linux/drivers/block/umem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   4 *
   5 * (C) 2001 San Mehat <nettwerk@valinux.com>
   6 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   7 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   8 *
   9 * This driver for the Micro Memory PCI Memory Module with Battery Backup
  10 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  11 *
  12 * This driver provides a standard block device interface for Micro Memory(tm)
  13 * PCI based RAM boards.
  14 * 10/05/01: Phap Nguyen - Rebuilt the driver
  15 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  16 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  17 *                       - use stand disk partitioning (so fdisk works).
  18 * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
  19 *                       - incorporate into main kernel
  20 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  21 *                       - use spin_lock_bh instead of _irq
  22 *                       - Never block on make_request.  queue
  23 *                         bh's instead.
  24 *                       - unregister umem from devfs at mod unload
  25 *                       - Change version to 2.3
  26 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  27 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  28 * 15May2002:NeilBrown   - convert to bio for 2.5
  29 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  30 *                       - a sequence of writes that cover the card, and
  31 *                       - set initialised bit then.
  32 */
  33
  34#undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
  35#include <linux/fs.h>
  36#include <linux/bio.h>
  37#include <linux/kernel.h>
  38#include <linux/mm.h>
  39#include <linux/mman.h>
  40#include <linux/gfp.h>
  41#include <linux/ioctl.h>
  42#include <linux/module.h>
  43#include <linux/init.h>
  44#include <linux/interrupt.h>
  45#include <linux/timer.h>
  46#include <linux/pci.h>
  47#include <linux/dma-mapping.h>
  48
  49#include <linux/fcntl.h>        /* O_ACCMODE */
  50#include <linux/hdreg.h>  /* HDIO_GETGEO */
  51
  52#include "umem.h"
  53
  54#include <linux/uaccess.h>
  55#include <asm/io.h>
  56
  57#define MM_MAXCARDS 4
  58#define MM_RAHEAD 2      /* two sectors */
  59#define MM_BLKSIZE 1024  /* 1k blocks */
  60#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  61#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  62
  63/*
  64 * Version Information
  65 */
  66
  67#define DRIVER_NAME     "umem"
  68#define DRIVER_VERSION  "v2.3"
  69#define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
  70#define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
  71
  72static int debug;
  73/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  74#define HW_TRACE(x)
  75
  76#define DEBUG_LED_ON_TRANSFER   0x01
  77#define DEBUG_BATTERY_POLLING   0x02
  78
  79module_param(debug, int, 0644);
  80MODULE_PARM_DESC(debug, "Debug bitmask");
  81
  82static int pci_read_cmd = 0x0C;         /* Read Multiple */
  83module_param(pci_read_cmd, int, 0);
  84MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  85
  86static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
  87module_param(pci_write_cmd, int, 0);
  88MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  89
  90static int pci_cmds;
  91
  92static int major_nr;
  93
  94#include <linux/blkdev.h>
  95#include <linux/blkpg.h>
  96
  97struct cardinfo {
  98        struct pci_dev  *dev;
  99
 100        unsigned char   __iomem *csr_remap;
 101        unsigned int    mm_size;  /* size in kbytes */
 102
 103        unsigned int    init_size; /* initial segment, in sectors,
 104                                    * that we know to
 105                                    * have been written
 106                                    */
 107        struct bio      *bio, *currentbio, **biotail;
 108        struct bvec_iter current_iter;
 109
 110        struct request_queue *queue;
 111
 112        struct mm_page {
 113                dma_addr_t              page_dma;
 114                struct mm_dma_desc      *desc;
 115                int                     cnt, headcnt;
 116                struct bio              *bio, **biotail;
 117                struct bvec_iter        iter;
 118        } mm_pages[2];
 119#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 120
 121        int  Active, Ready;
 122
 123        struct tasklet_struct   tasklet;
 124        unsigned int dma_status;
 125
 126        struct {
 127                int             good;
 128                int             warned;
 129                unsigned long   last_change;
 130        } battery[2];
 131
 132        spinlock_t      lock;
 133        int             check_batteries;
 134
 135        int             flags;
 136};
 137
 138static struct cardinfo cards[MM_MAXCARDS];
 139static struct timer_list battery_timer;
 140
 141static int num_cards;
 142
 143static struct gendisk *mm_gendisk[MM_MAXCARDS];
 144
 145static void check_batteries(struct cardinfo *card);
 146
 147static int get_userbit(struct cardinfo *card, int bit)
 148{
 149        unsigned char led;
 150
 151        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 152        return led & bit;
 153}
 154
 155static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 156{
 157        unsigned char led;
 158
 159        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 160        if (state)
