linux/arch/unicore32/mm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/arch/unicore32/mm/mmu.c
   4 *
   5 * Code specific to PKUnity SoC and UniCore ISA
   6 *
   7 * Copyright (C) 2001-2010 GUAN Xue-tao
   8 */
   9#include <linux/module.h>
  10#include <linux/kernel.h>
  11#include <linux/errno.h>
  12#include <linux/init.h>
  13#include <linux/mman.h>
  14#include <linux/nodemask.h>
  15#include <linux/memblock.h>
  16#include <linux/fs.h>
  17#include <linux/io.h>
  18
  19#include <asm/cputype.h>
  20#include <asm/sections.h>
  21#include <asm/setup.h>
  22#include <linux/sizes.h>
  23#include <asm/tlb.h>
  24#include <asm/memblock.h>
  25
  26#include <mach/map.h>
  27
  28#include "mm.h"
  29
  30/*
  31 * empty_zero_page is a special page that is used for
  32 * zero-initialized data and COW.
  33 */
  34struct page *empty_zero_page;
  35EXPORT_SYMBOL(empty_zero_page);
  36
  37/*
  38 * The pmd table for the upper-most set of pages.
  39 */
  40pmd_t *top_pmd;
  41
  42pgprot_t pgprot_user;
  43EXPORT_SYMBOL(pgprot_user);
  44
  45pgprot_t pgprot_kernel;
  46EXPORT_SYMBOL(pgprot_kernel);
  47
  48static int __init noalign_setup(char *__unused)
  49{
  50        cr_alignment &= ~CR_A;
  51        cr_no_alignment &= ~CR_A;
  52        set_cr(cr_alignment);
  53        return 1;
  54}
  55__setup("noalign", noalign_setup);
  56
  57void adjust_cr(unsigned long mask, unsigned long set)
  58{
  59        unsigned long flags;
  60
  61        mask &= ~CR_A;
  62
  63        set &= mask;
  64
  65        local_irq_save(flags);
  66
  67        cr_no_alignment = (cr_no_alignment & ~mask) | set;
  68        cr_alignment = (cr_alignment & ~mask) | set;
  69
  70        set_cr((get_cr() & ~mask) | set);
  71
  72        local_irq_restore(flags);
  73}
  74
  75struct map_desc {
  76        unsigned long virtual;
  77        unsigned long pfn;
  78        unsigned long length;
  79        unsigned int type;
  80};
  81
  82#define PROT_PTE_DEVICE         (PTE_PRESENT | PTE_YOUNG |      \
  83                                PTE_DIRTY | PTE_READ | PTE_WRITE)
  84#define PROT_SECT_DEVICE        (PMD_TYPE_SECT | PMD_PRESENT |  \
  85                                PMD_SECT_READ | PMD_SECT_WRITE)
  86
  87static struct mem_type mem_types[] = {
  88        [MT_DEVICE] = {           /* Strongly ordered */
  89                .prot_pte       = PROT_PTE_DEVICE,
  90                .prot_l1        = PMD_TYPE_TABLE | PMD_PRESENT,
  91                .prot_sect      = PROT_SECT_DEVICE,
  92        },
  93        /*
  94         * MT_KUSER: pte for vecpage -- cacheable,
  95         *       and sect for unigfx mmap -- noncacheable
  96         */
  97        [MT_KUSER] = {
  98                .prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
  99                                PTE_CACHEABLE | PTE_READ | PTE_EXEC,
 100                .prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
 101                .prot_sect = PROT_SECT_DEVICE,
 102        },
 103        [MT_HIGH_VECTORS] = {
 104                .prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
 105                                PTE_CACHEABLE | PTE_READ | PTE_WRITE |
 106                                PTE_EXEC,
 107                .prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
 108        },
 109        [MT_MEMORY] = {
 110                .prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
 111                                PTE_WRITE | PTE_EXEC,
 112                .prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
 113                .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
 114                                PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
 115        },
 116        [MT_ROM] = {
 117                .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
 118                                PMD_SECT_READ,
 119        },
 120};
 121
 122const struct mem_type *get_mem_type(unsigned int type)
 123{
 124        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 125}
 126EXPORT_SYMBOL(get_mem_type);
 127
 128/*
 129 * Adjust the PMD section entries according to the CPU in use.
