linux/drivers/acpi/osl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/lockdep.h>
  18#include <linux/pci.h>
  19#include <linux/interrupt.h>
  20#include <linux/kmod.h>
  21#include <linux/delay.h>
  22#include <linux/workqueue.h>
  23#include <linux/nmi.h>
  24#include <linux/acpi.h>
  25#include <linux/efi.h>
  26#include <linux/ioport.h>
  27#include <linux/list.h>
  28#include <linux/jiffies.h>
  29#include <linux/semaphore.h>
  30#include <linux/security.h>
  31
  32#include <asm/io.h>
  33#include <linux/uaccess.h>
  34#include <linux/io-64-nonatomic-lo-hi.h>
  35
  36#include "acpica/accommon.h"
  37#include "acpica/acnamesp.h"
  38#include "internal.h"
  39
  40#define _COMPONENT              ACPI_OS_SERVICES
  41ACPI_MODULE_NAME("osl");
  42
  43struct acpi_os_dpc {
  44        acpi_osd_exec_callback function;
  45        void *context;
  46        struct work_struct work;
  47};
  48
  49#ifdef ENABLE_DEBUGGER
  50#include <linux/kdb.h>
  51
  52/* stuff for debugger support */
  53int acpi_in_debugger;
  54EXPORT_SYMBOL(acpi_in_debugger);
  55#endif                          /*ENABLE_DEBUGGER */
  56
  57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58                                      u32 pm1b_ctrl);
  59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60                                      u32 val_b);
  61
  62static acpi_osd_handler acpi_irq_handler;
  63static void *acpi_irq_context;
  64static struct workqueue_struct *kacpid_wq;
  65static struct workqueue_struct *kacpi_notify_wq;
  66static struct workqueue_struct *kacpi_hotplug_wq;
  67static bool acpi_os_initialized;
  68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69bool acpi_permanent_mmap = false;
  70
  71/*
  72 * This list of permanent mappings is for memory that may be accessed from
  73 * interrupt context, where we can't do the ioremap().
  74 */
  75struct acpi_ioremap {
  76        struct list_head list;
  77        void __iomem *virt;
  78        acpi_physical_address phys;
  79        acpi_size size;
  80        unsigned long refcount;
  81};
  82
  83static LIST_HEAD(acpi_ioremaps);
  84static DEFINE_MUTEX(acpi_ioremap_lock);
  85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  86
  87static void __init acpi_request_region (struct acpi_generic_address *gas,
  88        unsigned int length, char *desc)
  89{
  90        u64 addr;
  91
  92        /* Handle possible alignment issues */
  93        memcpy(&addr, &gas->address, sizeof(addr));
  94        if (!addr || !length)
  95                return;
  96
  97        /* Resources are never freed */
  98        if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  99                request_region(addr, length, desc);
 100        else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 101                request_mem_region(addr, length, desc);
 102}
 103
 104static int __init acpi_reserve_resources(void)
 105{
 106        acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 107                "ACPI PM1a_EVT_BLK");
 108
 109        acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 110                "ACPI PM1b_EVT_BLK");
 111
 112        acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 113                "ACPI PM1a_CNT_BLK");
 114
 115        acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 116                "ACPI PM1b_CNT_BLK");
 117
 118        if (acpi_gbl_FADT.pm_timer_length == 4)
 119                acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 120
 121        acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 122                "ACPI PM2_CNT_BLK");
 123
 124        /* Length of GPE blocks must be a non-negative multiple of 2 */
 125
 126        if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 127                acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 128                               acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 129
 130        if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 131                acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 132                               acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 133
 134        return 0;
 135}
 136fs_initcall_sync(acpi_reserve_resources);
 137
 138void acpi_os_printf(const char *fmt, ...)
 139{
 140        va_list args;
 141        va_start(args, fmt);
 142        acpi_os_vprintf(fmt, args);
 143        va_end(args);
 144}
 145EXPORT_SYMBOL(acpi_os_printf);
 146
 147void acpi_os_vprintf(const char *fmt, va_list args)
 148{
 149        static char buffer[512];
 150
 151        vsprintf(buffer, fmt, args);
 152
 153#ifdef ENABLE_DEBUGGER
 154        if (acpi_in_debugger) {
 155                kdb_printf("%s", buffer);
 156        } else {
 157                if (printk_get_level(buffer))
 158                        printk("%s", buffer);
 159                else
 160                        printk(KERN_CONT "%s", buffer);
 161        }
 162#else
 163        if (acpi_debugger_write_log(buffer) < 0) {
 164                if (printk_get_level(buffer))
 165                        printk("%s", buffer);
 166                else
 167                        printk(KERN_CONT "%s", buffer);
 168        }
 169#endif
 170}
 171
 172#ifdef CONFIG_KEXEC
 173static unsigned long acpi_rsdp;
 174static int __init setup_acpi_rsdp(char *arg)
 175{
 176        return kstrtoul(arg, 16, &acpi_rsdp);
 177}
 178early_param("acpi_rsdp", setup_acpi_rsdp);
 179#endif
 180
 181acpi_physical_address __init acpi_os_get_root_pointer(void)
 182{
 183        acpi_physical_address pa;
 184
 185#ifdef CONFIG_KEXEC
 186        /*
 187         * We may have been provided with an RSDP on the command line,
 188         * but if a malicious user has done so they may be pointing us
 189         * at modified ACPI tables that could alter kernel behaviour -
 190         * so, we check the lockdown status before making use of
 191         * it. If we trust it then also stash it in an architecture
 192         * specific location (if appropriate) so it can be carried
 193         * over further kexec()s.
