linux/arch/powerpc/sysdev/xive/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2016,2017 IBM Corporation.
   4 */
   5
   6#define pr_fmt(fmt) "xive: " fmt
   7
   8#include <linux/types.h>
   9#include <linux/threads.h>
  10#include <linux/kernel.h>
  11#include <linux/irq.h>
  12#include <linux/debugfs.h>
  13#include <linux/smp.h>
  14#include <linux/interrupt.h>
  15#include <linux/seq_file.h>
  16#include <linux/init.h>
  17#include <linux/cpu.h>
  18#include <linux/of.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/msi.h>
  22
  23#include <asm/prom.h>
  24#include <asm/io.h>
  25#include <asm/smp.h>
  26#include <asm/machdep.h>
  27#include <asm/irq.h>
  28#include <asm/errno.h>
  29#include <asm/xive.h>
  30#include <asm/xive-regs.h>
  31#include <asm/xmon.h>
  32
  33#include "xive-internal.h"
  34
  35#undef DEBUG_FLUSH
  36#undef DEBUG_ALL
  37
  38#ifdef DEBUG_ALL
  39#define DBG_VERBOSE(fmt, ...)   pr_devel("cpu %d - " fmt, \
  40                                         smp_processor_id(), ## __VA_ARGS__)
  41#else
  42#define DBG_VERBOSE(fmt...)     do { } while(0)
  43#endif
  44
  45bool __xive_enabled;
  46EXPORT_SYMBOL_GPL(__xive_enabled);
  47bool xive_cmdline_disabled;
  48
  49/* We use only one priority for now */
  50static u8 xive_irq_priority;
  51
  52/* TIMA exported to KVM */
  53void __iomem *xive_tima;
  54EXPORT_SYMBOL_GPL(xive_tima);
  55u32 xive_tima_offset;
  56
  57/* Backend ops */
  58static const struct xive_ops *xive_ops;
  59
  60/* Our global interrupt domain */
  61static struct irq_domain *xive_irq_domain;
  62
  63#ifdef CONFIG_SMP
  64/* The IPIs all use the same logical irq number */
  65static u32 xive_ipi_irq;
  66#endif
  67
  68/* Xive state for each CPU */
  69static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  70
  71/*
  72 * A "disabled" interrupt should never fire, to catch problems
  73 * we set its logical number to this
  74 */
  75#define XIVE_BAD_IRQ            0x7fffffff
  76#define XIVE_MAX_IRQ            (XIVE_BAD_IRQ - 1)
  77
  78/* An invalid CPU target */
  79#define XIVE_INVALID_TARGET     (-1)
  80
  81/*
  82 * Read the next entry in a queue, return its content if it's valid
  83 * or 0 if there is no new entry.
  84 *
  85 * The queue pointer is moved forward unless "just_peek" is set
  86 */
  87static u32 xive_read_eq(struct xive_q *q, bool just_peek)
  88{
  89        u32 cur;
  90
  91        if (!q->qpage)
  92                return 0;
  93        cur = be32_to_cpup(q->qpage + q->idx);
  94
  95        /* Check valid bit (31) vs current toggle polarity */
  96        if ((cur >> 31) == q->toggle)
  97                return 0;
  98
  99        /* If consuming from the queue ... */
 100        if (!just_peek) {
 101                /* Next entry */
 102                q->idx = (q->idx + 1) & q->msk;
 103
 104                /* Wrap around: flip valid toggle */
 105                if (q->idx == 0)
 106                        q->toggle ^= 1;
 107        }
 108        /* Mask out the valid bit (31) */
 109        return cur & 0x7fffffff;
 110}
 111
 112/*
 113 * Scans all the queue that may have interrupts in them
 114 * (based on "pending_prio") in priority order until an
 115 * interrupt is found or all the queues are empty.
 116 *
 117 * Then updates the CPPR (Current Processor Priority
 118 * Register) based on the most favored interrupt found
 119 * (0xff if none) and return what was found (0 if none).
 120 *
 121 * If just_peek is set, return the most favored pending
 122 * interrupt if any but don't update the queue pointers.
 123 *
 124 * Note: This function can operate generically on any number
 125 * of queues (up to 8). The current implementation of the XIVE
 126 * driver only uses a single queue however.
 127 *
 128 * Note2: This will also "flush" "the pending_count" of a queue
 129 * into the "count" when that queue is observed to be empty.
 130 * This is used to keep track of the amount of interrupts
 131 * targetting a queue. When an interrupt is moved away from
 132 * a queue, we only decrement that queue count once the queue
 133 * has been observed empty to avoid races.
 134 */
 135static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 136{
 137        u32 irq = 0;
 138        u8 prio = 0;
 139
 140        /* Find highest pending priority */
 141        while (xc->pending_prio != 0) {
 142                struct xive_q *q;
 143
 144                prio = ffs(xc->pending_prio) - 1;
 145                DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 146
 147                /* Try to fetch */
 148                irq = xive_read_eq(&xc->queue[prio], just_peek);
 149
 150                /* Found something ? That's it */
 151                if (irq) {
 152                        if (just_peek || irq_to_desc(irq))
 153                                break;
 154                        /*
 155                         * We should never get here; if we do then we must
 156                         * have failed to synchronize the interrupt properly
 157                         * when shutting it down.
