linux/drivers/gpu/drm/i915/i915_irq.c
<<
>>
Prefs
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_display_types.h"
  41#include "display/intel_fifo_underrun.h"
  42#include "display/intel_hotplug.h"
  43#include "display/intel_lpe_audio.h"
  44#include "display/intel_psr.h"
  45
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  64
  65static const u32 hpd_ilk[HPD_NUM_PINS] = {
  66        [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  67};
  68
  69static const u32 hpd_ivb[HPD_NUM_PINS] = {
  70        [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  71};
  72
  73static const u32 hpd_bdw[HPD_NUM_PINS] = {
  74        [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  75};
  76
  77static const u32 hpd_ibx[HPD_NUM_PINS] = {
  78        [HPD_CRT] = SDE_CRT_HOTPLUG,
  79        [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  80        [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  81        [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  82        [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  83};
  84
  85static const u32 hpd_cpt[HPD_NUM_PINS] = {
  86        [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  87        [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  88        [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  89        [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  90        [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  91};
  92
  93static const u32 hpd_spt[HPD_NUM_PINS] = {
  94        [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  95        [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  96        [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  97        [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  98        [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  99};
 100
 101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 102        [HPD_CRT] = CRT_HOTPLUG_INT_EN,
 103        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 104        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 105        [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 106        [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 107        [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 108};
 109
 110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 111        [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 112        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 113        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 114        [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 115        [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 116        [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 117};
 118
 119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 120        [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 121        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 122        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 123        [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 124        [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 125        [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 126};
 127
 128/* BXT hpd list */
 129static const u32 hpd_bxt[HPD_NUM_PINS] = {
 130        [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 131        [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 132        [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 133};
 134
 135static const u32 hpd_gen11[HPD_NUM_PINS] = {
 136        [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 137        [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 138        [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 139        [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 140};
 141
 142static const u32 hpd_gen12[HPD_NUM_PINS] = {
 143        [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 144        [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 145        [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 146        [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 147        [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 148        [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
 149};
 150
 151static const u32 hpd_icp[HPD_NUM_PINS] = {
 152        [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 153        [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 154        [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 155        [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 156        [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 157        [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 158};
 159
 160static const u32 hpd_mcc[HPD_NUM_PINS] = {
 161        [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 162        [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 163        [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 164};
 165
 166static const u32 hpd_tgp[HPD_NUM_PINS] = {
 167        [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 168        [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 169        [HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
 170        [HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
 171        [HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
 172        [HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
 173        [HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
 174        [HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
 175        [HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
 176};
 177
 178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 179                    i915_reg_t iir, i915_reg_t ier)
 180{
 181        intel_uncore_write(uncore, imr, 0xffffffff);
 182        intel_uncore_posting_read(uncore, imr);
 183
 184        intel_uncore_write(uncore, ier, 0);
 185
 186        /* IIR can theoretically queue up two events. Be paranoid. */
 187        intel_uncore_write(uncore, iir, 0xffffffff);
 188        intel_uncore_posting_read(uncore, iir);
 189        intel_uncore_write(uncore, iir, 0xffffffff);
 190        intel_uncore_posting_read(uncore, iir);
 191}
 192
 193void gen2_irq_reset(struct intel_uncore *uncore)
 194{
 195        intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 196        intel_uncore_posting_read16(uncore, GEN2_IMR);
 197
 198        intel_uncore_write16(uncore, GEN2_IER, 0);
 199
 200        /* IIR can theoretically queue up two events. Be paranoid. */
 201        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 202        intel_uncore_posting_read16(uncore, GEN2_IIR);
 203        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 204        intel_uncore_posting_read16(uncore, GEN2_IIR);
 205}
 206
 207/*
 208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 209 */
 210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 211{
 212        u32 val = intel_uncore_read(uncore, reg);
 213
 214        if (val == 0)
 215                return;
 216
 217        WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 218             i915_mmio_reg_offset(reg), val);
 219        intel_uncore_write(uncore, reg, 0xffffffff);
 220        intel_uncore_posting_read(uncore, reg);
 221        intel_uncore_write(uncore, reg, 0xffffffff);
 222        intel_uncore_posting_read(uncore, reg);
 223}
 224
 225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 226{
 227        u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 228
 229        if (val == 0)
 230                return;
 231
 232        WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 233             i915_mmio_reg_offset(GEN2_IIR), val);
 234        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 235        intel_uncore_posting_read16(uncore, GEN2_IIR);
 236        intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 237        intel_uncore_posting_read16(uncore, GEN2_IIR);
 238}
 239
 240void gen3_irq_init(struct intel_uncore *uncore,
 241                   i915_reg_t imr, u32 imr_val,
 242                   i915_reg_t ier, u32 ier_val,
 243                   i915_reg_t iir)
 244{
 245        gen3_assert_iir_is_zero(uncore, iir);
 246
 247        intel_uncore_write(uncore, ier, ier_val);
 248        intel_uncore_write(uncore, imr, imr_val);
 249        intel_uncore_posting_read(uncore, imr);
 250}
 251
 252void gen2_irq_init(struct intel_uncore *uncore,
 253                   u32 imr_val, u32 ier_val)
 254{
 255        gen2_assert_iir_is_zero(uncore);
 256
 257        intel_uncore_write16(uncore, GEN2_IER, ier_val);
 258        intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 259        intel_uncore_posting_read16(uncore, GEN2_IMR);
 260}
 261
 262/* For display hotplug interrupt */
 263static inline void
 264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 265                                     u32 mask,
 266                                     u32 bits)
 267{
 268        u32 val;
 269
 270        lockdep_assert_held(&dev_priv->irq_lock);
 271        WARN_ON(bits & ~mask);
 272
 273        val = I915_READ(PORT_HOTPLUG_EN);
 274        val &= ~mask;
 275        val |= bits;
 276        I915_WRITE(PORT_HOTPLUG_EN, val);
 277}
 278
 279/**
 280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 281 * @dev_priv: driver private
 282 * @mask: bits to update
 283 * @bits: bits to enable
 284 * NOTE: the HPD enable bits are modified both inside and outside
 285 * of an interrupt context. To avoid that read-modify-write cycles
 286 * interfer, these bits are protected by a spinlock. Since this
 287 * function is usually not called from a context where the lock is
 288 * held already, this function acquires the lock itself. A non-locking
 289 * version is also available.