 194         */
 195        if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 196                acpi_arch_set_root_pointer(acpi_rsdp);
 197                return acpi_rsdp;
 198        }
 199#endif
 200        pa = acpi_arch_get_root_pointer();
 201        if (pa)
 202                return pa;
 203
 204        if (efi_enabled(EFI_CONFIG_TABLES)) {
 205                if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 206                        return efi.acpi20;
 207                if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 208                        return efi.acpi;
 209                pr_err(PREFIX "System description tables not found\n");
 210        } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 211                acpi_find_root_pointer(&pa);
 212        }
 213
 214        return pa;
 215}
 216
 217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218static struct acpi_ioremap *
 219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 220{
 221        struct acpi_ioremap *map;
 222
 223        list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 224                if (map->phys <= phys &&
 225                    phys + size <= map->phys + map->size)
 226                        return map;
 227
 228        return NULL;
 229}
 230
 231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 232static void __iomem *
 233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 234{
 235        struct acpi_ioremap *map;
 236
 237        map = acpi_map_lookup(phys, size);
 238        if (map)
 239                return map->virt + (phys - map->phys);
 240
 241        return NULL;
 242}
 243
 244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 245{
 246        struct acpi_ioremap *map;
 247        void __iomem *virt = NULL;
 248
 249        mutex_lock(&acpi_ioremap_lock);
 250        map = acpi_map_lookup(phys, size);
 251        if (map) {
 252                virt = map->virt + (phys - map->phys);
 253                map->refcount++;
 254        }
 255        mutex_unlock(&acpi_ioremap_lock);
 256        return virt;
 257}
 258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 259
 260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 261static struct acpi_ioremap *
 262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 263{
 264        struct acpi_ioremap *map;
 265
 266        list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 267                if (map->virt <= virt &&
 268                    virt + size <= map->virt + map->size)
 269                        return map;
 270
 271        return NULL;
 272}
 273
 274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 275/* ioremap will take care of cache attributes */
 276#define should_use_kmap(pfn)   0
 277#else
 278#define should_use_kmap(pfn)   page_is_ram(pfn)
 279#endif
 280
 281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 282{
 283        unsigned long pfn;
 284
 285        pfn = pg_off >> PAGE_SHIFT;
 286        if (should_use_kmap(pfn)) {
 287                if (pg_sz > PAGE_SIZE)
 288                        return NULL;
 289                return (void __iomem __force *)kmap(pfn_to_page(pfn));
 290        } else
 291                return acpi_os_ioremap(pg_off, pg_sz);
 292}
 293
 294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 295{
 296        unsigned long pfn;
 297
 298        pfn = pg_off >> PAGE_SHIFT;
 299        if (should_use_kmap(pfn))
 300                kunmap(pfn_to_page(pfn));
 301        else
 302                iounmap(vaddr);
 303}
 304
 305/**
 306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 307 * @phys: Start of the physical address range to map.
 308 * @size: Size of the physical address range to map.
 309 *
 310 * Look up the given physical address range in the list of existing ACPI memory
 311 * mappings.  If found, get a reference to it and return a pointer to it (its
 312 * virtual address).  If not found, map it, add it to that list and return a
 313 * pointer to it.
 314 *
 315 * During early init (when acpi_permanent_mmap has not been set yet) this
 316 * routine simply calls __acpi_map_table() to get the job done.
 317 */
 318void __iomem __ref
 319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 320{
 321        struct acpi_ioremap *map;
 322        void __iomem *virt;
 323        acpi_physical_address pg_off;
 324        acpi_size pg_sz;
 325
 326        if (phys > ULONG_MAX) {
 327                printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 328                return NULL;
 329        }
 330
 331        if (!acpi_permanent_mmap)
 332                return __acpi_map_table((unsigned long)phys, size);
 333
 334        mutex_lock(&acpi_ioremap_lock);
 335        /* Check if there's a suitable mapping already. */
 336        map = acpi_map_lookup(phys, size);
 337        if (map) {
 338                map->refcount++;
 339                goto out;
 340        }
 341
 342        map = kzalloc(sizeof(*map), GFP_KERNEL);
 343        if (!map) {
 344                mutex_unlock(&acpi_ioremap_lock);
 345                return NULL;
 346        }
 347
 348        pg_off = round_down(phys, PAGE_SIZE);
 349        pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 350        virt = acpi_map(pg_off, pg_sz);
 351        if (!virt) {
 352                mutex_unlock(&acpi_ioremap_lock);
 353                kfree(map);
 354                return NULL;
 355        }
 356
 357        INIT_LIST_HEAD(&map->list);
 358        map->virt = virt;
 359        map->phys = pg_off;
 360        map->size = pg_sz;
 361        map->refcount = 1;
 362
 363        list_add_tail_rcu(&map->list, &acpi_ioremaps);
 364
 365out:
 366        mutex_unlock(&acpi_ioremap_lock);
 367        return map->virt + (phys - map->phys);
 368}
 369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 370
 371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 372{
 373        return (void *)acpi_os_map_iomem(phys, size);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 376
 377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 378{
 379        if (!--map->refcount)
 380                list_del_rcu(&map->list);
 381}
 382
 383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 384{
 385        if (!map->refcount) {
 386                synchronize_rcu_expedited();
 387                acpi_unmap(map->phys, map->virt);
 388                kfree(map);
 389        }
 390}
 391
 392/**
 393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 394 * @virt: Start of the address range to drop a reference to.