 158                         */
 159                        pr_crit("xive: got interrupt %d without descriptor, dropping\n",
 160                                irq);
 161                        WARN_ON(1);
 162                        continue;
 163                }
 164
 165                /* Clear pending bits */
 166                xc->pending_prio &= ~(1 << prio);
 167
 168                /*
 169                 * Check if the queue count needs adjusting due to
 170                 * interrupts being moved away. See description of
 171                 * xive_dec_target_count()
 172                 */
 173                q = &xc->queue[prio];
 174                if (atomic_read(&q->pending_count)) {
 175                        int p = atomic_xchg(&q->pending_count, 0);
 176                        if (p) {
 177                                WARN_ON(p > atomic_read(&q->count));
 178                                atomic_sub(p, &q->count);
 179                        }
 180                }
 181        }
 182
 183        /* If nothing was found, set CPPR to 0xff */
 184        if (irq == 0)
 185                prio = 0xff;
 186
 187        /* Update HW CPPR to match if necessary */
 188        if (prio != xc->cppr) {
 189                DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 190                xc->cppr = prio;
 191                out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 192        }
 193
 194        return irq;
 195}
 196
 197/*
 198 * This is used to perform the magic loads from an ESB
 199 * described in xive-regs.h
 200 */
 201static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 202{
 203        u64 val;
 204
 205        /* Handle HW errata */
 206        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 207                offset |= offset << 4;
 208
 209        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 210                val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 211        else
 212                val = in_be64(xd->eoi_mmio + offset);
 213
 214        return (u8)val;
 215}
 216
 217static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 218{
 219        /* Handle HW errata */
 220        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 221                offset |= offset << 4;
 222
 223        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 224                xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 225        else
 226                out_be64(xd->eoi_mmio + offset, data);
 227}
 228
 229#ifdef CONFIG_XMON
 230static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 231{
 232        u32 i0, i1, idx;
 233
 234        if (!q->qpage)
 235                return;
 236        idx = q->idx;
 237        i0 = be32_to_cpup(q->qpage + idx);
 238        idx = (idx + 1) & q->msk;
 239        i1 = be32_to_cpup(q->qpage + idx);
 240        xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
 241                     q->idx, q->toggle, i0, i1);
 242}
 243
 244notrace void xmon_xive_do_dump(int cpu)
 245{
 246        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 247
 248        xmon_printf("CPU %d:", cpu);
 249        if (xc) {
 250                xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
 251
 252#ifdef CONFIG_SMP
 253                {
 254                        u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
 255
 256                        xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
 257                                    val & XIVE_ESB_VAL_P ? 'P' : '-',
 258                                    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
 259                }
 260#endif
 261                xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
 262        }
 263        xmon_printf("\n");
 264}
 265
 266int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
 267{
 268        int rc;
 269        u32 target;
 270        u8 prio;
 271        u32 lirq;
 272
 273        rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
 274        if (rc) {
 275                xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
 276                return rc;
 277        }
 278
 279        xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
 280                    hw_irq, target, prio, lirq);
 281
 282        if (d) {
 283                struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 284                u64 val = xive_esb_read(xd, XIVE_ESB_GET);
 285
 286                xmon_printf("PQ=%c%c",
 287                            val & XIVE_ESB_VAL_P ? 'P' : '-',
 288                            val & XIVE_ESB_VAL_Q ? 'Q' : '-');
 289        }
 290
 291        xmon_printf("\n");
 292        return 0;
 293}
 294
 295#endif /* CONFIG_XMON */
 296
 297static unsigned int xive_get_irq(void)
 298{
 299        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 300        u32 irq;
 301
 302        /*
 303         * This can be called either as a result of a HW interrupt or
 304         * as a "replay" because EOI decided there was still something
 305         * in one of the queues.
 306         *
 307         * First we perform an ACK cycle in order to update our mask
 308         * of pending priorities. This will also have the effect of
 309         * updating the CPPR to the most favored pending interrupts.
 310         *
 311         * In the future, if we have a way to differentiate a first
 312         * entry (on HW interrupt) from a replay triggered by EOI,
 313         * we could skip this on replays unless we soft-mask tells us
 314         * that a new HW interrupt occurred.
 315         */
 316        xive_ops->update_pending(xc);
 317
 318        DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 319
 320        /* Scan our queue(s) for interrupts */
 321        irq = xive_scan_interrupts(xc, false);
 322
 323        DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 324            irq, xc->pending_prio);
 325
 326        /* Return pending interrupt if any */
 327        if (irq == XIVE_BAD_IRQ)
 328                return 0;
 329        return irq;
 330}
 331
 332/*
 333 * After EOI'ing an interrupt, we need to re-check the queue
 334 * to see if another interrupt is pending since multiple
 335 * interrupts can coalesce into a single notification to the
 336 * CPU.
 337 *
 338 * If we find that there is indeed more in there, we call
 339 * force_external_irq_replay() to make Linux synthetize an
 340 * external interrupt on the next call to local_irq_restore().
 341 */
 342static void xive_do_queue_eoi(struct xive_cpu *xc)
 343{
 344        if (xive_scan_interrupts(xc, true) != 0) {
 345                DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 346                force_external_irq_replay();
 347        }
 348}
 349
 350/*
 351 * EOI an interrupt at the source. There are several methods
 352 * to do this depending on the HW version and source type
 353 */
 354static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
 355{
 356        xd->stale_p = false;
 357        /* If the XIVE supports the new "store EOI facility, use it */
 358        if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 359                xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 360        else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
 361                /*
 362                 * The FW told us to call it. This happens for some
 363                 * interrupt sources that need additional HW whacking
 364                 * beyond the ESB manipulation. For example LPC interrupts
 365                 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
 366                 * itself. The Firmware will take care of it.
 367                 */
 368                if (WARN_ON_ONCE(!xive_ops->eoi))
 369                        return;
 370                xive_ops->eoi(hw_irq);
 371        } else {
 372                u8 eoi_val;
 373
 374                /*
 375                 * Otherwise for EOI, we use the special MMIO that does
 376                 * a clear of both P and Q and returns the old Q,
 377                 * except for LSIs where we use the "EOI cycle" special
 378                 * load.
 379                 *
 380                 * This allows us to then do a re-trigger if Q was set
 381                 * rather than synthesizing an interrupt in software
 382                 *
 383                 * For LSIs the HW EOI cycle is used rather than PQ bits,
 384                 * as they are automatically re-triggred in HW when still
 385                 * pending.
