              HPTE_V_ABSENT);
 742                        do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
 743                        /* Don't lose R/C bit updates done by hardware */
 744                        r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
 745                        hpte[1] = cpu_to_be64(r);
 746                }
 747        }
 748        unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
 749        asm volatile("ptesync" : : : "memory");
 750        if (is_mmio_hpte(v, pte_r))
 751                atomic64_inc(&kvm->arch.mmio_update);
 752
 753        return H_SUCCESS;
 754}
 755
 756long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
 757                   unsigned long pte_index)
 758{
 759        struct kvm *kvm = vcpu->kvm;
 760        __be64 *hpte;
 761        unsigned long v, r;
 762        int i, n = 1;
 763        struct revmap_entry *rev = NULL;
 764
 765        if (kvm_is_radix(kvm))
 766                return H_FUNCTION;
 767        if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 768                return H_PARAMETER;
 769        if (flags & H_READ_4) {
 770                pte_index &= ~3;
 771                n = 4;
 772        }
 773        rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 774        for (i = 0; i < n; ++i, ++pte_index) {
 775                hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 776                v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
 777                r = be64_to_cpu(hpte[1]);
 778                if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 779                        v = hpte_new_to_old_v(v, r);
 780                        r = hpte_new_to_old_r(r);
 781                }
 782                if (v & HPTE_V_ABSENT) {
 783                        v &= ~HPTE_V_ABSENT;
 784                        v |= HPTE_V_VALID;
 785                }
 786                if (v & HPTE_V_VALID) {
 787                        r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
 788                        r &= ~HPTE_GR_RESERVED;
 789                }
 790                vcpu->arch.regs.gpr[4 + i * 2] = v;
 791                vcpu->arch.regs.gpr[5 + i * 2] = r;
 792        }
 793        return H_SUCCESS;
 794}
 795
 796long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
 797                        unsigned long pte_index)
 798{
 799        struct kvm *kvm = vcpu->kvm;
 800        __be64 *hpte;
 801        unsigned long v, r, gr;
 802        struct revmap_entry *rev;
 803        unsigned long *rmap;
 804        long ret = H_NOT_FOUND;
 805
 806        if (kvm_is_radix(kvm))
 807                return H_FUNCTION;
 808        if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 809                return H_PARAMETER;
 810
 811        rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 812        hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 813        while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 814                cpu_relax();
 815        v = be64_to_cpu(hpte[0]);
 816        r = be64_to_cpu(hpte[1]);
 817        if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
 818                goto out;
 819
 820        gr = rev->guest_rpte;
 821        if (rev->guest_rpte & HPTE_R_R) {
 822                rev->guest_rpte &= ~HPTE_R_R;
 823                note_hpte_modification(kvm, rev);
 824        }
 825        if (v & HPTE_V_VALID) {
 826                gr |= r & (HPTE_R_R | HPTE_R_C);
 827                if (r & HPTE_R_R) {
 828                        kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
 829                        rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
 830                        if (rmap) {
 831                                lock_rmap(rmap);
 832                                *rmap |= KVMPPC_RMAP_REFERENCED;
 833                                unlock_rmap(rmap);
 834                        }
 835                }
 836        }
 837        vcpu->arch.regs.gpr[4] = gr;
 838        ret = H_SUCCESS;
 839 out:
 840        unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
 841        return ret;
 842}
 843
 844long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
 845                        unsigned long pte_index)
 846{
 847        struct kvm *kvm = vcpu->kvm;
 848        __be64 *hpte;
 849        unsigned long v, r, gr;
 850        struct revmap_entry *rev;
 851        long ret = H_NOT_FOUND;
 852
 853        if (kvm_is_radix(kvm))
 854                return H_FUNCTION;
 855        if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 856                return H_PARAMETER;
 857
 858        rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 859        hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 860        while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 861                cpu_relax();