 290 */
 291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 292                                   u32 mask,
 293                                   u32 bits)
 294{
 295        spin_lock_irq(&dev_priv->irq_lock);
 296        i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 297        spin_unlock_irq(&dev_priv->irq_lock);
 298}
 299
 300/**
 301 * ilk_update_display_irq - update DEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 307                            u32 interrupt_mask,
 308                            u32 enabled_irq_mask)
 309{
 310        u32 new_val;
 311
 312        lockdep_assert_held(&dev_priv->irq_lock);
 313
 314        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 315
 316        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 317                return;
 318
 319        new_val = dev_priv->irq_mask;
 320        new_val &= ~interrupt_mask;
 321        new_val |= (~enabled_irq_mask & interrupt_mask);
 322
 323        if (new_val != dev_priv->irq_mask) {
 324                dev_priv->irq_mask = new_val;
 325                I915_WRITE(DEIMR, dev_priv->irq_mask);
 326                POSTING_READ(DEIMR);
 327        }
 328}
 329
 330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 331{
 332        WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 333
 334        return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 335}
 336
 337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 338{
 339        struct intel_gt *gt = &dev_priv->gt;
 340
 341        spin_lock_irq(&gt->irq_lock);
 342
 343        while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
 344                ;
 345
 346        dev_priv->gt_pm.rps.pm_iir = 0;
 347
 348        spin_unlock_irq(&gt->irq_lock);
 349}
 350
 351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 352{
 353        struct intel_gt *gt = &dev_priv->gt;
 354
 355        spin_lock_irq(&gt->irq_lock);
 356        gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
 357        dev_priv->gt_pm.rps.pm_iir = 0;
 358        spin_unlock_irq(&gt->irq_lock);
 359}
 360
 361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 362{
 363        struct intel_gt *gt = &dev_priv->gt;
 364        struct intel_rps *rps = &dev_priv->gt_pm.rps;
 365
 366        if (READ_ONCE(rps->interrupts_enabled))
 367                return;
 368
 369        spin_lock_irq(&gt->irq_lock);
 370        WARN_ON_ONCE(rps->pm_iir);
 371
 372        if (INTEL_GEN(dev_priv) >= 11)
 373                WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
 374        else
 375                WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 376
 377        rps->interrupts_enabled = true;
 378        gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
 379
 380        spin_unlock_irq(&gt->irq_lock);
 381}
 382
 383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
 384{
 385        return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
 386}
 387
 388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 389{
 390        struct intel_rps *rps = &dev_priv->gt_pm.rps;
 391        struct intel_gt *gt = &dev_priv->gt;
 392
 393        if (!READ_ONCE(rps->interrupts_enabled))
 394                return;
 395
 396        spin_lock_irq(&gt->irq_lock);
 397        rps->interrupts_enabled = false;
 398
 399        I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 400
 401        gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 402
 403        spin_unlock_irq(&gt->irq_lock);
 404        intel_synchronize_irq(dev_priv);
 405
 406        /* Now that we will not be generating any more work, flush any
 407         * outstanding tasks. As we are called on the RPS idle path,
 408         * we will reset the GPU to minimum frequencies, so the current
 409         * state of the worker can be discarded.
 410         */
 411        cancel_work_sync(&rps->work);
 412        if (INTEL_GEN(dev_priv) >= 11)
 413                gen11_reset_rps_interrupts(dev_priv);
 414        else
 415                gen6_reset_rps_interrupts(dev_priv);
 416}
 417
 418void gen9_reset_guc_interrupts(struct intel_guc *guc)
 419{
 420        struct intel_gt *gt = guc_to_gt(guc);
 421
 422        assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 423
 424        spin_lock_irq(&gt->irq_lock);
 425        gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 426        spin_unlock_irq(&gt->irq_lock);
 427}
 428
 429void gen9_enable_guc_interrupts(struct intel_guc *guc)
 430{
 431        struct intel_gt *gt = guc_to_gt(guc);
 432
 433        assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 434
 435        spin_lock_irq(&gt->irq_lock);
 436        if (!guc->interrupts.enabled) {
 437                WARN_ON_ONCE(intel_uncore_read(gt->uncore,
 438                                               gen6_pm_iir(gt->i915)) &
 439                             gt->pm_guc_events);
 440                guc->interrupts.enabled = true;
 441                gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
 442        }
 443        spin_unlock_irq(&gt->irq_lock);
 444}
 445
 446void gen9_disable_guc_interrupts(struct intel_guc *guc)
 447{
 448        struct intel_gt *gt = guc_to_gt(guc);
 449
 450        assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 451
 452        spin_lock_irq(&gt->irq_lock);
 453        guc->interrupts.enabled = false;
 454
 455        gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 456
 457        spin_unlock_irq(&gt->irq_lock);
 458        intel_synchronize_irq(gt->i915);
 459
 460        gen9_reset_guc_interrupts(guc);
 461}
 462
 463void gen11_reset_guc_interrupts(struct intel_guc *guc)
 464{
 465        struct intel_gt *gt = guc_to_gt(guc);
 466
 467        spin_lock_irq(&gt->irq_lock);
 468        gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 469        spin_unlock_irq(&gt->irq_lock);
 470}
 471
 472void gen11_enable_guc_interrupts(struct intel_guc *guc)
 473{
 474        struct intel_gt *gt = guc_to_gt(guc);
 475
 476        spin_lock_irq(&gt->irq_lock);
 477        if (!guc->interrupts.enabled) {
 478                u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 479
 480                WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 481                intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
 482                intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
 483                guc->interrupts.enabled = true;
 484        }
 485        spin_unlock_irq(&gt->irq_lock);
 486}
 487
 488void gen11_disable_guc_interrupts(struct intel_guc *guc)
 489{
 490        struct intel_gt *gt = guc_to_gt(guc);
 491
 492        spin_lock_irq(&gt->irq_lock);
 493        guc->interrupts.enabled = false;
 494
 495        intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 496        intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 497
 498        spin_unlock_irq(&gt->irq_lock);
 499        intel_synchronize_irq(gt->i915);
 500
 501        gen11_reset_guc_interrupts(guc);
 502}
 503
 504/**
 505 * bdw_update_port_irq - update DE port interrupt
 506 * @dev_priv: driver private
 507 * @interrupt_mask: mask of interrupt bits to update
 508 * @enabled_irq_mask: mask of interrupt bits to enable
 509 */
 510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 511                                u32 interrupt_mask,
 512                                u32 enabled_irq_mask)
 513{
 514        u32 new_val;
 515        u32 old_val;
 516
 517        lockdep_assert_held(&dev_priv->irq_lock);
 518
 519        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 520
 521        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 522                return;
 523
 524        old_val = I915_READ(GEN8_DE_PORT_IMR);
 525
 526        new_val = old_val;
 527        new_val &= ~interrupt_mask;
 528        new_val |= (~enabled_irq_mask & interrupt_mask);
 529
 530        if (new_val != old_val) {
 531                I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 532                POSTING_READ(GEN8_DE_PORT_IMR);
 533        }
 534}
 535
 536/**
 537 * bdw_update_pipe_irq - update DE pipe interrupt
 538 * @dev_priv: driver private
 539 * @pipe: pipe whose interrupt to update
 540 * @interrupt_mask: mask of interrupt bits to update
 541 * @enabled_irq_mask: mask of interrupt bits to enable
 542 */
 543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 544                         enum pipe pipe,
 545                         u32 interrupt_mask,
 546                         u32 enabled_irq_mask)
 547{
 548        u32 new_val;
 549
 550        lockdep_assert_held(&dev_priv->irq_lock);
 551
 552        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 553
 554        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 555                return;
 556
 557        new_val = dev_priv->de_irq_mask[pipe];
 558        new_val &= ~interrupt_mask;
 559        new_val |= (~enabled_irq_mask & interrupt_mask);
 560
 561        if (new_val != dev_priv->de_irq_mask[pipe]) {
 562                dev_priv->de_irq_mask[pipe] = new_val;
 563                I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 564                POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 565        }
 566}
 567
 568/**
 569 * ibx_display_interrupt_update - update SDEIMR
 570 * @dev_priv: driver private
 571 * @interrupt_mask: mask of interrupt bits to update
 572 * @enabled_irq_mask: mask of interrupt bits to enable
 573 */
 574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 575                                  u32 interrupt_mask,
 576                                  u32 enabled_irq_mask)
 577{
 578        u32 sdeimr = I915_READ(SDEIMR);
 579        sdeimr &= ~interrupt_mask;
 580        sdeimr |= (~enabled_irq_mask & interrupt_mask);
 581
 582        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 583
 584        lockdep_assert_held(&dev_priv->irq_lock);
 585
 586        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 587                return;
 588
 589        I915_WRITE(SDEIMR, sdeimr);
 590        POSTING_READ(SDEIMR);
 591}
 592
 593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 594                              enum pipe pipe)
 595{
 596        u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 597        u32 enable_mask = status_mask << 16;
 598
 599        lockdep_assert_held(&dev_priv->irq_lock);
 600
 601        if (INTEL_GEN(dev_priv) < 5)
 602                goto out;
 603
 604        /*
 605         * On pipe A we don't support the PSR interrupt yet,
 606         * on pipe B and C the same bit MBZ.