 395 * @size: Size of the address range to drop a reference to.
 396 *
 397 * Look up the given virtual address range in the list of existing ACPI memory
 398 * mappings, drop a reference to it and unmap it if there are no more active
 399 * references to it.
 400 *
 401 * During early init (when acpi_permanent_mmap has not been set yet) this
 402 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 404 * here.
 405 */
 406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 407{
 408        struct acpi_ioremap *map;
 409
 410        if (!acpi_permanent_mmap) {
 411                __acpi_unmap_table(virt, size);
 412                return;
 413        }
 414
 415        mutex_lock(&acpi_ioremap_lock);
 416        map = acpi_map_lookup_virt(virt, size);
 417        if (!map) {
 418                mutex_unlock(&acpi_ioremap_lock);
 419                WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 420                return;
 421        }
 422        acpi_os_drop_map_ref(map);
 423        mutex_unlock(&acpi_ioremap_lock);
 424
 425        acpi_os_map_cleanup(map);
 426}
 427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 428
 429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 430{
 431        return acpi_os_unmap_iomem((void __iomem *)virt, size);
 432}
 433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 434
 435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 436{
 437        u64 addr;
 438        void __iomem *virt;
 439
 440        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 441                return 0;
 442
 443        /* Handle possible alignment issues */
 444        memcpy(&addr, &gas->address, sizeof(addr));
 445        if (!addr || !gas->bit_width)
 446                return -EINVAL;
 447
 448        virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 449        if (!virt)
 450                return -EIO;
 451
 452        return 0;
 453}
 454EXPORT_SYMBOL(acpi_os_map_generic_address);
 455
 456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 457{
 458        u64 addr;
 459        struct acpi_ioremap *map;
 460
 461        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 462                return;
 463
 464        /* Handle possible alignment issues */
 465        memcpy(&addr, &gas->address, sizeof(addr));
 466        if (!addr || !gas->bit_width)
 467                return;
 468
 469        mutex_lock(&acpi_ioremap_lock);
 470        map = acpi_map_lookup(addr, gas->bit_width / 8);
 471        if (!map) {
 472                mutex_unlock(&acpi_ioremap_lock);
 473                return;
 474        }
 475        acpi_os_drop_map_ref(map);
 476        mutex_unlock(&acpi_ioremap_lock);
 477
 478        acpi_os_map_cleanup(map);
 479}
 480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 481
 482#ifdef ACPI_FUTURE_USAGE
 483acpi_status
 484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 485{
 486        if (!phys || !virt)
 487                return AE_BAD_PARAMETER;
 488
 489        *phys = virt_to_phys(virt);
 490
 491        return AE_OK;
 492}
 493#endif
 494
 495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 496static bool acpi_rev_override;
 497
 498int __init acpi_rev_override_setup(char *str)
 499{
 500        acpi_rev_override = true;
 501        return 1;
 502}
 503__setup("acpi_rev_override", acpi_rev_override_setup);
 504#else
 505#define acpi_rev_override       false
 506#endif
 507
 508#define ACPI_MAX_OVERRIDE_LEN 100
 509
 510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 511
 512acpi_status
 513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 514                            acpi_string *new_val)
 515{
 516        if (!init_val || !new_val)
 517                return AE_BAD_PARAMETER;
 518
 519        *new_val = NULL;
 520        if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 521                printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 522                       acpi_os_name);
 523                *new_val = acpi_os_name;
 524        }
 525
 526        if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 527                printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 528                *new_val = (char *)5;
 529        }
 530
 531        return AE_OK;
 532}
 533
 534static irqreturn_t acpi_irq(int irq, void *dev_id)
 535{
 536        u32 handled;
 537
 538        handled = (*acpi_irq_handler) (acpi_irq_context);
 539
 540        if (handled) {
 541                acpi_irq_handled++;
 542                return IRQ_HANDLED;
 543        } else {
 544                acpi_irq_not_handled++;
 545                return IRQ_NONE;
 546        }
 547}
 548
 549acpi_status
 550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 551                                  void *context)
 552{
 553        unsigned int irq;
 554
 555        acpi_irq_stats_init();
 556
 557        /*
 558         * ACPI interrupts different from the SCI in our copy of the FADT are
 559         * not supported.