 161                led |= bit;
 162        else
 163                led &= ~bit;
 164        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 165
 166        return 0;
 167}
 168
 169/*
 170 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 171 */
 172static void set_led(struct cardinfo *card, int shift, unsigned char state)
 173{
 174        unsigned char led;
 175
 176        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 177        if (state == LED_FLIP)
 178                led ^= (1<<shift);
 179        else {
 180                led &= ~(0x03 << shift);
 181                led |= (state << shift);
 182        }
 183        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 184
 185}
 186
 187#ifdef MM_DIAG
 188static void dump_regs(struct cardinfo *card)
 189{
 190        unsigned char *p;
 191        int i, i1;
 192
 193        p = card->csr_remap;
 194        for (i = 0; i < 8; i++) {
 195                printk(KERN_DEBUG "%p   ", p);
 196
 197                for (i1 = 0; i1 < 16; i1++)
 198                        printk("%02x ", *p++);
 199
 200                printk("\n");
 201        }
 202}
 203#endif
 204
 205static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 206{
 207        dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 208        if (dmastat & DMASCR_ANY_ERR)
 209                printk(KERN_CONT "ANY_ERR ");
 210        if (dmastat & DMASCR_MBE_ERR)
 211                printk(KERN_CONT "MBE_ERR ");
 212        if (dmastat & DMASCR_PARITY_ERR_REP)
 213                printk(KERN_CONT "PARITY_ERR_REP ");
 214        if (dmastat & DMASCR_PARITY_ERR_DET)
 215                printk(KERN_CONT "PARITY_ERR_DET ");
 216        if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 217                printk(KERN_CONT "SYSTEM_ERR_SIG ");
 218        if (dmastat & DMASCR_TARGET_ABT)
 219                printk(KERN_CONT "TARGET_ABT ");
 220        if (dmastat & DMASCR_MASTER_ABT)
 221                printk(KERN_CONT "MASTER_ABT ");
 222        if (dmastat & DMASCR_CHAIN_COMPLETE)
 223                printk(KERN_CONT "CHAIN_COMPLETE ");
 224        if (dmastat & DMASCR_DMA_COMPLETE)
 225                printk(KERN_CONT "DMA_COMPLETE ");
 226        printk("\n");
 227}
 228
 229/*
 230 * Theory of request handling
 231 *
 232 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 233 * We have two pages of mm_dma_desc, holding about 64 descriptors
 234 * each.  These are allocated at init time.
 235 * One page is "Ready" and is either full, or can have request added.
 236 * The other page might be "Active", which DMA is happening on it.
 237 *
 238 * Whenever IO on the active page completes, the Ready page is activated
 239 * and the ex-Active page is clean out and made Ready.
 240 * Otherwise the Ready page is only activated when it becomes full.
 241 *
 242 * If a request arrives while both pages a full, it is queued, and b_rdev is
 243 * overloaded to record whether it was a read or a write.
 244 *
 245 * The interrupt handler only polls the device to clear the interrupt.
 246 * The processing of the result is done in a tasklet.
 247 */
 248
 249static void mm_start_io(struct cardinfo *card)
 250{
 251        /* we have the lock, we know there is
 252         * no IO active, and we know that card->Active
 253         * is set
 254         */
 255        struct mm_dma_desc *desc;
 256        struct mm_page *page;
 257        int offset;
 258
 259        /* make the last descriptor end the chain */
 260        page = &card->mm_pages[card->Active];
 261        pr_debug("start_io: %d %d->%d\n",
 262                card->Active, page->headcnt, page->cnt - 1);
 263        desc = &page->desc[page->cnt-1];
 264
 265        desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 266        desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 267        desc->sem_control_bits = desc->control_bits;
 268
 269
 270        if (debug & DEBUG_LED_ON_TRANSFER)
 271                set_led(card, LED_REMOVE, LED_ON);
 272
 273        desc = &page->desc[page->headcnt];
 274        writel(0, card->csr_remap + DMA_PCI_ADDR);
 275        writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 276
 277        writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 278        writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 279
 280        writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 281        writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 282
 283        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 284        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 285
 286        offset = ((char *)desc) - ((char *)page->desc);
 287        writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 288               card->csr_remap + DMA_DESCRIPTOR_ADDR);
 289        /* Force the value to u64 before shifting otherwise >> 32 is undefined C
 290         * and on some ports will do nothing ! */
 291        writel(cpu_to_le32(((u64)page->page_dma)>>32),
 292               card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 293
 294        /* Go, go, go */
 295        writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 296               card->csr_remap + DMA_STATUS_CTRL);
 297}
 298
 299static int add_bio(struct cardinfo *card);
 300
 301static void activate(struct cardinfo *card)
 302{
 303        /* if No page is Active, and Ready is
 304         * not empty, then switch Ready page
 305         * to active and start IO.
