linux/drivers/clk/clk-stm32h7.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) STMicroelectronics 2017
   4 * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/clk-provider.h>
   9#include <linux/err.h>
  10#include <linux/io.h>
  11#include <linux/mfd/syscon.h>
  12#include <linux/of.h>
  13#include <linux/of_address.h>
  14#include <linux/slab.h>
  15#include <linux/spinlock.h>
  16#include <linux/regmap.h>
  17
  18#include <dt-bindings/clock/stm32h7-clks.h>
  19
  20/* Reset Clock Control Registers */
  21#define RCC_CR          0x00
  22#define RCC_CFGR        0x10
  23#define RCC_D1CFGR      0x18
  24#define RCC_D2CFGR      0x1C
  25#define RCC_D3CFGR      0x20
  26#define RCC_PLLCKSELR   0x28
  27#define RCC_PLLCFGR     0x2C
  28#define RCC_PLL1DIVR    0x30
  29#define RCC_PLL1FRACR   0x34
  30#define RCC_PLL2DIVR    0x38
  31#define RCC_PLL2FRACR   0x3C
  32#define RCC_PLL3DIVR    0x40
  33#define RCC_PLL3FRACR   0x44
  34#define RCC_D1CCIPR     0x4C
  35#define RCC_D2CCIP1R    0x50
  36#define RCC_D2CCIP2R    0x54
  37#define RCC_D3CCIPR     0x58
  38#define RCC_BDCR        0x70
  39#define RCC_CSR         0x74
  40#define RCC_AHB3ENR     0xD4
  41#define RCC_AHB1ENR     0xD8
  42#define RCC_AHB2ENR     0xDC
  43#define RCC_AHB4ENR     0xE0
  44#define RCC_APB3ENR     0xE4
  45#define RCC_APB1LENR    0xE8
  46#define RCC_APB1HENR    0xEC
  47#define RCC_APB2ENR     0xF0
  48#define RCC_APB4ENR     0xF4
  49
  50static DEFINE_SPINLOCK(stm32rcc_lock);
  51
  52static void __iomem *base;
  53static struct clk_hw **hws;
  54
  55/* System clock parent */
  56static const char * const sys_src[] = {
  57        "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
  58
  59static const char * const tracein_src[] = {
  60        "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
  61
  62static const char * const per_src[] = {
  63        "hsi_ker", "csi_ker", "hse_ck", "disabled" };
  64
  65static const char * const pll_src[] = {
  66        "hsi_ck", "csi_ck", "hse_ck", "no clock" };
  67
  68static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
  69
  70static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
  71
  72static const char * const qspi_src[] = {
  73        "hclk", "pll1_q", "pll2_r", "per_ck" };
  74
  75static const char * const fmc_src[] = {
  76        "hclk", "pll1_q", "pll2_r", "per_ck" };
  77
  78/* Kernel clock parent */
  79static const char * const swp_src[] = { "pclk1", "hsi_ker" };
  80
  81static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
  82
  83static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
  84
  85static const char * const spdifrx_src[] = {
  86        "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
  87
  88static const char *spi_src1[5] = {
  89        "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
  90
  91static const char * const spi_src2[] = {
  92        "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
  93
  94static const char * const spi_src3[] = {
  95        "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
  96
  97static const char * const lptim_src1[] = {
  98        "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
  99
 100static const char * const lptim_src2[] = {
 101        "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
 102
 103static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
 104
 105static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
 106
 107/* i2c 1,2,3 src */
 108static const char * const i2c_src1[] = {
 109        "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
 110
 111static const char * const i2c_src2[] = {
 112        "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
 113
 114static const char * const rng_src[] = {
 115        "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
 116
 117/* usart 1,6 src */
 118static const char * const usart_src1[] = {
 119        "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
 120
 121/* usart 2,3,4,5,7,8 src */
 122static const char * const usart_src2[] = {
 123        "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
 124
 125static const char *sai_src[5] = {
 126        "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
 127
 128static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
 129
 130/* lptim 2,3,4,5 src */
 131static const char * const lpuart1_src[] = {
 132        "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
 133
 134static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
 135
 136/* RTC clock parent */
 137static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
 138
 139/* Micro-controller output clock parent */
 140static const char * const mco_src1[] = {
 141        "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
 142
 143static const char * const mco_src2[] = {
 144        "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
 145
 146/* LCD clock */
 147static const char * const ltdc_src[] = {"pll3_r"};
 148
 149/* Gate clock with ready bit and backup domain management */
 150struct stm32_ready_gate {
 151        struct  clk_gate gate;
 152        u8      bit_rdy;
 153};
 154
 155#define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
 156                gate)
 157
 158#define RGATE_TIMEOUT 10000
 159
 160static int ready_gate_clk_enable(struct clk_hw *hw)
 161{
 162        struct clk_gate *gate = to_clk_gate(hw);
 163        struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
 164        int bit_status;
 165        unsigned int timeout = RGATE_TIMEOUT;
 166
 167        if (clk_gate_ops.is_enabled(hw))
 168                return 0;
 169
 170        clk_gate_ops.enable(hw);
 171
 172        /* We can't use readl_poll_timeout() because we can blocked if
 173         * someone enables this clock before clocksource changes.
 174         * Only jiffies counter is available. Jiffies are incremented by
 175         * interruptions and enable op does not allow to be interrupted.
