linux/block/blk-mq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29
  30#include <trace/events/block.h>
  31
  32#include <linux/blk-mq.h>
  33#include <linux/t10-pi.h>
  34#include "blk.h"
  35#include "blk-mq.h"
  36#include "blk-mq-debugfs.h"
  37#include "blk-mq-tag.h"
  38#include "blk-pm.h"
  39#include "blk-stat.h"
  40#include "blk-mq-sched.h"
  41#include "blk-rq-qos.h"
  42
  43static void blk_mq_poll_stats_start(struct request_queue *q);
  44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  45
  46static int blk_mq_poll_stats_bkt(const struct request *rq)
  47{
  48        int ddir, sectors, bucket;
  49
  50        ddir = rq_data_dir(rq);
  51        sectors = blk_rq_stats_sectors(rq);
  52
  53        bucket = ddir + 2 * ilog2(sectors);
  54
  55        if (bucket < 0)
  56                return -1;
  57        else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  58                return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  59
  60        return bucket;
  61}
  62
  63/*
  64 * Check if any of the ctx, dispatch list or elevator
  65 * have pending work in this hardware queue.
  66 */
  67static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  68{
  69        return !list_empty_careful(&hctx->dispatch) ||
  70                sbitmap_any_bit_set(&hctx->ctx_map) ||
  71                        blk_mq_sched_has_work(hctx);
  72}
  73
  74/*
  75 * Mark this ctx as having pending work in this hardware queue
  76 */
  77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  78                                     struct blk_mq_ctx *ctx)
  79{
  80        const int bit = ctx->index_hw[hctx->type];
  81
  82        if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  83                sbitmap_set_bit(&hctx->ctx_map, bit);
  84}
  85
  86static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  87                                      struct blk_mq_ctx *ctx)
  88{
  89        const int bit = ctx->index_hw[hctx->type];
  90
  91        sbitmap_clear_bit(&hctx->ctx_map, bit);
  92}
  93
  94struct mq_inflight {
  95        struct hd_struct *part;
  96        unsigned int *inflight;
  97};
  98
  99static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
 100                                  struct request *rq, void *priv,
 101                                  bool reserved)
 102{
 103        struct mq_inflight *mi = priv;
 104
 105        /*
 106         * index[0] counts the specific partition that was asked for.
 107         */
 108        if (rq->part == mi->part)
 109                mi->inflight[0]++;
 110
 111        return true;
 112}
 113
 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
 115{
 116        unsigned inflight[2];
 117        struct mq_inflight mi = { .part = part, .inflight = inflight, };
 118
 119        inflight[0] = inflight[1] = 0;
 120        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 121
 122        return inflight[0];
 123}
 124
 125static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
 126                                     struct request *rq, void *priv,
 127                                     bool reserved)
 128{
 129        struct mq_inflight *mi = priv;
 130
 131        if (rq->part == mi->part)
 132                mi->inflight[rq_data_dir(rq)]++;
 133
 134        return true;
 135}
 136
 137void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 138                         unsigned int inflight[2])
 139{
 140        struct mq_inflight mi = { .part = part, .inflight = inflight, };
 141
 142        inflight[0] = inflight[1] = 0;
 143        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
 144}
 145
 146void blk_freeze_queue_start(struct request_queue *q)
 147{
 148        mutex_lock(&q->mq_freeze_lock);
 149        if (++q->mq_freeze_depth == 1) {
 150                percpu_ref_kill(&q->q_usage_counter);
 151                mutex_unlock(&q->mq_freeze_lock);
 152                if (queue_is_mq(q))
 153                        blk_mq_run_hw_queues(q, false);
 154        } else {
 155                mutex_unlock(&q->mq_freeze_lock);
 156        }
 157}
 158EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 159
 160void blk_mq_freeze_queue_wait(struct request_queue *q)
 161{
 162        wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 163}
 164EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 165
 166int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 167                                     unsigned long timeout)
 168{
 169        return wait_event_timeout(q->mq_freeze_wq,
 170                                        percpu_ref_is_zero(&q->q_usage_counter),
 171                                        timeout);
 172}
 173EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 174
 175/*
 176 * Guarantee no request is in use, so we can change any data structure of
 177 * the queue afterward.
 178 */
 179void blk_freeze_queue(struct request_queue *q)
 180{
 181        /*
 182         * In the !blk_mq case we are only calling this to kill the
 183         * q_usage_counter, otherwise this increases the freeze depth
 184         * and waits for it to return to zero.  For this reason there is
 185         * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 186         * exported to drivers as the only user for unfreeze is blk_mq.
 187         */
 188        blk_freeze_queue_start(q);
 189        blk_mq_freeze_queue_wait(q);
 190}
 191
 192void blk_mq_freeze_queue(struct request_queue *q)
 193{
 194        /*
 195         * ...just an alias to keep freeze and unfreeze actions balanced
 196         * in the blk_mq_* namespace
 197         */
 198        blk_freeze_queue(q);
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 201
 202void blk_mq_unfreeze_queue(struct request_queue *q)
 203{
 204        mutex_lock(&q->mq_freeze_lock);
 205        q->mq_freeze_depth--;
 206        WARN_ON_ONCE(q->mq_freeze_depth < 0);
 207        if (!q->mq_freeze_depth) {
 208                percpu_ref_resurrect(&q->q_usage_counter);
 209                wake_up_all(&q->mq_freeze_wq);
 210        }
 211        mutex_unlock(&q->mq_freeze_lock);
 212}
 213EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 214
 215/*
 216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 217 * mpt3sas driver such that this function can be removed.
 218 */
 219void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 220{
 221        blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 222}
 223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 224
 225/**
 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 227 * @q: request queue.
 228 *
 229 * Note: this function does not prevent that the struct request end_io()
 230 * callback function is invoked. Once this function is returned, we make
 231 * sure no dispatch can happen until the queue is unquiesced via
 232 * blk_mq_unquiesce_queue().
 233 */
 234void blk_mq_quiesce_queue(struct request_queue *q)
 235{
 236        struct blk_mq_hw_ctx *hctx;
 237        unsigned int i;
 238        bool rcu = false;
 239
 240        blk_mq_quiesce_queue_nowait(q);
 241
 242        queue_for_each_hw_ctx(q, hctx, i) {
 243                if (hctx->flags & BLK_MQ_F_BLOCKING)
 244                        synchronize_srcu(hctx->srcu);
 245                else
 246                        rcu = true;
 247        }
 248        if (rcu)
 249                synchronize_rcu();
 250}
 251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 252
 253/*
 254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 255 * @q: request queue.
 256 *
 257 * This function recovers queue into the state before quiescing
 258 * which is done by blk_mq_quiesce_queue.
 259 */
 260void blk_mq_unquiesce_queue(struct request_queue *q)
 261{
 262        blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 263
 264        /* dispatch requests which are inserted during quiescing */
 265        blk_mq_run_hw_queues(q, true);
 266}
 267EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 268
 269void blk_mq_wake_waiters(struct request_queue *q)
 270{
 271        struct blk_mq_hw_ctx *hctx;
 272        unsigned int i;
 273
 274        queue_for_each_hw_ctx(q, hctx, i)
 275                if (blk_mq_hw_queue_mapped(hctx))
 276                        blk_mq_tag_wakeup_all(hctx->tags, true);
 277}
 278
 279bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 280{
 281        return blk_mq_has_free_tags(hctx->tags);
 282}
 283EXPORT_SYMBOL(blk_mq_can_queue);
 284
 285/*
 286 * Only need start/end time stamping if we have iostat or
 287 * blk stats enabled, or using an IO scheduler.
 288 */
 289static inline bool blk_mq_need_time_stamp(struct request *rq)
 290{
 291        return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
 292}
 293
 294static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 295                unsigned int tag, unsigned int op, u64 alloc_time_ns)
 296{
 297        struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 298        struct request *rq = tags->static_rqs[tag];
 299        req_flags_t rq_flags = 0;
 300
 301        if (data->flags & BLK_MQ_REQ_INTERNAL) {
 302                rq->tag = -1;
 303                rq->internal_tag = tag;
 304        } else {
 305                if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
 306                        rq_flags = RQF_MQ_INFLIGHT;
 307                        atomic_inc(&data->hctx->nr_active);
 308                }
 309                rq->tag = tag;
 310                rq->internal_tag = -1;
 311                data->hctx->tags->rqs[rq->tag] = rq;
 312        }
 313
 314        /* csd/requeue_work/fifo_time is initialized before use */
 315        rq->q = data->q;
 316        rq->mq_ctx = data->ctx;
 317        rq->mq_hctx = data->hctx;
 318        rq->rq_flags = rq_flags;
 319        rq->cmd_flags = op;
 320        if (data->flags & BLK_MQ_REQ_PREEMPT)
 321                rq->rq_flags |= RQF_PREEMPT;
 322        if (blk_queue_io_stat(data->q))
 323                rq->rq_flags |= RQF_IO_STAT;
 324        INIT_LIST_HEAD(&rq->queuelist);
 325        INIT_HLIST_NODE(&rq->hash);
 326        RB_CLEAR_NODE(&rq->rb_node);
 327        rq->rq_disk = NULL;
 328        rq->part = NULL;
 329#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 330        rq->alloc_time_ns = alloc_time_ns;
 331#endif
 332        if (blk_mq_need_time_stamp(rq))
 333                rq->start_time_ns = ktime_get_ns();
 334        else
 335                rq->start_time_ns = 0;
 336        rq->io_start_time_ns = 0;
 337        rq->stats_sectors = 0;
 338        rq->nr_phys_segments = 0;
 339#if defined(CONFIG_BLK_DEV_INTEGRITY)
 340        rq->nr_integrity_segments = 0;
 341#endif
 342        /* tag was already set */
 343        rq->extra_len = 0;
 344        WRITE_ONCE(rq->deadline, 0);
 345
 346        rq->timeout = 0;
 347
 348        rq->end_io = NULL;
 349        rq->end_io_data = NULL;
 350
 351        data->ctx->rq_dispatched[op_is_sync(op)]++;
 352        refcount_set(&rq->ref, 1);
 353        return rq;
 354}
 355
 356static struct request *blk_mq_get_request(struct request_queue *q,
 357                                          struct bio *bio,
 358                                          struct blk_mq_alloc_data *data)
 359{
 360        struct elevator_queue *e = q->elevator;
 361        struct request *rq;
 362        unsigned int tag;
 363        bool clear_ctx_on_error = false;
 364        u64 alloc_time_ns = 0;
 365
 366        blk_queue_enter_live(q);
 367
 368        /* alloc_time includes depth and tag waits */
 369        if (blk_queue_rq_alloc_time(q))
 370                alloc_time_ns = ktime_get_ns();
 371
 372        data->q = q;
 373        if (likely(!data->ctx)) {
 374                data->ctx = blk_mq_get_ctx(q);
 375                clear_ctx_on_error = true;
 376        }
 377        if (likely(!data->hctx))
 378                data->hctx = blk_mq_map_queue(q, data->cmd_flags,
 379                                                data->ctx);
 380        if (data->cmd_flags & REQ_NOWAIT)
 381                data->flags |= BLK_MQ_REQ_NOWAIT;
 382
 383        if (e) {
 384                data->flags |= BLK_MQ_REQ_INTERNAL;
 385
 386                /*
 387                 * Flush requests are special and go directly to the
 388                 * dispatch list. Don't include reserved tags in the
 389                 * limiting, as it isn't useful.
 390                 */
 391                if (!op_is_flush(data->cmd_flags) &&
 392                    e->type->ops.limit_depth &&
 393                    !(data->flags & BLK_MQ_REQ_RESERVED))
 394                        e->type->ops.limit_depth(data->cmd_flags, data);
 395        } else {
 396                blk_mq_tag_busy(data->hctx);
 397        }
 398
 399        tag = blk_mq_get_tag(data);
 400        if (tag == BLK_MQ_TAG_FAIL) {
 401                if (clear_ctx_on_error)
 402                        data->ctx = NULL;
 403                blk_queue_exit(q);
 404                return NULL;
 405        }
 406
 407        rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
 408        if (!op_is_flush(data->cmd_flags)) {
 409                rq->elv.icq = NULL;
 410                if (e && e->type->ops.prepare_request) {
 411                        if (e->type->icq_cache)
 412                                blk_mq_sched_assign_ioc(rq);
 413
 414                        e->type->ops.prepare_request(rq, bio);
 415                        rq->rq_flags |= RQF_ELVPRIV;
 416                }
 417        }
 418        data->hctx->queued++;
 419        return rq;
 420}
 421
 422struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 423                blk_mq_req_flags_t flags)
 424{
 425        struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 426        struct request *rq;
 427        int ret;
 428
 429        ret = blk_queue_enter(q, flags);
 430        if (ret)
 431                return ERR_PTR(ret);
 432
 433        rq = blk_mq_get_request(q, NULL, &alloc_data);
 434        blk_queue_exit(q);
 435
 436        if (!rq)
 437                return ERR_PTR(-EWOULDBLOCK);
 438
 439        rq->__data_len = 0;
 440        rq->__sector = (sector_t) -1;
 441        rq->bio = rq->biotail = NULL;
 442        return rq;
 443}
 444EXPORT_SYMBOL(blk_mq_alloc_request);
 445
 446struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 447        unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 448{
 449        struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 450        struct request *rq;
 451        unsigned int cpu;
 452        int ret;
 453
 454        /*
 455         * If the tag allocator sleeps we could get an allocation for a
 456         * different hardware context.  No need to complicate the low level
 457         * allocator for this for the rare use case of a command tied to
 458         * a specific queue.