 386                 */
 387                if (xd->flags & XIVE_IRQ_FLAG_LSI)
 388                        xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 389                else {
 390                        eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 391                        DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 392
 393                        /* Re-trigger if needed */
 394                        if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 395                                out_be64(xd->trig_mmio, 0);
 396                }
 397        }
 398}
 399
 400/* irq_chip eoi callback, called with irq descriptor lock held */
 401static void xive_irq_eoi(struct irq_data *d)
 402{
 403        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 404        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 405
 406        DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 407                    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 408
 409        /*
 410         * EOI the source if it hasn't been disabled and hasn't
 411         * been passed-through to a KVM guest
 412         */
 413        if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
 414            !(xd->flags & XIVE_IRQ_NO_EOI))
 415                xive_do_source_eoi(irqd_to_hwirq(d), xd);
 416        else
 417                xd->stale_p = true;
 418
 419        /*
 420         * Clear saved_p to indicate that it's no longer occupying
 421         * a queue slot on the target queue
 422         */
 423        xd->saved_p = false;
 424
 425        /* Check for more work in the queue */
 426        xive_do_queue_eoi(xc);
 427}
 428
 429/*
 430 * Helper used to mask and unmask an interrupt source. This
 431 * is only called for normal interrupts that do not require
 432 * masking/unmasking via firmware.
 433 */
 434static void xive_do_source_set_mask(struct xive_irq_data *xd,
 435                                    bool mask)
 436{
 437        u64 val;
 438
 439        /*
 440         * If the interrupt had P set, it may be in a queue.
 441         *
 442         * We need to make sure we don't re-enable it until it
 443         * has been fetched from that queue and EOId. We keep
 444         * a copy of that P state and use it to restore the
 445         * ESB accordingly on unmask.
 446         */
 447        if (mask) {
 448                val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 449                if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
 450                        xd->saved_p = true;
 451                xd->stale_p = false;
 452        } else if (xd->saved_p) {
 453                xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 454                xd->saved_p = false;
 455        } else {
 456                xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 457                xd->stale_p = false;
 458        }
 459}
 460
 461/*
 462 * Try to chose "cpu" as a new interrupt target. Increments
 463 * the queue accounting for that target if it's not already
 464 * full.
 465 */
 466static bool xive_try_pick_target(int cpu)
 467{
 468        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 469        struct xive_q *q = &xc->queue[xive_irq_priority];
 470        int max;
 471
 472        /*
 473         * Calculate max number of interrupts in that queue.
 474         *
 475         * We leave a gap of 1 just in case...
 476         */
 477        max = (q->msk + 1) - 1;
 478        return !!atomic_add_unless(&q->count, 1, max);
 479}
 480
 481/*
 482 * Un-account an interrupt for a target CPU. We don't directly
 483 * decrement q->count since the interrupt might still be present
 484 * in the queue.
 485 *
 486 * Instead increment a separate counter "pending_count" which
 487 * will be substracted from "count" later when that CPU observes
 488 * the queue to be empty.
 489 */
 490static void xive_dec_target_count(int cpu)
 491{
 492        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 493        struct xive_q *q = &xc->queue[xive_irq_priority];
 494
 495        if (WARN_ON(cpu < 0 || !xc)) {
 496                pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 497                return;
 498        }
 499
 500        /*
 501         * We increment the "pending count" which will be used
 502         * to decrement the target queue count whenever it's next
 503         * processed and found empty. This ensure that we don't
 504         * decrement while we still have the interrupt there
 505         * occupying a slot.
 506         */
 507        atomic_inc(&q->pending_count);
 508}
 509
 510/* Find a tentative CPU target in a CPU mask */
 511static int xive_find_target_in_mask(const struct cpumask *mask,
 512                                    unsigned int fuzz)
 513{
 514        int cpu, first, num, i;
 515
 516        /* Pick up a starting point CPU in the mask based on  fuzz */
 517        num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 518        first = fuzz % num;
 519
 520        /* Locate it */
 521        cpu = cpumask_first(mask);
 522        for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 523                cpu = cpumask_next(cpu, mask);
 524
 525        /* Sanity check */
 526        if (WARN_ON(cpu >= nr_cpu_ids))
 527                cpu = cpumask_first(cpu_online_mask);
 528
 529        /* Remember first one to handle wrap-around */
 530        first = cpu;
 531
 532        /*
 533         * Now go through the entire mask until we find a valid
 534         * target.
 535         */
 536        do {
 537                /*
 538                 * We re-check online as the fallback case passes us
 539                 * an untested affinity mask
 540                 */
 541                if (cpu_online(cpu) && xive_try_pick_target(cpu))
 542                        return cpu;
 543                cpu = cpumask_next(cpu, mask);
 544                /* Wrap around */
 545                if (cpu >= nr_cpu_ids)
 546                        cpu = cpumask_first(mask);
 547        } while (cpu != first);
 548
 549        return -1;
 550}
 551
 552/*
 553 * Pick a target CPU for an interrupt. This is done at
 554 * startup or if the affinity is changed in a way that
 555 * invalidates the current target.