 176         */
 177        do {
 178                bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
 179
 180                if (bit_status)
 181                        udelay(100);
 182
 183        } while (bit_status && --timeout);
 184
 185        return bit_status;
 186}
 187
 188static void ready_gate_clk_disable(struct clk_hw *hw)
 189{
 190        struct clk_gate *gate = to_clk_gate(hw);
 191        struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
 192        int bit_status;
 193        unsigned int timeout = RGATE_TIMEOUT;
 194
 195        if (!clk_gate_ops.is_enabled(hw))
 196                return;
 197
 198        clk_gate_ops.disable(hw);
 199
 200        do {
 201                bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
 202
 203                if (bit_status)
 204                        udelay(100);
 205
 206        } while (bit_status && --timeout);
 207}
 208
 209static const struct clk_ops ready_gate_clk_ops = {
 210        .enable         = ready_gate_clk_enable,
 211        .disable        = ready_gate_clk_disable,
 212        .is_enabled     = clk_gate_is_enabled,
 213};
 214
 215static struct clk_hw *clk_register_ready_gate(struct device *dev,
 216                const char *name, const char *parent_name,
 217                void __iomem *reg, u8 bit_idx, u8 bit_rdy,
 218                unsigned long flags, spinlock_t *lock)
 219{
 220        struct stm32_ready_gate *rgate;
 221        struct clk_init_data init = { NULL };
 222        struct clk_hw *hw;
 223        int ret;
 224
 225        rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
 226        if (!rgate)
 227                return ERR_PTR(-ENOMEM);
 228
 229        init.name = name;
 230        init.ops = &ready_gate_clk_ops;
 231        init.flags = flags;
 232        init.parent_names = &parent_name;
 233        init.num_parents = 1;
 234
 235        rgate->bit_rdy = bit_rdy;
 236        rgate->gate.lock = lock;
 237        rgate->gate.reg = reg;
 238        rgate->gate.bit_idx = bit_idx;
 239        rgate->gate.hw.init = &init;
 240
 241        hw = &rgate->gate.hw;
 242        ret = clk_hw_register(dev, hw);
 243        if (ret) {
 244                kfree(rgate);
 245                hw = ERR_PTR(ret);
 246        }
 247
 248        return hw;
 249}
 250
 251struct gate_cfg {
 252        u32 offset;
 253        u8  bit_idx;
 254};
 255
 256struct muxdiv_cfg {
 257        u32 offset;
 258        u8 shift;
 259        u8 width;
 260};
 261
 262struct composite_clk_cfg {
 263        struct gate_cfg *gate;
 264        struct muxdiv_cfg *mux;
 265        struct muxdiv_cfg *div;
 266        const char *name;
 267        const char * const *parent_name;
 268        int num_parents;
 269        u32 flags;
 270};
 271
 272struct composite_clk_gcfg_t {
 273        u8 flags;
 274        const struct clk_ops *ops;
 275};
 276
 277/*
 278 * General config definition of a composite clock (only clock diviser for rate)
 279 */
 280struct composite_clk_gcfg {
 281        struct composite_clk_gcfg_t *mux;
 282        struct composite_clk_gcfg_t *div;
 283        struct composite_clk_gcfg_t *gate;
 284};
 285
 286#define M_CFG_MUX(_mux_ops, _mux_flags)\
 287        .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
 288
 289#define M_CFG_DIV(_rate_ops, _rate_flags)\
 290        .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
 291
 292#define M_CFG_GATE(_gate_ops, _gate_flags)\
 293        .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
 294
 295static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
 296                u32 flags, spinlock_t *lock)
 297{
 298        struct clk_mux *mux;
 299
 300        mux = kzalloc(sizeof(*mux), GFP_KERNEL);
 301        if (!mux)
 302                return ERR_PTR(-ENOMEM);
 303
 304        mux->reg        = reg;
 305        mux->shift      = shift;
 306        mux->mask       = (1 << width) - 1;
 307        mux->flags      = flags;
 308        mux->lock       = lock;
 309
 310        return mux;
 311}
 312
 313static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
 314                u32 flags, spinlock_t *lock)
 315{
 316        struct clk_divider *div;
 317
 318        div = kzalloc(sizeof(*div), GFP_KERNEL);
 319
 320        if (!div)
 321                return ERR_PTR(-ENOMEM);
 322
 323        div->reg   = reg;
 324        div->shift = shift;
 325        div->width = width;
 326        div->flags = flags;
 327        div->lock  = lock;
 328
 329        return div;
 330}
 331
 332static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
 333                spinlock_t *lock)
 334{
 335        struct clk_gate *gate;
 336
 337        gate = kzalloc(sizeof(*gate), GFP_KERNEL);
 338        if (!gate)
 339                return ERR_PTR(-ENOMEM);
 340
 341        gate->reg       = reg;
 342        gate->bit_idx   = bit_idx;
 343        gate->flags     = flags;
 344        gate->lock      = lock;
 345
 346        return gate;
 347}
 348
 349struct composite_cfg {
 350        struct clk_hw *mux_hw;
 351        struct clk_hw *div_hw;
 352        struct clk_hw *gate_hw;
 353
 354        const struct clk_ops *mux_ops;
 355        const struct clk_ops *div_ops;
 356        const struct clk_ops *gate_ops;
 357};
 358
 359static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
 360                const struct composite_clk_cfg *cfg,
 361                struct composite_cfg *composite, spinlock_t *lock)
 362{
 363        struct clk_mux     *mux = NULL;
 364        struct clk_divider *div = NULL;
 365        struct clk_gate    *gate = NULL;
 366        const struct clk_ops *mux_ops, *div_ops, *gate_ops;
 367        struct clk_hw *mux_hw;
 368        struct clk_hw *div_hw;
 369        struct clk_hw *gate_hw;
 370
 371        mux_ops = div_ops = gate_ops = NULL;
 372        mux_hw = div_hw = gate_hw = NULL;
 373
 374        if (gcfg->mux && cfg->mux) {
 375                mux = _get_cmux(base + cfg->mux->offset,
 376                                cfg->mux->shift,
 377                                cfg->mux->width,
 378                                gcfg->mux->flags, lock);
 379
 380                if (!IS_ERR(mux)) {
 381                        mux_hw = &mux->hw;
 382                        mux_ops = gcfg->mux->ops ?