 459         */
 460        if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 461                return ERR_PTR(-EINVAL);
 462
 463        if (hctx_idx >= q->nr_hw_queues)
 464                return ERR_PTR(-EIO);
 465
 466        ret = blk_queue_enter(q, flags);
 467        if (ret)
 468                return ERR_PTR(ret);
 469
 470        /*
 471         * Check if the hardware context is actually mapped to anything.
 472         * If not tell the caller that it should skip this queue.
 473         */
 474        alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
 475        if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
 476                blk_queue_exit(q);
 477                return ERR_PTR(-EXDEV);
 478        }
 479        cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
 480        alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
 481
 482        rq = blk_mq_get_request(q, NULL, &alloc_data);
 483        blk_queue_exit(q);
 484
 485        if (!rq)
 486                return ERR_PTR(-EWOULDBLOCK);
 487
 488        return rq;
 489}
 490EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 491
 492static void __blk_mq_free_request(struct request *rq)
 493{
 494        struct request_queue *q = rq->q;
 495        struct blk_mq_ctx *ctx = rq->mq_ctx;
 496        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 497        const int sched_tag = rq->internal_tag;
 498
 499        blk_pm_mark_last_busy(rq);
 500        rq->mq_hctx = NULL;
 501        if (rq->tag != -1)
 502                blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
 503        if (sched_tag != -1)
 504                blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
 505        blk_mq_sched_restart(hctx);
 506        blk_queue_exit(q);
 507}
 508
 509void blk_mq_free_request(struct request *rq)
 510{
 511        struct request_queue *q = rq->q;
 512        struct elevator_queue *e = q->elevator;
 513        struct blk_mq_ctx *ctx = rq->mq_ctx;
 514        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 515
 516        if (rq->rq_flags & RQF_ELVPRIV) {
 517                if (e && e->type->ops.finish_request)
 518                        e->type->ops.finish_request(rq);
 519                if (rq->elv.icq) {
 520                        put_io_context(rq->elv.icq->ioc);
 521                        rq->elv.icq = NULL;
 522                }
 523        }
 524
 525        ctx->rq_completed[rq_is_sync(rq)]++;
 526        if (rq->rq_flags & RQF_MQ_INFLIGHT)
 527                atomic_dec(&hctx->nr_active);
 528
 529        if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 530                laptop_io_completion(q->backing_dev_info);
 531
 532        rq_qos_done(q, rq);
 533
 534        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 535        if (refcount_dec_and_test(&rq->ref))
 536                __blk_mq_free_request(rq);
 537}
 538EXPORT_SYMBOL_GPL(blk_mq_free_request);
 539
 540inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 541{
 542        u64 now = 0;
 543
 544        if (blk_mq_need_time_stamp(rq))
 545                now = ktime_get_ns();
 546
 547        if (rq->rq_flags & RQF_STATS) {
 548                blk_mq_poll_stats_start(rq->q);
 549                blk_stat_add(rq, now);
 550        }
 551
 552        if (rq->internal_tag != -1)
 553                blk_mq_sched_completed_request(rq, now);
 554
 555        blk_account_io_done(rq, now);
 556
 557        if (rq->end_io) {
 558                rq_qos_done(rq->q, rq);
 559                rq->end_io(rq, error);
 560        } else {
 561                blk_mq_free_request(rq);
 562        }
 563}
 564EXPORT_SYMBOL(__blk_mq_end_request);
 565
 566void blk_mq_end_request(struct request *rq, blk_status_t error)
 567{
 568        if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 569                BUG();
 570        __blk_mq_end_request(rq, error);
 571}
 572EXPORT_SYMBOL(blk_mq_end_request);
 573
 574static void __blk_mq_complete_request_remote(void *data)
 575{
 576        struct request *rq = data;
 577        struct request_queue *q = rq->q;
 578
 579        q->mq_ops->complete(rq);
 580}
 581
 582static void __blk_mq_complete_request(struct request *rq)
 583{
 584        struct blk_mq_ctx *ctx = rq->mq_ctx;
 585        struct request_queue *q = rq->q;
 586        bool shared = false;
 587        int cpu;
 588
 589        WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 590        /*
 591         * Most of single queue controllers, there is only one irq vector
 592         * for handling IO completion, and the only irq's affinity is set
 593         * as all possible CPUs. On most of ARCHs, this affinity means the
 594         * irq is handled on one specific CPU.
 595         *
 596         * So complete IO reqeust in softirq context in case of single queue
 597         * for not degrading IO performance by irqsoff latency.
 598         */
 599        if (q->nr_hw_queues == 1) {
 600                __blk_complete_request(rq);
 601                return;
 602        }
 603
 604        /*
 605         * For a polled request, always complete locallly, it's pointless
 606         * to redirect the completion.
 607         */
 608        if ((rq->cmd_flags & REQ_HIPRI) ||
 609            !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
 610                q->mq_ops->complete(rq);
 611                return;
 612        }
 613
 614        cpu = get_cpu();
 615        if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
 616                shared = cpus_share_cache(cpu, ctx->cpu);
 617
 618        if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 619                rq->csd.func = __blk_mq_complete_request_remote;
 620                rq->csd.info = rq;
 621                rq->csd.flags = 0;
 622                smp_call_function_single_async(ctx->cpu, &rq->csd);
 623        } else {
 624                q->mq_ops->complete(rq);
 625        }
 626        put_cpu();
 627}
 628
 629static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 630        __releases(hctx->srcu)
 631{
 632        if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 633                rcu_read_unlock();
 634        else
 635                srcu_read_unlock(hctx->srcu, srcu_idx);
 636}
 637
 638static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 639        __acquires(hctx->srcu)
 640{
 641        if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 642                /* shut up gcc false positive */
 643                *srcu_idx = 0;
 644                rcu_read_lock();
 645        } else
 646                *srcu_idx = srcu_read_lock(hctx->srcu);
 647}
 648
 649/**
 650 * blk_mq_complete_request - end I/O on a request
 651 * @rq:         the request being processed
 652 *
 653 * Description:
 654 *      Ends all I/O on a request. It does not handle partial completions.
 655 *      The actual completion happens out-of-order, through a IPI handler.
 656 **/
 657bool blk_mq_complete_request(struct request *rq)
 658{
 659        if (unlikely(blk_should_fake_timeout(rq->q)))
 660                return false;
 661        __blk_mq_complete_request(rq);
 662        return true;
 663}
 664EXPORT_SYMBOL(blk_mq_complete_request);
 665
 666int blk_mq_request_started(struct request *rq)
 667{
 668        return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
 669}
 670EXPORT_SYMBOL_GPL(blk_mq_request_started);
 671
 672int blk_mq_request_completed(struct request *rq)
 673{
 674        return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
 675}
 676EXPORT_SYMBOL_GPL(blk_mq_request_completed);
 677
 678void blk_mq_start_request(struct request *rq)
 679{
 680        struct request_queue *q = rq->q;
 681
 682        trace_block_rq_issue(q, rq);
 683
 684        if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 685                rq->io_start_time_ns = ktime_get_ns();
 686                rq->stats_sectors = blk_rq_sectors(rq);
 687                rq->rq_flags |= RQF_STATS;
 688                rq_qos_issue(q, rq);
 689        }
 690
 691        WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 692
 693        blk_add_timer(rq);
 694        WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 695
 696        if (q->dma_drain_size && blk_rq_bytes(rq)) {
 697                /*
 698                 * Make sure space for the drain appears.  We know we can do
 699                 * this because max_hw_segments has been adjusted to be one
 700                 * fewer than the device can handle.
 701                 */
 702                rq->nr_phys_segments++;
 703        }
 704
 705#ifdef CONFIG_BLK_DEV_INTEGRITY
 706        if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
 707                q->integrity.profile->prepare_fn(rq);
 708#endif
 709}
 710EXPORT_SYMBOL(blk_mq_start_request);
 711
 712static void __blk_mq_requeue_request(struct request *rq)
 713{
 714        struct request_queue *q = rq->q;
 715
 716        blk_mq_put_driver_tag(rq);
 717
 718        trace_block_rq_requeue(q, rq);
 719        rq_qos_requeue(q, rq);
 720
 721        if (blk_mq_request_started(rq)) {
 722                WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 723                rq->rq_flags &= ~RQF_TIMED_OUT;
 724                if (q->dma_drain_size && blk_rq_bytes(rq))
 725                        rq->nr_phys_segments--;
 726        }
 727}
 728
 729void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 730{
 731        __blk_mq_requeue_request(rq);
 732
 733        /* this request will be re-inserted to io scheduler queue */
 734        blk_mq_sched_requeue_request(rq);
 735
 736        BUG_ON(!list_empty(&rq->queuelist));
 737        blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 738}
 739EXPORT_SYMBOL(blk_mq_requeue_request);
 740
 741static void blk_mq_requeue_work(struct work_struct *work)
 742{
 743        struct request_queue *q =
 744                container_of(work, struct request_queue, requeue_work.work);
 745        LIST_HEAD(rq_list);
 746        struct request *rq, *next;
 747
 748        spin_lock_irq(&q->requeue_lock);
 749        list_splice_init(&q->requeue_list, &rq_list);
 750        spin_unlock_irq(&q->requeue_lock);
 751
 752        list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 753                if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 754                        continue;
 755
 756                rq->rq_flags &= ~RQF_SOFTBARRIER;
 757                list_del_init(&rq->queuelist);
 758                /*
 759                 * If RQF_DONTPREP, rq has contained some driver specific
 760                 * data, so insert it to hctx dispatch list to avoid any
 761                 * merge.
 762                 */
 763                if (rq->rq_flags & RQF_DONTPREP)
 764                        blk_mq_request_bypass_insert(rq, false);
 765                else
 766                        blk_mq_sched_insert_request(rq, true, false, false);
 767        }
 768
 769        while (!list_empty(&rq_list)) {
 770                rq = list_entry(rq_list.next, struct request, queuelist);
 771                list_del_init(&rq->queuelist);
 772                blk_mq_sched_insert_request(rq, false, false, false);
 773        }
 774
 775        blk_mq_run_hw_queues(q, false);
 776}
 777
 778void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 779                                bool kick_requeue_list)
 780{
 781        struct request_queue *q = rq->q;
 782        unsigned long flags;
 783
 784        /*
 785         * We abuse this flag that is otherwise used by the I/O scheduler to
 786         * request head insertion from the workqueue.
 787         */
 788        BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 789
 790        spin_lock_irqsave(&q->requeue_lock, flags);
 791        if (at_head) {
 792                rq->rq_flags |= RQF_SOFTBARRIER;
 793                list_add(&rq->queuelist, &q->requeue_list);
 794        } else {
 795                list_add_tail(&rq->queuelist, &q->requeue_list);
 796        }
 797        spin_unlock_irqrestore(&q->requeue_lock, flags);
 798
 799        if (kick_requeue_list)
 800                blk_mq_kick_requeue_list(q);
 801}
 802
 803void blk_mq_kick_requeue_list(struct request_queue *q)
 804{
 805        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 806}
 807EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 808
 809void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 810                                    unsigned long msecs)
 811{
 812        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 813                                    msecs_to_jiffies(msecs));
 814}
 815EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 816
 817struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 818{
 819        if (tag < tags->nr_tags) {
 820                prefetch(tags->rqs[tag]);
 821                return tags->rqs[tag];
 822        }
 823
 824        return NULL;
 825}
 826EXPORT_SYMBOL(blk_mq_tag_to_rq);
 827
 828static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 829                               void *priv, bool reserved)
 830{
 831        /*
 832         * If we find a request that is inflight and the queue matches,
 833         * we know the queue is busy. Return false to stop the iteration.
 834         */
 835        if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
 836                bool *busy = priv;
 837
 838                *busy = true;
 839                return false;
 840        }
 841
 842        return true;
 843}
 844
 845bool blk_mq_queue_inflight(struct request_queue *q)
 846{
 847        bool busy = false;
 848
 849        blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 850        return busy;
 851}
 852EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 853
 854static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 855{
 856        req->rq_flags |= RQF_TIMED_OUT;
 857        if (req->q->mq_ops->timeout) {
 858                enum blk_eh_timer_return ret;
 859
 860                ret = req->q->mq_ops->timeout(req, reserved);
 861                if (ret == BLK_EH_DONE)
 862                        return;
 863                WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 864        }
 865
 866        blk_add_timer(req);
 867}
 868
 869static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 870{
 871        unsigned long deadline;
 872
 873        if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 874                return false;
 875        if (rq->rq_flags & RQF_TIMED_OUT)
 876                return false;
 877
 878        deadline = READ_ONCE(rq->deadline);
 879        if (time_after_eq(jiffies, deadline))
 880                return true;
 881
 882        if (*next == 0)
 883                *next = deadline;
 884        else if (time_after(*next, deadline))
 885                *next = deadline;
 886        return false;
 887}
 888
 889static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 890                struct request *rq, void *priv, bool reserved)
 891{
 892        unsigned long *next = priv;
 893
 894        /*
 895         * Just do a quick check if it is expired before locking the request in
 896         * so we're not unnecessarilly synchronizing across CPUs.