 556 */
 557static int xive_pick_irq_target(struct irq_data *d,
 558                                const struct cpumask *affinity)
 559{
 560        static unsigned int fuzz;
 561        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 562        cpumask_var_t mask;
 563        int cpu = -1;
 564
 565        /*
 566         * If we have chip IDs, first we try to build a mask of
 567         * CPUs matching the CPU and find a target in there
 568         */
 569        if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 570                zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 571                /* Build a mask of matching chip IDs */
 572                for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 573                        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 574                        if (xc->chip_id == xd->src_chip)
 575                                cpumask_set_cpu(cpu, mask);
 576                }
 577                /* Try to find a target */
 578                if (cpumask_empty(mask))
 579                        cpu = -1;
 580                else
 581                        cpu = xive_find_target_in_mask(mask, fuzz++);
 582                free_cpumask_var(mask);
 583                if (cpu >= 0)
 584                        return cpu;
 585                fuzz--;
 586        }
 587
 588        /* No chip IDs, fallback to using the affinity mask */
 589        return xive_find_target_in_mask(affinity, fuzz++);
 590}
 591
 592static unsigned int xive_irq_startup(struct irq_data *d)
 593{
 594        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 595        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 596        int target, rc;
 597
 598        xd->saved_p = false;
 599        xd->stale_p = false;
 600        pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
 601                 d->irq, hw_irq, d);
 602
 603#ifdef CONFIG_PCI_MSI
 604        /*
 605         * The generic MSI code returns with the interrupt disabled on the
 606         * card, using the MSI mask bits. Firmware doesn't appear to unmask
 607         * at that level, so we do it here by hand.
 608         */
 609        if (irq_data_get_msi_desc(d))
 610                pci_msi_unmask_irq(d);
 611#endif
 612
 613        /* Pick a target */
 614        target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 615        if (target == XIVE_INVALID_TARGET) {
 616                /* Try again breaking affinity */
 617                target = xive_pick_irq_target(d, cpu_online_mask);
 618                if (target == XIVE_INVALID_TARGET)
 619                        return -ENXIO;
 620                pr_warn("irq %d started with broken affinity\n", d->irq);
 621        }
 622
 623        /* Sanity check */
 624        if (WARN_ON(target == XIVE_INVALID_TARGET ||
 625                    target >= nr_cpu_ids))
 626                target = smp_processor_id();
 627
 628        xd->target = target;
 629
 630        /*
 631         * Configure the logical number to be the Linux IRQ number
 632         * and set the target queue
 633         */
 634        rc = xive_ops->configure_irq(hw_irq,
 635                                     get_hard_smp_processor_id(target),
 636                                     xive_irq_priority, d->irq);
 637        if (rc)
 638                return rc;
 639
 640        /* Unmask the ESB */
 641        xive_do_source_set_mask(xd, false);
 642
 643        return 0;
 644}
 645
 646/* called with irq descriptor lock held */
 647static void xive_irq_shutdown(struct irq_data *d)
 648{
 649        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 650        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 651
 652        pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
 653                 d->irq, hw_irq, d);
 654
 655        if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 656                return;
 657
 658        /* Mask the interrupt at the source */
 659        xive_do_source_set_mask(xd, true);
 660
 661        /*
 662         * Mask the interrupt in HW in the IVT/EAS and set the number
 663         * to be the "bad" IRQ number
 664         */
 665        xive_ops->configure_irq(hw_irq,
 666                                get_hard_smp_processor_id(xd->target),
 667                                0xff, XIVE_BAD_IRQ);
 668
 669        xive_dec_target_count(xd->target);
 670        xd->target = XIVE_INVALID_TARGET;
 671}
 672
 673static void xive_irq_unmask(struct irq_data *d)
 674{
 675        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 676
 677        pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
 678
 679        /*
 680         * This is a workaround for PCI LSI problems on P9, for
 681         * these, we call FW to set the mask. The problems might
 682         * be fixed by P9 DD2.0, if that is the case, firmware
 683         * will no longer set that flag.
 684         */
 685        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 686                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 687                xive_ops->configure_irq(hw_irq,
 688                                        get_hard_smp_processor_id(xd->target),
 689                                        xive_irq_priority, d->irq);
 690                return;
 691        }
 692
 693        xive_do_source_set_mask(xd, false);
 694}
 695
 696static void xive_irq_mask(struct irq_data *d)
 697{
 698        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 699
 700        pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
 701
 702        /*
 703         * This is a workaround for PCI LSI problems on P9, for
 704         * these, we call OPAL to set the mask. The problems might
 705         * be fixed by P9 DD2.0, if that is the case, firmware
 706         * will no longer set that flag.
 707         */
 708        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 709                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 710                xive_ops->configure_irq(hw_irq,
 711                                        get_hard_smp_processor_id(xd->target),
 712                                        0xff, d->irq);
 713                return;
 714        }
 715
 716        xive_do_source_set_mask(xd, true);
 717}
 718
 719static int xive_irq_set_affinity(struct irq_data *d,
 720                                 const struct cpumask *cpumask,
 721                                 bool force)
 722{
 723        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 724        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 725        u32 target, old_target;
 726        int rc = 0;
 727
 728        pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
 729
 730        /* Is this valid ? */
 731        if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 732                return -EINVAL;
 733
 734        /* Don't do anything if the interrupt isn't started */
 735        if (!irqd_is_started(d))
 736                return IRQ_SET_MASK_OK;
 737
 738        /*
 739         * If existing target is already in the new mask, and is
 740         * online then do nothing.
 741         */
 742        if (xd->target != XIVE_INVALID_TARGET &&
 743            cpu_online(xd->target) &&
 744            cpumask_test_cpu(xd->target, cpumask))
 745                return IRQ_SET_MASK_OK;
 746
 747        /* Pick a new target */
 748        target = xive_pick_irq_target(d, cpumask);
 749
 750        /* No target found */
 751        if (target == XIVE_INVALID_TARGET)
 752                return -ENXIO;
 753
 754        /* Sanity check */
 755        if (WARN_ON(target >= nr_cpu_ids))
 756                target = smp_processor_id();
 757
 758        old_target = xd->target;
 759
 760        /*
 761         * Only configure the irq if it's not currently passed-through to
 762         * a KVM guest
 763         */
 764        if (!irqd_is_forwarded_to_vcpu(d))
 765                rc = xive_ops->configure_irq(hw_irq,
 766                                             get_hard_smp_processor_id(target),
 767                                             xive_irq_priority, d->irq);
 768        if (rc < 0) {
 769                pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 770                return rc;
 771        }
 772
 773        pr_devel("  target: 0x%x\n", target);
 774        xd->target = target;
 775
 776        /* Give up previous target */
 777        if (old_target != XIVE_INVALID_TARGET)
 778            xive_dec_target_count(old_target);
 779
 780        return IRQ_SET_MASK_OK;
 781}
 782
 783static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 784{
 785        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 786
 787        /*
 788         * We only support these. This has really no effect other than setting
 789         * the corresponding descriptor bits mind you but those will in turn
 790         * affect the resend function when re-enabling an edge interrupt.