 383                                  gcfg->mux->ops : &clk_mux_ops;
 384                }
 385        }
 386
 387        if (gcfg->div && cfg->div) {
 388                div = _get_cdiv(base + cfg->div->offset,
 389                                cfg->div->shift,
 390                                cfg->div->width,
 391                                gcfg->div->flags, lock);
 392
 393                if (!IS_ERR(div)) {
 394                        div_hw = &div->hw;
 395                        div_ops = gcfg->div->ops ?
 396                                  gcfg->div->ops : &clk_divider_ops;
 397                }
 398        }
 399
 400        if (gcfg->gate && cfg->gate) {
 401                gate = _get_cgate(base + cfg->gate->offset,
 402                                cfg->gate->bit_idx,
 403                                gcfg->gate->flags, lock);
 404
 405                if (!IS_ERR(gate)) {
 406                        gate_hw = &gate->hw;
 407                        gate_ops = gcfg->gate->ops ?
 408                                   gcfg->gate->ops : &clk_gate_ops;
 409                }
 410        }
 411
 412        composite->mux_hw = mux_hw;
 413        composite->mux_ops = mux_ops;
 414
 415        composite->div_hw = div_hw;
 416        composite->div_ops = div_ops;
 417
 418        composite->gate_hw = gate_hw;
 419        composite->gate_ops = gate_ops;
 420}
 421
 422/* Kernel Timer */
 423struct timer_ker {
 424        u8 dppre_shift;
 425        struct clk_hw hw;
 426        spinlock_t *lock;
 427};
 428
 429#define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
 430
 431static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
 432                unsigned long parent_rate)
 433{
 434        struct timer_ker *clk_elem = to_timer_ker(hw);
 435        u32 timpre;
 436        u32 dppre_shift = clk_elem->dppre_shift;
 437        u32 prescaler;
 438        u32 mul;
 439
 440        timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
 441
 442        prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
 443
 444        mul = 2;
 445
 446        if (prescaler < 4)
 447                mul = 1;
 448
 449        else if (timpre && prescaler > 4)
 450                mul = 4;
 451
 452        return parent_rate * mul;
 453}
 454
 455static const struct clk_ops timer_ker_ops = {
 456        .recalc_rate = timer_ker_recalc_rate,
 457};
 458
 459static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
 460                const char *name, const char *parent_name,
 461                unsigned long flags,
 462                u8 dppre_shift,
 463                spinlock_t *lock)
 464{
 465        struct timer_ker *element;
 466        struct clk_init_data init;
 467        struct clk_hw *hw;
 468        int err;
 469
 470        element = kzalloc(sizeof(*element), GFP_KERNEL);
 471        if (!element)
 472                return ERR_PTR(-ENOMEM);
 473
 474        init.name = name;
 475        init.ops = &timer_ker_ops;
 476        init.flags = flags;
 477        init.parent_names = &parent_name;
 478        init.num_parents = 1;
 479
 480        element->hw.init = &init;
 481        element->lock = lock;
 482        element->dppre_shift = dppre_shift;
 483
 484        hw = &element->hw;
 485        err = clk_hw_register(dev, hw);
 486
 487        if (err) {
 488                kfree(element);
 489                return ERR_PTR(err);
 490        }
 491
 492        return hw;
 493}
 494
 495static const struct clk_div_table d1cpre_div_table[] = {
 496        { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
 497        { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
 498        { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
 499        { 12, 64 }, { 13, 128 }, { 14, 256 },
 500        { 15, 512 },
 501        { 0 },
 502};
 503
 504static const struct clk_div_table ppre_div_table[] = {
 505        { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
 506        { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
 507        { 0 },
 508};
 509
 510static void register_core_and_bus_clocks(void)
 511{
 512        /* CORE AND BUS */
 513        hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
 514                        "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
 515                        d1cpre_div_table, &stm32rcc_lock);
 516
 517        hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
 518                        CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
 519                        d1cpre_div_table, &stm32rcc_lock);
 520
 521        /* D1 DOMAIN */
 522        /* * CPU Systick */
 523        hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
 524                        "d1cpre", 0, 1, 8);
 525
 526        /* * APB3 peripheral */
 527        hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
 528                        base + RCC_D1CFGR, 4, 3, 0,
 529                        ppre_div_table, &stm32rcc_lock);
 530
 531        /* D2 DOMAIN */
 532        /* * APB1 peripheral */
 533        hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
 534                        base + RCC_D2CFGR, 4, 3, 0,
 535                        ppre_div_table, &stm32rcc_lock);
 536
 537        /* Timers prescaler clocks */
 538        clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
 539                        4, &stm32rcc_lock);
 540
 541        /* * APB2 peripheral */
 542        hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
 543                        base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
 544                        &stm32rcc_lock);
 545
 546        clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
 547                        &stm32rcc_lock);
 548
 549        /* D3 DOMAIN */
 550        /* * APB4 peripheral */
 551        hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
 552                        base + RCC_D3CFGR, 4, 3, 0,
 553                        ppre_div_table, &stm32rcc_lock);
 554}
 555
 556/* MUX clock configuration */
 557struct stm32_mux_clk {
 558        const char *name;
 559        const char * const *parents;
 560        u8 num_parents;
 561        u32 offset;
 562        u8 shift;
 563        u8 width;
 564        u32 flags;
 565};
 566
 567#define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
 568{\
 569        .name           = _name,\
 570        .parents        = _parents,\
 571        .num_parents    = ARRAY_SIZE(_parents),\