 862        v = be64_to_cpu(hpte[0]);
 863        r = be64_to_cpu(hpte[1]);
 864        if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
 865                goto out;
 866
 867        gr = rev->guest_rpte;
 868        if (gr & HPTE_R_C) {
 869                rev->guest_rpte &= ~HPTE_R_C;
 870                note_hpte_modification(kvm, rev);
 871        }
 872        if (v & HPTE_V_VALID) {
 873                /* need to make it temporarily absent so C is stable */
 874                hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
 875                kvmppc_invalidate_hpte(kvm, hpte, pte_index);
 876                r = be64_to_cpu(hpte[1]);
 877                gr |= r & (HPTE_R_R | HPTE_R_C);
 878                if (r & HPTE_R_C) {
 879                        hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
 880                        eieio();
 881                        kvmppc_set_dirty_from_hpte(kvm, v, gr);
 882                }
 883        }
 884        vcpu->arch.regs.gpr[4] = gr;
 885        ret = H_SUCCESS;
 886 out:
 887        unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
 888        return ret;
 889}
 890
 891static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long gpa,
 892                          int writing, unsigned long *hpa,
 893                          struct kvm_memory_slot **memslot_p)
 894{
 895        struct kvm *kvm = vcpu->kvm;
 896        struct kvm_memory_slot *memslot;
 897        unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
 898        unsigned int shift;
 899        pte_t *ptep, pte;
 900
 901        /* Find the memslot for this address */
 902        gfn = gpa >> PAGE_SHIFT;
 903        memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 904        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 905                return H_PARAMETER;
 906
 907        /* Translate to host virtual address */
 908        hva = __gfn_to_hva_memslot(memslot, gfn);
 909
 910        /* Try to find the host pte for that virtual address */
 911        ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
 912        if (!ptep)
 913                return H_TOO_HARD;
 914        pte = kvmppc_read_update_linux_pte(ptep, writing);
 915        if (!pte_present(pte))
 916                return H_TOO_HARD;
 917
 918        /* Convert to a physical address */
 919        if (shift)
 920                psize = 1UL << shift;
 921        pa = pte_pfn(pte) << PAGE_SHIFT;
 922        pa |= hva & (psize - 1);
 923        pa |= gpa & ~PAGE_MASK;
 924
 925        if (hpa)
 926                *hpa = pa;
 927        if (memslot_p)
 928                *memslot_p = memslot;
 929
 930        return H_SUCCESS;
 931}
 932
 933static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
 934                                       unsigned long dest)
 935{
 936        struct kvm_memory_slot *memslot;
 937        struct kvm *kvm = vcpu->kvm;
 938        unsigned long pa, mmu_seq;
 939        long ret = H_SUCCESS;
 940        int i;
 941
 942        /* Used later to detect if we might have been invalidated */
 943        mmu_seq = kvm->mmu_notifier_seq;
 944        smp_rmb();
 945
 946        ret = kvmppc_get_hpa(vcpu, dest, 1, &pa, &memslot);
 947        if (ret != H_SUCCESS)
 948                return ret;
 949
 950        /* Check if we've been invalidated */
 951        raw_spin_lock(&kvm->mmu_lock.rlock);
 952        if (mmu_notifier_retry(kvm, mmu_seq)) {
 953                ret = H_TOO_HARD;
 954                goto out_unlock;
 955        }
 956
 957        /* Zero the page */
 958        for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
 959                dcbz((void *)pa);
 960        kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
 961
 962out_unlock:
 963        raw_spin_unlock(&kvm->mmu_lock.rlock);
 964        return ret;
 965}
 966
 967static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
 968                                       unsigned long dest, unsigned long src)
 969{
 970        unsigned long dest_pa, src_pa, mmu_seq;
 971        struct kvm_memory_slot *dest_memslot;
 972        struct kvm *kvm = vcpu->kvm;
 973        long ret = H_SUCCESS;
 974
 975        /* Used later to detect if we might have been invalidated */
 976        mmu_seq = kvm->mmu_notifier_seq;
 977        smp_rmb();
 978
 979        ret = kvmppc_get_hpa(vcpu, dest, 1, &dest_pa, &dest_memslot);
 980        if (ret != H_SUCCESS)
 981                return ret;
 982        ret = kvmppc_get_hpa(vcpu, src, 0, &src_pa, NULL);
 983        if (ret != H_SUCCESS)
 984                return ret;
 985
 986        /* Check if we've been invalidated */
 987        raw_spin_lock(&kvm->mmu_lock.rlock);