 607         */
 608        if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 609                return 0;
 610        /*
 611         * On pipe B and C we don't support the PSR interrupt yet, on pipe
 612         * A the same bit is for perf counters which we don't use either.
 613         */
 614        if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 615                return 0;
 616
 617        enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 618                         SPRITE0_FLIP_DONE_INT_EN_VLV |
 619                         SPRITE1_FLIP_DONE_INT_EN_VLV);
 620        if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 621                enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 622        if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 623                enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 624
 625out:
 626        WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 627                  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 628                  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 629                  pipe_name(pipe), enable_mask, status_mask);
 630
 631        return enable_mask;
 632}
 633
 634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 635                          enum pipe pipe, u32 status_mask)
 636{
 637        i915_reg_t reg = PIPESTAT(pipe);
 638        u32 enable_mask;
 639
 640        WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 641                  "pipe %c: status_mask=0x%x\n",
 642                  pipe_name(pipe), status_mask);
 643
 644        lockdep_assert_held(&dev_priv->irq_lock);
 645        WARN_ON(!intel_irqs_enabled(dev_priv));
 646
 647        if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 648                return;
 649
 650        dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 651        enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 652
 653        I915_WRITE(reg, enable_mask | status_mask);
 654        POSTING_READ(reg);
 655}
 656
 657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 658                           enum pipe pipe, u32 status_mask)
 659{
 660        i915_reg_t reg = PIPESTAT(pipe);
 661        u32 enable_mask;
 662
 663        WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 664                  "pipe %c: status_mask=0x%x\n",
 665                  pipe_name(pipe), status_mask);
 666
 667        lockdep_assert_held(&dev_priv->irq_lock);
 668        WARN_ON(!intel_irqs_enabled(dev_priv));
 669
 670        if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 671                return;
 672
 673        dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 674        enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 675
 676        I915_WRITE(reg, enable_mask | status_mask);
 677        POSTING_READ(reg);
 678}
 679
 680static bool i915_has_asle(struct drm_i915_private *dev_priv)
 681{
 682        if (!dev_priv->opregion.asle)
 683                return false;
 684
 685        return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 686}
 687
 688/**
 689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 690 * @dev_priv: i915 device private
 691 */
 692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 693{
 694        if (!i915_has_asle(dev_priv))
 695                return;
 696
 697        spin_lock_irq(&dev_priv->irq_lock);
 698
 699        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 700        if (INTEL_GEN(dev_priv) >= 4)
 701                i915_enable_pipestat(dev_priv, PIPE_A,
 702                                     PIPE_LEGACY_BLC_EVENT_STATUS);
 703
 704        spin_unlock_irq(&dev_priv->irq_lock);
 705}
 706
 707/*
 708 * This timing diagram depicts the video signal in and
 709 * around the vertical blanking period.
 710 *
 711 * Assumptions about the fictitious mode used in this example:
 712 *  vblank_start >= 3
 713 *  vsync_start = vblank_start + 1
 714 *  vsync_end = vblank_start + 2
 715 *  vtotal = vblank_start + 3
 716 *
 717 *           start of vblank:
 718 *           latch double buffered registers
 719 *           increment frame counter (ctg+)
 720 *           generate start of vblank interrupt (gen4+)
 721 *           |
 722 *           |          frame start:
 723 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 724 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 725 *           |          |
 726 *           |          |  start of vsync:
 727 *           |          |  generate vsync interrupt
 728 *           |          |  |
 729 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 730 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 731 * ----va---> <-----------------vb--------------------> <--------va-------------
 732 *       |          |       <----vs----->                     |
 733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 736 *       |          |                                         |
 737 *       last visible pixel                                   first visible pixel
 738 *                  |                                         increment frame counter (gen3/4)
 739 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 740 *
 741 * x  = horizontal active
 742 * _  = horizontal blanking
 743 * hs = horizontal sync
 744 * va = vertical active
 745 * vb = vertical blanking
 746 * vs = vertical sync
 747 * vbs = vblank_start (number)
 748 *
 749 * Summary:
 750 * - most events happen at the start of horizontal sync
 751 * - frame start happens at the start of horizontal blank, 1-4 lines
 752 *   (depending on PIPECONF settings) after the start of vblank
 753 * - gen3/4 pixel and frame counter are synchronized with the start
 754 *   of horizontal active on the first line of vertical active
 755 */
 756
 757/* Called from drm generic code, passed a 'crtc', which
 758 * we use as a pipe index
 759 */
 760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 761{
 762        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 763        struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 764        const struct drm_display_mode *mode = &vblank->hwmode;
 765        enum pipe pipe = to_intel_crtc(crtc)->pipe;
 766        i915_reg_t high_frame, low_frame;
 767        u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 768        unsigned long irqflags;
 769
 770        /*
 771         * On i965gm TV output the frame counter only works up to
 772         * the point when we enable the TV encoder. After that the
 773         * frame counter ceases to work and reads zero. We need a
 774         * vblank wait before enabling the TV encoder and so we
 775         * have to enable vblank interrupts while the frame counter
 776         * is still in a working state. However the core vblank code
 777         * does not like us returning non-zero frame counter values
 778         * when we've told it that we don't have a working frame
 779         * counter. Thus we must stop non-zero values leaking out.
 780         */
 781        if (!vblank->max_vblank_count)
 782                return 0;
 783
 784        htotal = mode->crtc_htotal;
 785        hsync_start = mode->crtc_hsync_start;
 786        vbl_start = mode->crtc_vblank_start;
 787        if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 788                vbl_start = DIV_ROUND_UP(vbl_start, 2);
 789
 790        /* Convert to pixel count */
 791        vbl_start *= htotal;
 792
 793        /* Start of vblank event occurs at start of hsync */
 794        vbl_start -= htotal - hsync_start;
 795
 796        high_frame = PIPEFRAME(pipe);
 797        low_frame = PIPEFRAMEPIXEL(pipe);
 798
 799        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 800
 801        /*
 802         * High & low register fields aren't synchronized, so make sure
 803         * we get a low value that's stable across two reads of the high
 804         * register.
 805         */
 806        do {
 807                high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 808                low   = I915_READ_FW(low_frame);
 809                high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 810        } while (high1 != high2);
 811
 812        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 813
 814        high1 >>= PIPE_FRAME_HIGH_SHIFT;
 815        pixel = low & PIPE_PIXEL_MASK;
 816        low >>= PIPE_FRAME_LOW_SHIFT;
 817
 818        /*
 819         * The frame counter increments at beginning of active.
 820         * Cook up a vblank counter by also checking the pixel
 821         * counter against vblank start.
 822         */
 823        return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 824}
 825
 826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 827{
 828        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 829        enum pipe pipe = to_intel_crtc(crtc)->pipe;
 830
 831        return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 832}
 833
 834/*
 835 * On certain encoders on certain platforms, pipe
 836 * scanline register will not work to get the scanline,
 837 * since the timings are driven from the PORT or issues
 838 * with scanline register updates.