 130 */
 131static void __init build_mem_type_table(void)
 132{
 133        pgprot_user   = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
 134        pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
 135                                 PTE_DIRTY | PTE_READ | PTE_WRITE |
 136                                 PTE_EXEC | PTE_CACHEABLE);
 137}
 138
 139#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 140
 141static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 142                unsigned long prot)
 143{
 144        if (pmd_none(*pmd)) {
 145                size_t size = PTRS_PER_PTE * sizeof(pte_t);
 146                pte_t *pte = memblock_alloc(size, size);
 147
 148                if (!pte)
 149                        panic("%s: Failed to allocate %zu bytes align=%zx\n",
 150                              __func__, size, size);
 151
 152                __pmd_populate(pmd, __pa(pte) | prot);
 153        }
 154        BUG_ON(pmd_bad(*pmd));
 155        return pte_offset_kernel(pmd, addr);
 156}
 157
 158static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 159                                  unsigned long end, unsigned long pfn,
 160                                  const struct mem_type *type)
 161{
 162        pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 163        do {
 164                set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
 165                pfn++;
 166        } while (pte++, addr += PAGE_SIZE, addr != end);
 167}
 168
 169static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
 170                                      unsigned long end, unsigned long phys,
 171                                      const struct mem_type *type)
 172{
 173        pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
 174
 175        /*
 176         * Try a section mapping - end, addr and phys must all be aligned
 177         * to a section boundary.
 178         */
 179        if (((addr | end | phys) & ~SECTION_MASK) == 0) {
 180                pmd_t *p = pmd;
 181
 182                do {
 183                        set_pmd(pmd, __pmd(phys | type->prot_sect));
 184                        phys += SECTION_SIZE;
 185                } while (pmd++, addr += SECTION_SIZE, addr != end);
 186
 187                flush_pmd_entry(p);
 188        } else {
 189                /*
 190                 * No need to loop; pte's aren't interested in the
 191                 * individual L1 entries.
 192                 */
 193                alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
 194        }
 195}
 196
 197/*
 198 * Create the page directory entries and any necessary
 199 * page tables for the mapping specified by `md'.  We
 200 * are able to cope here with varying sizes and address
 201 * offsets, and we take full advantage of sections.
 202 */
 203static void __init create_mapping(struct map_desc *md)
 204{
 205        unsigned long phys, addr, length, end;
 206        const struct mem_type *type;
 207        pgd_t *pgd;
 208
 209        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 210                printk(KERN_WARNING "BUG: not creating mapping for "
 211                       "0x%08llx at 0x%08lx in user region\n",
 212                       __pfn_to_phys((u64)md->pfn), md->virtual);
 213                return;
 214        }
 215
 216        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 217            md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
 218                printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
 219                       "overlaps vmalloc space\n",
 220                       __pfn_to_phys((u64)md->pfn), md->virtual);
 221        }
 222
 223        type = &mem_types[md->type];
 224
 225        addr = md->virtual & PAGE_MASK;
 226        phys = (unsigned long)__pfn_to_phys(md->pfn);
 227        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 228
 229        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 230                printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
 231                       "be mapped using pages, ignoring.\n",
 232                       __pfn_to_phys(md->pfn), addr);
 233                return;
 234        }
 235
 236        pgd = pgd_offset_k(addr);
 237        end = addr + length;
 238        do {
 239                unsigned long next = pgd_addr_end(addr, end);
 240
 241                alloc_init_section(pgd, addr, next, phys, type);
 242
 243                phys += next - addr;
 244                addr = next;
 245        } while (pgd++, addr != end);
 246}
 247
 248static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
 249
 250/*
 251 * vmalloc=size forces the vmalloc area to be exactly 'size'
 252 * bytes. This can be used to increase (or decrease) the vmalloc
 253 * area - the default is 128m.