 560         */
 561        if (gsi != acpi_gbl_FADT.sci_interrupt)
 562                return AE_BAD_PARAMETER;
 563
 564        if (acpi_irq_handler)
 565                return AE_ALREADY_ACQUIRED;
 566
 567        if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 568                printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 569                       gsi);
 570                return AE_OK;
 571        }
 572
 573        acpi_irq_handler = handler;
 574        acpi_irq_context = context;
 575        if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 576                printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 577                acpi_irq_handler = NULL;
 578                return AE_NOT_ACQUIRED;
 579        }
 580        acpi_sci_irq = irq;
 581
 582        return AE_OK;
 583}
 584
 585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 586{
 587        if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 588                return AE_BAD_PARAMETER;
 589
 590        free_irq(acpi_sci_irq, acpi_irq);
 591        acpi_irq_handler = NULL;
 592        acpi_sci_irq = INVALID_ACPI_IRQ;
 593
 594        return AE_OK;
 595}
 596
 597/*
 598 * Running in interpreter thread context, safe to sleep
 599 */
 600
 601void acpi_os_sleep(u64 ms)
 602{
 603        msleep(ms);
 604}
 605
 606void acpi_os_stall(u32 us)
 607{
 608        while (us) {
 609                u32 delay = 1000;
 610
 611                if (delay > us)
 612                        delay = us;
 613                udelay(delay);
 614                touch_nmi_watchdog();
 615                us -= delay;
 616        }
 617}
 618
 619/*
 620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 621 * monotonically increasing timer with 100ns granularity. Do not use
 622 * ktime_get() to implement this function because this function may get
 623 * called after timekeeping has been suspended. Note: calling this function
 624 * after timekeeping has been suspended may lead to unexpected results
 625 * because when timekeeping is suspended the jiffies counter is not
 626 * incremented. See also timekeeping_suspend().
 627 */
 628u64 acpi_os_get_timer(void)
 629{
 630        return (get_jiffies_64() - INITIAL_JIFFIES) *
 631                (ACPI_100NSEC_PER_SEC / HZ);
 632}
 633
 634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 635{
 636        u32 dummy;
 637
 638        if (!value)
 639                value = &dummy;
 640
 641        *value = 0;
 642        if (width <= 8) {
 643                *(u8 *) value = inb(port);
 644        } else if (width <= 16) {
 645                *(u16 *) value = inw(port);
 646        } else if (width <= 32) {
 647                *(u32 *) value = inl(port);
 648        } else {
 649                BUG();
 650        }
 651
 652        return AE_OK;
 653}
 654
 655EXPORT_SYMBOL(acpi_os_read_port);
 656
 657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 658{
 659        if (width <= 8) {
 660                outb(value, port);
 661        } else if (width <= 16) {
 662                outw(value, port);
 663        } else if (width <= 32) {
 664                outl(value, port);
 665        } else {
 666                BUG();
 667        }
 668
 669        return AE_OK;
 670}
 671
 672EXPORT_SYMBOL(acpi_os_write_port);
 673
 674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 675{
 676
 677        switch (width) {
 678        case 8:
 679                *(u8 *) value = readb(virt_addr);
 680                break;
 681        case 16:
 682                *(u16 *) value = readw(virt_addr);
 683                break;
 684        case 32:
 685                *(u32 *) value = readl(virt_addr);
 686                break;
 687        case 64:
 688                *(u64 *) value = readq(virt_addr);
 689                break;
 690        default:
 691                return -EINVAL;
 692        }
 693
 694        return 0;
 695}
 696
 697acpi_status
 698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 699{
 700        void __iomem *virt_addr;
 701        unsigned int size = width / 8;
 702        bool unmap = false;
 703        u64 dummy;
 704        int error;
 705
 706        rcu_read_lock();
 707        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 708        if (!virt_addr) {
 709                rcu_read_unlock();
 710                virt_addr = acpi_os_ioremap(phys_addr, size);
 711                if (!virt_addr)
 712                        return AE_BAD_ADDRESS;
 713                unmap = true;
 714        }
 715
 716        if (!value)
 717                value = &dummy;
 718
 719        error = acpi_os_read_iomem(virt_addr, value, width);
 720        BUG_ON(error);
 721
 722        if (unmap)
 723                iounmap(virt_addr);
 724        else
 725                rcu_read_unlock();
 726
 727        return AE_OK;
 728}
 729
 730acpi_status
 731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 732{
 733        void __iomem *virt_addr;
 734        unsigned int size = width / 8;
 735        bool unmap = false;
 736
 737        rcu_read_lock();
 738        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 739        if (!virt_addr) {
 740                rcu_read_unlock();
 741                virt_addr = acpi_os_ioremap(phys_addr, size);
 742                if (!virt_addr)
 743                        return AE_BAD_ADDRESS;
 744                unmap = true;
 745        }
 746
 747        switch (width) {
 748        case 8:
 749                writeb(value, virt_addr);
 750                break;
 751        case 16:
 752                writew(value, virt_addr);
 753                break;
 754        case 32:
 755                writel(value, virt_addr);
 756                break;
 757        case 64:
 758                writeq(value, virt_addr);
 759                break;
 760        default:
 761                BUG();
 762        }
 763
 764        if (unmap)
 765                iounmap(virt_addr);
 766        else
 767                rcu_read_unlock();
 768
 769        return AE_OK;
 770}
 771
 772#ifdef CONFIG_PCI
 773acpi_status
 774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 775                               u64 *value, u32 width)
 776{
 777        int result, size;
 778        u32 value32;