 839 * This function will use Framestamp and current
 840 * timestamp registers to calculate the scanline.
 841 */
 842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 843{
 844        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 845        struct drm_vblank_crtc *vblank =
 846                &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 847        const struct drm_display_mode *mode = &vblank->hwmode;
 848        u32 vblank_start = mode->crtc_vblank_start;
 849        u32 vtotal = mode->crtc_vtotal;
 850        u32 htotal = mode->crtc_htotal;
 851        u32 clock = mode->crtc_clock;
 852        u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 853
 854        /*
 855         * To avoid the race condition where we might cross into the
 856         * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 857         * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 858         * during the same frame.
 859         */
 860        do {
 861                /*
 862                 * This field provides read back of the display
 863                 * pipe frame time stamp. The time stamp value
 864                 * is sampled at every start of vertical blank.
 865                 */
 866                scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 867
 868                /*
 869                 * The TIMESTAMP_CTR register has the current
 870                 * time stamp value.
 871                 */
 872                scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 873
 874                scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 875        } while (scan_post_time != scan_prev_time);
 876
 877        scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 878                                        clock), 1000 * htotal);
 879        scanline = min(scanline, vtotal - 1);
 880        scanline = (scanline + vblank_start) % vtotal;
 881
 882        return scanline;
 883}
 884
 885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 887{
 888        struct drm_device *dev = crtc->base.dev;
 889        struct drm_i915_private *dev_priv = to_i915(dev);
 890        const struct drm_display_mode *mode;
 891        struct drm_vblank_crtc *vblank;
 892        enum pipe pipe = crtc->pipe;
 893        int position, vtotal;
 894
 895        if (!crtc->active)
 896                return -1;
 897
 898        vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 899        mode = &vblank->hwmode;
 900
 901        if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 902                return __intel_get_crtc_scanline_from_timestamp(crtc);
 903
 904        vtotal = mode->crtc_vtotal;
 905        if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 906                vtotal /= 2;
 907
 908        if (IS_GEN(dev_priv, 2))
 909                position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 910        else
 911                position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 912
 913        /*
 914         * On HSW, the DSL reg (0x70000) appears to return 0 if we
 915         * read it just before the start of vblank.  So try it again
 916         * so we don't accidentally end up spanning a vblank frame
 917         * increment, causing the pipe_update_end() code to squak at us.
 918         *
 919         * The nature of this problem means we can't simply check the ISR
 920         * bit and return the vblank start value; nor can we use the scanline
 921         * debug register in the transcoder as it appears to have the same
 922         * problem.  We may need to extend this to include other platforms,
 923         * but so far testing only shows the problem on HSW.
 924         */
 925        if (HAS_DDI(dev_priv) && !position) {
 926                int i, temp;
 927
 928                for (i = 0; i < 100; i++) {
 929                        udelay(1);
 930                        temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 931                        if (temp != position) {
 932                                position = temp;
 933                                break;
 934                        }
 935                }
 936        }
 937
 938        /*
 939         * See update_scanline_offset() for the details on the
 940         * scanline_offset adjustment.
 941         */
 942        return (position + crtc->scanline_offset) % vtotal;
 943}
 944
 945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 946                              bool in_vblank_irq, int *vpos, int *hpos,
 947                              ktime_t *stime, ktime_t *etime,
 948                              const struct drm_display_mode *mode)
 949{
 950        struct drm_i915_private *dev_priv = to_i915(dev);
 951        struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 952                                                                pipe);
 953        int position;
 954        int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 955        unsigned long irqflags;
 956        bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 957                IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 958                mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 959
 960        if (WARN_ON(!mode->crtc_clock)) {
 961                DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 962                                 "pipe %c\n", pipe_name(pipe));
 963                return false;
 964        }
 965
 966        htotal = mode->crtc_htotal;
 967        hsync_start = mode->crtc_hsync_start;
 968        vtotal = mode->crtc_vtotal;
 969        vbl_start = mode->crtc_vblank_start;
 970        vbl_end = mode->crtc_vblank_end;
 971
 972        if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 973                vbl_start = DIV_ROUND_UP(vbl_start, 2);
 974                vbl_end /= 2;
 975                vtotal /= 2;
 976        }
 977
 978        /*
 979         * Lock uncore.lock, as we will do multiple timing critical raw
 980         * register reads, potentially with preemption disabled, so the
 981         * following code must not block on uncore.lock.
 982         */
 983        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 984
 985        /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 986
 987        /* Get optional system timestamp before query. */
 988        if (stime)
 989                *stime = ktime_get();
 990
 991        if (use_scanline_counter) {
 992                /* No obvious pixelcount register. Only query vertical
 993                 * scanout position from Display scan line register.
 994                 */
 995                position = __intel_get_crtc_scanline(intel_crtc);
 996        } else {
 997                /* Have access to pixelcount since start of frame.
 998                 * We can split this into vertical and horizontal
 999                 * scanout position.
1000                 */
1001                position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003                /* convert to pixel counts */
1004                vbl_start *= htotal;
1005                vbl_end *= htotal;
1006                vtotal *= htotal;
1007
1008                /*
1009                 * In interlaced modes, the pixel counter counts all pixels,
1010                 * so one field will have htotal more pixels. In order to avoid
1011                 * the reported position from jumping backwards when the pixel
1012                 * counter is beyond the length of the shorter field, just
1013                 * clamp the position the length of the shorter field. This
1014                 * matches how the scanline counter based position works since
1015                 * the scanline counter doesn't count the two half lines.
1016                 */
1017                if (position >= vtotal)
1018                        position = vtotal - 1;
1019
1020                /*
1021                 * Start of vblank interrupt is triggered at start of hsync,
1022                 * just prior to the first active line of vblank. However we
1023                 * consider lines to start at the leading edge of horizontal
1024                 * active. So, should we get here before we've crossed into
1025                 * the horizontal active of the first line in vblank, we would
1026                 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027                 * always add htotal-hsync_start to the current pixel position.
1028                 */
1029                position = (position + htotal - hsync_start) % vtotal;
1030        }
1031
1032        /* Get optional system timestamp after query. */
1033        if (etime)
1034                *etime = ktime_get();
1035
1036        /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040        /*
1041         * While in vblank, position will be negative
1042         * counting up towards 0 at vbl_end. And outside
1043         * vblank, position will be positive counting
1044         * up since vbl_end.
