linux/arch/powerpc/mm/book3s64/pgtable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/mm_types.h>
   8#include <linux/memblock.h>
   9#include <misc/cxl-base.h>
  10
  11#include <asm/debugfs.h>
  12#include <asm/pgalloc.h>
  13#include <asm/tlb.h>
  14#include <asm/trace.h>
  15#include <asm/powernv.h>
  16#include <asm/firmware.h>
  17#include <asm/ultravisor.h>
  18
  19#include <mm/mmu_decl.h>
  20#include <trace/events/thp.h>
  21
  22unsigned long __pmd_frag_nr;
  23EXPORT_SYMBOL(__pmd_frag_nr);
  24unsigned long __pmd_frag_size_shift;
  25EXPORT_SYMBOL(__pmd_frag_size_shift);
  26
  27#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  28/*
  29 * This is called when relaxing access to a hugepage. It's also called in the page
  30 * fault path when we don't hit any of the major fault cases, ie, a minor
  31 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
  32 * handled those two for us, we additionally deal with missing execute
  33 * permission here on some processors
  34 */
  35int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
  36                          pmd_t *pmdp, pmd_t entry, int dirty)
  37{
  38        int changed;
  39#ifdef CONFIG_DEBUG_VM
  40        WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
  41        assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
  42#endif
  43        changed = !pmd_same(*(pmdp), entry);
  44        if (changed) {
  45                /*
  46                 * We can use MMU_PAGE_2M here, because only radix
  47                 * path look at the psize.
  48                 */
  49                __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
  50                                        pmd_pte(entry), address, MMU_PAGE_2M);
  51        }
  52        return changed;
  53}
  54
  55int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  56                              unsigned long address, pmd_t *pmdp)
  57{
  58        return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
  59}
  60/*
  61 * set a new huge pmd. We should not be called for updating
  62 * an existing pmd entry. That should go via pmd_hugepage_update.
  63 */
  64void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  65                pmd_t *pmdp, pmd_t pmd)
  66{
  67#ifdef CONFIG_DEBUG_VM
  68        /*
  69         * Make sure hardware valid bit is not set. We don't do
  70         * tlb flush for this update.
  71         */
  72
  73        WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
  74        assert_spin_locked(pmd_lockptr(mm, pmdp));
  75        WARN_ON(!(pmd_large(pmd)));
  76#endif
  77        trace_hugepage_set_pmd(addr, pmd_val(pmd));
  78        return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
  79}
  80
  81static void do_nothing(void *unused)
  82{
  83
  84}
  85/*
  86 * Serialize against find_current_mm_pte which does lock-less
  87 * lookup in page tables with local interrupts disabled. For huge pages
  88 * it casts pmd_t to pte_t. Since format of pte_t is different from
  89 * pmd_t we want to prevent transit from pmd pointing to page table
  90 * to pmd pointing to huge page (and back) while interrupts are disabled.
  91 * We clear pmd to possibly replace it with page table pointer in
  92 * different code paths. So make sure we wait for the parallel
  93 * find_current_mm_pte to finish.
  94 */
  95void serialize_against_pte_lookup(struct mm_struct *mm)
  96{
  97        smp_mb();
  98        smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
  99}
 100
 101/*
 102 * We use this to invalidate a pmdp entry before switching from a
 103 * hugepte to regular pmd entry.
 104 */
 105pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 106                     pmd_t *pmdp)
 107{
 108        unsigned long old_pmd;
 109
 110        old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
 111        flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 112        /*
 113         * This ensures that generic code that rely on IRQ disabling
 114         * to prevent a parallel THP split work as expected.
 115         *
 116         * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
 117         * a special case check in pmd_access_permitted.
 118         */
 119        serialize_against_pte_lookup(vma->vm_mm);
 120        return __pmd(old_pmd);
 121}
 122
 123static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
 124{
 125        return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
 126}
 127
 128pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
 129{
 130        unsigned long pmdv;
 131
 132        pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
 133        return pmd_set_protbits(__pmd(pmdv), pgprot);
 134}
 135
 136pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
 137{
 138        return pfn_pmd(page_to_pfn(page), pgprot);
 139}
 140
 141pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
 142{
 143        unsigned long pmdv;
 144
 145        pmdv = pmd_val(pmd);
 146        pmdv &= _HPAGE_CHG_MASK;
 147        return pmd_set_protbits(__pmd(pmdv), newprot);
 148}
 149
 150/*
 151 * This is called at the end of handling a user page fault, when the
 152 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 153 * We use it to preload an HPTE into the hash table corresponding to
 154 * the updated linux HUGE PMD entry.