 988        if (mmu_notifier_retry(kvm, mmu_seq)) {
 989                ret = H_TOO_HARD;
 990                goto out_unlock;
 991        }
 992
 993        /* Copy the page */
 994        memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
 995
 996        kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
 997
 998out_unlock:
 999        raw_spin_unlock(&kvm->mmu_lock.rlock);
1000        return ret;
1001}
1002
1003long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1004                           unsigned long dest, unsigned long src)
1005{
1006        struct kvm *kvm = vcpu->kvm;
1007        u64 pg_mask = SZ_4K - 1;        /* 4K page size */
1008        long ret = H_SUCCESS;
1009
1010        /* Don't handle radix mode here, go up to the virtual mode handler */
1011        if (kvm_is_radix(kvm))
1012                return H_TOO_HARD;
1013
1014        /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1015        if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1016                      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1017                return H_PARAMETER;
1018
1019        /* dest (and src if copy_page flag set) must be page aligned */
1020        if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1021                return H_PARAMETER;
1022
1023        /* zero and/or copy the page as determined by the flags */
1024        if (flags & H_COPY_PAGE)
1025                ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1026        else if (flags & H_ZERO_PAGE)
1027                ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1028
1029        /* We can ignore the other flags */
1030
1031        return ret;
1032}
1033
1034void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1035                        unsigned long pte_index)
1036{
1037        unsigned long rb;
1038        u64 hp0, hp1;
1039
1040        hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1041        hp0 = be64_to_cpu(hptep[0]);
1042        hp1 = be64_to_cpu(hptep[1]);
1043        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1044                hp0 = hpte_new_to_old_v(hp0, hp1);
1045                hp1 = hpte_new_to_old_r(hp1);
1046        }
1047        rb = compute_tlbie_rb(hp0, hp1, pte_index);
1048        do_tlbies(kvm, &rb, 1, 1, true);
1049}
1050EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1051
1052void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1053                           unsigned long pte_index)
1054{
1055        unsigned long rb;
1056        unsigned char rbyte;
1057        u64 hp0, hp1;
1058
1059        hp0 = be64_to_cpu(hptep[0]);
1060        hp1 = be64_to_cpu(hptep[1]);
1061        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1062                hp0 = hpte_new_to_old_v(hp0, hp1);
1063                hp1 = hpte_new_to_old_r(hp1);
1064        }
1065        rb = compute_tlbie_rb(hp0, hp1, pte_index);
1066        rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1067        /* modify only the second-last byte, which contains the ref bit */
1068        *((char *)hptep + 14) = rbyte;
1069        do_tlbies(kvm, &rb, 1, 1, false);
1070}
1071EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1072
1073static int slb_base_page_shift[4] = {
1074        24,     /* 16M */
1075        16,     /* 64k */
1076        34,     /* 16G */
1077        20,     /* 1M, unsupported */
1078};
1079
1080static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1081                unsigned long eaddr, unsigned long slb_v, long mmio_update)
1082{
1083        struct mmio_hpte_cache_entry *entry = NULL;
1084        unsigned int pshift;
1085        unsigned int i;
1086
1087        for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1088                entry = &vcpu->arch.mmio_cache.entry[i];
1089                if (entry->mmio_update == mmio_update) {
1090                        pshift = entry->slb_base_pshift;
1091                        if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1092                            entry->slb_v == slb_v)
1093                                return entry;
1094                }
1095        }
1096        return NULL;
1097}
1098
1099static struct mmio_hpte_cache_entry *
1100                        next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1101{
1102        unsigned int index = vcpu->arch.mmio_cache.index;
1103
1104        vcpu->arch.mmio_cache.index++;
1105        if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1106                vcpu->arch.mmio_cache.index = 0;
1107
1108        return &vcpu->arch.mmio_cache.entry[index];
1109}
1110
1111/* When called from virtmode, this func should be protected by
1112 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1113 * can trigger deadlock issue.