 791         *
 792         * Set set the default to edge as explained in map().
 793         */
 794        if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 795                flow_type = IRQ_TYPE_EDGE_RISING;
 796
 797        if (flow_type != IRQ_TYPE_EDGE_RISING &&
 798            flow_type != IRQ_TYPE_LEVEL_LOW)
 799                return -EINVAL;
 800
 801        irqd_set_trigger_type(d, flow_type);
 802
 803        /*
 804         * Double check it matches what the FW thinks
 805         *
 806         * NOTE: We don't know yet if the PAPR interface will provide
 807         * the LSI vs MSI information apart from the device-tree so
 808         * this check might have to move into an optional backend call
 809         * that is specific to the native backend
 810         */
 811        if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 812            !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 813                pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 814                        d->irq, (u32)irqd_to_hwirq(d),
 815                        (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 816                        (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 817        }
 818
 819        return IRQ_SET_MASK_OK_NOCOPY;
 820}
 821
 822static int xive_irq_retrigger(struct irq_data *d)
 823{
 824        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 825
 826        /* This should be only for MSIs */
 827        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 828                return 0;
 829
 830        /*
 831         * To perform a retrigger, we first set the PQ bits to
 832         * 11, then perform an EOI.
 833         */
 834        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 835
 836        /*
 837         * Note: We pass "0" to the hw_irq argument in order to
 838         * avoid calling into the backend EOI code which we don't
 839         * want to do in the case of a re-trigger. Backends typically
 840         * only do EOI for LSIs anyway.
 841         */
 842        xive_do_source_eoi(0, xd);
 843
 844        return 1;
 845}
 846
 847/*
 848 * Caller holds the irq descriptor lock, so this won't be called
 849 * concurrently with xive_get_irqchip_state on the same interrupt.
 850 */
 851static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 852{
 853        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 854        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 855        int rc;
 856        u8 pq;
 857
 858        /*
 859         * We only support this on interrupts that do not require
 860         * firmware calls for masking and unmasking
 861         */
 862        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
 863                return -EIO;
 864
 865        /*
 866         * This is called by KVM with state non-NULL for enabling
 867         * pass-through or NULL for disabling it
 868         */
 869        if (state) {
 870                irqd_set_forwarded_to_vcpu(d);
 871
 872                /* Set it to PQ=10 state to prevent further sends */
 873                pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 874                if (!xd->stale_p) {
 875                        xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
 876                        xd->stale_p = !xd->saved_p;
 877                }
 878
 879                /* No target ? nothing to do */
 880                if (xd->target == XIVE_INVALID_TARGET) {
 881                        /*
 882                         * An untargetted interrupt should have been
 883                         * also masked at the source
 884                         */
 885                        WARN_ON(xd->saved_p);
 886
 887                        return 0;
 888                }
 889
 890                /*
 891                 * If P was set, adjust state to PQ=11 to indicate
 892                 * that a resend is needed for the interrupt to reach
 893                 * the guest. Also remember the value of P.
 894                 *
 895                 * This also tells us that it's in flight to a host queue
 896                 * or has already been fetched but hasn't been EOIed yet
 897                 * by the host. This it's potentially using up a host
 898                 * queue slot. This is important to know because as long
 899                 * as this is the case, we must not hard-unmask it when
 900                 * "returning" that interrupt to the host.
 901                 *
 902                 * This saved_p is cleared by the host EOI, when we know
 903                 * for sure the queue slot is no longer in use.
 904                 */
 905                if (xd->saved_p) {
 906                        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 907
 908                        /*
 909                         * Sync the XIVE source HW to ensure the interrupt
 910                         * has gone through the EAS before we change its
 911                         * target to the guest. That should guarantee us
 912                         * that we *will* eventually get an EOI for it on
 913                         * the host. Otherwise there would be a small window
 914                         * for P to be seen here but the interrupt going
 915                         * to the guest queue.
 916                         */
 917                        if (xive_ops->sync_source)
 918                                xive_ops->sync_source(hw_irq);
 919                }
 920        } else {
 921                irqd_clr_forwarded_to_vcpu(d);
 922
 923                /* No host target ? hard mask and return */
 924                if (xd->target == XIVE_INVALID_TARGET) {
 925                        xive_do_source_set_mask(xd, true);
 926                        return 0;
 927                }
 928
 929                /*
 930                 * Sync the XIVE source HW to ensure the interrupt
 931                 * has gone through the EAS before we change its
 932                 * target to the host.
 933                 */
 934                if (xive_ops->sync_source)
 935                        xive_ops->sync_source(hw_irq);
 936
 937                /*
 938                 * By convention we are called with the interrupt in
 939                 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 940                 * have latched in Q whether there's a pending HW
 941                 * interrupt or not.
 942                 *
 943                 * First reconfigure the target.
 944                 */
 945                rc = xive_ops->configure_irq(hw_irq,
 946                                             get_hard_smp_processor_id(xd->target),
 947                                             xive_irq_priority, d->irq);
 948                if (rc)
 949                        return rc;
 950
 951                /*
 952                 * Then if saved_p is not set, effectively re-enable the
 953                 * interrupt with an EOI. If it is set, we know there is
 954                 * still a message in a host queue somewhere that will be
 955                 * EOId eventually.