 897         */
 898        if (!blk_mq_req_expired(rq, next))
 899                return true;
 900
 901        /*
 902         * We have reason to believe the request may be expired. Take a
 903         * reference on the request to lock this request lifetime into its
 904         * currently allocated context to prevent it from being reallocated in
 905         * the event the completion by-passes this timeout handler.
 906         *
 907         * If the reference was already released, then the driver beat the
 908         * timeout handler to posting a natural completion.
 909         */
 910        if (!refcount_inc_not_zero(&rq->ref))
 911                return true;
 912
 913        /*
 914         * The request is now locked and cannot be reallocated underneath the
 915         * timeout handler's processing. Re-verify this exact request is truly
 916         * expired; if it is not expired, then the request was completed and
 917         * reallocated as a new request.
 918         */
 919        if (blk_mq_req_expired(rq, next))
 920                blk_mq_rq_timed_out(rq, reserved);
 921
 922        if (is_flush_rq(rq, hctx))
 923                rq->end_io(rq, 0);
 924        else if (refcount_dec_and_test(&rq->ref))
 925                __blk_mq_free_request(rq);
 926
 927        return true;
 928}
 929
 930static void blk_mq_timeout_work(struct work_struct *work)
 931{
 932        struct request_queue *q =
 933                container_of(work, struct request_queue, timeout_work);
 934        unsigned long next = 0;
 935        struct blk_mq_hw_ctx *hctx;
 936        int i;
 937
 938        /* A deadlock might occur if a request is stuck requiring a
 939         * timeout at the same time a queue freeze is waiting
 940         * completion, since the timeout code would not be able to
 941         * acquire the queue reference here.
 942         *
 943         * That's why we don't use blk_queue_enter here; instead, we use
 944         * percpu_ref_tryget directly, because we need to be able to
 945         * obtain a reference even in the short window between the queue
 946         * starting to freeze, by dropping the first reference in
 947         * blk_freeze_queue_start, and the moment the last request is
 948         * consumed, marked by the instant q_usage_counter reaches
 949         * zero.
 950         */
 951        if (!percpu_ref_tryget(&q->q_usage_counter))
 952                return;
 953
 954        blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 955
 956        if (next != 0) {
 957                mod_timer(&q->timeout, next);
 958        } else {
 959                /*
 960                 * Request timeouts are handled as a forward rolling timer. If
 961                 * we end up here it means that no requests are pending and
 962                 * also that no request has been pending for a while. Mark
 963                 * each hctx as idle.
 964                 */
 965                queue_for_each_hw_ctx(q, hctx, i) {
 966                        /* the hctx may be unmapped, so check it here */
 967                        if (blk_mq_hw_queue_mapped(hctx))
 968                                blk_mq_tag_idle(hctx);
 969                }
 970        }
 971        blk_queue_exit(q);
 972}
 973
 974struct flush_busy_ctx_data {
 975        struct blk_mq_hw_ctx *hctx;
 976        struct list_head *list;
 977};
 978
 979static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 980{
 981        struct flush_busy_ctx_data *flush_data = data;
 982        struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 983        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 984        enum hctx_type type = hctx->type;
 985
 986        spin_lock(&ctx->lock);
 987        list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
 988        sbitmap_clear_bit(sb, bitnr);
 989        spin_unlock(&ctx->lock);
 990        return true;
 991}
 992
 993/*
 994 * Process software queues that have been marked busy, splicing them
 995 * to the for-dispatch
 996 */
 997void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 998{
 999        struct flush_busy_ctx_data data = {
1000                .hctx = hctx,
1001                .list = list,
1002        };
1003
1004        sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1005}
1006EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1007
1008struct dispatch_rq_data {
1009        struct blk_mq_hw_ctx *hctx;
1010        struct request *rq;
1011};
1012
1013static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1014                void *data)
1015{
1016        struct dispatch_rq_data *dispatch_data = data;
1017        struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1018        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1019        enum hctx_type type = hctx->type;
1020
1021        spin_lock(&ctx->lock);
1022        if (!list_empty(&ctx->rq_lists[type])) {
1023                dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1024                list_del_init(&dispatch_data->rq->queuelist);
1025                if (list_empty(&ctx->rq_lists[type]))
1026                        sbitmap_clear_bit(sb, bitnr);
1027        }
1028        spin_unlock(&ctx->lock);
1029
1030        return !dispatch_data->rq;
1031}
1032
1033struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034                                        struct blk_mq_ctx *start)
1035{
1036        unsigned off = start ? start->index_hw[hctx->type] : 0;
1037        struct dispatch_rq_data data = {
1038                .hctx = hctx,
1039                .rq   = NULL,
1040        };
1041
1042        __sbitmap_for_each_set(&hctx->ctx_map, off,
1043                               dispatch_rq_from_ctx, &data);
1044
1045        return data.rq;
1046}
1047
1048static inline unsigned int queued_to_index(unsigned int queued)
1049{
1050        if (!queued)
1051                return 0;
1052
1053        return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054}
1055
1056bool blk_mq_get_driver_tag(struct request *rq)
1057{
1058        struct blk_mq_alloc_data data = {
1059                .q = rq->q,
1060                .hctx = rq->mq_hctx,
1061                .flags = BLK_MQ_REQ_NOWAIT,
1062                .cmd_flags = rq->cmd_flags,
1063        };
1064        bool shared;
1065
1066        if (rq->tag != -1)
1067                goto done;
1068
1069        if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1070                data.flags |= BLK_MQ_REQ_RESERVED;
1071
1072        shared = blk_mq_tag_busy(data.hctx);
1073        rq->tag = blk_mq_get_tag(&data);
1074        if (rq->tag >= 0) {
1075                if (shared) {
1076                        rq->rq_flags |= RQF_MQ_INFLIGHT;
1077                        atomic_inc(&data.hctx->nr_active);
1078                }
1079                data.hctx->tags->rqs[rq->tag] = rq;
1080        }
1081
1082done:
1083        return rq->tag != -1;
1084}
1085
1086static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1087                                int flags, void *key)
1088{
1089        struct blk_mq_hw_ctx *hctx;
1090
1091        hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1092
1093        spin_lock(&hctx->dispatch_wait_lock);
1094        if (!list_empty(&wait->entry)) {
1095                struct sbitmap_queue *sbq;
1096
1097                list_del_init(&wait->entry);
1098                sbq = &hctx->tags->bitmap_tags;
1099                atomic_dec(&sbq->ws_active);
1100        }
1101        spin_unlock(&hctx->dispatch_wait_lock);
1102
1103        blk_mq_run_hw_queue(hctx, true);
1104        return 1;
1105}
1106
1107/*
1108 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1109 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1110 * restart. For both cases, take care to check the condition again after
1111 * marking us as waiting.
1112 */
1113static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1114                                 struct request *rq)
1115{
1116        struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1117        struct wait_queue_head *wq;
1118        wait_queue_entry_t *wait;
1119        bool ret;
1120
1121        if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1122                blk_mq_sched_mark_restart_hctx(hctx);
1123
1124                /*
1125                 * It's possible that a tag was freed in the window between the
1126                 * allocation failure and adding the hardware queue to the wait
1127                 * queue.
1128                 *
1129                 * Don't clear RESTART here, someone else could have set it.
1130                 * At most this will cost an extra queue run.
1131                 */
1132                return blk_mq_get_driver_tag(rq);
1133        }
1134
1135        wait = &hctx->dispatch_wait;
1136        if (!list_empty_careful(&wait->entry))
1137                return false;
1138
1139        wq = &bt_wait_ptr(sbq, hctx)->wait;
1140
1141        spin_lock_irq(&wq->lock);
1142        spin_lock(&hctx->dispatch_wait_lock);
1143        if (!list_empty(&wait->entry)) {
1144                spin_unlock(&hctx->dispatch_wait_lock);
1145                spin_unlock_irq(&wq->lock);
1146                return false;
1147        }
1148
1149        atomic_inc(&sbq->ws_active);
1150        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1151        __add_wait_queue(wq, wait);
1152
1153        /*
1154         * It's possible that a tag was freed in the window between the
1155         * allocation failure and adding the hardware queue to the wait
1156         * queue.
1157         */
1158        ret = blk_mq_get_driver_tag(rq);
1159        if (!ret) {
1160                spin_unlock(&hctx->dispatch_wait_lock);
1161                spin_unlock_irq(&wq->lock);
1162                return false;
1163        }
1164
1165        /*
1166         * We got a tag, remove ourselves from the wait queue to ensure
1167         * someone else gets the wakeup.
1168         */
1169        list_del_init(&wait->entry);
1170        atomic_dec(&sbq->ws_active);
1171        spin_unlock(&hctx->dispatch_wait_lock);
1172        spin_unlock_irq(&wq->lock);
1173
1174        return true;
1175}
1176
1177#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1178#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1179/*
1180 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1181 * - EWMA is one simple way to compute running average value
1182 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1183 * - take 4 as factor for avoiding to get too small(0) result, and this
1184 *   factor doesn't matter because EWMA decreases exponentially
1185 */
1186static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1187{
1188        unsigned int ewma;
1189
1190        if (hctx->queue->elevator)
1191                return;
1192
1193        ewma = hctx->dispatch_busy;
1194
1195        if (!ewma && !busy)
1196                return;
1197
1198        ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1199        if (busy)
1200                ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1201        ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1202
1203        hctx->dispatch_busy = ewma;
1204}
1205
1206#define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1207
1208/*
1209 * Returns true if we did some work AND can potentially do more.
1210 */
1211bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1212                             bool got_budget)
1213{
1214        struct blk_mq_hw_ctx *hctx;
1215        struct request *rq, *nxt;
1216        bool no_tag = false;
1217        int errors, queued;
1218        blk_status_t ret = BLK_STS_OK;
1219
1220        if (list_empty(list))
1221                return false;
1222
1223        WARN_ON(!list_is_singular(list) && got_budget);
1224
1225        /*
1226         * Now process all the entries, sending them to the driver.
1227         */
1228        errors = queued = 0;
1229        do {
1230                struct blk_mq_queue_data bd;
1231
1232                rq = list_first_entry(list, struct request, queuelist);
1233
1234                hctx = rq->mq_hctx;
1235                if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1236                        break;
1237
1238                if (!blk_mq_get_driver_tag(rq)) {
1239                        /*
1240                         * The initial allocation attempt failed, so we need to
1241                         * rerun the hardware queue when a tag is freed. The
1242                         * waitqueue takes care of that. If the queue is run
1243                         * before we add this entry back on the dispatch list,
1244                         * we'll re-run it below.
1245                         */
1246                        if (!blk_mq_mark_tag_wait(hctx, rq)) {
1247                                blk_mq_put_dispatch_budget(hctx);
1248                                /*
1249                                 * For non-shared tags, the RESTART check
1250                                 * will suffice.
1251                                 */
1252                                if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1253                                        no_tag = true;
1254                                break;
1255                        }
1256                }
1257
1258                list_del_init(&rq->queuelist);
1259
1260                bd.rq = rq;
1261
1262                /*
1263                 * Flag last if we have no more requests, or if we have more
1264                 * but can't assign a driver tag to it.
1265                 */
1266                if (list_empty(list))
1267                        bd.last = true;
1268                else {
1269                        nxt = list_first_entry(list, struct request, queuelist);
1270                        bd.last = !blk_mq_get_driver_tag(nxt);
1271                }
1272
1273                ret = q->mq_ops->queue_rq(hctx, &bd);
1274                if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1275                        /*
1276                         * If an I/O scheduler has been configured and we got a
1277                         * driver tag for the next request already, free it
1278                         * again.
1279                         */
1280                        if (!list_empty(list)) {
1281                                nxt = list_first_entry(list, struct request, queuelist);
1282                                blk_mq_put_driver_tag(nxt);
1283                        }
1284                        list_add(&rq->queuelist, list);
1285                        __blk_mq_requeue_request(rq);
1286                        break;
1287                }
1288
1289                if (unlikely(ret != BLK_STS_OK)) {
1290                        errors++;
1291                        blk_mq_end_request(rq, BLK_STS_IOERR);
1292                        continue;
1293                }
1294
1295                queued++;
1296        } while (!list_empty(list));
1297
1298        hctx->dispatched[queued_to_index(queued)]++;
1299
1300        /*
1301         * Any items that need requeuing? Stuff them into hctx->dispatch,
1302         * that is where we will continue on next queue run.
1303         */
1304        if (!list_empty(list)) {
1305                bool needs_restart;
1306
1307                /*
1308                 * If we didn't flush the entire list, we could have told
1309                 * the driver there was more coming, but that turned out to
1310                 * be a lie.
1311                 */
1312                if (q->mq_ops->commit_rqs)
1313                        q->mq_ops->commit_rqs(hctx);
1314
1315                spin_lock(&hctx->lock);
1316                list_splice_init(list, &hctx->dispatch);
1317                spin_unlock(&hctx->lock);
1318
1319                /*
1320                 * If SCHED_RESTART was set by the caller of this function and
1321                 * it is no longer set that means that it was cleared by another
1322                 * thread and hence that a queue rerun is needed.
1323                 *
1324                 * If 'no_tag' is set, that means that we failed getting
1325                 * a driver tag with an I/O scheduler attached. If our dispatch
1326                 * waitqueue is no longer active, ensure that we run the queue
1327                 * AFTER adding our entries back to the list.
1328                 *
1329                 * If no I/O scheduler has been configured it is possible that
1330                 * the hardware queue got stopped and restarted before requests
1331                 * were pushed back onto the dispatch list. Rerun the queue to
1332                 * avoid starvation. Notes:
1333                 * - blk_mq_run_hw_queue() checks whether or not a queue has
1334                 *   been stopped before rerunning a queue.