 306         * Then add any bh's that are available to Ready
 307         */
 308
 309        do {
 310                while (add_bio(card))
 311                        ;
 312
 313                if (card->Active == -1 &&
 314                    card->mm_pages[card->Ready].cnt > 0) {
 315                        card->Active = card->Ready;
 316                        card->Ready = 1-card->Ready;
 317                        mm_start_io(card);
 318                }
 319
 320        } while (card->Active == -1 && add_bio(card));
 321}
 322
 323static inline void reset_page(struct mm_page *page)
 324{
 325        page->cnt = 0;
 326        page->headcnt = 0;
 327        page->bio = NULL;
 328        page->biotail = &page->bio;
 329}
 330
 331/*
 332 * If there is room on Ready page, take
 333 * one bh off list and add it.
 334 * return 1 if there was room, else 0.
 335 */
 336static int add_bio(struct cardinfo *card)
 337{
 338        struct mm_page *p;
 339        struct mm_dma_desc *desc;
 340        dma_addr_t dma_handle;
 341        int offset;
 342        struct bio *bio;
 343        struct bio_vec vec;
 344
 345        bio = card->currentbio;
 346        if (!bio && card->bio) {
 347                card->currentbio = card->bio;
 348                card->current_iter = card->bio->bi_iter;
 349                card->bio = card->bio->bi_next;
 350                if (card->bio == NULL)
 351                        card->biotail = &card->bio;
 352                card->currentbio->bi_next = NULL;
 353                return 1;
 354        }
 355        if (!bio)
 356                return 0;
 357
 358        if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 359                return 0;
 360
 361        vec = bio_iter_iovec(bio, card->current_iter);
 362
 363        dma_handle = dma_map_page(&card->dev->dev,
 364                                  vec.bv_page,
 365                                  vec.bv_offset,
 366                                  vec.bv_len,
 367                                  bio_op(bio) == REQ_OP_READ ?
 368                                  DMA_FROM_DEVICE : DMA_TO_DEVICE);
 369
 370        p = &card->mm_pages[card->Ready];
 371        desc = &p->desc[p->cnt];
 372        p->cnt++;
 373        if (p->bio == NULL)
 374                p->iter = card->current_iter;
 375        if ((p->biotail) != &bio->bi_next) {
 376                *(p->biotail) = bio;
 377                p->biotail = &(bio->bi_next);
 378                bio->bi_next = NULL;
 379        }
 380
 381        desc->data_dma_handle = dma_handle;
 382
 383        desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 384        desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
 385        desc->transfer_size = cpu_to_le32(vec.bv_len);
 386        offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 387        desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 388        desc->zero1 = desc->zero2 = 0;
 389        offset = (((char *)(desc+1)) - ((char *)p->desc));
 390        desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 391        desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 392                                         DMASCR_PARITY_INT_EN|
 393                                         DMASCR_CHAIN_EN |
 394                                         DMASCR_SEM_EN |
 395                                         pci_cmds);
 396        if (bio_op(bio) == REQ_OP_WRITE)
 397                desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 398        desc->sem_control_bits = desc->control_bits;
 399
 400
 401        bio_advance_iter(bio, &card->current_iter, vec.bv_len);
 402        if (!card->current_iter.bi_size)
 403                card->currentbio = NULL;
 404
 405        return 1;
 406}
 407
 408static void process_page(unsigned long data)
 409{
 410        /* check if any of the requests in the page are DMA_COMPLETE,
 411         * and deal with them appropriately.
 412         * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 413         * dma must have hit an error on that descriptor, so use dma_status
 414         * instead and assume that all following descriptors must be re-tried.