 779
 780        if (!value)
 781                return AE_BAD_PARAMETER;
 782
 783        switch (width) {
 784        case 8:
 785                size = 1;
 786                break;
 787        case 16:
 788                size = 2;
 789                break;
 790        case 32:
 791                size = 4;
 792                break;
 793        default:
 794                return AE_ERROR;
 795        }
 796
 797        result = raw_pci_read(pci_id->segment, pci_id->bus,
 798                                PCI_DEVFN(pci_id->device, pci_id->function),
 799                                reg, size, &value32);
 800        *value = value32;
 801
 802        return (result ? AE_ERROR : AE_OK);
 803}
 804
 805acpi_status
 806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 807                                u64 value, u32 width)
 808{
 809        int result, size;
 810
 811        switch (width) {
 812        case 8:
 813                size = 1;
 814                break;
 815        case 16:
 816                size = 2;
 817                break;
 818        case 32:
 819                size = 4;
 820                break;
 821        default:
 822                return AE_ERROR;
 823        }
 824
 825        result = raw_pci_write(pci_id->segment, pci_id->bus,
 826                                PCI_DEVFN(pci_id->device, pci_id->function),
 827                                reg, size, value);
 828
 829        return (result ? AE_ERROR : AE_OK);
 830}
 831#endif
 832
 833static void acpi_os_execute_deferred(struct work_struct *work)
 834{
 835        struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 836
 837        dpc->function(dpc->context);
 838        kfree(dpc);
 839}
 840
 841#ifdef CONFIG_ACPI_DEBUGGER
 842static struct acpi_debugger acpi_debugger;
 843static bool acpi_debugger_initialized;
 844
 845int acpi_register_debugger(struct module *owner,
 846                           const struct acpi_debugger_ops *ops)
 847{
 848        int ret = 0;
 849
 850        mutex_lock(&acpi_debugger.lock);
 851        if (acpi_debugger.ops) {
 852                ret = -EBUSY;
 853                goto err_lock;
 854        }
 855
 856        acpi_debugger.owner = owner;
 857        acpi_debugger.ops = ops;
 858
 859err_lock:
 860        mutex_unlock(&acpi_debugger.lock);
 861        return ret;
 862}
 863EXPORT_SYMBOL(acpi_register_debugger);
 864
 865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 866{
 867        mutex_lock(&acpi_debugger.lock);
 868        if (ops == acpi_debugger.ops) {
 869                acpi_debugger.ops = NULL;
 870                acpi_debugger.owner = NULL;
 871        }
 872        mutex_unlock(&acpi_debugger.lock);
 873}
 874EXPORT_SYMBOL(acpi_unregister_debugger);
 875
 876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 877{
 878        int ret;
 879        int (*func)(acpi_osd_exec_callback, void *);
 880        struct module *owner;
 881
 882        if (!acpi_debugger_initialized)
 883                return -ENODEV;
 884        mutex_lock(&acpi_debugger.lock);
 885        if (!acpi_debugger.ops) {
 886                ret = -ENODEV;
 887                goto err_lock;
 888        }
 889        if (!try_module_get(acpi_debugger.owner)) {
 890                ret = -ENODEV;
 891                goto err_lock;
 892        }
 893        func = acpi_debugger.ops->create_thread;
 894        owner = acpi_debugger.owner;
 895        mutex_unlock(&acpi_debugger.lock);
 896
 897        ret = func(function, context);
 898
 899        mutex_lock(&acpi_debugger.lock);
 900        module_put(owner);
 901err_lock:
 902        mutex_unlock(&acpi_debugger.lock);
 903        return ret;
 904}
 905
 906ssize_t acpi_debugger_write_log(const char *msg)
 907{
 908        ssize_t ret;
 909        ssize_t (*func)(const char *);
 910        struct module *owner;
 911
 912        if (!acpi_debugger_initialized)
 913                return -ENODEV;
 914        mutex_lock(&acpi_debugger.lock);
 915        if (!acpi_debugger.ops) {
 916                ret = -ENODEV;
 917                goto err_lock;
 918        }
 919        if (!try_module_get(acpi_debugger.owner)) {
 920                ret = -ENODEV;
 921                goto err_lock;
 922        }
 923        func = acpi_debugger.ops->write_log;
 924        owner = acpi_debugger.owner;
 925        mutex_unlock(&acpi_debugger.lock);
 926
 927        ret = func(msg);
 928
 929        mutex_lock(&acpi_debugger.lock);
 930        module_put(owner);
 931err_lock:
 932        mutex_unlock(&acpi_debugger.lock);
 933        return ret;
 934}
 935
 936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 937{
 938        ssize_t ret;
 939        ssize_t (*func)(char *, size_t);
 940        struct module *owner;
 941
 942        if (!acpi_debugger_initialized)
 943                return -ENODEV;
 944        mutex_lock(&acpi_debugger.lock);
 945        if (!acpi_debugger.ops) {
 946                ret = -ENODEV;
 947                goto err_lock;
 948        }
 949        if (!try_module_get(acpi_debugger.owner)) {
 950                ret = -ENODEV;
 951                goto err_lock;
 952        }
 953        func = acpi_debugger.ops->read_cmd;
 954        owner = acpi_debugger.owner;
 955        mutex_unlock(&acpi_debugger.lock);
 956
 957        ret = func(buffer, buffer_length);
 958
 959        mutex_lock(&acpi_debugger.lock);
 960        module_put(owner);
 961err_lock:
 962        mutex_unlock(&acpi_debugger.lock);
 963        return ret;
 964}
 965
 966int acpi_debugger_wait_command_ready(void)
 967{
 968        int ret;
 969        int (*func)(bool, char *, size_t);
 970        struct module *owner;
 971
 972        if (!acpi_debugger_initialized)
 973                return -ENODEV;
 974        mutex_lock(&acpi_debugger.lock);
 975        if (!acpi_debugger.ops) {
 976                ret = -ENODEV;
 977                goto err_lock;
 978        }
 979        if (!try_module_get(acpi_debugger.owner)) {
 980                ret = -ENODEV;
 981                goto err_lock;
 982        }
 983        func = acpi_debugger.ops->wait_command_ready;
 984        owner = acpi_debugger.owner;
 985        mutex_unlock(&acpi_debugger.lock);
 986
 987        ret = func(acpi_gbl_method_executing,