1335                 * - Some but not all block drivers stop a queue before
1336                 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1337                 *   and dm-rq.
1338                 *
1339                 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1340                 * bit is set, run queue after a delay to avoid IO stalls
1341                 * that could otherwise occur if the queue is idle.
1342                 */
1343                needs_restart = blk_mq_sched_needs_restart(hctx);
1344                if (!needs_restart ||
1345                    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1346                        blk_mq_run_hw_queue(hctx, true);
1347                else if (needs_restart && (ret == BLK_STS_RESOURCE))
1348                        blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1349
1350                blk_mq_update_dispatch_busy(hctx, true);
1351                return false;
1352        } else
1353                blk_mq_update_dispatch_busy(hctx, false);
1354
1355        /*
1356         * If the host/device is unable to accept more work, inform the
1357         * caller of that.
1358         */
1359        if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1360                return false;
1361
1362        return (queued + errors) != 0;
1363}
1364
1365static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1366{
1367        int srcu_idx;
1368
1369        /*
1370         * We should be running this queue from one of the CPUs that
1371         * are mapped to it.
1372         *
1373         * There are at least two related races now between setting
1374         * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1375         * __blk_mq_run_hw_queue():
1376         *
1377         * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1378         *   but later it becomes online, then this warning is harmless
1379         *   at all
1380         *
1381         * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1382         *   but later it becomes offline, then the warning can't be
1383         *   triggered, and we depend on blk-mq timeout handler to
1384         *   handle dispatched requests to this hctx
1385         */
1386        if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1387                cpu_online(hctx->next_cpu)) {
1388                printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1389                        raw_smp_processor_id(),
1390                        cpumask_empty(hctx->cpumask) ? "inactive": "active");
1391                dump_stack();
1392        }
1393
1394        /*
1395         * We can't run the queue inline with ints disabled. Ensure that
1396         * we catch bad users of this early.
1397         */
1398        WARN_ON_ONCE(in_interrupt());
1399
1400        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1401
1402        hctx_lock(hctx, &srcu_idx);
1403        blk_mq_sched_dispatch_requests(hctx);
1404        hctx_unlock(hctx, srcu_idx);
1405}
1406
1407static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1408{
1409        int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1410
1411        if (cpu >= nr_cpu_ids)
1412                cpu = cpumask_first(hctx->cpumask);
1413        return cpu;
1414}
1415
1416/*
1417 * It'd be great if the workqueue API had a way to pass
1418 * in a mask and had some smarts for more clever placement.
1419 * For now we just round-robin here, switching for every
1420 * BLK_MQ_CPU_WORK_BATCH queued items.
1421 */
1422static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1423{
1424        bool tried = false;
1425        int next_cpu = hctx->next_cpu;
1426
1427        if (hctx->queue->nr_hw_queues == 1)
1428                return WORK_CPU_UNBOUND;
1429
1430        if (--hctx->next_cpu_batch <= 0) {
1431select_cpu:
1432                next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1433                                cpu_online_mask);
1434                if (next_cpu >= nr_cpu_ids)
1435                        next_cpu = blk_mq_first_mapped_cpu(hctx);
1436                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1437        }
1438
1439        /*
1440         * Do unbound schedule if we can't find a online CPU for this hctx,
1441         * and it should only happen in the path of handling CPU DEAD.
1442         */
1443        if (!cpu_online(next_cpu)) {
1444                if (!tried) {
1445                        tried = true;
1446                        goto select_cpu;
1447                }
1448
1449                /*
1450                 * Make sure to re-select CPU next time once after CPUs
1451                 * in hctx->cpumask become online again.
1452                 */
1453                hctx->next_cpu = next_cpu;
1454                hctx->next_cpu_batch = 1;
1455                return WORK_CPU_UNBOUND;
1456        }
1457
1458        hctx->next_cpu = next_cpu;
1459        return next_cpu;
1460}
1461
1462static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1463                                        unsigned long msecs)
1464{
1465        if (unlikely(blk_mq_hctx_stopped(hctx)))
1466                return;
1467
1468        if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1469                int cpu = get_cpu();
1470                if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1471                        __blk_mq_run_hw_queue(hctx);
1472                        put_cpu();
1473                        return;
1474                }
1475
1476                put_cpu();
1477        }
1478
1479        kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1480                                    msecs_to_jiffies(msecs));
1481}
1482
1483void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1484{
1485        __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1486}
1487EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1488
1489bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1490{
1491        int srcu_idx;
1492        bool need_run;
1493
1494        /*
1495         * When queue is quiesced, we may be switching io scheduler, or
1496         * updating nr_hw_queues, or other things, and we can't run queue
1497         * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1498         *
1499         * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1500         * quiesced.
1501         */
1502        hctx_lock(hctx, &srcu_idx);
1503        need_run = !blk_queue_quiesced(hctx->queue) &&
1504                blk_mq_hctx_has_pending(hctx);
1505        hctx_unlock(hctx, srcu_idx);
1506
1507        if (need_run) {
1508                __blk_mq_delay_run_hw_queue(hctx, async, 0);
1509                return true;
1510        }
1511
1512        return false;
1513}
1514EXPORT_SYMBOL(blk_mq_run_hw_queue);
1515
1516void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1517{
1518        struct blk_mq_hw_ctx *hctx;
1519        int i;
1520
1521        queue_for_each_hw_ctx(q, hctx, i) {
1522                if (blk_mq_hctx_stopped(hctx))
1523                        continue;
1524
1525                blk_mq_run_hw_queue(hctx, async);
1526        }
1527}
1528EXPORT_SYMBOL(blk_mq_run_hw_queues);
1529
1530/**
1531 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1532 * @q: request queue.
1533 *
1534 * The caller is responsible for serializing this function against
1535 * blk_mq_{start,stop}_hw_queue().
1536 */
1537bool blk_mq_queue_stopped(struct request_queue *q)
1538{
1539        struct blk_mq_hw_ctx *hctx;
1540        int i;
1541
1542        queue_for_each_hw_ctx(q, hctx, i)
1543                if (blk_mq_hctx_stopped(hctx))
1544                        return true;
1545
1546        return false;
1547}
1548EXPORT_SYMBOL(blk_mq_queue_stopped);
1549
1550/*
1551 * This function is often used for pausing .queue_rq() by driver when
1552 * there isn't enough resource or some conditions aren't satisfied, and
1553 * BLK_STS_RESOURCE is usually returned.
1554 *
1555 * We do not guarantee that dispatch can be drained or blocked
1556 * after blk_mq_stop_hw_queue() returns. Please use
1557 * blk_mq_quiesce_queue() for that requirement.
1558 */
1559void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1560{
1561        cancel_delayed_work(&hctx->run_work);
1562
1563        set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1564}
1565EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1566
1567/*
1568 * This function is often used for pausing .queue_rq() by driver when
1569 * there isn't enough resource or some conditions aren't satisfied, and
1570 * BLK_STS_RESOURCE is usually returned.
1571 *
1572 * We do not guarantee that dispatch can be drained or blocked
1573 * after blk_mq_stop_hw_queues() returns. Please use
1574 * blk_mq_quiesce_queue() for that requirement.
1575 */
1576void blk_mq_stop_hw_queues(struct request_queue *q)
1577{
1578        struct blk_mq_hw_ctx *hctx;
1579        int i;
1580
1581        queue_for_each_hw_ctx(q, hctx, i)
1582                blk_mq_stop_hw_queue(hctx);
1583}
1584EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1585
1586void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1587{
1588        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589
1590        blk_mq_run_hw_queue(hctx, false);
1591}
1592EXPORT_SYMBOL(blk_mq_start_hw_queue);
1593
1594void blk_mq_start_hw_queues(struct request_queue *q)
1595{
1596        struct blk_mq_hw_ctx *hctx;
1597        int i;
1598
1599        queue_for_each_hw_ctx(q, hctx, i)
1600                blk_mq_start_hw_queue(hctx);
1601}
1602EXPORT_SYMBOL(blk_mq_start_hw_queues);
1603
1604void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1605{
1606        if (!blk_mq_hctx_stopped(hctx))
1607                return;
1608
1609        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1610        blk_mq_run_hw_queue(hctx, async);
1611}
1612EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1613
1614void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1615{
1616        struct blk_mq_hw_ctx *hctx;
1617        int i;
1618
1619        queue_for_each_hw_ctx(q, hctx, i)
1620                blk_mq_start_stopped_hw_queue(hctx, async);
1621}
1622EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1623
1624static void blk_mq_run_work_fn(struct work_struct *work)
1625{
1626        struct blk_mq_hw_ctx *hctx;
1627
1628        hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1629
1630        /*
1631         * If we are stopped, don't run the queue.
1632         */
1633        if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1634                return;
1635
1636        __blk_mq_run_hw_queue(hctx);
1637}
1638
1639static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1640                                            struct request *rq,
1641                                            bool at_head)
1642{
1643        struct blk_mq_ctx *ctx = rq->mq_ctx;
1644        enum hctx_type type = hctx->type;
1645
1646        lockdep_assert_held(&ctx->lock);
1647
1648        trace_block_rq_insert(hctx->queue, rq);
1649
1650        if (at_head)
1651                list_add(&rq->queuelist, &ctx->rq_lists[type]);
1652        else
1653                list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1654}
1655
1656void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1657                             bool at_head)
1658{
1659        struct blk_mq_ctx *ctx = rq->mq_ctx;
1660
1661        lockdep_assert_held(&ctx->lock);
1662
1663        __blk_mq_insert_req_list(hctx, rq, at_head);
1664        blk_mq_hctx_mark_pending(hctx, ctx);
1665}
1666
1667/*
1668 * Should only be used carefully, when the caller knows we want to
1669 * bypass a potential IO scheduler on the target device.
1670 */
1671void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1672{
1673        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1674
1675        spin_lock(&hctx->lock);
1676        list_add_tail(&rq->queuelist, &hctx->dispatch);
1677        spin_unlock(&hctx->lock);
1678
1679        if (run_queue)
1680                blk_mq_run_hw_queue(hctx, false);
1681}
1682
1683void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1684                            struct list_head *list)
1685
1686{
1687        struct request *rq;
1688        enum hctx_type type = hctx->type;
1689
1690        /*
1691         * preemption doesn't flush plug list, so it's possible ctx->cpu is
1692         * offline now
1693         */
1694        list_for_each_entry(rq, list, queuelist) {
1695                BUG_ON(rq->mq_ctx != ctx);
1696                trace_block_rq_insert(hctx->queue, rq);
1697        }
1698
1699        spin_lock(&ctx->lock);
1700        list_splice_tail_init(list, &ctx->rq_lists[type]);
1701        blk_mq_hctx_mark_pending(hctx, ctx);
1702        spin_unlock(&ctx->lock);
1703}
1704
1705static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1706{
1707        struct request *rqa = container_of(a, struct request, queuelist);
1708        struct request *rqb = container_of(b, struct request, queuelist);
1709
1710        if (rqa->mq_ctx < rqb->mq_ctx)
1711                return -1;
1712        else if (rqa->mq_ctx > rqb->mq_ctx)
1713                return 1;
1714        else if (rqa->mq_hctx < rqb->mq_hctx)
1715                return -1;
1716        else if (rqa->mq_hctx > rqb->mq_hctx)
1717                return 1;
1718
1719        return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1720}
1721
1722void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1723{
1724        struct blk_mq_hw_ctx *this_hctx;
1725        struct blk_mq_ctx *this_ctx;
1726        struct request_queue *this_q;
1727        struct request *rq;
1728        LIST_HEAD(list);
1729        LIST_HEAD(rq_list);
1730        unsigned int depth;
1731
1732        list_splice_init(&plug->mq_list, &list);
1733
1734        if (plug->rq_count > 2 && plug->multiple_queues)
1735                list_sort(NULL, &list, plug_rq_cmp);
1736
1737        plug->rq_count = 0;
1738
1739        this_q = NULL;
1740        this_hctx = NULL;
1741        this_ctx = NULL;
1742        depth = 0;
1743
1744        while (!list_empty(&list)) {
1745                rq = list_entry_rq(list.next);
1746                list_del_init(&rq->queuelist);
1747                BUG_ON(!rq->q);
1748                if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1749                        if (this_hctx) {
1750                                trace_block_unplug(this_q, depth, !from_schedule);
1751                                blk_mq_sched_insert_requests(this_hctx, this_ctx,
1752                                                                &rq_list,
1753                                                                from_schedule);
1754                        }
1755
1756                        this_q = rq->q;
1757                        this_ctx = rq->mq_ctx;
1758                        this_hctx = rq->mq_hctx;
1759                        depth = 0;
1760                }
1761
1762                depth++;
1763                list_add_tail(&rq->queuelist, &rq_list);
1764        }
1765
1766        /*
1767         * If 'this_hctx' is set, we know we have entries to complete
1768         * on 'rq_list'. Do those.