 572        .offset         = _mux_offset,\
 573        .shift          = _mux_shift,\
 574        .width          = _mux_width,\
 575        .flags          = _flags,\
 576}
 577
 578#define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
 579        M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
 580
 581static const struct stm32_mux_clk stm32_mclk[] __initconst = {
 582        M_MCLOC("per_ck",       per_src,        RCC_D1CCIPR,    28, 3),
 583        M_MCLOC("pllsrc",       pll_src,        RCC_PLLCKSELR,   0, 3),
 584        M_MCLOC("sys_ck",       sys_src,        RCC_CFGR,        0, 3),
 585        M_MCLOC("tracein_ck",   tracein_src,    RCC_CFGR,        0, 3),
 586};
 587
 588/* Oscillary clock configuration */
 589struct stm32_osc_clk {
 590        const char *name;
 591        const char *parent;
 592        u32 gate_offset;
 593        u8 bit_idx;
 594        u8 bit_rdy;
 595        u32 flags;
 596};
 597
 598#define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
 599{\
 600        .name           = _name,\
 601        .parent         = _parent,\
 602        .gate_offset    = _gate_offset,\
 603        .bit_idx        = _bit_idx,\
 604        .bit_rdy        = _bit_rdy,\
 605        .flags          = _flags,\
 606}
 607
 608#define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
 609        OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
 610
 611static const struct stm32_osc_clk stm32_oclk[] __initconst = {
 612        OSC_CLKF("hsi_ck",  "hsidiv",   RCC_CR,   0,  2, CLK_IGNORE_UNUSED),
 613        OSC_CLKF("hsi_ker", "hsidiv",   RCC_CR,   1,  2, CLK_IGNORE_UNUSED),
 614        OSC_CLKF("csi_ck",  "clk-csi",  RCC_CR,   7,  8, CLK_IGNORE_UNUSED),
 615        OSC_CLKF("csi_ker", "clk-csi",  RCC_CR,   9,  8, CLK_IGNORE_UNUSED),
 616        OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR,  12, 13, CLK_IGNORE_UNUSED),
 617        OSC_CLKF("lsi_ck",  "clk-lsi",  RCC_CSR,  0,  1, CLK_IGNORE_UNUSED),
 618};
 619
 620/* PLL configuration */
 621struct st32h7_pll_cfg {
 622        u8 bit_idx;
 623        u32 offset_divr;
 624        u8 bit_frac_en;
 625        u32 offset_frac;
 626        u8 divm;
 627};
 628
 629struct stm32_pll_data {
 630        const char *name;
 631        const char *parent_name;
 632        unsigned long flags;
 633        const struct st32h7_pll_cfg *cfg;
 634};
 635
 636static const struct st32h7_pll_cfg stm32h7_pll1 = {
 637        .bit_idx = 24,
 638        .offset_divr = RCC_PLL1DIVR,
 639        .bit_frac_en = 0,
 640        .offset_frac = RCC_PLL1FRACR,
 641        .divm = 4,
 642};
 643
 644static const struct st32h7_pll_cfg stm32h7_pll2 = {
 645        .bit_idx = 26,
 646        .offset_divr = RCC_PLL2DIVR,
 647        .bit_frac_en = 4,
 648        .offset_frac = RCC_PLL2FRACR,
 649        .divm = 12,
 650};
 651
 652static const struct st32h7_pll_cfg stm32h7_pll3 = {
 653        .bit_idx = 28,
 654        .offset_divr = RCC_PLL3DIVR,
 655        .bit_frac_en = 8,
 656        .offset_frac = RCC_PLL3FRACR,
 657        .divm = 20,
 658};
 659
 660static const struct stm32_pll_data stm32_pll[] = {
 661        { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
 662        { "vco2", "pllsrc", 0, &stm32h7_pll2 },
 663        { "vco3", "pllsrc", 0, &stm32h7_pll3 },
 664};
 665
 666struct stm32_fractional_divider {
 667        void __iomem    *mreg;
 668        u8              mshift;
 669        u8              mwidth;
 670        u32             mmask;
 671
 672        void __iomem    *nreg;
 673        u8              nshift;
 674        u8              nwidth;
 675
 676        void __iomem    *freg_status;
 677        u8              freg_bit;
 678        void __iomem    *freg_value;
 679        u8              fshift;
 680        u8              fwidth;
 681
 682        u8              flags;
 683        struct clk_hw   hw;
 684        spinlock_t      *lock;
 685};
 686
 687struct stm32_pll_obj {
 688        spinlock_t *lock;
 689        struct stm32_fractional_divider div;
 690        struct stm32_ready_gate rgate;
 691        struct clk_hw hw;
 692};
 693
 694#define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
 695
 696static int pll_is_enabled(struct clk_hw *hw)
 697{
 698        struct stm32_pll_obj *clk_elem = to_pll(hw);
 699        struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
 700
 701        __clk_hw_set_clk(_hw, hw);
 702
 703        return ready_gate_clk_ops.is_enabled(_hw);
 704}
 705
 706static int pll_enable(struct clk_hw *hw)
 707{
 708        struct stm32_pll_obj *clk_elem = to_pll(hw);
 709        struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
 710
 711        __clk_hw_set_clk(_hw, hw);
 712
 713        return ready_gate_clk_ops.enable(_hw);
 714}
 715
 716static void pll_disable(struct clk_hw *hw)
 717{
 718        struct stm32_pll_obj *clk_elem = to_pll(hw);
 719        struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
 720
 721        __clk_hw_set_clk(_hw, hw);
 722
 723        ready_gate_clk_ops.disable(_hw);
 724}
 725
 726static int pll_frac_is_enabled(struct clk_hw *hw)
 727{
 728        struct stm32_pll_obj *clk_elem = to_pll(hw);
 729        struct stm32_fractional_divider *fd = &clk_elem->div;
 730
 731        return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
 732}
 733
 734static unsigned long pll_read_frac(struct clk_hw *hw)
 735{
 736        struct stm32_pll_obj *clk_elem = to_pll(hw);
 737        struct stm32_fractional_divider *fd = &clk_elem->div;
 738
 739        return (readl(fd->freg_value) >> fd->fshift) &
 740                GENMASK(fd->fwidth - 1, 0);
 741}
 742
 743static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
 744                unsigned long parent_rate)
 745{
 746        struct stm32_pll_obj *clk_elem = to_pll(hw);
 747        struct stm32_fractional_divider *fd = &clk_elem->div;
 748        unsigned long m, n;
 749        u32 val, mask;
 750        u64 rate, rate1 = 0;
 751
 752        val = readl(fd->mreg);
 753        mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
 754        m = (val & mask) >> fd->mshift;
 755
 756        val = readl(fd->nreg);
 757        mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
 758        n = ((val & mask) >> fd->nshift) + 1;
 759
 760        if (!n || !m)
 761                return parent_rate;
 762
 763        rate = (u64)parent_rate * n;
 764        do_div(rate, m);
 765
 766        if (pll_frac_is_enabled(hw)) {
 767                val = pll_read_frac(hw);