 254 */
 255static int __init early_vmalloc(char *arg)
 256{
 257        unsigned long vmalloc_reserve = memparse(arg, NULL);
 258
 259        if (vmalloc_reserve < SZ_16M) {
 260                vmalloc_reserve = SZ_16M;
 261                printk(KERN_WARNING
 262                        "vmalloc area too small, limiting to %luMB\n",
 263                        vmalloc_reserve >> 20);
 264        }
 265
 266        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 267                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 268                printk(KERN_WARNING
 269                        "vmalloc area is too big, limiting to %luMB\n",
 270                        vmalloc_reserve >> 20);
 271        }
 272
 273        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 274        return 0;
 275}
 276early_param("vmalloc", early_vmalloc);
 277
 278static phys_addr_t lowmem_limit __initdata = SZ_1G;
 279
 280static void __init sanity_check_meminfo(void)
 281{
 282        int i, j;
 283
 284        lowmem_limit = __pa(vmalloc_min - 1) + 1;
 285        memblock_set_current_limit(lowmem_limit);
 286
 287        for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
 288                struct membank *bank = &meminfo.bank[j];
 289                *bank = meminfo.bank[i];
 290                j++;
 291        }
 292        meminfo.nr_banks = j;
 293}
 294
 295static inline void prepare_page_table(void)
 296{
 297        unsigned long addr;
 298        phys_addr_t end;
 299
 300        /*
 301         * Clear out all the mappings below the kernel image.
 302         */
 303        for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
 304                pmd_clear(pmd_off_k(addr));
 305
 306        for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
 307                pmd_clear(pmd_off_k(addr));
 308
 309        /*
 310         * Find the end of the first block of lowmem.
 311         */
 312        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
 313        if (end >= lowmem_limit)
 314                end = lowmem_limit;
 315
 316        /*
 317         * Clear out all the kernel space mappings, except for the first
 318         * memory bank, up to the end of the vmalloc region.
 319         */
 320        for (addr = __phys_to_virt(end);
 321             addr < VMALLOC_END; addr += PGDIR_SIZE)
 322                pmd_clear(pmd_off_k(addr));
 323}
 324
 325/*
 326 * Reserve the special regions of memory
 327 */
 328void __init uc32_mm_memblock_reserve(void)
 329{
 330        /*
 331         * Reserve the page tables.  These are already in use,
 332         * and can only be in node 0.
 333         */
 334        memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
 335}
 336
 337/*
 338 * Set up device the mappings.  Since we clear out the page tables for all
 339 * mappings above VMALLOC_END, we will remove any debug device mappings.
 340 * This means you have to be careful how you debug this function, or any
 341 * called function.  This means you can't use any function or debugging
 342 * method which may touch any device, otherwise the kernel _will_ crash.
 343 */
 344static void __init devicemaps_init(void)
 345{
 346        struct map_desc map;
 347        unsigned long addr;
 348        void *vectors;
 349
 350        /*
 351         * Allocate the vector page early.
 352         */
 353        vectors = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 354        if (!vectors)
 355                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 356                      __func__, PAGE_SIZE, PAGE_SIZE);
 357
 358        for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
 359                pmd_clear(pmd_off_k(addr));
 360
 361        /*
 362         * Create a mapping for the machine vectors at the high-vectors
 363         * location (0xffff0000).  If we aren't using high-vectors, also
 364         * create a mapping at the low-vectors virtual address.
 365         */
 366        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
 367        map.virtual = VECTORS_BASE;
 368        map.length = PAGE_SIZE;
 369        map.type = MT_HIGH_VECTORS;
 370        create_mapping(&map);
 371
 372        /*
 373         * Create a mapping for the kuser page at the special
 374         * location (0xbfff0000) to the same vectors location.
 375         */
 376        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
 377        map.virtual = KUSER_VECPAGE_BASE;
 378        map.length = PAGE_SIZE;
 379        map.type = MT_KUSER;
 380        create_mapping(&map);
 381
 382        /*
 383         * Finally flush the caches and tlb to ensure that we're in a
 384         * consistent state wrt the writebuffer.  This also ensures that
 385         * any write-allocated cache lines in the vector page are written
 386         * back.  After this point, we can start to touch devices again.