 988                   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 989
 990        mutex_lock(&acpi_debugger.lock);
 991        module_put(owner);
 992err_lock:
 993        mutex_unlock(&acpi_debugger.lock);
 994        return ret;
 995}
 996
 997int acpi_debugger_notify_command_complete(void)
 998{
 999        int ret;
1000        int (*func)(void);
1001        struct module *owner;
1002
1003        if (!acpi_debugger_initialized)
1004                return -ENODEV;
1005        mutex_lock(&acpi_debugger.lock);
1006        if (!acpi_debugger.ops) {
1007                ret = -ENODEV;
1008                goto err_lock;
1009        }
1010        if (!try_module_get(acpi_debugger.owner)) {
1011                ret = -ENODEV;
1012                goto err_lock;
1013        }
1014        func = acpi_debugger.ops->notify_command_complete;
1015        owner = acpi_debugger.owner;
1016        mutex_unlock(&acpi_debugger.lock);
1017
1018        ret = func();
1019
1020        mutex_lock(&acpi_debugger.lock);
1021        module_put(owner);
1022err_lock:
1023        mutex_unlock(&acpi_debugger.lock);
1024        return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029        mutex_init(&acpi_debugger.lock);
1030        acpi_debugger_initialized = true;
1031        return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION:    acpi_os_execute
1038 *
1039 * PARAMETERS:  Type               - Type of the callback
1040 *              Function           - Function to be executed
1041 *              Context            - Function parameters
1042 *
1043 * RETURN:      Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 *              immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051                            acpi_osd_exec_callback function, void *context)
1052{
1053        acpi_status status = AE_OK;
1054        struct acpi_os_dpc *dpc;
1055        struct workqueue_struct *queue;
1056        int ret;
1057        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058                          "Scheduling function [%p(%p)] for deferred execution.\n",
1059                          function, context));
1060
1061        if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062                ret = acpi_debugger_create_thread(function, context);
1063                if (ret) {
1064                        pr_err("Call to kthread_create() failed.\n");
1065                        status = AE_ERROR;
1066                }
1067                goto out_thread;
1068        }
1069
1070        /*
1071         * Allocate/initialize DPC structure.  Note that this memory will be
1072         * freed by the callee.  The kernel handles the work_struct list  in a
1073         * way that allows us to also free its memory inside the callee.
1074         * Because we may want to schedule several tasks with different
1075         * parameters we can't use the approach some kernel code uses of
1076         * having a static work_struct.
1077         */
1078
1079        dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080        if (!dpc)
1081                return AE_NO_MEMORY;
1082
1083        dpc->function = function;
1084        dpc->context = context;
1085
1086        /*
1087         * To prevent lockdep from complaining unnecessarily, make sure that
1088         * there is a different static lockdep key for each workqueue by using
1089         * INIT_WORK() for each of them separately.
1090         */
1091        if (type == OSL_NOTIFY_HANDLER) {
1092                queue = kacpi_notify_wq;
1093                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094        } else if (type == OSL_GPE_HANDLER) {
1095                queue = kacpid_wq;
1096                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097        } else {
1098                pr_err("Unsupported os_execute type %d.\n", type);
1099                status = AE_ERROR;
1100        }
1101
1102        if (ACPI_FAILURE(status))
1103                goto err_workqueue;
1104
1105        /*
1106         * On some machines, a software-initiated SMI causes corruption unless
1107         * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1108         * typically it's done in GPE-related methods that are run via
1109         * workqueues, so we can avoid the known corruption cases by always
1110         * queueing on CPU 0.
1111         */
1112        ret = queue_work_on(0, queue, &dpc->work);
1113        if (!ret) {
1114                printk(KERN_ERR PREFIX
1115                          "Call to queue_work() failed.\n");
1116                status = AE_ERROR;
1117        }
1118err_workqueue:
1119        if (ACPI_FAILURE(status))
1120                kfree(dpc);
1121out_thread:
1122        return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128        /*
1129         * Make sure the GPE handler or the fixed event handler is not used
1130         * on another CPU after removal.
1131         */
1132        if (acpi_sci_irq_valid())
1133                synchronize_hardirq(acpi_sci_irq);
1134        flush_workqueue(kacpid_wq);
1135        flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140        struct work_struct work;
1141        struct acpi_device *adev;
1142        u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147        struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149        acpi_os_wait_events_complete();
1150        acpi_device_hotplug(hpw->adev, hpw->src);
1151        kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156        struct acpi_hp_work *hpw;
1157
1158        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159                  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160                  adev, src));
1161
1162        hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163        if (!hpw)
1164                return AE_NO_MEMORY;
1165
1166        INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167        hpw->adev = adev;
1168        hpw->src = src;
1169        /*
1170         * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171         * the hotplug code may call driver .remove() functions, which may
1172         * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173         * these workqueues.