 768                rate1 = (u64)parent_rate * (u64)val;
 769                do_div(rate1, (m * 8191));
 770        }
 771
 772        return rate + rate1;
 773}
 774
 775static const struct clk_ops pll_ops = {
 776        .enable         = pll_enable,
 777        .disable        = pll_disable,
 778        .is_enabled     = pll_is_enabled,
 779        .recalc_rate    = pll_fd_recalc_rate,
 780};
 781
 782static struct clk_hw *clk_register_stm32_pll(struct device *dev,
 783                const char *name,
 784                const char *parent,
 785                unsigned long flags,
 786                const struct st32h7_pll_cfg *cfg,
 787                spinlock_t *lock)
 788{
 789        struct stm32_pll_obj *pll;
 790        struct clk_init_data init = { NULL };
 791        struct clk_hw *hw;
 792        int ret;
 793        struct stm32_fractional_divider *div = NULL;
 794        struct stm32_ready_gate *rgate;
 795
 796        pll = kzalloc(sizeof(*pll), GFP_KERNEL);
 797        if (!pll)
 798                return ERR_PTR(-ENOMEM);
 799
 800        init.name = name;
 801        init.ops = &pll_ops;
 802        init.flags = flags;
 803        init.parent_names = &parent;
 804        init.num_parents = 1;
 805        pll->hw.init = &init;
 806
 807        hw = &pll->hw;
 808        rgate = &pll->rgate;
 809
 810        rgate->bit_rdy = cfg->bit_idx + 1;
 811        rgate->gate.lock = lock;
 812        rgate->gate.reg = base + RCC_CR;
 813        rgate->gate.bit_idx = cfg->bit_idx;
 814
 815        div = &pll->div;
 816        div->flags = 0;
 817        div->mreg = base + RCC_PLLCKSELR;
 818        div->mshift = cfg->divm;
 819        div->mwidth = 6;
 820        div->nreg = base +  cfg->offset_divr;
 821        div->nshift = 0;
 822        div->nwidth = 9;
 823
 824        div->freg_status = base + RCC_PLLCFGR;
 825        div->freg_bit = cfg->bit_frac_en;
 826        div->freg_value = base +  cfg->offset_frac;
 827        div->fshift = 3;
 828        div->fwidth = 13;
 829
 830        div->lock = lock;
 831
 832        ret = clk_hw_register(dev, hw);
 833        if (ret) {
 834                kfree(pll);
 835                hw = ERR_PTR(ret);
 836        }
 837
 838        return hw;
 839}
 840
 841/* ODF CLOCKS */
 842static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
 843                unsigned long parent_rate)
 844{
 845        return clk_divider_ops.recalc_rate(hw, parent_rate);
 846}
 847
 848static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate,
 849                unsigned long *prate)
 850{
 851        return clk_divider_ops.round_rate(hw, rate, prate);
 852}
 853
 854static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
 855                unsigned long parent_rate)
 856{
 857        struct clk_hw *hwp;
 858        int pll_status;
 859        int ret;
 860
 861        hwp = clk_hw_get_parent(hw);
 862
 863        pll_status = pll_is_enabled(hwp);
 864
 865        if (pll_status)
 866                pll_disable(hwp);
 867
 868        ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
 869
 870        if (pll_status)
 871                pll_enable(hwp);
 872
 873        return ret;
 874}
 875
 876static const struct clk_ops odf_divider_ops = {
 877        .recalc_rate    = odf_divider_recalc_rate,
 878        .round_rate     = odf_divider_round_rate,
 879        .set_rate       = odf_divider_set_rate,
 880};
 881
 882static int odf_gate_enable(struct clk_hw *hw)
 883{
 884        struct clk_hw *hwp;
 885        int pll_status;
 886        int ret;
 887
 888        if (clk_gate_ops.is_enabled(hw))
 889                return 0;
 890
 891        hwp = clk_hw_get_parent(hw);
 892
 893        pll_status = pll_is_enabled(hwp);
 894
 895        if (pll_status)
 896                pll_disable(hwp);
 897
 898        ret = clk_gate_ops.enable(hw);
 899
 900        if (pll_status)
 901                pll_enable(hwp);
 902
 903        return ret;
 904}
 905
 906static void odf_gate_disable(struct clk_hw *hw)
 907{
 908        struct clk_hw *hwp;
 909        int pll_status;
 910
 911        if (!clk_gate_ops.is_enabled(hw))
 912                return;
 913
 914        hwp = clk_hw_get_parent(hw);
 915
 916        pll_status = pll_is_enabled(hwp);
 917
 918        if (pll_status)
 919                pll_disable(hwp);
 920
 921        clk_gate_ops.disable(hw);
 922
 923        if (pll_status)
 924                pll_enable(hwp);
 925}
 926
 927static const struct clk_ops odf_gate_ops = {
 928        .enable         = odf_gate_enable,
 929        .disable        = odf_gate_disable,
 930        .is_enabled     = clk_gate_is_enabled,
 931};
 932
 933static struct composite_clk_gcfg odf_clk_gcfg = {
 934        M_CFG_DIV(&odf_divider_ops, 0),
 935        M_CFG_GATE(&odf_gate_ops, 0),
 936};
 937
 938#define M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
 939                _rate_shift, _rate_width, _flags)\
 940{\
 941        .mux = NULL,\
 942        .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
 943        .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
 944        .name = _name,\
 945        .parent_name = &(const char *) {_parent},\
 946        .num_parents = 1,\
 947        .flags = _flags,\
 948}
 949
 950#define M_ODF(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
 951                _rate_shift, _rate_width)\
 952M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
 953                _rate_shift, _rate_width, 0)\
 954
 955static const struct composite_clk_cfg stm32_odf[3][3] = {
 956        {
 957                M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR,  9, 7,
 958                                CLK_IGNORE_UNUSED),
 959                M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
 960                                CLK_IGNORE_UNUSED),
 961                M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
 962                                CLK_IGNORE_UNUSED),
 963        },
 964
 965        {
 966                M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR,  9, 7),
 967                M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
 968                M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
 969        },
 970        {
 971                M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR,  9, 7),
 972                M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
 973                M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
 974        }
 975};
 976