 415         */
 416        struct mm_page *page;
 417        struct bio *return_bio = NULL;
 418        struct cardinfo *card = (struct cardinfo *)data;
 419        unsigned int dma_status = card->dma_status;
 420
 421        spin_lock(&card->lock);
 422        if (card->Active < 0)
 423                goto out_unlock;
 424        page = &card->mm_pages[card->Active];
 425
 426        while (page->headcnt < page->cnt) {
 427                struct bio *bio = page->bio;
 428                struct mm_dma_desc *desc = &page->desc[page->headcnt];
 429                int control = le32_to_cpu(desc->sem_control_bits);
 430                int last = 0;
 431                struct bio_vec vec;
 432
 433                if (!(control & DMASCR_DMA_COMPLETE)) {
 434                        control = dma_status;
 435                        last = 1;
 436                }
 437
 438                page->headcnt++;
 439                vec = bio_iter_iovec(bio, page->iter);
 440                bio_advance_iter(bio, &page->iter, vec.bv_len);
 441
 442                if (!page->iter.bi_size) {
 443                        page->bio = bio->bi_next;
 444                        if (page->bio)
 445                                page->iter = page->bio->bi_iter;
 446                }
 447
 448                dma_unmap_page(&card->dev->dev, desc->data_dma_handle,
 449                               vec.bv_len,
 450                                 (control & DMASCR_TRANSFER_READ) ?
 451                                DMA_TO_DEVICE : DMA_FROM_DEVICE);
 452                if (control & DMASCR_HARD_ERROR) {
 453                        /* error */
 454                        bio->bi_status = BLK_STS_IOERR;
 455                        dev_printk(KERN_WARNING, &card->dev->dev,
 456                                "I/O error on sector %d/%d\n",
 457                                le32_to_cpu(desc->local_addr)>>9,
 458                                le32_to_cpu(desc->transfer_size));
 459                        dump_dmastat(card, control);
 460                } else if (op_is_write(bio_op(bio)) &&
 461                           le32_to_cpu(desc->local_addr) >> 9 ==
 462                                card->init_size) {
 463                        card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 464                        if (card->init_size >> 1 >= card->mm_size) {
 465                                dev_printk(KERN_INFO, &card->dev->dev,
 466                                        "memory now initialised\n");
 467                                set_userbit(card, MEMORY_INITIALIZED, 1);
 468                        }
 469                }
 470                if (bio != page->bio) {
 471                        bio->bi_next = return_bio;
 472                        return_bio = bio;
 473                }
 474
 475                if (last)
 476                        break;
 477        }
 478
 479        if (debug & DEBUG_LED_ON_TRANSFER)
 480                set_led(card, LED_REMOVE, LED_OFF);
 481
 482        if (card->check_batteries) {
 483                card->check_batteries = 0;
 484                check_batteries(card);
 485        }
 486        if (page->headcnt >= page->cnt) {
 487                reset_page(page);
 488                card->Active = -1;
 489                activate(card);
 490        } else {
 491                /* haven't finished with this one yet */
 492                pr_debug("do some more\n");
 493                mm_start_io(card);
 494        }
 495 out_unlock:
 496        spin_unlock(&card->lock);
 497
 498        while (return_bio) {
 499                struct bio *bio = return_bio;
 500
 501                return_bio = bio->bi_next;
 502                bio->bi_next = NULL;
 503                bio_endio(bio);
 504        }
 505}
 506
 507static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
 508{
 509        struct cardinfo *card = cb->data;
 510
 511        spin_lock_irq(&card->lock);
 512        activate(card);
 513        spin_unlock_irq(&card->lock);
 514        kfree(cb);
 515}
 516
 517static int mm_check_plugged(struct cardinfo *card)
 518{
 519        return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
 520}
 521
 522static blk_qc_t mm_make_request(struct request_queue *q, struct bio *bio)
 523{
 524        struct cardinfo *card = q->queuedata;
 525        pr_debug("mm_make_request %llu %u\n",
 526                 (unsigned long long)bio->bi_iter.bi_sector,
 527                 bio->bi_iter.bi_size);
 528
 529        blk_queue_split(q, &bio);
 530
 531        spin_lock_irq(&card->lock);
 532        *card->biotail = bio;
 533        bio->bi_next = NULL;
 534        card->biotail = &bio->bi_next;
 535        if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
 536                activate(card);
 537        spin_unlock_irq(&card->lock);
 538
 539        return BLK_QC_T_NONE;
 540}
 541
 542static irqreturn_t mm_interrupt(int irq, void *__card)
 543{
 544        struct cardinfo *card = (struct cardinfo *) __card;
 545        unsigned int dma_status;
 546        unsigned short cfg_status;
 547
 548HW_TRACE(0x30);
 549
 550        dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 551
 552        if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 553                /* interrupt wasn't for me ... */
 554                return IRQ_NONE;
 555        }
 556
 557        /* clear COMPLETION interrupts */
 558        if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 559                writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 560                       card->csr_remap + DMA_STATUS_CTRL);