1114 */
1115long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1116                              unsigned long valid)
1117{
1118        unsigned int i;
1119        unsigned int pshift;
1120        unsigned long somask;
1121        unsigned long vsid, hash;
1122        unsigned long avpn;
1123        __be64 *hpte;
1124        unsigned long mask, val;
1125        unsigned long v, r, orig_v;
1126
1127        /* Get page shift, work out hash and AVPN etc. */
1128        mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1129        val = 0;
1130        pshift = 12;
1131        if (slb_v & SLB_VSID_L) {
1132                mask |= HPTE_V_LARGE;
1133                val |= HPTE_V_LARGE;
1134                pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1135        }
1136        if (slb_v & SLB_VSID_B_1T) {
1137                somask = (1UL << 40) - 1;
1138                vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1139                vsid ^= vsid << 25;
1140        } else {
1141                somask = (1UL << 28) - 1;
1142                vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1143        }
1144        hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1145        avpn = slb_v & ~(somask >> 16); /* also includes B */
1146        avpn |= (eaddr & somask) >> 16;
1147
1148        if (pshift >= 24)
1149                avpn &= ~((1UL << (pshift - 16)) - 1);
1150        else
1151                avpn &= ~0x7fUL;
1152        val |= avpn;
1153
1154        for (;;) {
1155                hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1156
1157                for (i = 0; i < 16; i += 2) {
1158                        /* Read the PTE racily */
1159                        v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1160                        if (cpu_has_feature(CPU_FTR_ARCH_300))
1161                                v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1162
1163                        /* Check valid/absent, hash, segment size and AVPN */
1164                        if (!(v & valid) || (v & mask) != val)
1165                                continue;
1166
1167                        /* Lock the PTE and read it under the lock */
1168                        while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1169                                cpu_relax();
1170                        v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1171                        r = be64_to_cpu(hpte[i+1]);
1172                        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1173                                v = hpte_new_to_old_v(v, r);
1174                                r = hpte_new_to_old_r(r);
1175                        }
1176
1177                        /*
1178                         * Check the HPTE again, including base page size
1179                         */
1180                        if ((v & valid) && (v & mask) == val &&
1181                            kvmppc_hpte_base_page_shift(v, r) == pshift)
1182                                /* Return with the HPTE still locked */
1183                                return (hash << 3) + (i >> 1);
1184
1185                        __unlock_hpte(&hpte[i], orig_v);
1186                }
1187
1188                if (val & HPTE_V_SECONDARY)
1189                        break;
1190                val |= HPTE_V_SECONDARY;
1191                hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1192        }
1193        return -1;
1194}
1195EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1196
1197/*
1198 * Called in real mode to check whether an HPTE not found fault
1199 * is due to accessing a paged-out page or an emulated MMIO page,
1200 * or if a protection fault is due to accessing a page that the
1201 * guest wanted read/write access to but which we made read-only.
1202 * Returns a possibly modified status (DSISR) value if not
1203 * (i.e. pass the interrupt to the guest),
1204 * -1 to pass the fault up to host kernel mode code, -2 to do that
1205 * and also load the instruction word (for MMIO emulation),
1206 * or 0 if we should make the guest retry the access.