1769         */
1770        if (this_hctx) {
1771                trace_block_unplug(this_q, depth, !from_schedule);
1772                blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1773                                                from_schedule);
1774        }
1775}
1776
1777static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1778                unsigned int nr_segs)
1779{
1780        if (bio->bi_opf & REQ_RAHEAD)
1781                rq->cmd_flags |= REQ_FAILFAST_MASK;
1782
1783        rq->__sector = bio->bi_iter.bi_sector;
1784        rq->write_hint = bio->bi_write_hint;
1785        blk_rq_bio_prep(rq, bio, nr_segs);
1786
1787        blk_account_io_start(rq, true);
1788}
1789
1790static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1791                                            struct request *rq,
1792                                            blk_qc_t *cookie, bool last)
1793{
1794        struct request_queue *q = rq->q;
1795        struct blk_mq_queue_data bd = {
1796                .rq = rq,
1797                .last = last,
1798        };
1799        blk_qc_t new_cookie;
1800        blk_status_t ret;
1801
1802        new_cookie = request_to_qc_t(hctx, rq);
1803
1804        /*
1805         * For OK queue, we are done. For error, caller may kill it.
1806         * Any other error (busy), just add it to our list as we
1807         * previously would have done.
1808         */
1809        ret = q->mq_ops->queue_rq(hctx, &bd);
1810        switch (ret) {
1811        case BLK_STS_OK:
1812                blk_mq_update_dispatch_busy(hctx, false);
1813                *cookie = new_cookie;
1814                break;
1815        case BLK_STS_RESOURCE:
1816        case BLK_STS_DEV_RESOURCE:
1817                blk_mq_update_dispatch_busy(hctx, true);
1818                __blk_mq_requeue_request(rq);
1819                break;
1820        default:
1821                blk_mq_update_dispatch_busy(hctx, false);
1822                *cookie = BLK_QC_T_NONE;
1823                break;
1824        }
1825
1826        return ret;
1827}
1828
1829static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1830                                                struct request *rq,
1831                                                blk_qc_t *cookie,
1832                                                bool bypass_insert, bool last)
1833{
1834        struct request_queue *q = rq->q;
1835        bool run_queue = true;
1836
1837        /*
1838         * RCU or SRCU read lock is needed before checking quiesced flag.
1839         *
1840         * When queue is stopped or quiesced, ignore 'bypass_insert' from
1841         * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1842         * and avoid driver to try to dispatch again.
1843         */
1844        if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1845                run_queue = false;
1846                bypass_insert = false;
1847                goto insert;
1848        }
1849
1850        if (q->elevator && !bypass_insert)
1851                goto insert;
1852
1853        if (!blk_mq_get_dispatch_budget(hctx))
1854                goto insert;
1855
1856        if (!blk_mq_get_driver_tag(rq)) {
1857                blk_mq_put_dispatch_budget(hctx);
1858                goto insert;
1859        }
1860
1861        return __blk_mq_issue_directly(hctx, rq, cookie, last);
1862insert:
1863        if (bypass_insert)
1864                return BLK_STS_RESOURCE;
1865
1866        blk_mq_request_bypass_insert(rq, run_queue);
1867        return BLK_STS_OK;
1868}
1869
1870static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1871                struct request *rq, blk_qc_t *cookie)
1872{
1873        blk_status_t ret;
1874        int srcu_idx;
1875
1876        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1877
1878        hctx_lock(hctx, &srcu_idx);
1879
1880        ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1881        if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1882                blk_mq_request_bypass_insert(rq, true);
1883        else if (ret != BLK_STS_OK)
1884                blk_mq_end_request(rq, ret);
1885
1886        hctx_unlock(hctx, srcu_idx);
1887}
1888
1889blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1890{
1891        blk_status_t ret;
1892        int srcu_idx;
1893        blk_qc_t unused_cookie;
1894        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1895
1896        hctx_lock(hctx, &srcu_idx);
1897        ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1898        hctx_unlock(hctx, srcu_idx);
1899
1900        return ret;
1901}
1902
1903void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1904                struct list_head *list)
1905{
1906        while (!list_empty(list)) {
1907                blk_status_t ret;
1908                struct request *rq = list_first_entry(list, struct request,
1909                                queuelist);
1910
1911                list_del_init(&rq->queuelist);
1912                ret = blk_mq_request_issue_directly(rq, list_empty(list));
1913                if (ret != BLK_STS_OK) {
1914                        if (ret == BLK_STS_RESOURCE ||
1915                                        ret == BLK_STS_DEV_RESOURCE) {
1916                                blk_mq_request_bypass_insert(rq,
1917                                                        list_empty(list));
1918                                break;
1919                        }
1920                        blk_mq_end_request(rq, ret);
1921                }
1922        }
1923
1924        /*
1925         * If we didn't flush the entire list, we could have told
1926         * the driver there was more coming, but that turned out to
1927         * be a lie.
1928         */
1929        if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1930                hctx->queue->mq_ops->commit_rqs(hctx);
1931}
1932
1933static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1934{
1935        list_add_tail(&rq->queuelist, &plug->mq_list);
1936        plug->rq_count++;
1937        if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1938                struct request *tmp;
1939
1940                tmp = list_first_entry(&plug->mq_list, struct request,
1941                                                queuelist);
1942                if (tmp->q != rq->q)
1943                        plug->multiple_queues = true;
1944        }
1945}
1946
1947static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1948{
1949        const int is_sync = op_is_sync(bio->bi_opf);
1950        const int is_flush_fua = op_is_flush(bio->bi_opf);
1951        struct blk_mq_alloc_data data = { .flags = 0};
1952        struct request *rq;
1953        struct blk_plug *plug;
1954        struct request *same_queue_rq = NULL;
1955        unsigned int nr_segs;
1956        blk_qc_t cookie;
1957
1958        blk_queue_bounce(q, &bio);
1959        __blk_queue_split(q, &bio, &nr_segs);
1960
1961        if (!bio_integrity_prep(bio))
1962                return BLK_QC_T_NONE;
1963
1964        if (!is_flush_fua && !blk_queue_nomerges(q) &&
1965            blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1966                return BLK_QC_T_NONE;
1967
1968        if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1969                return BLK_QC_T_NONE;
1970
1971        rq_qos_throttle(q, bio);
1972
1973        data.cmd_flags = bio->bi_opf;
1974        rq = blk_mq_get_request(q, bio, &data);
1975        if (unlikely(!rq)) {
1976                rq_qos_cleanup(q, bio);
1977                if (bio->bi_opf & REQ_NOWAIT)
1978                        bio_wouldblock_error(bio);
1979                return BLK_QC_T_NONE;
1980        }
1981
1982        trace_block_getrq(q, bio, bio->bi_opf);
1983
1984        rq_qos_track(q, rq, bio);
1985
1986        cookie = request_to_qc_t(data.hctx, rq);
1987
1988        blk_mq_bio_to_request(rq, bio, nr_segs);
1989
1990        plug = blk_mq_plug(q, bio);
1991        if (unlikely(is_flush_fua)) {
1992                /* bypass scheduler for flush rq */
1993                blk_insert_flush(rq);
1994                blk_mq_run_hw_queue(data.hctx, true);
1995        } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1996                                !blk_queue_nonrot(q))) {
1997                /*
1998                 * Use plugging if we have a ->commit_rqs() hook as well, as
1999                 * we know the driver uses bd->last in a smart fashion.
2000                 *
2001                 * Use normal plugging if this disk is slow HDD, as sequential
2002                 * IO may benefit a lot from plug merging.
2003                 */
2004                unsigned int request_count = plug->rq_count;
2005                struct request *last = NULL;
2006
2007                if (!request_count)
2008                        trace_block_plug(q);
2009                else
2010                        last = list_entry_rq(plug->mq_list.prev);
2011
2012                if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2013                    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2014                        blk_flush_plug_list(plug, false);
2015                        trace_block_plug(q);
2016                }
2017
2018                blk_add_rq_to_plug(plug, rq);
2019        } else if (q->elevator) {
2020                blk_mq_sched_insert_request(rq, false, true, true);
2021        } else if (plug && !blk_queue_nomerges(q)) {
2022                /*
2023                 * We do limited plugging. If the bio can be merged, do that.
2024                 * Otherwise the existing request in the plug list will be
2025                 * issued. So the plug list will have one request at most
2026                 * The plug list might get flushed before this. If that happens,
2027                 * the plug list is empty, and same_queue_rq is invalid.
2028                 */
2029                if (list_empty(&plug->mq_list))
2030                        same_queue_rq = NULL;
2031                if (same_queue_rq) {
2032                        list_del_init(&same_queue_rq->queuelist);
2033                        plug->rq_count--;
2034                }
2035                blk_add_rq_to_plug(plug, rq);
2036                trace_block_plug(q);
2037
2038                if (same_queue_rq) {
2039                        data.hctx = same_queue_rq->mq_hctx;
2040                        trace_block_unplug(q, 1, true);
2041                        blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2042                                        &cookie);
2043                }
2044        } else if ((q->nr_hw_queues > 1 && is_sync) ||
2045                        !data.hctx->dispatch_busy) {
2046                blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2047        } else {
2048                blk_mq_sched_insert_request(rq, false, true, true);
2049        }
2050
2051        return cookie;
2052}
2053
2054void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2055                     unsigned int hctx_idx)
2056{
2057        struct page *page;
2058
2059        if (tags->rqs && set->ops->exit_request) {
2060                int i;
2061
2062                for (i = 0; i < tags->nr_tags; i++) {
2063                        struct request *rq = tags->static_rqs[i];
2064
2065                        if (!rq)
2066                                continue;
2067                        set->ops->exit_request(set, rq, hctx_idx);
2068                        tags->static_rqs[i] = NULL;
2069                }
2070        }
2071
2072        while (!list_empty(&tags->page_list)) {
2073                page = list_first_entry(&tags->page_list, struct page, lru);
2074                list_del_init(&page->lru);
2075                /*
2076                 * Remove kmemleak object previously allocated in
2077                 * blk_mq_alloc_rqs().
2078                 */
2079                kmemleak_free(page_address(page));
2080                __free_pages(page, page->private);
2081        }
2082}
2083
2084void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2085{
2086        kfree(tags->rqs);
2087        tags->rqs = NULL;
2088        kfree(tags->static_rqs);
2089        tags->static_rqs = NULL;
2090
2091        blk_mq_free_tags(tags);
2092}
2093
2094struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2095                                        unsigned int hctx_idx,
2096                                        unsigned int nr_tags,
2097                                        unsigned int reserved_tags)
2098{
2099        struct blk_mq_tags *tags;
2100        int node;
2101
2102        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2103        if (node == NUMA_NO_NODE)
2104                node = set->numa_node;
2105
2106        tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2107                                BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2108        if (!tags)
2109                return NULL;
2110
2111        tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2112                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2113                                 node);
2114        if (!tags->rqs) {
2115                blk_mq_free_tags(tags);
2116                return NULL;
2117        }
2118
2119        tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2120                                        GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2121                                        node);
2122        if (!tags->static_rqs) {
2123                kfree(tags->rqs);
2124                blk_mq_free_tags(tags);
2125                return NULL;
2126        }
2127
2128        return tags;
2129}
2130
2131static size_t order_to_size(unsigned int order)
2132{
2133        return (size_t)PAGE_SIZE << order;
2134}
2135
2136static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2137                               unsigned int hctx_idx, int node)
2138{
2139        int ret;
2140
2141        if (set->ops->init_request) {
2142                ret = set->ops->init_request(set, rq, hctx_idx, node);
2143                if (ret)
2144                        return ret;
2145        }
2146
2147        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2148        return 0;
2149}
2150
2151int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152                     unsigned int hctx_idx, unsigned int depth)
2153{
2154        unsigned int i, j, entries_per_page, max_order = 4;
2155        size_t rq_size, left;
2156        int node;
2157
2158        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2159        if (node == NUMA_NO_NODE)
2160                node = set->numa_node;
2161
2162        INIT_LIST_HEAD(&tags->page_list);
2163
2164        /*
2165         * rq_size is the size of the request plus driver payload, rounded
2166         * to the cacheline size
2167         */
2168        rq_size = round_up(sizeof(struct request) + set->cmd_size,
2169                                cache_line_size());
2170        left = rq_size * depth;
2171
2172        for (i = 0; i < depth; ) {
2173                int this_order = max_order;
2174                struct page *page;
2175                int to_do;
2176                void *p;
2177
2178                while (this_order && left < order_to_size(this_order - 1))
2179                        this_order--;
2180
2181                do {
2182                        page = alloc_pages_node(node,
2183                                GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2184                                this_order);
2185                        if (page)
2186                                break;
2187                        if (!this_order--)
2188                                break;
2189                        if (order_to_size(this_order) < rq_size)
2190                                break;
2191                } while (1);
2192
2193                if (!page)
2194                        goto fail;
2195
2196                page->private = this_order;
2197                list_add_tail(&page->lru, &tags->page_list);
2198
2199                p = page_address(page);
2200                /*
2201                 * Allow kmemleak to scan these pages as they contain pointers
2202                 * to additional allocations like via ops->init_request().
2203                 */
2204                kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2205                entries_per_page = order_to_size(this_order) / rq_size;
2206                to_do = min(entries_per_page, depth - i);
2207                left -= to_do * rq_size;
2208                for (j = 0; j < to_do; j++) {
2209                        struct request *rq = p;
2210
2211                        tags->static_rqs[i] = rq;
2212                        if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2213                                tags->static_rqs[i] = NULL;
2214                                goto fail;
2215                        }
2216
2217                        p += rq_size;
2218                        i++;
2219                }
2220        }
2221        return 0;
2222
2223fail:
2224        blk_mq_free_rqs(set, tags, hctx_idx);
2225        return -ENOMEM;
2226}
2227
2228/*
2229 * 'cpu' is going away. splice any existing rq_list entries from this
2230 * software queue to the hw queue dispatch list, and ensure that it
2231 * gets run.