 977/* PERIF CLOCKS */
 978struct pclk_t {
 979        u32 gate_offset;
 980        u8 bit_idx;
 981        const char *name;
 982        const char *parent;
 983        u32 flags;
 984};
 985
 986#define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
 987{\
 988        .gate_offset    = _gate_offset,\
 989        .bit_idx        = _bit_idx,\
 990        .name           = _name,\
 991        .parent         = _parent,\
 992        .flags          = _flags,\
 993}
 994
 995#define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
 996        PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
 997
 998static const struct pclk_t pclk[] = {
 999        PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
1000        PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
1001        PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
1002        PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
1003        PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
1004        PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
1005        PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
1006        PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
1007        PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
1008        PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
1009        PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
1010        PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
1011        PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
1012        PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
1013        PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
1014        PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
1015        PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
1016        PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
1017        PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
1018        PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
1019        PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
1020        PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
1021        PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
1022        PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
1023        PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
1024        PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
1025        PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
1026        PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
1027        PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
1028        PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
1029        PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
1030        PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
1031        PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
1032        PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
1033        PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
1034        PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
1035        PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
1036        PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
1037        PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
1038        PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
1039        PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
1040        PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
1041        PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
1042        PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
1043        PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
1044        PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
1045        PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
1046        PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
1047        PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
1048        PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
1049        PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
1050        PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
1051        PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
1052        PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
1053        PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
1054        PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
1055        PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
1056        PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
1057        PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
1058        PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
1059        PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
1060        PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
1061};
1062
1063/* KERNEL CLOCKS */
1064#define KER_CLKF(_gate_offset, _bit_idx,\
1065                _mux_offset, _mux_shift, _mux_width,\
1066                _name, _parent_name,\
1067                _flags) \
1068{ \
1069        .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1070        .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1071        .name = _name, \
1072        .parent_name = _parent_name, \
1073        .num_parents = ARRAY_SIZE(_parent_name),\
1074        .flags = _flags,\
1075}
1076
1077#define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1078                _name, _parent_name) \
1079KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1080                _name, _parent_name, 0)\
1081
1082#define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1083                _name, _parent_name,\
1084                _flags) \
1085{ \
1086        .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1087        .mux = NULL,\
1088        .name = _name, \
1089        .parent_name = _parent_name, \
1090        .num_parents = 1,\
1091        .flags = _flags,\
1092}
1093
1094static const struct composite_clk_cfg kclk[] = {
1095        KER_CLK(RCC_AHB3ENR,  16, RCC_D1CCIPR,  16, 1, "sdmmc1", sdmmc_src),
1096        KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR,   4, 2, "quadspi", qspi_src,
1097                        CLK_IGNORE_UNUSED),
1098        KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR,   0, 2, "fmc", fmc_src,
1099                        CLK_IGNORE_UNUSED),
1100        KER_CLK(RCC_AHB1ENR,  27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
1101        KER_CLK(RCC_AHB1ENR,  25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