 561        else
 562                writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 563                       card->csr_remap + DMA_STATUS_CTRL + 2);
 564
 565        /* log errors and clear interrupt status */
 566        if (dma_status & DMASCR_ANY_ERR) {
 567                unsigned int    data_log1, data_log2;
 568                unsigned int    addr_log1, addr_log2;
 569                unsigned char   stat, count, syndrome, check;
 570
 571                stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 572
 573                data_log1 = le32_to_cpu(readl(card->csr_remap +
 574                                                ERROR_DATA_LOG));
 575                data_log2 = le32_to_cpu(readl(card->csr_remap +
 576                                                ERROR_DATA_LOG + 4));
 577                addr_log1 = le32_to_cpu(readl(card->csr_remap +
 578                                                ERROR_ADDR_LOG));
 579                addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 580
 581                count = readb(card->csr_remap + ERROR_COUNT);
 582                syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 583                check = readb(card->csr_remap + ERROR_CHECK);
 584
 585                dump_dmastat(card, dma_status);
 586
 587                if (stat & 0x01)
 588                        dev_printk(KERN_ERR, &card->dev->dev,
 589                                "Memory access error detected (err count %d)\n",
 590                                count);
 591                if (stat & 0x02)
 592                        dev_printk(KERN_ERR, &card->dev->dev,
 593                                "Multi-bit EDC error\n");
 594
 595                dev_printk(KERN_ERR, &card->dev->dev,
 596                        "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 597                        addr_log2, addr_log1, data_log2, data_log1);
 598                dev_printk(KERN_ERR, &card->dev->dev,
 599                        "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 600                        check, syndrome);
 601
 602                writeb(0, card->csr_remap + ERROR_COUNT);
 603        }
 604
 605        if (dma_status & DMASCR_PARITY_ERR_REP) {
 606                dev_printk(KERN_ERR, &card->dev->dev,
 607                        "PARITY ERROR REPORTED\n");
 608                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 609                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 610        }
 611
 612        if (dma_status & DMASCR_PARITY_ERR_DET) {
 613                dev_printk(KERN_ERR, &card->dev->dev,
 614                        "PARITY ERROR DETECTED\n");
 615                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 616                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 617        }
 618
 619        if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 620                dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 621                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 622                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 623        }
 624
 625        if (dma_status & DMASCR_TARGET_ABT) {
 626                dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 627                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 628                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 629        }
 630
 631        if (dma_status & DMASCR_MASTER_ABT) {
 632                dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 633                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 634                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 635        }
 636
 637        /* and process the DMA descriptors */
 638        card->dma_status = dma_status;
 639        tasklet_schedule(&card->tasklet);
 640
 641HW_TRACE(0x36);
 642
 643        return IRQ_HANDLED;
 644}
 645
 646/*
 647 * If both batteries are good, no LED
 648 * If either battery has been warned, solid LED
 649 * If both batteries are bad, flash the LED quickly
 650 * If either battery is bad, flash the LED semi quickly
 651 */
 652static void set_fault_to_battery_status(struct cardinfo *card)
 653{
 654        if (card->battery[0].good && card->battery[1].good)
 655                set_led(card, LED_FAULT, LED_OFF);
 656        else if (card->battery[0].warned || card->battery[1].warned)
 657                set_led(card, LED_FAULT, LED_ON);
 658        else if (!card->battery[0].good && !card->battery[1].good)
 659                set_led(card, LED_FAULT, LED_FLASH_7_0);
 660        else
 661                set_led(card, LED_FAULT, LED_FLASH_3_5);
 662}
 663
 664static void init_battery_timer(void);
 665
 666static int check_battery(struct cardinfo *card, int battery, int status)
 667{
 668        if (status != card->battery[battery].good) {
 669                card->battery[battery].good = !card->battery[battery].good;
 670                card->battery[battery].last_change = jiffies;
 671
 672                if (card->battery[battery].good) {
 673                        dev_printk(KERN_ERR, &card->dev->dev,
 674                                "Battery %d now good\n", battery + 1);
 675                        card->battery[battery].warned = 0;
 676                } else
 677                        dev_printk(KERN_ERR, &card->dev->dev,
 678                                "Battery %d now FAILED\n", battery + 1);
 679