 956                 *
 957                 * Note: We don't check irqd_irq_disabled(). Effectively,
 958                 * we *will* let the irq get through even if masked if the
 959                 * HW is still firing it in order to deal with the whole
 960                 * saved_p business properly. If the interrupt triggers
 961                 * while masked, the generic code will re-mask it anyway.
 962                 */
 963                if (!xd->saved_p)
 964                        xive_do_source_eoi(hw_irq, xd);
 965
 966        }
 967        return 0;
 968}
 969
 970/* Called with irq descriptor lock held. */
 971static int xive_get_irqchip_state(struct irq_data *data,
 972                                  enum irqchip_irq_state which, bool *state)
 973{
 974        struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
 975
 976        switch (which) {
 977        case IRQCHIP_STATE_ACTIVE:
 978                *state = !xd->stale_p &&
 979                         (xd->saved_p ||
 980                          !!(xive_esb_read(xd, XIVE_ESB_GET) & XIVE_ESB_VAL_P));
 981                return 0;
 982        default:
 983                return -EINVAL;
 984        }
 985}
 986
 987static struct irq_chip xive_irq_chip = {
 988        .name = "XIVE-IRQ",
 989        .irq_startup = xive_irq_startup,
 990        .irq_shutdown = xive_irq_shutdown,
 991        .irq_eoi = xive_irq_eoi,
 992        .irq_mask = xive_irq_mask,
 993        .irq_unmask = xive_irq_unmask,
 994        .irq_set_affinity = xive_irq_set_affinity,
 995        .irq_set_type = xive_irq_set_type,
 996        .irq_retrigger = xive_irq_retrigger,
 997        .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
 998        .irq_get_irqchip_state = xive_get_irqchip_state,
 999};
1000
1001bool is_xive_irq(struct irq_chip *chip)
1002{
1003        return chip == &xive_irq_chip;
1004}
1005EXPORT_SYMBOL_GPL(is_xive_irq);
1006
1007void xive_cleanup_irq_data(struct xive_irq_data *xd)
1008{
1009        if (xd->eoi_mmio) {
1010                iounmap(xd->eoi_mmio);
1011                if (xd->eoi_mmio == xd->trig_mmio)
1012                        xd->trig_mmio = NULL;
1013                xd->eoi_mmio = NULL;
1014        }
1015        if (xd->trig_mmio) {
1016                iounmap(xd->trig_mmio);
1017                xd->trig_mmio = NULL;
1018        }
1019}
1020EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1021
1022static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1023{
1024        struct xive_irq_data *xd;
1025        int rc;
1026
1027        xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1028        if (!xd)
1029                return -ENOMEM;
1030        rc = xive_ops->populate_irq_data(hw, xd);
1031        if (rc) {
1032                kfree(xd);
1033                return rc;
1034        }
1035        xd->target = XIVE_INVALID_TARGET;
1036        irq_set_handler_data(virq, xd);
1037
1038        return 0;
1039}
1040
1041static void xive_irq_free_data(unsigned int virq)
1042{
1043        struct xive_irq_data *xd = irq_get_handler_data(virq);
1044
1045        if (!xd)
1046                return;
1047        irq_set_handler_data(virq, NULL);
1048        xive_cleanup_irq_data(xd);
1049        kfree(xd);
1050}
1051
1052#ifdef CONFIG_SMP
1053
1054static void xive_cause_ipi(int cpu)
1055{
1056        struct xive_cpu *xc;
1057        struct xive_irq_data *xd;
1058
1059        xc = per_cpu(xive_cpu, cpu);
1060
1061        DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1062                    smp_processor_id(), cpu, xc->hw_ipi);
1063
1064        xd = &xc->ipi_data;
1065        if (WARN_ON(!xd->trig_mmio))
1066                return;
1067        out_be64(xd->trig_mmio, 0);
1068}
1069
1070static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1071{
1072        return smp_ipi_demux();
1073}
1074
1075static void xive_ipi_eoi(struct irq_data *d)
1076{
1077        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1078
1079        /* Handle possible race with unplug and drop stale IPIs */
1080        if (!xc)
1081                return;
1082
1083        DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1084                    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1085
1086        xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1087        xive_do_queue_eoi(xc);
1088}
1089
1090static void xive_ipi_do_nothing(struct irq_data *d)
1091{
1092        /*
1093         * Nothing to do, we never mask/unmask IPIs, but the callback
1094         * has to exist for the struct irq_chip.
1095         */
1096}
1097
1098static struct irq_chip xive_ipi_chip = {
1099        .name = "XIVE-IPI",
1100        .irq_eoi = xive_ipi_eoi,
1101        .irq_mask = xive_ipi_do_nothing,
1102        .irq_unmask = xive_ipi_do_nothing,
1103};
1104
1105static void __init xive_request_ipi(void)
1106{
1107        unsigned int virq;
1108
1109        /*
1110         * Initialization failed, move on, we might manage to
1111         * reach the point where we display our errors before
1112         * the system falls appart
1113         */
1114        if (!xive_irq_domain)
1115                return;
1116
1117        /* Initialize it */
1118        virq = irq_create_mapping(xive_irq_domain, 0);
1119        xive_ipi_irq = virq;
1120
1121        WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1122                            IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1123}
1124
1125static int xive_setup_cpu_ipi(unsigned int cpu)
1126{
1127        struct xive_cpu *xc;
1128        int rc;
1129
1130        pr_debug("Setting up IPI for CPU %d\n", cpu);
1131
1132        xc = per_cpu(xive_cpu, cpu);
1133
1134        /* Check if we are already setup */
1135        if (xc->hw_ipi != 0)
1136                return 0;
1137
1138        /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1139        if (xive_ops->get_ipi(cpu, xc))
1140                return -EIO;
1141
1142        /*
1143         * Populate the IRQ data in the xive_cpu structure and
1144         * configure the HW / enable the IPIs.