1102        KER_CLK(RCC_AHB1ENR,   5, RCC_D3CCIPR,  16, 2, "adc12", adc_src),
1103        KER_CLK(RCC_AHB2ENR,   9, RCC_D1CCIPR,  16, 1, "sdmmc2", sdmmc_src),
1104        KER_CLK(RCC_AHB2ENR,   6, RCC_D2CCIP2R,  8, 2, "rng", rng_src),
1105        KER_CLK(RCC_AHB4ENR,  24, RCC_D3CCIPR,  16, 2, "adc3", adc_src),
1106        KER_CLKF(RCC_APB3ENR,   4, RCC_D1CCIPR,  8, 1, "dsi", dsi_src,
1107                        CLK_SET_RATE_PARENT),
1108        KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
1109        KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R,  0, 3, "usart8", usart_src2),
1110        KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R,  0, 3, "usart7", usart_src2),
1111        KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
1112        KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
1113        KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
1114        KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
1115        KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R,  0, 3, "uart5", usart_src2),
1116        KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R,  0, 3, "uart4", usart_src2),
1117        KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R,  0, 3, "usart3", usart_src2),
1118        KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R,  0, 3, "usart2", usart_src2),
1119        KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
1120        KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
1121        KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
1122        KER_CLK(RCC_APB1LENR,  9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
1123        KER_CLK(RCC_APB1HENR,  8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
1124        KER_CLK(RCC_APB1HENR,  2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
1125        KER_CLK(RCC_APB2ENR,  29, RCC_CFGR,     14, 1, "hrtim", hrtim_src),
1126        KER_CLK(RCC_APB2ENR,  28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
1127        KER_CLKF(RCC_APB2ENR,  24, RCC_D2CCIP1R,  6, 3, "sai3", sai_src,
1128                 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1129        KER_CLKF(RCC_APB2ENR,  23, RCC_D2CCIP1R,  6, 3, "sai2", sai_src,
1130                 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1131        KER_CLKF(RCC_APB2ENR,  22, RCC_D2CCIP1R,  0, 3, "sai1", sai_src,
1132                 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1133        KER_CLK(RCC_APB2ENR,  20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
1134        KER_CLK(RCC_APB2ENR,  13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
1135        KER_CLK(RCC_APB2ENR,  12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
1136        KER_CLK(RCC_APB2ENR,   5, RCC_D2CCIP2R,  3, 3, "usart6", usart_src1),
1137        KER_CLK(RCC_APB2ENR,   4, RCC_D2CCIP2R,  3, 3, "usart1", usart_src1),
1138        KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  24, 3, "sai4b", sai_src),
1139        KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  21, 3, "sai4a", sai_src),
1140        KER_CLK(RCC_APB4ENR,  12, RCC_D3CCIPR,  13, 3, "lptim5", lptim_src2),
1141        KER_CLK(RCC_APB4ENR,  11, RCC_D3CCIPR,  13, 3, "lptim4", lptim_src2),
1142        KER_CLK(RCC_APB4ENR,  10, RCC_D3CCIPR,  13, 3, "lptim3", lptim_src2),
1143        KER_CLK(RCC_APB4ENR,   9, RCC_D3CCIPR,  10, 3, "lptim2", lptim_src2),
1144        KER_CLK(RCC_APB4ENR,   7, RCC_D3CCIPR,   8, 2, "i2c4", i2c_src2),
1145        KER_CLK(RCC_APB4ENR,   5, RCC_D3CCIPR,  28, 3, "spi6", spi_src3),
1146        KER_CLK(RCC_APB4ENR,   3, RCC_D3CCIPR,   0, 3, "lpuart1", lpuart1_src),
1147};
1148
1149static struct composite_clk_gcfg kernel_clk_cfg = {
1150        M_CFG_MUX(NULL, 0),
1151        M_CFG_GATE(NULL, 0),
1152};
1153
1154/* RTC clock */
1155/*
1156 * RTC & LSE registers are protected against parasitic write access.
1157 * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1158 */
1159/* STM32_PWR_CR */
1160#define PWR_CR                          0x00
1161/* STM32_PWR_CR bit field */
1162#define PWR_CR_DBP                      BIT(8)
1163
1164static struct composite_clk_gcfg rtc_clk_cfg = {
1165        M_CFG_MUX(NULL, 0),
1166        M_CFG_GATE(NULL, 0),
1167};
1168
1169static const struct composite_clk_cfg rtc_clk =
1170        KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
1171
1172/* Micro-controller output clock */
1173static struct composite_clk_gcfg mco_clk_cfg = {
1174        M_CFG_MUX(NULL, 0),
1175        M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
1176};
1177
1178#define M_MCO_F(_name, _parents, _mux_offset,  _mux_shift, _mux_width,\
1179                _rate_offset, _rate_shift, _rate_width,\
1180                _flags)\
1181{\
1182        .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1183        .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1184        .gate = NULL,\
1185        .name = _name,\
1186        .parent_name = _parents,\
1187        .num_parents = ARRAY_SIZE(_parents),\
1188        .flags = _flags,\
1189}
1190
1191static const struct composite_clk_cfg mco_clk[] = {
1192        M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
1193        M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
1194};
1195
1196static void __init stm32h7_rcc_init(struct device_node *np)
1197{
1198        struct clk_hw_onecell_data *clk_data;
1199        struct composite_cfg c_cfg;
1200        int n;
1201        const char *hse_clk, *lse_clk, *i2s_clk;
1202        struct regmap *pdrm;
1203
1204        clk_data = kzalloc(struct_size(clk_data, hws, STM32H7_MAX_CLKS),
1205                           GFP_KERNEL);
1206        if (!clk_data)
1207                return;
1208
1209        clk_data->num = STM32H7_MAX_CLKS;
1210
1211        hws = clk_data->hws;
1212
1213        for (n = 0; n < STM32H7_MAX_CLKS; n++)
1214                hws[n] = ERR_PTR(-ENOENT);
1215
1216        /* get RCC base @ from DT */
1217        base = of_iomap(np, 0);
1218        if (!base) {
1219                pr_err("%pOFn: unable to map resource", np);
1220                goto err_free_clks;
1221        }
1222
1223        pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1224        if (IS_ERR(pdrm))
1225                pr_warn("%s: Unable to get syscfg\n", __func__);
1226        else
1227                /* In any case disable backup domain write protection
1228                 * and will never be enabled.
1229                 * Needed by LSE & RTC clocks.