 155 */
 156void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 157                          pmd_t *pmd)
 158{
 159        if (radix_enabled())
 160                prefetch((void *)addr);
 161}
 162#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 163
 164/* For use by kexec */
 165void mmu_cleanup_all(void)
 166{
 167        if (radix_enabled())
 168                radix__mmu_cleanup_all();
 169        else if (mmu_hash_ops.hpte_clear_all)
 170                mmu_hash_ops.hpte_clear_all();
 171}
 172
 173#ifdef CONFIG_MEMORY_HOTPLUG
 174int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
 175{
 176        if (radix_enabled())
 177                return radix__create_section_mapping(start, end, nid);
 178
 179        return hash__create_section_mapping(start, end, nid);
 180}
 181
 182int __meminit remove_section_mapping(unsigned long start, unsigned long end)
 183{
 184        if (radix_enabled())
 185                return radix__remove_section_mapping(start, end);
 186
 187        return hash__remove_section_mapping(start, end);
 188}
 189#endif /* CONFIG_MEMORY_HOTPLUG */
 190
 191void __init mmu_partition_table_init(void)
 192{
 193        unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
 194        unsigned long ptcr;
 195
 196        BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
 197        /* Initialize the Partition Table with no entries */
 198        partition_tb = memblock_alloc(patb_size, patb_size);
 199        if (!partition_tb)
 200                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 201                      __func__, patb_size, patb_size);
 202
 203        /*
 204         * update partition table control register,
 205         * 64 K size.
 206         */
 207        ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
 208        set_ptcr_when_no_uv(ptcr);
 209        powernv_set_nmmu_ptcr(ptcr);
 210}
 211
 212static void flush_partition(unsigned int lpid, bool radix)
 213{
 214        if (radix) {
 215                radix__flush_all_lpid(lpid);
 216                radix__flush_all_lpid_guest(lpid);
 217        } else {
 218                asm volatile("ptesync" : : : "memory");
 219                asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
 220                             "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
 221                /* do we need fixup here ?*/
 222                asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 223                trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
 224        }
 225}
 226
 227void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
 228                                  unsigned long dw1, bool flush)
 229{
 230        unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
 231
 232        /*
 233         * When ultravisor is enabled, the partition table is stored in secure
 234         * memory and can only be accessed doing an ultravisor call. However, we
 235         * maintain a copy of the partition table in normal memory to allow Nest
 236         * MMU translations to occur (for normal VMs).
 237         *
 238         * Therefore, here we always update partition_tb, regardless of whether
 239         * we are running under an ultravisor or not.
 240         */
 241        partition_tb[lpid].patb0 = cpu_to_be64(dw0);
 242        partition_tb[lpid].patb1 = cpu_to_be64(dw1);
 243
 244        /*
 245         * If ultravisor is enabled, we do an ultravisor call to register the
 246         * partition table entry (PATE), which also do a global flush of TLBs
 247         * and partition table caches for the lpid. Otherwise, just do the
 248         * flush. The type of flush (hash or radix) depends on what the previous
 249         * use of the partition ID was, not the new use.
 250         */
 251        if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
 252                uv_register_pate(lpid, dw0, dw1);
 253                pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
 254                        dw0, dw1);
 255        } else if (flush) {
 256                /*
 257                 * Boot does not need to flush, because MMU is off and each
 258                 * CPU does a tlbiel_all() before switching them on, which
 259                 * flushes everything.
 260                 */
 261                flush_partition(lpid, (old & PATB_HR));
 262        }
 263}
 264EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
 265
 266static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
 267{
 268        void *pmd_frag, *ret;
 269
 270        if (PMD_FRAG_NR == 1)
 271                return NULL;
 272
 273        spin_lock(&mm->page_table_lock);
 274        ret = mm->context.pmd_frag;
 275        if (ret) {
 276                pmd_frag = ret + PMD_FRAG_SIZE;
 277                /*
 278                 * If we have taken up all the fragments mark PTE page NULL
 279                 */
 280                if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
 281                        pmd_frag = NULL;
 282                mm->context.pmd_frag = pmd_frag;
 283        }
 284        spin_unlock(&mm->page_table_lock);
 285        return (pmd_t *)ret;
 286}
 287
 288static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
 289{
 290        void *ret = NULL;
 291        struct page *page;
 292        gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
 293
 294        if (mm == &init_mm)
 295                gfp &= ~__GFP_ACCOUNT;
 296        page = alloc_page(gfp);
 297        if (!page)
 298                return NULL;
 299        if (!pgtable_pmd_page_ctor(page)) {
 300                __free_pages(page, 0);
 301                return NULL;
 302        }
 303
 304        atomic_set(&page->pt_frag_refcount, 1);
 305
 306        ret = page_address(page);
 307        /*
 308         * if we support only one fragment just return the
 309         * allocated page.
 310         */
 311        if (PMD_FRAG_NR == 1)
 312                return ret;
 313
 314        spin_lock(&mm->page_table_lock);
 315        /*
 316         * If we find pgtable_page set, we return
 317         * the allocated page with single fragement
 318         * count.