 680                return 1;
 681        } else if (!card->battery[battery].good &&
 682                   !card->battery[battery].warned &&
 683                   time_after_eq(jiffies, card->battery[battery].last_change +
 684                                 (HZ * 60 * 60 * 5))) {
 685                dev_printk(KERN_ERR, &card->dev->dev,
 686                        "Battery %d still FAILED after 5 hours\n", battery + 1);
 687                card->battery[battery].warned = 1;
 688
 689                return 1;
 690        }
 691
 692        return 0;
 693}
 694
 695static void check_batteries(struct cardinfo *card)
 696{
 697        /* NOTE: this must *never* be called while the card
 698         * is doing (bus-to-card) DMA, or you will need the
 699         * reset switch
 700         */
 701        unsigned char status;
 702        int ret1, ret2;
 703
 704        status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 705        if (debug & DEBUG_BATTERY_POLLING)
 706                dev_printk(KERN_DEBUG, &card->dev->dev,
 707                        "checking battery status, 1 = %s, 2 = %s\n",
 708                       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 709                       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 710
 711        ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 712        ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 713
 714        if (ret1 || ret2)
 715                set_fault_to_battery_status(card);
 716}
 717
 718static void check_all_batteries(struct timer_list *unused)
 719{
 720        int i;
 721
 722        for (i = 0; i < num_cards; i++)
 723                if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 724                        struct cardinfo *card = &cards[i];
 725                        spin_lock_bh(&card->lock);
 726                        if (card->Active >= 0)
 727                                card->check_batteries = 1;
 728                        else
 729                                check_batteries(card);
 730                        spin_unlock_bh(&card->lock);
 731                }
 732
 733        init_battery_timer();
 734}
 735
 736static void init_battery_timer(void)
 737{
 738        timer_setup(&battery_timer, check_all_batteries, 0);
 739        battery_timer.expires = jiffies + (HZ * 60);
 740        add_timer(&battery_timer);
 741}
 742
 743static void del_battery_timer(void)
 744{
 745        del_timer(&battery_timer);
 746}
 747
 748/*
 749 * Note no locks taken out here.  In a worst case scenario, we could drop
 750 * a chunk of system memory.  But that should never happen, since validation
 751 * happens at open or mount time, when locks are held.
 752 *
 753 *      That's crap, since doing that while some partitions are opened
 754 * or mounted will give you really nasty results.
 755 */
 756static int mm_revalidate(struct gendisk *disk)
 757{
 758        struct cardinfo *card = disk->private_data;
 759        set_capacity(disk, card->mm_size << 1);
 760        return 0;
 761}
 762
 763static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 764{
 765        struct cardinfo *card = bdev->bd_disk->private_data;
 766        int size = card->mm_size * (1024 / MM_HARDSECT);
 767
 768        /*
 769         * get geometry: we have to fake one...  trim the size to a
 770         * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 771         * whatever cylinders.
 772         */
 773        geo->heads     = 64;
 774        geo->sectors   = 32;
 775        geo->cylinders = size / (geo->heads * geo->sectors);
 776        return 0;
 777}
 778
 779static const struct block_device_operations mm_fops = {
 780        .owner          = THIS_MODULE,
 781        .getgeo         = mm_getgeo,
 782        .revalidate_disk = mm_revalidate,
 783};
 784
 785static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 786{
 787        int ret = -ENODEV;
 788        struct cardinfo *card = &cards[num_cards];
 789        unsigned char   mem_present;
 790        unsigned char   batt_status;
 791        unsigned int    saved_bar, data;
 792        unsigned long   csr_base;
 793        unsigned long   csr_len;
 794        int             magic_number;
 795        static int      printed_version;
 796
 797        if (!printed_version++)
 798                printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 799
 800        ret = pci_enable_device(dev);
 801        if (ret)
 802                return ret;
 803
 804        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 805        pci_set_master(dev);
 806
 807        card->dev         = dev;
 808
 809        csr_base = pci_resource_start(dev, 0);
 810        csr_len  = pci_resource_len(dev, 0);
 811        if (!csr_base || !csr_len)
 812                return -ENODEV;
 813
 814        dev_printk(KERN_INFO, &dev->dev,
 815          "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 816
 817        if (dma_set_mask(&dev->dev, DMA_BIT_MASK(64)) &&
 818            dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) {
 819                dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 820                return  -ENOMEM;
 821        }
 822
 823        ret = pci_request_regions(dev, DRIVER_NAME);
 824        if (ret) {
 825                dev_printk(KERN_ERR, &card->dev->dev,
 826                        "Unable to request memory region\n");
 827                goto failed_req_csr;
 828        }
 829
 830        card->csr_remap = ioremap_nocache(csr_base, csr_len);
 831        if (!card->csr_remap) {