1045         */
1046        if (position >= vbl_start)
1047                position -= vbl_end;
1048        else
1049                position += vtotal - vbl_end;
1050
1051        if (use_scanline_counter) {
1052                *vpos = position;
1053                *hpos = 0;
1054        } else {
1055                *vpos = position / htotal;
1056                *hpos = position - (*vpos * htotal);
1057        }
1058
1059        return true;
1060}
1061
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063{
1064        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065        unsigned long irqflags;
1066        int position;
1067
1068        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069        position = __intel_get_crtc_scanline(crtc);
1070        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072        return position;
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076{
1077        struct intel_uncore *uncore = &dev_priv->uncore;
1078        u32 busy_up, busy_down, max_avg, min_avg;
1079        u8 new_delay;
1080
1081        spin_lock(&mchdev_lock);
1082
1083        intel_uncore_write16(uncore,
1084                             MEMINTRSTS,
1085                             intel_uncore_read(uncore, MEMINTRSTS));
1086
1087        new_delay = dev_priv->ips.cur_delay;
1088
1089        intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090        busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091        busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092        max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093        min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095        /* Handle RCS change request from hw */
1096        if (busy_up > max_avg) {
1097                if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098                        new_delay = dev_priv->ips.cur_delay - 1;
1099                if (new_delay < dev_priv->ips.max_delay)
1100                        new_delay = dev_priv->ips.max_delay;
1101        } else if (busy_down < min_avg) {
1102                if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103                        new_delay = dev_priv->ips.cur_delay + 1;
1104                if (new_delay > dev_priv->ips.min_delay)
1105                        new_delay = dev_priv->ips.min_delay;
1106        }
1107
1108        if (ironlake_set_drps(dev_priv, new_delay))
1109                dev_priv->ips.cur_delay = new_delay;
1110
1111        spin_unlock(&mchdev_lock);
1112
1113        return;
1114}
1115
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117                        struct intel_rps_ei *ei)
1118{
1119        ei->ktime = ktime_get_raw();
1120        ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121        ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126        memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132        const struct intel_rps_ei *prev = &rps->ei;
1133        struct intel_rps_ei now;
1134        u32 events = 0;
1135
1136        if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137                return 0;
1138
1139        vlv_c0_read(dev_priv, &now);
1140
1141        if (prev->ktime) {
1142                u64 time, c0;
1143                u32 render, media;
1144
1145                time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147                time *= dev_priv->czclk_freq;
1148
1149                /* Workload can be split between render + media,
1150                 * e.g. SwapBuffers being blitted in X after being rendered in
1151                 * mesa. To account for this we need to combine both engines
1152                 * into our activity counter.
1153                 */
1154                render = now.render_c0 - prev->render_c0;
1155                media = now.media_c0 - prev->media_c0;
1156                c0 = max(render, media);
1157                c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159                if (c0 > time * rps->power.up_threshold)
1160                        events = GEN6_PM_RP_UP_THRESHOLD;
1161                else if (c0 < time * rps->power.down_threshold)
1162                        events = GEN6_PM_RP_DOWN_THRESHOLD;
1163        }
1164
1165        rps->ei = now;
1166        return events;
1167}
1168
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171        struct drm_i915_private *dev_priv =
1172                container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173        struct intel_gt *gt = &dev_priv->gt;
1174        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175        bool client_boost = false;
1176        int new_delay, adj, min, max;
1177        u32 pm_iir = 0;
1178
1179        spin_lock_irq(&gt->irq_lock);
1180        if (rps->interrupts_enabled) {
1181                pm_iir = fetch_and_zero(&rps->pm_iir);
1182                client_boost = atomic_read(&rps->num_waiters);
1183        }
1184        spin_unlock_irq(&gt->irq_lock);
1185
1186        /* Make sure we didn't queue anything we're not going to process. */
1187        WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188        if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189                goto out;
1190
1191        mutex_lock(&rps->lock);
1192
1193        pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195        adj = rps->last_adj;
1196        new_delay = rps->cur_freq;
1197        min = rps->min_freq_softlimit;
1198        max = rps->max_freq_softlimit;
1199        if (client_boost)
1200                max = rps->max_freq;
1201        if (client_boost && new_delay < rps->boost_freq) {
1202                new_delay = rps->boost_freq;
1203                adj = 0;
1204        } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205                if (adj > 0)
1206                        adj *= 2;
1207                else /* CHV needs even encode values */
1208                        adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210                if (new_delay >= rps->max_freq_softlimit)
1211                        adj = 0;
1212        } else if (client_boost) {
1213                adj = 0;
1214        } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215                if (rps->cur_freq > rps->efficient_freq)
1216                        new_delay = rps->efficient_freq;
1217                else if (rps->cur_freq > rps->min_freq_softlimit)
1218                        new_delay = rps->min_freq_softlimit;
1219                adj = 0;
1220        } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221                if (adj < 0)
1222                        adj *= 2;
1223                else /* CHV needs even encode values */
1224                        adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226                if (new_delay <= rps->min_freq_softlimit)
1227                        adj = 0;
1228        } else { /* unknown event */
1229                adj = 0;
1230        }
1231
1232        rps->last_adj = adj;
1233
1234        /*
1235         * Limit deboosting and boosting to keep ourselves at the extremes
1236         * when in the respective power modes (i.e. slowly decrease frequencies
1237         * while in the HIGH_POWER zone and slowly increase frequencies while
1238         * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239         * to the next level quickly, and conversely if busy we expect to
1240         * hit a waitboost and rapidly switch into max power.
1241         */
1242        if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243            (adj > 0 && rps->power.mode == LOW_POWER))
1244                rps->last_adj = 0;
1245
1246        /* sysfs frequency interfaces may have snuck in while servicing the
1247         * interrupt
1248         */
1249        new_delay += adj;
1250        new_delay = clamp_t(int, new_delay, min, max);
1251
1252        if (intel_set_rps(dev_priv, new_delay)) {
1253                DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254                rps->last_adj = 0;
1255        }
1256
1257        mutex_unlock(&rps->lock);
1258
1259out:
1260        /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261        spin_lock_irq(&gt->irq_lock);
1262        if (rps->interrupts_enabled)
1263                gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264        spin_unlock_irq(&gt->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279        struct drm_i915_private *dev_priv =
1280                container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281        struct intel_gt *gt = &dev_priv->gt;
1282        u32 error_status, row, bank, subbank;
1283        char *parity_event[6];
1284        u32 misccpctl;
1285        u8 slice = 0;
1286
1287        /* We must turn off DOP level clock gating to access the L3 registers.
1288         * In order to prevent a get/put style interface, acquire struct mutex
1289         * any time we access those registers.