1174         */
1175        if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176                kfree(hpw);
1177                return AE_ERROR;
1178        }
1179        return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184        return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190        struct semaphore *sem = NULL;
1191
1192        sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193        if (!sem)
1194                return AE_NO_MEMORY;
1195
1196        sema_init(sem, initial_units);
1197
1198        *handle = (acpi_handle *) sem;
1199
1200        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201                          *handle, initial_units));
1202
1203        return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores?  Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers.  Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215        struct semaphore *sem = (struct semaphore *)handle;
1216
1217        if (!sem)
1218                return AE_BAD_PARAMETER;
1219
1220        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222        BUG_ON(!list_empty(&sem->wait_list));
1223        kfree(sem);
1224        sem = NULL;
1225
1226        return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234        acpi_status status = AE_OK;
1235        struct semaphore *sem = (struct semaphore *)handle;
1236        long jiffies;
1237        int ret = 0;
1238
1239        if (!acpi_os_initialized)
1240                return AE_OK;
1241
1242        if (!sem || (units < 1))
1243                return AE_BAD_PARAMETER;
1244
1245        if (units > 1)
1246                return AE_SUPPORT;
1247
1248        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249                          handle, units, timeout));
1250
1251        if (timeout == ACPI_WAIT_FOREVER)
1252                jiffies = MAX_SCHEDULE_TIMEOUT;
1253        else
1254                jiffies = msecs_to_jiffies(timeout);
1255
1256        ret = down_timeout(sem, jiffies);
1257        if (ret)
1258                status = AE_TIME;
1259
1260        if (ACPI_FAILURE(status)) {
1261                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262                                  "Failed to acquire semaphore[%p|%d|%d], %s",
1263                                  handle, units, timeout,
1264                                  acpi_format_exception(status)));
1265        } else {
1266                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267                                  "Acquired semaphore[%p|%d|%d]", handle,
1268                                  units, timeout));
1269        }
1270
1271        return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279        struct semaphore *sem = (struct semaphore *)handle;
1280
1281        if (!acpi_os_initialized)
1282                return AE_OK;
1283
1284        if (!sem || (units < 1))
1285                return AE_BAD_PARAMETER;
1286
1287        if (units > 1)
1288                return AE_SUPPORT;
1289
1290        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291                          units));
1292
1293        up(sem);
1294
1295        return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301        if (acpi_in_debugger) {
1302                u32 chars;
1303
1304                kdb_read(buffer, buffer_length);
1305
1306                /* remove the CR kdb includes */
1307                chars = strlen(buffer) - 1;
1308                buffer[chars] = '\0';
1309        }
1310#else
1311        int ret;
1312
1313        ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314        if (ret < 0)
1315                return AE_ERROR;
1316        if (bytes_read)
1317                *bytes_read = ret;
1318#endif
1319
1320        return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326        int ret;
1327
1328        ret = acpi_debugger_wait_command_ready();
1329        if (ret < 0)
1330                return AE_ERROR;
1331        return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336        int ret;
1337
1338        ret = acpi_debugger_notify_command_complete();
1339        if (ret < 0)
1340                return AE_ERROR;
1341        return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346        switch (function) {
1347        case ACPI_SIGNAL_FATAL:
1348                printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349                break;
1350        case ACPI_SIGNAL_BREAKPOINT:
1351                /*
1352                 * AML Breakpoint
1353                 * ACPI spec. says to treat it as a NOP unless
1354                 * you are debugging.  So if/when we integrate
1355                 * AML debugger into the kernel debugger its
1356                 * hook will go here.  But until then it is
1357                 * not useful to print anything on breakpoints.
1358                 */
1359                break;
1360        default:
1361                break;
1362        }
1363
1364        return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369        char *p = acpi_os_name;
1370        int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372        if (!str || !*str)
1373                return 0;
1374
1375        for (; count-- && *str; str++) {
1376                if (isalnum(*str) || *str == ' ' || *str == ':')
1377                        *p++ = *str;
1378                else if (*str == '\'' || *str == '"')
1379                        continue;
1380                else
1381                        break;
1382        }
1383        *p = 0;
1384
1385        return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default.  It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399        acpi_gbl_auto_serialize_methods = FALSE;
1400        pr_info("ACPI: auto-serialization disabled\n");
1401
1402        return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 *   - strict (default) (2)
1414 *     -> further driver trying to access the resources will not load
1415 *   - lax              (1)
1416 *     -> further driver trying to access the resources will load, but you
1417 *     get a system message that something might go wrong...