2232 */
2233static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2234{
2235        struct blk_mq_hw_ctx *hctx;
2236        struct blk_mq_ctx *ctx;
2237        LIST_HEAD(tmp);
2238        enum hctx_type type;
2239
2240        hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2241        ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2242        type = hctx->type;
2243
2244        spin_lock(&ctx->lock);
2245        if (!list_empty(&ctx->rq_lists[type])) {
2246                list_splice_init(&ctx->rq_lists[type], &tmp);
2247                blk_mq_hctx_clear_pending(hctx, ctx);
2248        }
2249        spin_unlock(&ctx->lock);
2250
2251        if (list_empty(&tmp))
2252                return 0;
2253
2254        spin_lock(&hctx->lock);
2255        list_splice_tail_init(&tmp, &hctx->dispatch);
2256        spin_unlock(&hctx->lock);
2257
2258        blk_mq_run_hw_queue(hctx, true);
2259        return 0;
2260}
2261
2262static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2263{
2264        cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2265                                            &hctx->cpuhp_dead);
2266}
2267
2268/* hctx->ctxs will be freed in queue's release handler */
2269static void blk_mq_exit_hctx(struct request_queue *q,
2270                struct blk_mq_tag_set *set,
2271                struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2272{
2273        if (blk_mq_hw_queue_mapped(hctx))
2274                blk_mq_tag_idle(hctx);
2275
2276        if (set->ops->exit_request)
2277                set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2278
2279        if (set->ops->exit_hctx)
2280                set->ops->exit_hctx(hctx, hctx_idx);
2281
2282        blk_mq_remove_cpuhp(hctx);
2283
2284        spin_lock(&q->unused_hctx_lock);
2285        list_add(&hctx->hctx_list, &q->unused_hctx_list);
2286        spin_unlock(&q->unused_hctx_lock);
2287}
2288
2289static void blk_mq_exit_hw_queues(struct request_queue *q,
2290                struct blk_mq_tag_set *set, int nr_queue)
2291{
2292        struct blk_mq_hw_ctx *hctx;
2293        unsigned int i;
2294
2295        queue_for_each_hw_ctx(q, hctx, i) {
2296                if (i == nr_queue)
2297                        break;
2298                blk_mq_debugfs_unregister_hctx(hctx);
2299                blk_mq_exit_hctx(q, set, hctx, i);
2300        }
2301}
2302
2303static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2304{
2305        int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2306
2307        BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2308                           __alignof__(struct blk_mq_hw_ctx)) !=
2309                     sizeof(struct blk_mq_hw_ctx));
2310
2311        if (tag_set->flags & BLK_MQ_F_BLOCKING)
2312                hw_ctx_size += sizeof(struct srcu_struct);
2313
2314        return hw_ctx_size;
2315}
2316
2317static int blk_mq_init_hctx(struct request_queue *q,
2318                struct blk_mq_tag_set *set,
2319                struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2320{
2321        hctx->queue_num = hctx_idx;
2322
2323        cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2324
2325        hctx->tags = set->tags[hctx_idx];
2326
2327        if (set->ops->init_hctx &&
2328            set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2329                goto unregister_cpu_notifier;
2330
2331        if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2332                                hctx->numa_node))
2333                goto exit_hctx;
2334        return 0;
2335
2336 exit_hctx:
2337        if (set->ops->exit_hctx)
2338                set->ops->exit_hctx(hctx, hctx_idx);
2339 unregister_cpu_notifier:
2340        blk_mq_remove_cpuhp(hctx);
2341        return -1;
2342}
2343
2344static struct blk_mq_hw_ctx *
2345blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2346                int node)
2347{
2348        struct blk_mq_hw_ctx *hctx;
2349        gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2350
2351        hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2352        if (!hctx)
2353                goto fail_alloc_hctx;
2354
2355        if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2356                goto free_hctx;
2357
2358        atomic_set(&hctx->nr_active, 0);
2359        if (node == NUMA_NO_NODE)
2360                node = set->numa_node;
2361        hctx->numa_node = node;
2362
2363        INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2364        spin_lock_init(&hctx->lock);
2365        INIT_LIST_HEAD(&hctx->dispatch);
2366        hctx->queue = q;
2367        hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2368
2369        INIT_LIST_HEAD(&hctx->hctx_list);
2370
2371        /*
2372         * Allocate space for all possible cpus to avoid allocation at
2373         * runtime
2374         */
2375        hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2376                        gfp, node);
2377        if (!hctx->ctxs)
2378                goto free_cpumask;
2379
2380        if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2381                                gfp, node))
2382                goto free_ctxs;
2383        hctx->nr_ctx = 0;
2384
2385        spin_lock_init(&hctx->dispatch_wait_lock);
2386        init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2387        INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2388
2389        hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2390                        gfp);
2391        if (!hctx->fq)
2392                goto free_bitmap;
2393
2394        if (hctx->flags & BLK_MQ_F_BLOCKING)
2395                init_srcu_struct(hctx->srcu);
2396        blk_mq_hctx_kobj_init(hctx);
2397
2398        return hctx;
2399
2400 free_bitmap:
2401        sbitmap_free(&hctx->ctx_map);
2402 free_ctxs:
2403        kfree(hctx->ctxs);
2404 free_cpumask:
2405        free_cpumask_var(hctx->cpumask);
2406 free_hctx:
2407        kfree(hctx);
2408 fail_alloc_hctx:
2409        return NULL;
2410}
2411
2412static void blk_mq_init_cpu_queues(struct request_queue *q,
2413                                   unsigned int nr_hw_queues)
2414{
2415        struct blk_mq_tag_set *set = q->tag_set;
2416        unsigned int i, j;
2417
2418        for_each_possible_cpu(i) {
2419                struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2420                struct blk_mq_hw_ctx *hctx;
2421                int k;
2422
2423                __ctx->cpu = i;
2424                spin_lock_init(&__ctx->lock);
2425                for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2426                        INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2427
2428                __ctx->queue = q;
2429
2430                /*
2431                 * Set local node, IFF we have more than one hw queue. If
2432                 * not, we remain on the home node of the device
2433                 */
2434                for (j = 0; j < set->nr_maps; j++) {
2435                        hctx = blk_mq_map_queue_type(q, j, i);
2436                        if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2437                                hctx->numa_node = local_memory_node(cpu_to_node(i));
2438                }
2439        }
2440}
2441
2442static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2443{
2444        int ret = 0;
2445
2446        set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2447                                        set->queue_depth, set->reserved_tags);
2448        if (!set->tags[hctx_idx])
2449                return false;
2450
2451        ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2452                                set->queue_depth);
2453        if (!ret)
2454                return true;
2455
2456        blk_mq_free_rq_map(set->tags[hctx_idx]);
2457        set->tags[hctx_idx] = NULL;
2458        return false;
2459}
2460
2461static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2462                                         unsigned int hctx_idx)
2463{
2464        if (set->tags && set->tags[hctx_idx]) {
2465                blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2466                blk_mq_free_rq_map(set->tags[hctx_idx]);
2467                set->tags[hctx_idx] = NULL;
2468        }
2469}
2470
2471static void blk_mq_map_swqueue(struct request_queue *q)
2472{
2473        unsigned int i, j, hctx_idx;
2474        struct blk_mq_hw_ctx *hctx;
2475        struct blk_mq_ctx *ctx;
2476        struct blk_mq_tag_set *set = q->tag_set;
2477
2478        queue_for_each_hw_ctx(q, hctx, i) {
2479                cpumask_clear(hctx->cpumask);
2480                hctx->nr_ctx = 0;
2481                hctx->dispatch_from = NULL;
2482        }
2483
2484        /*
2485         * Map software to hardware queues.
2486         *
2487         * If the cpu isn't present, the cpu is mapped to first hctx.
2488         */
2489        for_each_possible_cpu(i) {
2490                hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2491                /* unmapped hw queue can be remapped after CPU topo changed */
2492                if (!set->tags[hctx_idx] &&
2493                    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2494                        /*
2495                         * If tags initialization fail for some hctx,
2496                         * that hctx won't be brought online.  In this
2497                         * case, remap the current ctx to hctx[0] which
2498                         * is guaranteed to always have tags allocated
2499                         */
2500                        set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2501                }
2502
2503                ctx = per_cpu_ptr(q->queue_ctx, i);
2504                for (j = 0; j < set->nr_maps; j++) {
2505                        if (!set->map[j].nr_queues) {
2506                                ctx->hctxs[j] = blk_mq_map_queue_type(q,
2507                                                HCTX_TYPE_DEFAULT, i);
2508                                continue;
2509                        }
2510
2511                        hctx = blk_mq_map_queue_type(q, j, i);
2512                        ctx->hctxs[j] = hctx;
2513                        /*
2514                         * If the CPU is already set in the mask, then we've
2515                         * mapped this one already. This can happen if
2516                         * devices share queues across queue maps.
2517                         */
2518                        if (cpumask_test_cpu(i, hctx->cpumask))
2519                                continue;
2520
2521                        cpumask_set_cpu(i, hctx->cpumask);
2522                        hctx->type = j;
2523                        ctx->index_hw[hctx->type] = hctx->nr_ctx;
2524                        hctx->ctxs[hctx->nr_ctx++] = ctx;
2525
2526                        /*
2527                         * If the nr_ctx type overflows, we have exceeded the
2528                         * amount of sw queues we can support.
2529                         */
2530                        BUG_ON(!hctx->nr_ctx);
2531                }
2532
2533                for (; j < HCTX_MAX_TYPES; j++)
2534                        ctx->hctxs[j] = blk_mq_map_queue_type(q,
2535                                        HCTX_TYPE_DEFAULT, i);
2536        }
2537
2538        queue_for_each_hw_ctx(q, hctx, i) {
2539                /*
2540                 * If no software queues are mapped to this hardware queue,
2541                 * disable it and free the request entries.
2542                 */
2543                if (!hctx->nr_ctx) {
2544                        /* Never unmap queue 0.  We need it as a
2545                         * fallback in case of a new remap fails
2546                         * allocation
2547                         */
2548                        if (i && set->tags[i])
2549                                blk_mq_free_map_and_requests(set, i);
2550
2551                        hctx->tags = NULL;
2552                        continue;
2553                }
2554
2555                hctx->tags = set->tags[i];
2556                WARN_ON(!hctx->tags);
2557
2558                /*
2559                 * Set the map size to the number of mapped software queues.
2560                 * This is more accurate and more efficient than looping
2561                 * over all possibly mapped software queues.
2562                 */
2563                sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2564
2565                /*
2566                 * Initialize batch roundrobin counts
2567                 */
2568                hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2569                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2570        }
2571}
2572
2573/*
2574 * Caller needs to ensure that we're either frozen/quiesced, or that
2575 * the queue isn't live yet.
2576 */
2577static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2578{
2579        struct blk_mq_hw_ctx *hctx;
2580        int i;
2581
2582        queue_for_each_hw_ctx(q, hctx, i) {
2583                if (shared)
2584                        hctx->flags |= BLK_MQ_F_TAG_SHARED;
2585                else
2586                        hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2587        }
2588}
2589
2590static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2591                                        bool shared)
2592{
2593        struct request_queue *q;
2594
2595        lockdep_assert_held(&set->tag_list_lock);
2596
2597        list_for_each_entry(q, &set->tag_list, tag_set_list) {
2598                blk_mq_freeze_queue(q);
2599                queue_set_hctx_shared(q, shared);
2600                blk_mq_unfreeze_queue(q);
2601        }
2602}
2603
2604static void blk_mq_del_queue_tag_set(struct request_queue *q)
2605{
2606        struct blk_mq_tag_set *set = q->tag_set;
2607
2608        mutex_lock(&set->tag_list_lock);
2609        list_del_rcu(&q->tag_set_list);
2610        if (list_is_singular(&set->tag_list)) {
2611                /* just transitioned to unshared */
2612                set->flags &= ~BLK_MQ_F_TAG_SHARED;
2613                /* update existing queue */
2614                blk_mq_update_tag_set_depth(set, false);
2615        }
2616        mutex_unlock(&set->tag_list_lock);
2617        INIT_LIST_HEAD(&q->tag_set_list);
2618}
2619
2620static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2621                                     struct request_queue *q)
2622{
2623        mutex_lock(&set->tag_list_lock);
2624
2625        /*
2626         * Check to see if we're transitioning to shared (from 1 to 2 queues).
2627         */
2628        if (!list_empty(&set->tag_list) &&
2629            !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2630                set->flags |= BLK_MQ_F_TAG_SHARED;
2631                /* update existing queue */
2632                blk_mq_update_tag_set_depth(set, true);
2633        }
2634        if (set->flags & BLK_MQ_F_TAG_SHARED)
2635                queue_set_hctx_shared(q, true);
2636        list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2637
2638        mutex_unlock(&set->tag_list_lock);
2639}
2640
2641/* All allocations will be freed in release handler of q->mq_kobj */
2642static int blk_mq_alloc_ctxs(struct request_queue *q)
2643{
2644        struct blk_mq_ctxs *ctxs;
2645        int cpu;
2646
2647        ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2648        if (!ctxs)
2649                return -ENOMEM;
2650
2651        ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2652        if (!ctxs->queue_ctx)
2653                goto fail;
2654
2655        for_each_possible_cpu(cpu) {
2656                struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2657                ctx->ctxs = ctxs;
2658        }
2659
2660        q->mq_kobj = &ctxs->kobj;
2661        q->queue_ctx = ctxs->queue_ctx;
2662
2663        return 0;
2664 fail:
2665        kfree(ctxs);
2666        return -ENOMEM;
2667}
2668
2669/*
2670 * It is the actual release handler for mq, but we do it from
2671 * request queue's release handler for avoiding use-after-free
2672 * and headache because q->mq_kobj shouldn't have been introduced,
2673 * but we can't group ctx/kctx kobj without it.