1207 */
1208long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1209                          unsigned long slb_v, unsigned int status, bool data)
1210{
1211        struct kvm *kvm = vcpu->kvm;
1212        long int index;
1213        unsigned long v, r, gr, orig_v;
1214        __be64 *hpte;
1215        unsigned long valid;
1216        struct revmap_entry *rev;
1217        unsigned long pp, key;
1218        struct mmio_hpte_cache_entry *cache_entry = NULL;
1219        long mmio_update = 0;
1220
1221        /* For protection fault, expect to find a valid HPTE */
1222        valid = HPTE_V_VALID;
1223        if (status & DSISR_NOHPTE) {
1224                valid |= HPTE_V_ABSENT;
1225                mmio_update = atomic64_read(&kvm->arch.mmio_update);
1226                cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1227        }
1228        if (cache_entry) {
1229                index = cache_entry->pte_index;
1230                v = cache_entry->hpte_v;
1231                r = cache_entry->hpte_r;
1232                gr = cache_entry->rpte;
1233        } else {
1234                index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1235                if (index < 0) {
1236                        if (status & DSISR_NOHPTE)
1237                                return status;  /* there really was no HPTE */
1238                        return 0;       /* for prot fault, HPTE disappeared */
1239                }
1240                hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1241                v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1242                r = be64_to_cpu(hpte[1]);
1243                if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1244                        v = hpte_new_to_old_v(v, r);
1245                        r = hpte_new_to_old_r(r);
1246                }
1247                rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1248                gr = rev->guest_rpte;
1249
1250                unlock_hpte(hpte, orig_v);
1251        }
1252
1253        /* For not found, if the HPTE is valid by now, retry the instruction */
1254        if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1255                return 0;
1256
1257        /* Check access permissions to the page */
1258        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1259        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1260        status &= ~DSISR_NOHPTE;        /* DSISR_NOHPTE == SRR1_ISI_NOPT */
1261        if (!data) {
1262                if (gr & (HPTE_R_N | HPTE_R_G))
1263                        return status | SRR1_ISI_N_OR_G;
1264                if (!hpte_read_permission(pp, slb_v & key))
1265                        return status | SRR1_ISI_PROT;
1266        } else if (status & DSISR_ISSTORE) {
1267                /* check write permission */
1268                if (!hpte_write_permission(pp, slb_v & key))
1269                        return status | DSISR_PROTFAULT;
1270        } else {
1271                if (!hpte_read_permission(pp, slb_v & key))
1272                        return status | DSISR_PROTFAULT;
1273        }
1274
1275        /* Check storage key, if applicable */
1276        if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1277                unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1278                if (status & DSISR_ISSTORE)
1279                        perm >>= 1;
1280                if (perm & 1)
1281                        return status | DSISR_KEYFAULT;
1282        }
1283
1284        /* Save HPTE info for virtual-mode handler */
1285        vcpu->arch.pgfault_addr = addr;
1286        vcpu->arch.pgfault_index = index;
1287        vcpu->arch.pgfault_hpte[0] = v;
1288        vcpu->arch.pgfault_hpte[1] = r;
1289        vcpu->arch.pgfault_cache = cache_entry;
1290
1291        /* Check the storage key to see if it is possibly emulated MMIO */
1292        if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1293            (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1294                if (!cache_entry) {
1295                        unsigned int pshift = 12;
1296                        unsigned int pshift_index;
1297
1298                        if (slb_v & SLB_VSID_L) {
1299                                pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1300                                pshift = slb_base_page_shift[pshift_index];
1301                        }
1302                        cache_entry = next_mmio_cache_entry(vcpu);
1303                        cache_entry->eaddr = addr;
1304                        cache_entry->slb_base_pshift = pshift;
1305                        cache_entry->pte_index = index;
1306                        cache_entry->hpte_v = v;
1307                        cache_entry->hpte_r = r;
1308                        cache_entry->rpte = gr;
1309                        cache_entry->slb_v = slb_v;
1310                        cache_entry->mmio_update = mmio_update;
1311                }
1312                if (data && (vcpu->arch.shregs.msr & MSR_IR))
1313                        return -2;      /* MMIO emulation - load instr word */
1314        }
1315
1316        return -1;              /* send fault up to host kernel mode */
1317}
1318