 319         */
 320        if (likely(!mm->context.pmd_frag)) {
 321                atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
 322                mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
 323        }
 324        spin_unlock(&mm->page_table_lock);
 325
 326        return (pmd_t *)ret;
 327}
 328
 329pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
 330{
 331        pmd_t *pmd;
 332
 333        pmd = get_pmd_from_cache(mm);
 334        if (pmd)
 335                return pmd;
 336
 337        return __alloc_for_pmdcache(mm);
 338}
 339
 340void pmd_fragment_free(unsigned long *pmd)
 341{
 342        struct page *page = virt_to_page(pmd);
 343
 344        BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
 345        if (atomic_dec_and_test(&page->pt_frag_refcount)) {
 346                pgtable_pmd_page_dtor(page);
 347                __free_page(page);
 348        }
 349}
 350
 351static inline void pgtable_free(void *table, int index)
 352{
 353        switch (index) {
 354        case PTE_INDEX:
 355                pte_fragment_free(table, 0);
 356                break;
 357        case PMD_INDEX:
 358                pmd_fragment_free(table);
 359                break;
 360        case PUD_INDEX:
 361                kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
 362                break;
 363#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
 364                /* 16M hugepd directory at pud level */
 365        case HTLB_16M_INDEX:
 366                BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
 367                kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
 368                break;
 369                /* 16G hugepd directory at the pgd level */
 370        case HTLB_16G_INDEX:
 371                BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
 372                kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
 373                break;
 374#endif
 375                /* We don't free pgd table via RCU callback */
 376        default:
 377                BUG();
 378        }
 379}
 380
 381#ifdef CONFIG_SMP
 382void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
 383{
 384        unsigned long pgf = (unsigned long)table;
 385
 386        BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
 387        pgf |= index;
 388        tlb_remove_table(tlb, (void *)pgf);
 389}
 390
 391void __tlb_remove_table(void *_table)
 392{
 393        void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
 394        unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
 395
 396        return pgtable_free(table, index);
 397}
 398#else
 399void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
 400{
 401        return pgtable_free(table, index);
 402}
 403#endif
 404
 405#ifdef CONFIG_PROC_FS
 406atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
 407
 408void arch_report_meminfo(struct seq_file *m)
 409{
 410        /*
 411         * Hash maps the memory with one size mmu_linear_psize.
 412         * So don't bother to print these on hash
 413         */
 414        if (!radix_enabled())
 415                return;
 416        seq_printf(m, "DirectMap4k:    %8lu kB\n",
 417                   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
 418        seq_printf(m, "DirectMap64k:    %8lu kB\n",
 419                   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
 420        seq_printf(m, "DirectMap2M:    %8lu kB\n",
 421                   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
 422        seq_printf(m, "DirectMap1G:    %8lu kB\n",
 423                   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
 424}
 425#endif /* CONFIG_PROC_FS */
 426
 427pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
 428                             pte_t *ptep)
 429{
 430        unsigned long pte_val;
 431
 432        /*
 433         * Clear the _PAGE_PRESENT so that no hardware parallel update is
 434         * possible. Also keep the pte_present true so that we don't take
 435         * wrong fault.
 436         */
 437        pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
 438
 439        return __pte(pte_val);
 440
 441}
 442
 443void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 444                             pte_t *ptep, pte_t old_pte, pte_t pte)
 445{
 446        if (radix_enabled())
 447                return radix__ptep_modify_prot_commit(vma, addr,
 448                                                      ptep, old_pte, pte);
 449        set_pte_at(vma->vm_mm, addr, ptep, pte);
 450}
 451
 452/*
 453 * For hash translation mode, we use the deposited table to store hash slot
 454 * information and they are stored at PTRS_PER_PMD offset from related pmd
 455 * location. Hence a pmd move requires deposit and withdraw.
 456 *
 457 * For radix translation with split pmd ptl, we store the deposited table in the
 458 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
 459 * move.
 460 *
 461 * With hash we use deposited table always irrespective of anon or not.
 462 * With radix we use deposited table only for anonymous mapping.
 463 */
 464int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
 465                           struct spinlock *old_pmd_ptl,
 466                           struct vm_area_struct *vma)
 467{
 468        if (radix_enabled())
 469                return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
 470
 471        return true;
 472}
 473
 474/*
 475 * Does the CPU support tlbie?
 476 */
 477bool tlbie_capable __read_mostly = true;
 478EXPORT_SYMBOL(tlbie_capable);
 479
 480/*
 481 * Should tlbie be used for management of CPU TLBs, for kernel and process
 482 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
 483 * guest address spaces.
 484 */
 485bool tlbie_enabled __read_mostly = true;
 486
 487static int __init setup_disable_tlbie(char *str)
 488{
 489        if (!radix_enabled()) {
 490                pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
 491                return 1;
 492        }
 493
 494        tlbie_capable = false;
 495        tlbie_enabled = false;
 496
 497        return 1;
 498}
 499__setup("disable_tlbie", setup_disable_tlbie);
 500
 501static int __init pgtable_debugfs_setup(void)
 502{
 503        if (!tlbie_capable)
 504                return 0;
 505
 506        /*
 507         * There is no locking vs tlb flushing when changing this value.
 508         * The tlb flushers will see one value or another, and use either
 509         * tlbie or tlbiel with IPIs. In both cases the TLBs will be
 510         * invalidated as expected.
 511         */
 512        debugfs_create_bool("tlbie_enabled", 0600,
 513                        powerpc_debugfs_root,
 514                        &tlbie_enabled);
 515
 516        return 0;
 517}
 518arch_initcall(pgtable_debugfs_setup);
 519