1290         */
1291        mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293        /* If we've screwed up tracking, just let the interrupt fire again */
1294        if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295                goto out;
1296
1297        misccpctl = I915_READ(GEN7_MISCCPCTL);
1298        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299        POSTING_READ(GEN7_MISCCPCTL);
1300
1301        while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302                i915_reg_t reg;
1303
1304                slice--;
1305                if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306                        break;
1307
1308                dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310                reg = GEN7_L3CDERRST1(slice);
1311
1312                error_status = I915_READ(reg);
1313                row = GEN7_PARITY_ERROR_ROW(error_status);
1314                bank = GEN7_PARITY_ERROR_BANK(error_status);
1315                subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317                I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318                POSTING_READ(reg);
1319
1320                parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321                parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322                parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323                parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324                parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325                parity_event[5] = NULL;
1326
1327                kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328                                   KOBJ_CHANGE, parity_event);
1329
1330                DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331                          slice, row, bank, subbank);
1332
1333                kfree(parity_event[4]);
1334                kfree(parity_event[3]);
1335                kfree(parity_event[2]);
1336                kfree(parity_event[1]);
1337        }
1338
1339        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342        WARN_ON(dev_priv->l3_parity.which_slice);
1343        spin_lock_irq(&gt->irq_lock);
1344        gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345        spin_unlock_irq(&gt->irq_lock);
1346
1347        mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351{
1352        switch (pin) {
1353        case HPD_PORT_C:
1354                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355        case HPD_PORT_D:
1356                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357        case HPD_PORT_E:
1358                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359        case HPD_PORT_F:
1360                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361        default:
1362                return false;
1363        }
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368        switch (pin) {
1369        case HPD_PORT_D:
1370                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371        case HPD_PORT_E:
1372                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373        case HPD_PORT_F:
1374                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375        case HPD_PORT_G:
1376                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377        case HPD_PORT_H:
1378                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379        case HPD_PORT_I:
1380                return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381        default:
1382                return false;
1383        }
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387{
1388        switch (pin) {
1389        case HPD_PORT_A:
1390                return val & PORTA_HOTPLUG_LONG_DETECT;
1391        case HPD_PORT_B:
1392                return val & PORTB_HOTPLUG_LONG_DETECT;
1393        case HPD_PORT_C:
1394                return val & PORTC_HOTPLUG_LONG_DETECT;
1395        default:
1396                return false;
1397        }
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401{
1402        switch (pin) {
1403        case HPD_PORT_A:
1404                return val & ICP_DDIA_HPD_LONG_DETECT;
1405        case HPD_PORT_B:
1406                return val & ICP_DDIB_HPD_LONG_DETECT;
1407        case HPD_PORT_C:
1408                return val & TGP_DDIC_HPD_LONG_DETECT;
1409        default:
1410                return false;
1411        }
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415{
1416        switch (pin) {
1417        case HPD_PORT_C:
1418                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419        case HPD_PORT_D:
1420                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421        case HPD_PORT_E:
1422                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423        case HPD_PORT_F:
1424                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425        default:
1426                return false;
1427        }
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431{
1432        switch (pin) {
1433        case HPD_PORT_A:
1434                return val & ICP_DDIA_HPD_LONG_DETECT;
1435        case HPD_PORT_B:
1436                return val & ICP_DDIB_HPD_LONG_DETECT;
1437        case HPD_PORT_C:
1438                return val & TGP_DDIC_HPD_LONG_DETECT;
1439        default:
1440                return false;
1441        }
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446        switch (pin) {
1447        case HPD_PORT_D:
1448                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449        case HPD_PORT_E:
1450                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451        case HPD_PORT_F:
1452                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453        case HPD_PORT_G:
1454                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455        case HPD_PORT_H:
1456                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457        case HPD_PORT_I:
1458                return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459        default:
1460                return false;
1461        }
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465{
1466        switch (pin) {
1467        case HPD_PORT_E:
1468                return val & PORTE_HOTPLUG_LONG_DETECT;
1469        default:
1470                return false;
1471        }
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475{
1476        switch (pin) {
1477        case HPD_PORT_A:
1478                return val & PORTA_HOTPLUG_LONG_DETECT;
1479        case HPD_PORT_B:
1480                return val & PORTB_HOTPLUG_LONG_DETECT;
1481        case HPD_PORT_C:
1482                return val & PORTC_HOTPLUG_LONG_DETECT;
1483        case HPD_PORT_D:
1484                return val & PORTD_HOTPLUG_LONG_DETECT;
1485        default:
1486                return false;
1487        }
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491{
1492        switch (pin) {
1493        case HPD_PORT_A:
1494                return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495        default:
1496                return false;
1497        }
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502        switch (pin) {
1503        case HPD_PORT_B:
1504                return val & PORTB_HOTPLUG_LONG_DETECT;
1505        case HPD_PORT_C:
1506                return val & PORTC_HOTPLUG_LONG_DETECT;
1507        case HPD_PORT_D:
1508                return val & PORTD_HOTPLUG_LONG_DETECT;
1509        default:
1510                return false;
1511        }
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516        switch (pin) {
1517        case HPD_PORT_B:
1518                return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519        case HPD_PORT_C:
1520                return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521        case HPD_PORT_D:
1522                return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523        default:
1524                return false;
1525        }
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536                               u32 *pin_mask, u32 *long_mask,
1537                               u32 hotplug_trigger, u32 dig_hotplug_reg,
1538                               const u32 hpd[HPD_NUM_PINS],
1539                               bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541        enum hpd_pin pin;
1542
1543        BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545        for_each_hpd_pin(pin) {
1546                if ((hpd[pin] & hotplug_trigger) == 0)
1547                        continue;
1548
1549                *pin_mask |= BIT(pin);
1550
1551                if (long_pulse_detect(pin, dig_hotplug_reg))
1552                        *long_mask |= BIT(pin);
1553        }
1554
1555        DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556                         hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
1562        wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
1567        wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572                                         enum pipe pipe,
1573                                         u32 crc0, u32 crc1,
1574                                         u32 crc2, u32 crc3,
1575                                         u32 crc4)
1576{
1577        struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578        struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579        u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581        trace_intel_pipe_crc(crtc, crcs);
1582
1583        spin_lock(&pipe_crc->lock);
1584        /*
1585         * For some not yet identified reason, the first CRC is
1586         * bonkers. So let's just wait for the next vblank and read
1587         * out the buggy result.
1588         *
1589         * On GEN8+ sometimes the second CRC is bonkers as well, so
1590         * don't trust that one either.
1591         */
1592        if (pipe_crc->skipped <= 0 ||
1593            (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594                pipe_crc->skipped++;
1595                spin_unlock(&pipe_crc->lock);
1596                return;
1597        }
1598        spin_unlock(&pipe_crc->lock);
1599
1600        drm_crtc_add_crc_entry(&crtc->base, true,
1601                                drm_crtc_accurate_vblank_count(&crtc->base),
1602                                crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607                             enum pipe pipe,
1608                             u32 crc0, u32 crc1,
1609                             u32 crc2, u32 crc3,
1610                             u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615                                     enum pipe pipe)
1616{
1617        display_pipe_crc_irq_handler(dev_priv, pipe,
1618                                     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619                                     0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623                                     enum pipe pipe)
1624{
1625        display_pipe_crc_irq_handler(dev_priv, pipe,
1626                                     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627                                     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628                                     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629                                     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630                                     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634                                      enum pipe pipe)
1635{
1636        u32 res1, res2;
1637
1638        if (INTEL_GEN(dev_priv) >= 3)
1639                res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640        else
1641                res1 = 0;
1642
1643        if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644                res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645        else
1646                res2 = 0;
1647
1648        display_pipe_crc_irq_handler(dev_priv, pipe,
1649                                     I915_READ(PIPE_CRC_RES_RED(pipe)),
1650                                     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651                                     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652                                     res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660        struct drm_i915_private *i915 = gt->i915;
1661        struct intel_rps *rps = &i915->gt_pm.rps;
1662        const u32 events = i915->pm_rps_events & pm_iir;
1663
1664        lockdep_assert_held(&gt->irq_lock);
1665
1666        if (unlikely(!events))
1667                return;
1668
1669        gen6_gt_pm_mask_irq(gt, events);
1670
1671        if (!rps->interrupts_enabled)
1672                return;
1673
1674        rps->pm_iir |= events;
1675        schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680        struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681        struct intel_gt *gt = &dev_priv->gt;
1682
1683        if (pm_iir & dev_priv->pm_rps_events) {
1684                spin_lock(&gt->irq_lock);
1685                gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686                if (rps->interrupts_enabled) {
1687                        rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688                        schedule_work(&rps->work);
1689                }
1690                spin_unlock(&gt->irq_lock);
1691        }
1692
1693        if (INTEL_GEN(dev_priv) >= 8)
1694                return;
1695
1696        if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697                intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699        if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700                DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705        enum pipe pipe;
1706
1707        for_each_pipe(dev_priv, pipe) {
1708                I915_WRITE(PIPESTAT(pipe),
1709                           PIPESTAT_INT_STATUS_MASK |
1710                           PIPE_FIFO_UNDERRUN_STATUS);
1711
1712                dev_priv->pipestat_irq_mask[pipe] = 0;
1713        }
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717                                  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
1719        int pipe;
1720
1721        spin_lock(&dev_priv->irq_lock);
1722
1723        if (!dev_priv->display_irqs_enabled) {
1724                spin_unlock(&dev_priv->irq_lock);
1725                return;
1726        }
1727
1728        for_each_pipe(dev_priv, pipe) {
1729                i915_reg_t reg;
1730                u32 status_mask, enable_mask, iir_bit = 0;
1731
1732                /*
1733                 * PIPESTAT bits get signalled even when the interrupt is
1734                 * disabled with the mask bits, and some of the status bits do
1735                 * not generate interrupts at all (like the underrun bit). Hence
1736                 * we need to be careful that we only handle what we want to
1737                 * handle.