 832                dev_printk(KERN_ERR, &card->dev->dev,
 833                        "Unable to remap memory region\n");
 834                ret = -ENOMEM;
 835
 836                goto failed_remap_csr;
 837        }
 838
 839        dev_printk(KERN_INFO, &card->dev->dev,
 840                "CSR 0x%08lx -> 0x%p (0x%lx)\n",
 841               csr_base, card->csr_remap, csr_len);
 842
 843        switch (card->dev->device) {
 844        case 0x5415:
 845                card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 846                magic_number = 0x59;
 847                break;
 848
 849        case 0x5425:
 850                card->flags |= UM_FLAG_NO_BYTE_STATUS;
 851                magic_number = 0x5C;
 852                break;
 853
 854        case 0x6155:
 855                card->flags |= UM_FLAG_NO_BYTE_STATUS |
 856                                UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 857                magic_number = 0x99;
 858                break;
 859
 860        default:
 861                magic_number = 0x100;
 862                break;
 863        }
 864
 865        if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 866                dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 867                ret = -ENOMEM;
 868                goto failed_magic;
 869        }
 870
 871        card->mm_pages[0].desc = dma_alloc_coherent(&card->dev->dev,
 872                        PAGE_SIZE * 2, &card->mm_pages[0].page_dma, GFP_KERNEL);
 873        card->mm_pages[1].desc = dma_alloc_coherent(&card->dev->dev,
 874                        PAGE_SIZE * 2, &card->mm_pages[1].page_dma, GFP_KERNEL);
 875        if (card->mm_pages[0].desc == NULL ||
 876            card->mm_pages[1].desc == NULL) {
 877                dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 878                goto failed_alloc;
 879        }
 880        reset_page(&card->mm_pages[0]);
 881        reset_page(&card->mm_pages[1]);
 882        card->Ready = 0;        /* page 0 is ready */
 883        card->Active = -1;      /* no page is active */
 884        card->bio = NULL;
 885        card->biotail = &card->bio;
 886        spin_lock_init(&card->lock);
 887
 888        card->queue = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
 889        if (!card->queue)
 890                goto failed_alloc;
 891
 892        blk_queue_make_request(card->queue, mm_make_request);
 893        card->queue->queuedata = card;
 894
 895        tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 896
 897        card->check_batteries = 0;
 898
 899        mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 900        switch (mem_present) {
 901        case MEM_128_MB:
 902                card->mm_size = 1024 * 128;
 903                break;
 904        case MEM_256_MB:
 905                card->mm_size = 1024 * 256;
 906                break;
 907        case MEM_512_MB:
 908                card->mm_size = 1024 * 512;
 909                break;
 910        case MEM_1_GB:
 911                card->mm_size = 1024 * 1024;
 912                break;
 913        case MEM_2_GB:
 914                card->mm_size = 1024 * 2048;
 915                break;
 916        default:
 917                card->mm_size = 0;
 918                break;
 919        }
 920
 921        /* Clear the LED's we control */
 922        set_led(card, LED_REMOVE, LED_OFF);
 923        set_led(card, LED_FAULT, LED_OFF);
 924
 925        batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 926
 927        card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 928        card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 929        card->battery[0].last_change = card->battery[1].last_change = jiffies;
 930
 931        if (card->flags & UM_FLAG_NO_BATT)
 932                dev_printk(KERN_INFO, &card->dev->dev,
 933                        "Size %d KB\n", card->mm_size);
 934        else {
 935                dev_printk(KERN_INFO, &card->dev->dev,
 936                        "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 937                       card->mm_size,
 938                       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 939                       card->battery[0].good ? "OK" : "FAILURE",
 940                       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 941                       card->battery[1].good ? "OK" : "FAILURE");
 942
 943                set_fault_to_battery_status(card);
 944        }
 945
 946        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 947        data = 0xffffffff;
 948        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 949        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 950        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 951        data &= 0xfffffff0;
 952        data = ~data;
 953        data += 1;
 954
 955        if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 956                        card)) {
 957                dev_printk(KERN_ERR, &card->dev->dev,
 958                        "Unable to allocate IRQ\n");
 959                ret = -ENODEV;
 960                goto failed_req_irq;
 961        }
 962
 963        dev_printk(KERN_INFO, &card->dev->dev,
 964                "Window size %d bytes, IRQ %d\n", data, dev->irq);
 965
 966        pci_set_drvdata(dev, card);
 967
 968        if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
 969                pci_write_cmd = 0x07;   /* then Memory Write command */
 970