2674 */
2675void blk_mq_release(struct request_queue *q)
2676{
2677        struct blk_mq_hw_ctx *hctx, *next;
2678        int i;
2679
2680        queue_for_each_hw_ctx(q, hctx, i)
2681                WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2682
2683        /* all hctx are in .unused_hctx_list now */
2684        list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2685                list_del_init(&hctx->hctx_list);
2686                kobject_put(&hctx->kobj);
2687        }
2688
2689        kfree(q->queue_hw_ctx);
2690
2691        /*
2692         * release .mq_kobj and sw queue's kobject now because
2693         * both share lifetime with request queue.
2694         */
2695        blk_mq_sysfs_deinit(q);
2696}
2697
2698struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2699{
2700        struct request_queue *uninit_q, *q;
2701
2702        uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2703        if (!uninit_q)
2704                return ERR_PTR(-ENOMEM);
2705
2706        /*
2707         * Initialize the queue without an elevator. device_add_disk() will do
2708         * the initialization.
2709         */
2710        q = blk_mq_init_allocated_queue(set, uninit_q, false);
2711        if (IS_ERR(q))
2712                blk_cleanup_queue(uninit_q);
2713
2714        return q;
2715}
2716EXPORT_SYMBOL(blk_mq_init_queue);
2717
2718/*
2719 * Helper for setting up a queue with mq ops, given queue depth, and
2720 * the passed in mq ops flags.
2721 */
2722struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2723                                           const struct blk_mq_ops *ops,
2724                                           unsigned int queue_depth,
2725                                           unsigned int set_flags)
2726{
2727        struct request_queue *q;
2728        int ret;
2729
2730        memset(set, 0, sizeof(*set));
2731        set->ops = ops;
2732        set->nr_hw_queues = 1;
2733        set->nr_maps = 1;
2734        set->queue_depth = queue_depth;
2735        set->numa_node = NUMA_NO_NODE;
2736        set->flags = set_flags;
2737
2738        ret = blk_mq_alloc_tag_set(set);
2739        if (ret)
2740                return ERR_PTR(ret);
2741
2742        q = blk_mq_init_queue(set);
2743        if (IS_ERR(q)) {
2744                blk_mq_free_tag_set(set);
2745                return q;
2746        }
2747
2748        return q;
2749}
2750EXPORT_SYMBOL(blk_mq_init_sq_queue);
2751
2752static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2753                struct blk_mq_tag_set *set, struct request_queue *q,
2754                int hctx_idx, int node)
2755{
2756        struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2757
2758        /* reuse dead hctx first */
2759        spin_lock(&q->unused_hctx_lock);
2760        list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2761                if (tmp->numa_node == node) {
2762                        hctx = tmp;
2763                        break;
2764                }
2765        }
2766        if (hctx)
2767                list_del_init(&hctx->hctx_list);
2768        spin_unlock(&q->unused_hctx_lock);
2769
2770        if (!hctx)
2771                hctx = blk_mq_alloc_hctx(q, set, node);
2772        if (!hctx)
2773                goto fail;
2774
2775        if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2776                goto free_hctx;
2777
2778        return hctx;
2779
2780 free_hctx:
2781        kobject_put(&hctx->kobj);
2782 fail:
2783        return NULL;
2784}
2785
2786static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2787                                                struct request_queue *q)
2788{
2789        int i, j, end;
2790        struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2791
2792        /* protect against switching io scheduler  */
2793        mutex_lock(&q->sysfs_lock);
2794        for (i = 0; i < set->nr_hw_queues; i++) {
2795                int node;
2796                struct blk_mq_hw_ctx *hctx;
2797
2798                node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2799                /*
2800                 * If the hw queue has been mapped to another numa node,
2801                 * we need to realloc the hctx. If allocation fails, fallback
2802                 * to use the previous one.
2803                 */
2804                if (hctxs[i] && (hctxs[i]->numa_node == node))
2805                        continue;
2806
2807                hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2808                if (hctx) {
2809                        if (hctxs[i])
2810                                blk_mq_exit_hctx(q, set, hctxs[i], i);
2811                        hctxs[i] = hctx;
2812                } else {
2813                        if (hctxs[i])
2814                                pr_warn("Allocate new hctx on node %d fails,\
2815                                                fallback to previous one on node %d\n",
2816                                                node, hctxs[i]->numa_node);
2817                        else
2818                                break;
2819                }
2820        }
2821        /*
2822         * Increasing nr_hw_queues fails. Free the newly allocated
2823         * hctxs and keep the previous q->nr_hw_queues.
2824         */
2825        if (i != set->nr_hw_queues) {
2826                j = q->nr_hw_queues;
2827                end = i;
2828        } else {
2829                j = i;
2830                end = q->nr_hw_queues;
2831                q->nr_hw_queues = set->nr_hw_queues;
2832        }
2833
2834        for (; j < end; j++) {
2835                struct blk_mq_hw_ctx *hctx = hctxs[j];
2836
2837                if (hctx) {
2838                        if (hctx->tags)
2839                                blk_mq_free_map_and_requests(set, j);
2840                        blk_mq_exit_hctx(q, set, hctx, j);
2841                        hctxs[j] = NULL;
2842                }
2843        }
2844        mutex_unlock(&q->sysfs_lock);
2845}
2846
2847/*
2848 * Maximum number of hardware queues we support. For single sets, we'll never
2849 * have more than the CPUs (software queues). For multiple sets, the tag_set
2850 * user may have set ->nr_hw_queues larger.
2851 */
2852static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2853{
2854        if (set->nr_maps == 1)
2855                return nr_cpu_ids;
2856
2857        return max(set->nr_hw_queues, nr_cpu_ids);
2858}
2859
2860struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2861                                                  struct request_queue *q,
2862                                                  bool elevator_init)
2863{
2864        /* mark the queue as mq asap */
2865        q->mq_ops = set->ops;
2866
2867        q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2868                                             blk_mq_poll_stats_bkt,
2869                                             BLK_MQ_POLL_STATS_BKTS, q);
2870        if (!q->poll_cb)
2871                goto err_exit;
2872
2873        if (blk_mq_alloc_ctxs(q))
2874                goto err_poll;
2875
2876        /* init q->mq_kobj and sw queues' kobjects */
2877        blk_mq_sysfs_init(q);
2878
2879        q->nr_queues = nr_hw_queues(set);
2880        q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2881                                                GFP_KERNEL, set->numa_node);
2882        if (!q->queue_hw_ctx)
2883                goto err_sys_init;
2884
2885        INIT_LIST_HEAD(&q->unused_hctx_list);
2886        spin_lock_init(&q->unused_hctx_lock);
2887
2888        blk_mq_realloc_hw_ctxs(set, q);
2889        if (!q->nr_hw_queues)
2890                goto err_hctxs;
2891
2892        INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2893        blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2894
2895        q->tag_set = set;
2896
2897        q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2898        if (set->nr_maps > HCTX_TYPE_POLL &&
2899            set->map[HCTX_TYPE_POLL].nr_queues)
2900                blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2901
2902        q->sg_reserved_size = INT_MAX;
2903
2904        INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2905        INIT_LIST_HEAD(&q->requeue_list);
2906        spin_lock_init(&q->requeue_lock);
2907
2908        blk_queue_make_request(q, blk_mq_make_request);
2909
2910        /*
2911         * Do this after blk_queue_make_request() overrides it...
2912         */
2913        q->nr_requests = set->queue_depth;
2914
2915        /*
2916         * Default to classic polling
2917         */
2918        q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2919
2920        blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2921        blk_mq_add_queue_tag_set(set, q);
2922        blk_mq_map_swqueue(q);
2923
2924        if (elevator_init)
2925                elevator_init_mq(q);
2926
2927        return q;
2928
2929err_hctxs:
2930        kfree(q->queue_hw_ctx);
2931        q->nr_hw_queues = 0;
2932err_sys_init:
2933        blk_mq_sysfs_deinit(q);
2934err_poll:
2935        blk_stat_free_callback(q->poll_cb);
2936        q->poll_cb = NULL;
2937err_exit:
2938        q->mq_ops = NULL;
2939        return ERR_PTR(-ENOMEM);
2940}
2941EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2942
2943/* tags can _not_ be used after returning from blk_mq_exit_queue */
2944void blk_mq_exit_queue(struct request_queue *q)
2945{
2946        struct blk_mq_tag_set   *set = q->tag_set;
2947
2948        blk_mq_del_queue_tag_set(q);
2949        blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2950}
2951
2952static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2953{
2954        int i;
2955
2956        for (i = 0; i < set->nr_hw_queues; i++)
2957                if (!__blk_mq_alloc_rq_map(set, i))
2958                        goto out_unwind;
2959
2960        return 0;
2961
2962out_unwind:
2963        while (--i >= 0)
2964                blk_mq_free_rq_map(set->tags[i]);
2965
2966        return -ENOMEM;
2967}
2968
2969/*
2970 * Allocate the request maps associated with this tag_set. Note that this
2971 * may reduce the depth asked for, if memory is tight. set->queue_depth
2972 * will be updated to reflect the allocated depth.
2973 */
2974static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2975{
2976        unsigned int depth;
2977        int err;
2978
2979        depth = set->queue_depth;
2980        do {
2981                err = __blk_mq_alloc_rq_maps(set);
2982                if (!err)
2983                        break;
2984
2985                set->queue_depth >>= 1;
2986                if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2987                        err = -ENOMEM;
2988                        break;
2989                }
2990        } while (set->queue_depth);
2991
2992        if (!set->queue_depth || err) {
2993                pr_err("blk-mq: failed to allocate request map\n");
2994                return -ENOMEM;
2995        }
2996
2997        if (depth != set->queue_depth)
2998                pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2999                                                depth, set->queue_depth);
3000
3001        return 0;
3002}
3003
3004static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3005{
3006        if (set->ops->map_queues && !is_kdump_kernel()) {
3007                int i;
3008
3009                /*
3010                 * transport .map_queues is usually done in the following
3011                 * way:
3012                 *
3013                 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3014                 *      mask = get_cpu_mask(queue)
3015                 *      for_each_cpu(cpu, mask)
3016                 *              set->map[x].mq_map[cpu] = queue;
3017                 * }
3018                 *
3019                 * When we need to remap, the table has to be cleared for
3020                 * killing stale mapping since one CPU may not be mapped
3021                 * to any hw queue.
3022                 */
3023                for (i = 0; i < set->nr_maps; i++)
3024                        blk_mq_clear_mq_map(&set->map[i]);
3025
3026                return set->ops->map_queues(set);
3027        } else {
3028                BUG_ON(set->nr_maps > 1);
3029                return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3030        }
3031}
3032
3033/*
3034 * Alloc a tag set to be associated with one or more request queues.
3035 * May fail with EINVAL for various error conditions. May adjust the
3036 * requested depth down, if it's too large. In that case, the set
3037 * value will be stored in set->queue_depth.
3038 */
3039int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3040{
3041        int i, ret;
3042
3043        BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3044
3045        if (!set->nr_hw_queues)
3046                return -EINVAL;
3047        if (!set->queue_depth)
3048                return -EINVAL;
3049        if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3050                return -EINVAL;
3051
3052        if (!set->ops->queue_rq)
3053                return -EINVAL;
3054
3055        if (!set->ops->get_budget ^ !set->ops->put_budget)
3056                return -EINVAL;
3057
3058        if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3059                pr_info("blk-mq: reduced tag depth to %u\n",
3060                        BLK_MQ_MAX_DEPTH);
3061                set->queue_depth = BLK_MQ_MAX_DEPTH;
3062        }
3063
3064        if (!set->nr_maps)
3065                set->nr_maps = 1;
3066        else if (set->nr_maps > HCTX_MAX_TYPES)
3067                return -EINVAL;
3068
3069        /*
3070         * If a crashdump is active, then we are potentially in a very
3071         * memory constrained environment. Limit us to 1 queue and
3072         * 64 tags to prevent using too much memory.