1145         */
1146        rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1147        if (rc) {
1148                pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1149                return -EIO;
1150        }
1151        rc = xive_ops->configure_irq(xc->hw_ipi,
1152                                     get_hard_smp_processor_id(cpu),
1153                                     xive_irq_priority, xive_ipi_irq);
1154        if (rc) {
1155                pr_err("Failed to map IPI CPU %d\n", cpu);
1156                return -EIO;
1157        }
1158        pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1159            xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1160
1161        /* Unmask it */
1162        xive_do_source_set_mask(&xc->ipi_data, false);
1163
1164        return 0;
1165}
1166
1167static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1168{
1169        /* Disable the IPI and free the IRQ data */
1170
1171        /* Already cleaned up ? */
1172        if (xc->hw_ipi == 0)
1173                return;
1174
1175        /* Mask the IPI */
1176        xive_do_source_set_mask(&xc->ipi_data, true);
1177
1178        /*
1179         * Note: We don't call xive_cleanup_irq_data() to free
1180         * the mappings as this is called from an IPI on kexec
1181         * which is not a safe environment to call iounmap()
1182         */
1183
1184        /* Deconfigure/mask in the backend */
1185        xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1186                                0xff, xive_ipi_irq);
1187
1188        /* Free the IPIs in the backend */
1189        xive_ops->put_ipi(cpu, xc);
1190}
1191
1192void __init xive_smp_probe(void)
1193{
1194        smp_ops->cause_ipi = xive_cause_ipi;
1195
1196        /* Register the IPI */
1197        xive_request_ipi();
1198
1199        /* Allocate and setup IPI for the boot CPU */
1200        xive_setup_cpu_ipi(smp_processor_id());
1201}
1202
1203#endif /* CONFIG_SMP */
1204
1205static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1206                               irq_hw_number_t hw)
1207{
1208        int rc;
1209
1210        /*
1211         * Mark interrupts as edge sensitive by default so that resend
1212         * actually works. Will fix that up below if needed.
1213         */
1214        irq_clear_status_flags(virq, IRQ_LEVEL);
1215
1216#ifdef CONFIG_SMP
1217        /* IPIs are special and come up with HW number 0 */
1218        if (hw == 0) {
1219                /*
1220                 * IPIs are marked per-cpu. We use separate HW interrupts under
1221                 * the hood but associated with the same "linux" interrupt
1222                 */
1223                irq_set_chip_and_handler(virq, &xive_ipi_chip,
1224                                         handle_percpu_irq);
1225                return 0;
1226        }
1227#endif
1228
1229        rc = xive_irq_alloc_data(virq, hw);
1230        if (rc)
1231                return rc;
1232
1233        irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1234
1235        return 0;
1236}
1237
1238static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1239{
1240        struct irq_data *data = irq_get_irq_data(virq);
1241        unsigned int hw_irq;
1242
1243        /* XXX Assign BAD number */
1244        if (!data)
1245                return;
1246        hw_irq = (unsigned int)irqd_to_hwirq(data);
1247        if (hw_irq)
1248                xive_irq_free_data(virq);
1249}
1250
1251static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1252                                 const u32 *intspec, unsigned int intsize,
1253                                 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1254
1255{
1256        *out_hwirq = intspec[0];
1257
1258        /*
1259         * If intsize is at least 2, we look for the type in the second cell,
1260         * we assume the LSB indicates a level interrupt.
1261         */
1262        if (intsize > 1) {
1263                if (intspec[1] & 1)
1264                        *out_flags = IRQ_TYPE_LEVEL_LOW;
1265                else
1266                        *out_flags = IRQ_TYPE_EDGE_RISING;
1267        } else
1268                *out_flags = IRQ_TYPE_LEVEL_LOW;
1269
1270        return 0;
1271}
1272
1273static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1274                                 enum irq_domain_bus_token bus_token)
1275{
1276        return xive_ops->match(node);
1277}
1278
1279static const struct irq_domain_ops xive_irq_domain_ops = {
1280        .match = xive_irq_domain_match,
1281        .map = xive_irq_domain_map,
1282        .unmap = xive_irq_domain_unmap,
1283        .xlate = xive_irq_domain_xlate,
1284};
1285
1286static void __init xive_init_host(void)
1287{
1288        xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1289                                               &xive_irq_domain_ops, NULL);
1290        if (WARN_ON(xive_irq_domain == NULL))
1291                return;
1292        irq_set_default_host(xive_irq_domain);
1293}
1294
1295static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1296{
1297        if (xc->queue[xive_irq_priority].qpage)
1298                xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1299}
1300
1301static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1302{
1303        int rc = 0;
1304
1305        /* We setup 1 queues for now with a 64k page */
1306        if (!xc->queue[xive_irq_priority].qpage)
1307                rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1308
1309        return rc;
1310}
1311
1312static int xive_prepare_cpu(unsigned int cpu)
1313{
1314        struct xive_cpu *xc;
1315
1316        xc = per_cpu(xive_cpu, cpu);
1317        if (!xc) {
1318                struct device_node *np;
1319
1320                xc = kzalloc_node(sizeof(struct xive_cpu),
1321                                  GFP_KERNEL, cpu_to_node(cpu));
1322                if (!xc)
1323                        return -ENOMEM;
1324                np = of_get_cpu_node(cpu, NULL);
1325                if (np)
1326                        xc->chip_id = of_get_ibm_chip_id(np);
1327                of_node_put(np);
1328
1329                per_cpu(xive_cpu, cpu) = xc;
1330        }
1331
1332        /* Setup EQs if not already */
1333        return xive_setup_cpu_queues(cpu, xc);
1334}
1335
1336static void xive_setup_cpu(void)
1337{
1338        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1339
1340        /* The backend might have additional things to do */
1341        if (xive_ops->setup_cpu)
1342                xive_ops->setup_cpu(smp_processor_id(), xc);
1343
1344        /* Set CPPR to 0xff to enable flow of interrupts */
1345        xc->cppr = 0xff;
1346        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1347}
1348
1349#ifdef CONFIG_SMP
1350void xive_smp_setup_cpu(void)
1351{
1352        pr_devel("SMP setup CPU %d\n", smp_processor_id());
1353
1354        /* This will have already been done on the boot CPU */
1355        if (smp_processor_id() != boot_cpuid)
1356                xive_setup_cpu();
1357
1358}
1359
1360int xive_smp_prepare_cpu(unsigned int cpu)
1361{
1362        int rc;
1363
1364        /* Allocate per-CPU data and queues */
1365        rc = xive_prepare_cpu(cpu);
1366        if (rc)
1367                return rc;
1368
1369        /* Allocate and setup IPI for the new CPU */
1370        return xive_setup_cpu_ipi(cpu);
1371}
1372
1373#ifdef CONFIG_HOTPLUG_CPU
1374static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1375{
1376        u32 irq;
1377
1378        /* We assume local irqs are disabled */
1379        WARN_ON(!irqs_disabled());
1380
1381        /* Check what's already in the CPU queue */
1382        while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1383                /*
1384                 * We need to re-route that interrupt to its new destination.