 387         */
 388        local_flush_tlb_all();
 389        flush_cache_all();
 390}
 391
 392static void __init map_lowmem(void)
 393{
 394        struct memblock_region *reg;
 395
 396        /* Map all the lowmem memory banks. */
 397        for_each_memblock(memory, reg) {
 398                phys_addr_t start = reg->base;
 399                phys_addr_t end = start + reg->size;
 400                struct map_desc map;
 401
 402                if (end > lowmem_limit)
 403                        end = lowmem_limit;
 404                if (start >= end)
 405                        break;
 406
 407                map.pfn = __phys_to_pfn(start);
 408                map.virtual = __phys_to_virt(start);
 409                map.length = end - start;
 410                map.type = MT_MEMORY;
 411
 412                create_mapping(&map);
 413        }
 414}
 415
 416/*
 417 * paging_init() sets up the page tables, initialises the zone memory
 418 * maps, and sets up the zero page, bad page and bad page tables.
 419 */
 420void __init paging_init(void)
 421{
 422        void *zero_page;
 423
 424        build_mem_type_table();
 425        sanity_check_meminfo();
 426        prepare_page_table();
 427        map_lowmem();
 428        devicemaps_init();
 429
 430        top_pmd = pmd_off_k(0xffff0000);
 431
 432        /* allocate the zero page. */
 433        zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 434        if (!zero_page)
 435                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 436                      __func__, PAGE_SIZE, PAGE_SIZE);
 437
 438        bootmem_init();
 439
 440        empty_zero_page = virt_to_page(zero_page);
 441        __flush_dcache_page(NULL, empty_zero_page);
 442}
 443
 444/*
 445 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 446 * the user-mode pages.  This will then ensure that we have predictable
 447 * results when turning the mmu off
 448 */
 449void setup_mm_for_reboot(void)
 450{
 451        unsigned long base_pmdval;
 452        pgd_t *pgd;
 453        int i;
 454
 455        /*
 456         * We need to access to user-mode page tables here. For kernel threads
 457         * we don't have any user-mode mappings so we use the context that we
 458         * "borrowed".
 459         */
 460        pgd = current->active_mm->pgd;
 461
 462        base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
 463
 464        for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
 465                unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
 466                pmd_t *pmd;
 467
 468                pmd = pmd_off(pgd, i << PGDIR_SHIFT);
 469                set_pmd(pmd, __pmd(pmdval));
 470                flush_pmd_entry(pmd);
 471        }
 472
 473        local_flush_tlb_all();
 474}
 475
 476/*
 477 * Take care of architecture specific things when placing a new PTE into
 478 * a page table, or changing an existing PTE.  Basically, there are two
 479 * things that we need to take care of:
 480 *
 481 *  1. If PG_dcache_clean is not set for the page, we need to ensure
 482 *     that any cache entries for the kernels virtual memory
 483 *     range are written back to the page.
 484 *  2. If we have multiple shared mappings of the same space in
 485 *     an object, we need to deal with the cache aliasing issues.
 486 *
 487 * Note that the pte lock will be held.
 488 */
 489void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
 490        pte_t *ptep)
 491{
 492        unsigned long pfn = pte_pfn(*ptep);
 493        struct address_space *mapping;
 494        struct page *page;
 495
 496        if (!pfn_valid(pfn))
 497                return;
 498
 499        /*
 500         * The zero page is never written to, so never has any dirty
 501         * cache lines, and therefore never needs to be flushed.
 502         */
 503        page = pfn_to_page(pfn);
 504        if (page == ZERO_PAGE(0))
 505                return;
 506
 507        mapping = page_mapping_file(page);
 508        if (!test_and_set_bit(PG_dcache_clean, &page->flags))
 509                __flush_dcache_page(mapping, page);
 510        if (mapping)
 511                if (vma->vm_flags & VM_EXEC)
 512                        __flush_icache_all();
 513}
 514