3073         */
3074        if (is_kdump_kernel()) {
3075                set->nr_hw_queues = 1;
3076                set->nr_maps = 1;
3077                set->queue_depth = min(64U, set->queue_depth);
3078        }
3079        /*
3080         * There is no use for more h/w queues than cpus if we just have
3081         * a single map
3082         */
3083        if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3084                set->nr_hw_queues = nr_cpu_ids;
3085
3086        set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3087                                 GFP_KERNEL, set->numa_node);
3088        if (!set->tags)
3089                return -ENOMEM;
3090
3091        ret = -ENOMEM;
3092        for (i = 0; i < set->nr_maps; i++) {
3093                set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3094                                                  sizeof(set->map[i].mq_map[0]),
3095                                                  GFP_KERNEL, set->numa_node);
3096                if (!set->map[i].mq_map)
3097                        goto out_free_mq_map;
3098                set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3099        }
3100
3101        ret = blk_mq_update_queue_map(set);
3102        if (ret)
3103                goto out_free_mq_map;
3104
3105        ret = blk_mq_alloc_rq_maps(set);
3106        if (ret)
3107                goto out_free_mq_map;
3108
3109        mutex_init(&set->tag_list_lock);
3110        INIT_LIST_HEAD(&set->tag_list);
3111
3112        return 0;
3113
3114out_free_mq_map:
3115        for (i = 0; i < set->nr_maps; i++) {
3116                kfree(set->map[i].mq_map);
3117                set->map[i].mq_map = NULL;
3118        }
3119        kfree(set->tags);
3120        set->tags = NULL;
3121        return ret;
3122}
3123EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3124
3125void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3126{
3127        int i, j;
3128
3129        for (i = 0; i < nr_hw_queues(set); i++)
3130                blk_mq_free_map_and_requests(set, i);
3131
3132        for (j = 0; j < set->nr_maps; j++) {
3133                kfree(set->map[j].mq_map);
3134                set->map[j].mq_map = NULL;
3135        }
3136
3137        kfree(set->tags);
3138        set->tags = NULL;
3139}
3140EXPORT_SYMBOL(blk_mq_free_tag_set);
3141
3142int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3143{
3144        struct blk_mq_tag_set *set = q->tag_set;
3145        struct blk_mq_hw_ctx *hctx;
3146        int i, ret;
3147
3148        if (!set)
3149                return -EINVAL;
3150
3151        if (q->nr_requests == nr)
3152                return 0;
3153
3154        blk_mq_freeze_queue(q);
3155        blk_mq_quiesce_queue(q);
3156
3157        ret = 0;
3158        queue_for_each_hw_ctx(q, hctx, i) {
3159                if (!hctx->tags)
3160                        continue;
3161                /*
3162                 * If we're using an MQ scheduler, just update the scheduler
3163                 * queue depth. This is similar to what the old code would do.
3164                 */
3165                if (!hctx->sched_tags) {
3166                        ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3167                                                        false);
3168                } else {
3169                        ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3170                                                        nr, true);
3171                }
3172                if (ret)
3173                        break;
3174                if (q->elevator && q->elevator->type->ops.depth_updated)
3175                        q->elevator->type->ops.depth_updated(hctx);
3176        }
3177
3178        if (!ret)
3179                q->nr_requests = nr;
3180
3181        blk_mq_unquiesce_queue(q);
3182        blk_mq_unfreeze_queue(q);
3183
3184        return ret;
3185}
3186
3187/*
3188 * request_queue and elevator_type pair.
3189 * It is just used by __blk_mq_update_nr_hw_queues to cache
3190 * the elevator_type associated with a request_queue.
3191 */
3192struct blk_mq_qe_pair {
3193        struct list_head node;
3194        struct request_queue *q;
3195        struct elevator_type *type;
3196};
3197
3198/*
3199 * Cache the elevator_type in qe pair list and switch the
3200 * io scheduler to 'none'
3201 */
3202static bool blk_mq_elv_switch_none(struct list_head *head,
3203                struct request_queue *q)
3204{
3205        struct blk_mq_qe_pair *qe;
3206
3207        if (!q->elevator)
3208                return true;
3209
3210        qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3211        if (!qe)
3212                return false;
3213
3214        INIT_LIST_HEAD(&qe->node);
3215        qe->q = q;
3216        qe->type = q->elevator->type;
3217        list_add(&qe->node, head);
3218
3219        mutex_lock(&q->sysfs_lock);
3220        /*
3221         * After elevator_switch_mq, the previous elevator_queue will be
3222         * released by elevator_release. The reference of the io scheduler
3223         * module get by elevator_get will also be put. So we need to get
3224         * a reference of the io scheduler module here to prevent it to be
3225         * removed.
3226         */
3227        __module_get(qe->type->elevator_owner);
3228        elevator_switch_mq(q, NULL);
3229        mutex_unlock(&q->sysfs_lock);
3230
3231        return true;
3232}
3233
3234static void blk_mq_elv_switch_back(struct list_head *head,
3235                struct request_queue *q)
3236{
3237        struct blk_mq_qe_pair *qe;
3238        struct elevator_type *t = NULL;
3239
3240        list_for_each_entry(qe, head, node)
3241                if (qe->q == q) {
3242                        t = qe->type;
3243                        break;
3244                }
3245
3246        if (!t)
3247                return;
3248
3249        list_del(&qe->node);
3250        kfree(qe);
3251
3252        mutex_lock(&q->sysfs_lock);
3253        elevator_switch_mq(q, t);
3254        mutex_unlock(&q->sysfs_lock);
3255}
3256
3257static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3258                                                        int nr_hw_queues)
3259{
3260        struct request_queue *q;
3261        LIST_HEAD(head);
3262        int prev_nr_hw_queues;
3263
3264        lockdep_assert_held(&set->tag_list_lock);
3265
3266        if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3267                nr_hw_queues = nr_cpu_ids;
3268        if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3269                return;
3270
3271        list_for_each_entry(q, &set->tag_list, tag_set_list)
3272                blk_mq_freeze_queue(q);
3273        /*
3274         * Sync with blk_mq_queue_tag_busy_iter.
3275         */
3276        synchronize_rcu();
3277        /*
3278         * Switch IO scheduler to 'none', cleaning up the data associated
3279         * with the previous scheduler. We will switch back once we are done
3280         * updating the new sw to hw queue mappings.
3281         */
3282        list_for_each_entry(q, &set->tag_list, tag_set_list)
3283                if (!blk_mq_elv_switch_none(&head, q))
3284                        goto switch_back;
3285
3286        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287                blk_mq_debugfs_unregister_hctxs(q);
3288                blk_mq_sysfs_unregister(q);
3289        }
3290
3291        prev_nr_hw_queues = set->nr_hw_queues;
3292        set->nr_hw_queues = nr_hw_queues;
3293        blk_mq_update_queue_map(set);
3294fallback:
3295        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296                blk_mq_realloc_hw_ctxs(set, q);
3297                if (q->nr_hw_queues != set->nr_hw_queues) {
3298                        pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3299                                        nr_hw_queues, prev_nr_hw_queues);
3300                        set->nr_hw_queues = prev_nr_hw_queues;
3301                        blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3302                        goto fallback;
3303                }
3304                blk_mq_map_swqueue(q);
3305        }
3306
3307        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3308                blk_mq_sysfs_register(q);
3309                blk_mq_debugfs_register_hctxs(q);
3310        }
3311
3312switch_back:
3313        list_for_each_entry(q, &set->tag_list, tag_set_list)
3314                blk_mq_elv_switch_back(&head, q);
3315
3316        list_for_each_entry(q, &set->tag_list, tag_set_list)
3317                blk_mq_unfreeze_queue(q);
3318}
3319
3320void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3321{
3322        mutex_lock(&set->tag_list_lock);
3323        __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3324        mutex_unlock(&set->tag_list_lock);
3325}
3326EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3327
3328/* Enable polling stats and return whether they were already enabled. */
3329static bool blk_poll_stats_enable(struct request_queue *q)
3330{
3331        if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3332            blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3333                return true;
3334        blk_stat_add_callback(q, q->poll_cb);
3335        return false;
3336}
3337
3338static void blk_mq_poll_stats_start(struct request_queue *q)
3339{
3340        /*
3341         * We don't arm the callback if polling stats are not enabled or the
3342         * callback is already active.
3343         */
3344        if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3345            blk_stat_is_active(q->poll_cb))
3346                return;
3347
3348        blk_stat_activate_msecs(q->poll_cb, 100);
3349}
3350
3351static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3352{
3353        struct request_queue *q = cb->data;
3354        int bucket;
3355
3356        for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3357                if (cb->stat[bucket].nr_samples)
3358                        q->poll_stat[bucket] = cb->stat[bucket];
3359        }
3360}
3361
3362static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3363                                       struct blk_mq_hw_ctx *hctx,
3364                                       struct request *rq)
3365{
3366        unsigned long ret = 0;
3367        int bucket;
3368
3369        /*
3370         * If stats collection isn't on, don't sleep but turn it on for
3371         * future users
3372         */
3373        if (!blk_poll_stats_enable(q))
3374                return 0;
3375
3376        /*
3377         * As an optimistic guess, use half of the mean service time
3378         * for this type of request. We can (and should) make this smarter.
3379         * For instance, if the completion latencies are tight, we can
3380         * get closer than just half the mean. This is especially
3381         * important on devices where the completion latencies are longer
3382         * than ~10 usec. We do use the stats for the relevant IO size
3383         * if available which does lead to better estimates.
3384         */
3385        bucket = blk_mq_poll_stats_bkt(rq);
3386        if (bucket < 0)
3387                return ret;
3388
3389        if (q->poll_stat[bucket].nr_samples)
3390                ret = (q->poll_stat[bucket].mean + 1) / 2;
3391
3392        return ret;
3393}
3394
3395static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3396                                     struct blk_mq_hw_ctx *hctx,
3397                                     struct request *rq)
3398{
3399        struct hrtimer_sleeper hs;
3400        enum hrtimer_mode mode;
3401        unsigned int nsecs;
3402        ktime_t kt;
3403
3404        if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3405                return false;
3406
3407        /*
3408         * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3409         *
3410         *  0:  use half of prev avg
3411         * >0:  use this specific value
3412         */
3413        if (q->poll_nsec > 0)
3414                nsecs = q->poll_nsec;
3415        else
3416                nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3417
3418        if (!nsecs)
3419                return false;
3420
3421        rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3422
3423        /*
3424         * This will be replaced with the stats tracking code, using
3425         * 'avg_completion_time / 2' as the pre-sleep target.
3426         */
3427        kt = nsecs;
3428
3429        mode = HRTIMER_MODE_REL;
3430        hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3431        hrtimer_set_expires(&hs.timer, kt);
3432
3433        do {
3434                if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3435                        break;
3436                set_current_state(TASK_UNINTERRUPTIBLE);
3437                hrtimer_sleeper_start_expires(&hs, mode);
3438                if (hs.task)
3439                        io_schedule();
3440                hrtimer_cancel(&hs.timer);
3441                mode = HRTIMER_MODE_ABS;
3442        } while (hs.task && !signal_pending(current));
3443
3444        __set_current_state(TASK_RUNNING);
3445        destroy_hrtimer_on_stack(&hs.timer);
3446        return true;
3447}
3448
3449static bool blk_mq_poll_hybrid(struct request_queue *q,
3450                               struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3451{
3452        struct request *rq;
3453
3454        if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3455                return false;
3456
3457        if (!blk_qc_t_is_internal(cookie))
3458                rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3459        else {
3460                rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3461                /*
3462                 * With scheduling, if the request has completed, we'll
3463                 * get a NULL return here, as we clear the sched tag when
3464                 * that happens. The request still remains valid, like always,
3465                 * so we should be safe with just the NULL check.
3466                 */
3467                if (!rq)
3468                        return false;
3469        }
3470
3471        return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3472}
3473
3474/**
3475 * blk_poll - poll for IO completions
3476 * @q:  the queue
3477 * @cookie: cookie passed back at IO submission time
3478 * @spin: whether to spin for completions
3479 *
3480 * Description:
3481 *    Poll for completions on the passed in queue. Returns number of
3482 *    completed entries found. If @spin is true, then blk_poll will continue
3483 *    looping until at least one completion is found, unless the task is
3484 *    otherwise marked running (or we need to reschedule).
3485 */
3486int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3487{
3488        struct blk_mq_hw_ctx *hctx;
3489        long state;
3490
3491        if (!blk_qc_t_valid(cookie) ||
3492            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3493                return 0;
3494
3495        if (current->plug)
3496                blk_flush_plug_list(current->plug, false);
3497
3498        hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3499
3500        /*
3501         * If we sleep, have the caller restart the poll loop to reset
3502         * the state. Like for the other success return cases, the
3503         * caller is responsible for checking if the IO completed. If
3504         * the IO isn't complete, we'll get called again and will go
3505         * straight to the busy poll loop.
3506         */
3507        if (blk_mq_poll_hybrid(q, hctx, cookie))
3508                return 1;
3509
3510        hctx->poll_considered++;
3511
3512        state = current->state;
3513        do {
3514                int ret;
3515
3516                hctx->poll_invoked++;
3517
3518                ret = q->mq_ops->poll(hctx);
3519                if (ret > 0) {
3520                        hctx->poll_success++;
3521                        __set_current_state(TASK_RUNNING);
3522                        return ret;
3523                }
3524
3525                if (signal_pending_state(state, current))
3526                        __set_current_state(TASK_RUNNING);
3527
3528                if (current->state == TASK_RUNNING)
3529                        return 1;
3530                if (ret < 0 || !spin)
3531                        break;
3532                cpu_relax();
3533        } while (!need_resched());
3534
3535        __set_current_state(TASK_RUNNING);
3536        return 0;
3537}
3538EXPORT_SYMBOL_GPL(blk_poll);
3539
3540unsigned int blk_mq_rq_cpu(struct request *rq)
3541{
3542        return rq->mq_ctx->cpu;
3543}
3544EXPORT_SYMBOL(blk_mq_rq_cpu);
3545
3546static int __init blk_mq_init(void)
3547{
3548        cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3549                                blk_mq_hctx_notify_dead);
3550        return 0;
3551}
3552subsys_initcall(blk_mq_init);
3553