1738                 */
1739
1740                /* fifo underruns are filterered in the underrun handler. */
1741                status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743                switch (pipe) {
1744                case PIPE_A:
1745                        iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746                        break;
1747                case PIPE_B:
1748                        iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749                        break;
1750                case PIPE_C:
1751                        iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752                        break;
1753                }
1754                if (iir & iir_bit)
1755                        status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757                if (!status_mask)
1758                        continue;
1759
1760                reg = PIPESTAT(pipe);
1761                pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762                enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764                /*
1765                 * Clear the PIPE*STAT regs before the IIR
1766                 *
1767                 * Toggle the enable bits to make sure we get an
1768                 * edge in the ISR pipe event bit if we don't clear
1769                 * all the enabled status bits. Otherwise the edge
1770                 * triggered IIR on i965/g4x wouldn't notice that
1771                 * an interrupt is still pending.
1772                 */
1773                if (pipe_stats[pipe]) {
1774                        I915_WRITE(reg, pipe_stats[pipe]);
1775                        I915_WRITE(reg, enable_mask);
1776                }
1777        }
1778        spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782                                      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784        enum pipe pipe;
1785
1786        for_each_pipe(dev_priv, pipe) {
1787                if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788                        drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795        }
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799                                      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801        bool blc_event = false;
1802        enum pipe pipe;
1803
1804        for_each_pipe(dev_priv, pipe) {
1805                if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806                        drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808                if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809                        blc_event = true;
1810
1811                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816        }
1817
1818        if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819                intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823                                      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824{
1825        bool blc_event = false;
1826        enum pipe pipe;
1827
1828        for_each_pipe(dev_priv, pipe) {
1829                if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830                        drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832                if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833                        blc_event = true;
1834
1835                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840        }
1841
1842        if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843                intel_opregion_asle_intr(dev_priv);
1844
1845        if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846                gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850                                            u32 pipe_stats[I915_MAX_PIPES])
1851{
1852        enum pipe pipe;
1853
1854        for_each_pipe(dev_priv, pipe) {
1855                if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856                        drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863        }
1864
1865        if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866                gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871        u32 hotplug_status = 0, hotplug_status_mask;
1872        int i;
1873
1874        if (IS_G4X(dev_priv) ||
1875            IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876                hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877                        DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878        else
1879                hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881        /*
1882         * We absolutely have to clear all the pending interrupt
1883         * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884         * interrupt bit won't have an edge, and the i965/g4x
1885         * edge triggered IIR will not notice that an interrupt
1886         * is still pending. We can't use PORT_HOTPLUG_EN to
1887         * guarantee the edge as the act of toggling the enable
1888         * bits can itself generate a new hotplug interrupt :(
1889         */
1890        for (i = 0; i < 10; i++) {
1891                u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893                if (tmp == 0)
1894                        return hotplug_status;
1895
1896                hotplug_status |= tmp;
1897                I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898        }
1899
1900        WARN_ONCE(1,
1901                  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902                  I915_READ(PORT_HOTPLUG_STAT));
1903
1904        return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908                                 u32 hotplug_status)
1909{
1910        u32 pin_mask = 0, long_mask = 0;
1911
1912        if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913            IS_CHERRYVIEW(dev_priv)) {
1914                u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916                if (hotplug_trigger) {
1917                        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918                                           hotplug_trigger, hotplug_trigger,
1919                                           hpd_status_g4x,
1920                                           i9xx_port_hotplug_long_detect);
1921
1922                        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923                }
1924
1925                if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926                        dp_aux_irq_handler(dev_priv);
1927        } else {
1928                u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930                if (hotplug_trigger) {
1931                        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932                                           hotplug_trigger, hotplug_trigger,
1933                                           hpd_status_i915,
1934                                           i9xx_port_hotplug_long_detect);
1935                        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936                }
1937        }
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942        struct drm_i915_private *dev_priv = arg;
1943        irqreturn_t ret = IRQ_NONE;
1944
1945        if (!intel_irqs_enabled(dev_priv))
1946                return IRQ_NONE;
1947
1948        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951        do {
1952                u32 iir, gt_iir, pm_iir;
1953                u32 pipe_stats[I915_MAX_PIPES] = {};
1954                u32 hotplug_status = 0;
1955                u32 ier = 0;
1956
1957                gt_iir = I915_READ(GTIIR);
1958                pm_iir = I915_READ(GEN6_PMIIR);
1959                iir = I915_READ(VLV_IIR);
1960
1961                if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962                        break;
1963
1964                ret = IRQ_HANDLED;
1965
1966                /*
1967                 * Theory on interrupt generation, based on empirical evidence:
1968                 *
1969                 * x = ((VLV_IIR & VLV_IER) ||
1970                 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971                 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972                 *
1973                 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974                 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975                 * guarantee the CPU interrupt will be raised again even if we
1976                 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977                 * bits this time around.
1978                 */
1979                I915_WRITE(VLV_MASTER_IER, 0);
1980                ier = I915_READ(VLV_IER);
1981                I915_WRITE(VLV_IER, 0);
1982
1983                if (gt_iir)
1984                        I915_WRITE(GTIIR, gt_iir);
1985                if (pm_iir)
1986                        I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988                if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991                /* Call regardless, as some status bits might not be
1992                 * signalled in iir */
1993                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995                if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996                           I915_LPE_PIPE_B_INTERRUPT))
1997                        intel_lpe_audio_irq_handler(dev_priv);
1998
1999                /*
2000                 * VLV_IIR is single buffered, and reflects the level
2001                 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002                 */
2003                if (iir)
2004                        I915_WRITE(VLV_IIR, iir);
2005
2006                I915_WRITE(VLV_IER, ier);
2007                I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009                if (gt_iir)
2010                        gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011                if (pm_iir)
2012                        gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014                if (hotplug_status)
2015                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017                valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018        } while (0);
2019
2020        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022        return ret;
2023}
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027        struct drm_i915_private *dev_priv = arg;
2028        irqreturn_t ret = IRQ_NONE;
2029
2030        if (!intel_irqs_enabled(dev_priv))
2031                return IRQ_NONE;
2032
2033        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036        do {
2037                u32 master_ctl, iir;
2038                u32 pipe_stats[I915_MAX_PIPES] = {};
2039                u32 hotplug_status = 0;
2040                u32 gt_iir[4];
2041                u32 ier = 0;
2042
2043                master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044                iir = I915_READ(VLV_IIR);
2045
2046                if (master_ctl == 0 && iir == 0)
2047                        break;
2048
2049                ret = IRQ_HANDLED;
2050
2051                /*
2052                 * Theory on interrupt generation, based on empirical evidence:
2053                 *
2054                 * x = ((VLV_IIR & VLV_IER) ||
2055                 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056                 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057                 *
2058                 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059                 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060                 * guarantee the CPU interrupt will be raised again even if we
2061                 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062                 * bits this time around.