1418 *
1419 *   - no               (0)
1420 *     -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX    1
1425#define ENFORCE_RESOURCES_NO     0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431        if (str == NULL || *str == '\0')
1432                return 0;
1433
1434        if (!strcmp("strict", str))
1435                acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436        else if (!strcmp("lax", str))
1437                acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438        else if (!strcmp("no", str))
1439                acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441        return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450        acpi_adr_space_type space_id;
1451        acpi_size length;
1452        u8 warn = 0;
1453        int clash = 0;
1454
1455        if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456                return 0;
1457        if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458                return 0;
1459
1460        if (res->flags & IORESOURCE_IO)
1461                space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462        else
1463                space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465        length = resource_size(res);
1466        if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467                warn = 1;
1468        clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470        if (clash) {
1471                if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472                        if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473                                printk(KERN_NOTICE "ACPI: This conflict may"
1474                                       " cause random problems and system"
1475                                       " instability\n");
1476                        printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477                               " for this device, you should use it instead of"
1478                               " the native driver\n");
1479                }
1480                if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481                        return -EBUSY;
1482        }
1483        return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488                      const char *name)
1489{
1490        struct resource res = {
1491                .start = start,
1492                .end   = start + n - 1,
1493                .name  = name,
1494                .flags = IORESOURCE_IO,
1495        };
1496
1497        return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502                                              void *_res, void **return_value)
1503{
1504        struct acpi_mem_space_context **mem_ctx;
1505        union acpi_operand_object *handler_obj;
1506        union acpi_operand_object *region_obj2;
1507        union acpi_operand_object *region_obj;
1508        struct resource *res = _res;
1509        acpi_status status;
1510
1511        region_obj = acpi_ns_get_attached_object(handle);
1512        if (!region_obj)
1513                return AE_OK;
1514
1515        handler_obj = region_obj->region.handler;
1516        if (!handler_obj)
1517                return AE_OK;
1518
1519        if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520                return AE_OK;
1521
1522        if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523                return AE_OK;
1524
1525        region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526        if (!region_obj2)
1527                return AE_OK;
1528
1529        mem_ctx = (void *)&region_obj2->extra.region_context;
1530
1531        if (!(mem_ctx[0]->address >= res->start &&
1532              mem_ctx[0]->address < res->end))
1533                return AE_OK;
1534
1535        status = handler_obj->address_space.setup(region_obj,
1536                                                  ACPI_REGION_DEACTIVATE,
1537                                                  NULL, (void **)mem_ctx);
1538        if (ACPI_SUCCESS(status))
1539                region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541        return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561                                u32 level)
1562{
1563        if (!(res->flags & IORESOURCE_MEM))
1564                return AE_TYPE;
1565
1566        return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567                                   acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576        return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585        ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596        acpi_cpu_flags flags;
1597        spin_lock_irqsave(lockp, flags);
1598        return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607        spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION:    acpi_os_create_cache
1615 *
1616 * PARAMETERS:  name      - Ascii name for the cache
1617 *              size      - Size of each cached object
1618 *              depth     - Maximum depth of the cache (in objects) <ignored>
1619 *              cache     - Where the new cache object is returned
1620 *
1621 * RETURN:      status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630        *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631        if (*cache == NULL)
1632                return AE_ERROR;
1633        else
1634                return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION:    acpi_os_purge_cache
1640 *
1641 * PARAMETERS:  Cache           - Handle to cache object
1642 *
1643 * RETURN:      Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651        kmem_cache_shrink(cache);
1652        return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION:    acpi_os_delete_cache
1658 *
1659 * PARAMETERS:  Cache           - Handle to cache object
1660 *
1661 * RETURN:      Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 *              cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670        kmem_cache_destroy(cache);
1671        return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION:    acpi_os_release_object
1677 *
1678 * PARAMETERS:  Cache       - Handle to cache object
1679 *              Object      - The object to be released
1680 *
1681 * RETURN:      None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1684 *              the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690        kmem_cache_free(cache, object);
1691        return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697        acpi_gbl_disable_ssdt_table_install = TRUE;
1698        pr_info("ACPI: static SSDT installation disabled\n");
1699
1700        return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707        printk(KERN_NOTICE PREFIX
1708               "ACPI: Predefined validation mechanism disabled\n");
1709        acpi_gbl_disable_auto_repair = TRUE;
1710
1711        return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723                /*
1724                 * Use acpi_os_map_generic_address to pre-map the reset
1725                 * register if it's in system memory.
1726                 */
1727                int rv;
1728
1729                rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730                pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731        }
1732        acpi_os_initialized = true;
1733
1734        return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739        kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740        kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741        kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742        BUG_ON(!kacpid_wq);
1743        BUG_ON(!kacpi_notify_wq);
1744        BUG_ON(!kacpi_hotplug_wq);
1745        acpi_osi_init();
1746        return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751        if (acpi_irq_handler) {
1752                acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753                                                 acpi_irq_handler);
1754        }
1755
1756        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761                acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763        destroy_workqueue(kacpid_wq);
1764        destroy_workqueue(kacpi_notify_wq);
1765        destroy_workqueue(kacpi_hotplug_wq);
1766
1767        return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771                                  u32 pm1b_control)
1772{
1773        int rc = 0;
1774        if (__acpi_os_prepare_sleep)
1775                rc = __acpi_os_prepare_sleep(sleep_state,
1776                                             pm1a_control, pm1b_control);
1777        if (rc < 0)
1778                return AE_ERROR;
1779        else if (rc > 0)
1780                return AE_CTRL_TERMINATE;
1781
1782        return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786                               u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788        __acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793                                  u32 val_b)
1794{
1795        int rc = 0;
1796        if (__acpi_os_prepare_extended_sleep)
1797                rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798                                             val_a, val_b);
1799        if (rc < 0)
1800                return AE_ERROR;
1801        else if (rc > 0)
1802                return AE_CTRL_TERMINATE;
1803
1804        return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808                                  u32 val_b)
1809{
1810        return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815                               u32 val_a, u32 val_b))
1816{
1817        __acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821                                u32 reg_a_value, u32 reg_b_value)
1822{
1823        acpi_status status;
1824
1825        if (acpi_gbl_reduced_hardware)
1826                status = acpi_os_prepare_extended_sleep(sleep_state,
1827                                                        reg_a_value,
1828                                                        reg_b_value);
1829        else
1830                status = acpi_os_prepare_sleep(sleep_state,
1831                                               reg_a_value, reg_b_value);
1832        return status;
1833}
1834