 971        if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 972                unsigned short cfg_command;
 973                pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 974                cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 975                pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 976        }
 977        pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 978
 979        num_cards++;
 980
 981        if (!get_userbit(card, MEMORY_INITIALIZED)) {
 982                dev_printk(KERN_INFO, &card->dev->dev,
 983                  "memory NOT initialized. Consider over-writing whole device.\n");
 984                card->init_size = 0;
 985        } else {
 986                dev_printk(KERN_INFO, &card->dev->dev,
 987                        "memory already initialized\n");
 988                card->init_size = card->mm_size;
 989        }
 990
 991        /* Enable ECC */
 992        writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
 993
 994        return 0;
 995
 996 failed_req_irq:
 997 failed_alloc:
 998        if (card->mm_pages[0].desc)
 999                dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1000                                  card->mm_pages[0].desc,
1001                                  card->mm_pages[0].page_dma);
1002        if (card->mm_pages[1].desc)
1003                dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1004                                  card->mm_pages[1].desc,
1005                                  card->mm_pages[1].page_dma);
1006 failed_magic:
1007        iounmap(card->csr_remap);
1008 failed_remap_csr:
1009        pci_release_regions(dev);
1010 failed_req_csr:
1011
1012        return ret;
1013}
1014
1015static void mm_pci_remove(struct pci_dev *dev)
1016{
1017        struct cardinfo *card = pci_get_drvdata(dev);
1018
1019        tasklet_kill(&card->tasklet);
1020        free_irq(dev->irq, card);
1021        iounmap(card->csr_remap);
1022
1023        if (card->mm_pages[0].desc)
1024                dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1025                                    card->mm_pages[0].desc,
1026                                    card->mm_pages[0].page_dma);
1027        if (card->mm_pages[1].desc)
1028                dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1029                                    card->mm_pages[1].desc,
1030                                    card->mm_pages[1].page_dma);
1031        blk_cleanup_queue(card->queue);
1032
1033        pci_release_regions(dev);
1034        pci_disable_device(dev);
1035}
1036
1037static const struct pci_device_id mm_pci_ids[] = {
1038    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1039    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1040    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1041    {
1042        .vendor =       0x8086,
1043        .device =       0xB555,
1044        .subvendor =    0x1332,
1045        .subdevice =    0x5460,
1046        .class =        0x050000,
1047        .class_mask =   0,
1048    }, { /* end: all zeroes */ }
1049};
1050
1051MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1052
1053static struct pci_driver mm_pci_driver = {
1054        .name           = DRIVER_NAME,
1055        .id_table       = mm_pci_ids,
1056        .probe          = mm_pci_probe,
1057        .remove         = mm_pci_remove,
1058};
1059
1060static int __init mm_init(void)
1061{
1062        int retval, i;
1063        int err;
1064
1065        retval = pci_register_driver(&mm_pci_driver);
1066        if (retval)
1067                return -ENOMEM;
1068
1069        err = major_nr = register_blkdev(0, DRIVER_NAME);
1070        if (err < 0) {
1071                pci_unregister_driver(&mm_pci_driver);
1072                return -EIO;
1073        }
1074
1075        for (i = 0; i < num_cards; i++) {
1076                mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1077                if (!mm_gendisk[i])
1078                        goto out;
1079        }
1080
1081        for (i = 0; i < num_cards; i++) {
1082                struct gendisk *disk = mm_gendisk[i];
1083                sprintf(disk->disk_name, "umem%c", 'a'+i);
1084                spin_lock_init(&cards[i].lock);
1085                disk->major = major_nr;
1086                disk->first_minor  = i << MM_SHIFT;
1087                disk->fops = &mm_fops;
1088                disk->private_data = &cards[i];
1089                disk->queue = cards[i].queue;
1090                set_capacity(disk, cards[i].mm_size << 1);
1091                add_disk(disk);
1092        }
1093
1094        init_battery_timer();
1095        printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1096/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1097        return 0;
1098
1099out:
1100        pci_unregister_driver(&mm_pci_driver);
1101        unregister_blkdev(major_nr, DRIVER_NAME);
1102        while (i--)
1103                put_disk(mm_gendisk[i]);
1104        return -ENOMEM;
1105}
1106
1107static void __exit mm_cleanup(void)
1108{
1109        int i;
1110
1111        del_battery_timer();
1112
1113        for (i = 0; i < num_cards ; i++) {
1114                del_gendisk(mm_gendisk[i]);
1115                put_disk(mm_gendisk[i]);
1116        }
1117
1118        pci_unregister_driver(&mm_pci_driver);
1119
1120        unregister_blkdev(major_nr, DRIVER_NAME);
1121}
1122
1123module_init(mm_init);
1124module_exit(mm_cleanup);
1125
1126MODULE_AUTHOR(DRIVER_AUTHOR);
1127MODULE_DESCRIPTION(DRIVER_DESC);
1128MODULE_LICENSE("GPL");
1129