1230                 */
1231                regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
1232
1233        /* Put parent names from DT */
1234        hse_clk = of_clk_get_parent_name(np, 0);
1235        lse_clk = of_clk_get_parent_name(np, 1);
1236        i2s_clk = of_clk_get_parent_name(np, 2);
1237
1238        sai_src[3] = i2s_clk;
1239        spi_src1[3] = i2s_clk;
1240
1241        /* Register Internal oscillators */
1242        clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
1243        clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
1244        clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
1245        clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
1246
1247        /* This clock is coming from outside. Frequencies unknown */
1248        hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
1249                        0, 0);
1250
1251        hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
1252                        base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
1253                        &stm32rcc_lock);
1254
1255        hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
1256                        base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
1257                        CLK_DIVIDER_ALLOW_ZERO,
1258                        &stm32rcc_lock);
1259
1260        /* Mux system clocks */
1261        for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
1262                hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
1263                                stm32_mclk[n].name,
1264                                stm32_mclk[n].parents,
1265                                stm32_mclk[n].num_parents,
1266                                stm32_mclk[n].flags,
1267                                stm32_mclk[n].offset + base,
1268                                stm32_mclk[n].shift,
1269                                stm32_mclk[n].width,
1270                                0,
1271                                &stm32rcc_lock);
1272
1273        register_core_and_bus_clocks();
1274
1275        /* Oscillary clocks */
1276        for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
1277                hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
1278                                stm32_oclk[n].name,
1279                                stm32_oclk[n].parent,
1280                                stm32_oclk[n].gate_offset + base,
1281                                stm32_oclk[n].bit_idx,
1282                                stm32_oclk[n].bit_rdy,
1283                                stm32_oclk[n].flags,
1284                                &stm32rcc_lock);
1285
1286        hws[HSE_CK] = clk_register_ready_gate(NULL,
1287                                "hse_ck",
1288                                hse_clk,
1289                                RCC_CR + base,
1290                                16, 17,
1291                                0,
1292                                &stm32rcc_lock);
1293
1294        hws[LSE_CK] = clk_register_ready_gate(NULL,
1295                                "lse_ck",
1296                                lse_clk,
1297                                RCC_BDCR + base,
1298                                0, 1,
1299                                0,
1300                                &stm32rcc_lock);
1301
1302        hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
1303                        "csi_ker_div122", "csi_ker", 0, 1, 122);
1304
1305        /* PLLs */
1306        for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
1307                int odf;
1308
1309                /* Register the VCO */
1310                clk_register_stm32_pll(NULL, stm32_pll[n].name,
1311                                stm32_pll[n].parent_name, stm32_pll[n].flags,
1312                                stm32_pll[n].cfg,
1313                                &stm32rcc_lock);
1314
1315                /* Register the 3 output dividers */
1316                for (odf = 0; odf < 3; odf++) {
1317                        int idx = n * 3 + odf;
1318
1319                        get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
1320                                        &c_cfg, &stm32rcc_lock);
1321
1322                        hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
1323                                        stm32_odf[n][odf].name,
1324                                        stm32_odf[n][odf].parent_name,
1325                                        stm32_odf[n][odf].num_parents,
1326                                        c_cfg.mux_hw, c_cfg.mux_ops,
1327                                        c_cfg.div_hw, c_cfg.div_ops,
1328                                        c_cfg.gate_hw, c_cfg.gate_ops,
1329                                        stm32_odf[n][odf].flags);
1330                }
1331        }
1332
1333        /* Peripheral clocks */
1334        for (n = 0; n < ARRAY_SIZE(pclk); n++)
1335                hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
1336                                pclk[n].parent,
1337                                pclk[n].flags, base + pclk[n].gate_offset,
1338                                pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
1339
1340        /* Kernel clocks */
1341        for (n = 0; n < ARRAY_SIZE(kclk); n++) {
1342                get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
1343                                &stm32rcc_lock);
1344
1345                hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
1346                                kclk[n].name,
1347                                kclk[n].parent_name,
1348                                kclk[n].num_parents,
1349                                c_cfg.mux_hw, c_cfg.mux_ops,
1350                                c_cfg.div_hw, c_cfg.div_ops,
1351                                c_cfg.gate_hw, c_cfg.gate_ops,
1352                                kclk[n].flags);
1353        }
1354
1355        /* RTC clock (default state is off) */
1356        clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
1357
1358        get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
1359
1360        hws[RTC_CK] = clk_hw_register_composite(NULL,
1361                        rtc_clk.name,
1362                        rtc_clk.parent_name,
1363                        rtc_clk.num_parents,
1364                        c_cfg.mux_hw, c_cfg.mux_ops,
1365                        c_cfg.div_hw, c_cfg.div_ops,
1366                        c_cfg.gate_hw, c_cfg.gate_ops,
1367                        rtc_clk.flags);
1368
1369        /* Micro-controller clocks */
1370        for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
1371                get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
1372                                &stm32rcc_lock);
1373
1374                hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
1375                                mco_clk[n].name,
1376                                mco_clk[n].parent_name,
1377                                mco_clk[n].num_parents,
1378                                c_cfg.mux_hw, c_cfg.mux_ops,
1379                                c_cfg.div_hw, c_cfg.div_ops,
1380                                c_cfg.gate_hw, c_cfg.gate_ops,
1381                                mco_clk[n].flags);
1382        }
1383
1384        of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
1385
1386        return;
1387
1388err_free_clks:
1389        kfree(clk_data);
1390}
1391
1392/* The RCC node is a clock and reset controller, and these
1393 * functionalities are supported by different drivers that
1394 * matches the same compatible strings.
1395 */
1396CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);
1397