1385                 * First get and lock the descriptor
1386                 */
1387                struct irq_desc *desc = irq_to_desc(irq);
1388                struct irq_data *d = irq_desc_get_irq_data(desc);
1389                struct xive_irq_data *xd;
1390                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1391
1392                /*
1393                 * Ignore anything that isn't a XIVE irq and ignore
1394                 * IPIs, so can just be dropped.
1395                 */
1396                if (d->domain != xive_irq_domain || hw_irq == 0)
1397                        continue;
1398
1399                /*
1400                 * The IRQ should have already been re-routed, it's just a
1401                 * stale in the old queue, so re-trigger it in order to make
1402                 * it reach is new destination.
1403                 */
1404#ifdef DEBUG_FLUSH
1405                pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1406                        cpu, irq);
1407#endif
1408                raw_spin_lock(&desc->lock);
1409                xd = irq_desc_get_handler_data(desc);
1410
1411                /*
1412                 * Clear saved_p to indicate that it's no longer pending
1413                 */
1414                xd->saved_p = false;
1415
1416                /*
1417                 * For LSIs, we EOI, this will cause a resend if it's
1418                 * still asserted. Otherwise do an MSI retrigger.
1419                 */
1420                if (xd->flags & XIVE_IRQ_FLAG_LSI)
1421                        xive_do_source_eoi(irqd_to_hwirq(d), xd);
1422                else
1423                        xive_irq_retrigger(d);
1424
1425                raw_spin_unlock(&desc->lock);
1426        }
1427}
1428
1429void xive_smp_disable_cpu(void)
1430{
1431        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1432        unsigned int cpu = smp_processor_id();
1433
1434        /* Migrate interrupts away from the CPU */
1435        irq_migrate_all_off_this_cpu();
1436
1437        /* Set CPPR to 0 to disable flow of interrupts */
1438        xc->cppr = 0;
1439        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1440
1441        /* Flush everything still in the queue */
1442        xive_flush_cpu_queue(cpu, xc);
1443
1444        /* Re-enable CPPR  */
1445        xc->cppr = 0xff;
1446        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1447}
1448
1449void xive_flush_interrupt(void)
1450{
1451        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1452        unsigned int cpu = smp_processor_id();
1453
1454        /* Called if an interrupt occurs while the CPU is hot unplugged */
1455        xive_flush_cpu_queue(cpu, xc);
1456}
1457
1458#endif /* CONFIG_HOTPLUG_CPU */
1459
1460#endif /* CONFIG_SMP */
1461
1462void xive_teardown_cpu(void)
1463{
1464        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1465        unsigned int cpu = smp_processor_id();
1466
1467        /* Set CPPR to 0 to disable flow of interrupts */
1468        xc->cppr = 0;
1469        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1470
1471        if (xive_ops->teardown_cpu)
1472                xive_ops->teardown_cpu(cpu, xc);
1473
1474#ifdef CONFIG_SMP
1475        /* Get rid of IPI */
1476        xive_cleanup_cpu_ipi(cpu, xc);
1477#endif
1478
1479        /* Disable and free the queues */
1480        xive_cleanup_cpu_queues(cpu, xc);
1481}
1482
1483void xive_shutdown(void)
1484{
1485        xive_ops->shutdown();
1486}
1487
1488bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1489                           u8 max_prio)
1490{
1491        xive_tima = area;
1492        xive_tima_offset = offset;
1493        xive_ops = ops;
1494        xive_irq_priority = max_prio;
1495
1496        ppc_md.get_irq = xive_get_irq;
1497        __xive_enabled = true;
1498
1499        pr_devel("Initializing host..\n");
1500        xive_init_host();
1501
1502        pr_devel("Initializing boot CPU..\n");
1503
1504        /* Allocate per-CPU data and queues */
1505        xive_prepare_cpu(smp_processor_id());
1506
1507        /* Get ready for interrupts */
1508        xive_setup_cpu();
1509
1510        pr_info("Interrupt handling initialized with %s backend\n",
1511                xive_ops->name);
1512        pr_info("Using priority %d for all interrupts\n", max_prio);
1513
1514        return true;
1515}
1516
1517__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1518{
1519        unsigned int alloc_order;
1520        struct page *pages;
1521        __be32 *qpage;
1522
1523        alloc_order = xive_alloc_order(queue_shift);
1524        pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1525        if (!pages)
1526                return ERR_PTR(-ENOMEM);
1527        qpage = (__be32 *)page_address(pages);
1528        memset(qpage, 0, 1 << queue_shift);
1529
1530        return qpage;
1531}
1532
1533static int __init xive_off(char *arg)
1534{
1535        xive_cmdline_disabled = true;
1536        return 0;
1537}
1538__setup("xive=off", xive_off);
1539