2063                 */
2064                I915_WRITE(GEN8_MASTER_IRQ, 0);
2065                ier = I915_READ(VLV_IER);
2066                I915_WRITE(VLV_IER, 0);
2067
2068                gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070                if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073                /* Call regardless, as some status bits might not be
2074                 * signalled in iir */
2075                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077                if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078                           I915_LPE_PIPE_B_INTERRUPT |
2079                           I915_LPE_PIPE_C_INTERRUPT))
2080                        intel_lpe_audio_irq_handler(dev_priv);
2081
2082                /*
2083                 * VLV_IIR is single buffered, and reflects the level
2084                 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085                 */
2086                if (iir)
2087                        I915_WRITE(VLV_IIR, iir);
2088
2089                I915_WRITE(VLV_IER, ier);
2090                I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092                gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094                if (hotplug_status)
2095                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097                valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098        } while (0);
2099
2100        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102        return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106                                u32 hotplug_trigger,
2107                                const u32 hpd[HPD_NUM_PINS])
2108{
2109        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111        /*
2112         * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113         * unless we touch the hotplug register, even if hotplug_trigger is
2114         * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115         * errors.
2116         */
2117        dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118        if (!hotplug_trigger) {
2119                u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120                        PORTD_HOTPLUG_STATUS_MASK |
2121                        PORTC_HOTPLUG_STATUS_MASK |
2122                        PORTB_HOTPLUG_STATUS_MASK;
2123                dig_hotplug_reg &= ~mask;
2124        }
2125
2126        I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127        if (!hotplug_trigger)
2128                return;
2129
2130        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131                           dig_hotplug_reg, hpd,
2132                           pch_port_hotplug_long_detect);
2133
2134        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
2139        int pipe;
2140        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142        ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144        if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145                int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146                               SDE_AUDIO_POWER_SHIFT);
2147                DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148                                 port_name(port));
2149        }
2150
2151        if (pch_iir & SDE_AUX_MASK)
2152                dp_aux_irq_handler(dev_priv);
2153
2154        if (pch_iir & SDE_GMBUS)
2155                gmbus_irq_handler(dev_priv);
2156
2157        if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158                DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160        if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161                DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163        if (pch_iir & SDE_POISON)
2164                DRM_ERROR("PCH poison interrupt\n");
2165
2166        if (pch_iir & SDE_FDI_MASK)
2167                for_each_pipe(dev_priv, pipe)
2168                        DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169                                         pipe_name(pipe),
2170                                         I915_READ(FDI_RX_IIR(pipe)));
2171
2172        if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173                DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175        if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176                DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
2178        if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179                intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181        if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182                intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
2187        u32 err_int = I915_READ(GEN7_ERR_INT);
2188        enum pipe pipe;
2189
2190        if (err_int & ERR_INT_POISON)
2191                DRM_ERROR("Poison interrupt\n");
2192
2193        for_each_pipe(dev_priv, pipe) {
2194                if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197                if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198                        if (IS_IVYBRIDGE(dev_priv))
2199                                ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200                        else
2201                                hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202                }
2203        }
2204
2205        I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
2210        u32 serr_int = I915_READ(SERR_INT);
2211        enum pipe pipe;
2212
2213        if (serr_int & SERR_INT_POISON)
2214                DRM_ERROR("PCH poison interrupt\n");
2215
2216        for_each_pipe(dev_priv, pipe)
2217                if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218                        intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2219
2220        I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
2225        int pipe;
2226        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228        ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230        if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231                int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232                               SDE_AUDIO_POWER_SHIFT_CPT);
2233                DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234                                 port_name(port));
2235        }
2236
2237        if (pch_iir & SDE_AUX_MASK_CPT)
2238                dp_aux_irq_handler(dev_priv);
2239
2240        if (pch_iir & SDE_GMBUS_CPT)
2241                gmbus_irq_handler(dev_priv);
2242
2243        if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244                DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246        if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247                DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249        if (pch_iir & SDE_FDI_MASK_CPT)
2250                for_each_pipe(dev_priv, pipe)
2251                        DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252                                         pipe_name(pipe),
2253                                         I915_READ(FDI_RX_IIR(pipe)));
2254
2255        if (pch_iir & SDE_ERROR_CPT)
2256                cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260                            const u32 *pins)
2261{
2262        u32 ddi_hotplug_trigger;
2263        u32 tc_hotplug_trigger;
2264        u32 pin_mask = 0, long_mask = 0;
2265
2266        if (HAS_PCH_MCC(dev_priv)) {
2267                ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268                tc_hotplug_trigger = 0;
2269        } else {
2270                ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271                tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272        }
2273
2274        if (ddi_hotplug_trigger) {
2275                u32 dig_hotplug_reg;
2276
2277                dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278                I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281                                   ddi_hotplug_trigger,
2282                                   dig_hotplug_reg, pins,
2283                                   icp_ddi_port_hotplug_long_detect);
2284        }
2285
2286        if (tc_hotplug_trigger) {
2287                u32 dig_hotplug_reg;
2288
2289                dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290                I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293                                   tc_hotplug_trigger,
2294                                   dig_hotplug_reg, pins,
2295                                   icp_tc_port_hotplug_long_detect);
2296        }
2297
2298        if (pin_mask)
2299                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301        if (pch_iir & SDE_GMBUS_ICP)
2302                gmbus_irq_handler(dev_priv);
2303}
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307        u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308        u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309        u32 pin_mask = 0, long_mask = 0;
2310
2311        if (ddi_hotplug_trigger) {
2312                u32 dig_hotplug_reg;
2313
2314                dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315                I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318                                   ddi_hotplug_trigger,
2319                                   dig_hotplug_reg, hpd_tgp,
2320                                   tgp_ddi_port_hotplug_long_detect);
2321        }
2322
2323        if (tc_hotplug_trigger) {
2324                u32 dig_hotplug_reg;
2325
2326                dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327                I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330                                   tc_hotplug_trigger,
2331                                   dig_hotplug_reg, hpd_tgp,
2332                                   tgp_tc_port_hotplug_long_detect);
2333        }
2334
2335        if (pin_mask)
2336                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338        if (pch_iir & SDE_GMBUS_ICP)
2339                gmbus_irq_handler(dev_priv);
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343{
2344        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345                ~SDE_PORTE_HOTPLUG_SPT;
2346        u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347        u32 pin_mask = 0, long_mask = 0;
2348
2349        if (hotplug_trigger) {
2350                u32 dig_hotplug_reg;
2351
2352                dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353                I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356                                   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357                                   spt_port_hotplug_long_detect);
2358        }
2359
2360        if (hotplug2_trigger) {
2361                u32 dig_hotplug_reg;
2362
2363                dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364                I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367                                   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368                                   spt_port_hotplug2_long_detect);
2369        }
2370
2371        if (pin_mask)
2372                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374        if (pch_iir & SDE_GMBUS_CPT)
2375                gmbus_irq_handler(dev_priv);
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379                                u32 hotplug_trigger,
2380                                const u32 hpd[HPD_NUM_PINS])
2381{
2382        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384        dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385        I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388                           dig_hotplug_reg, hpd,
2389                           ilk_port_hotplug_long_detect);
2390
2391        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395                                    u32 de_iir)
2396{
2397        enum pipe pipe;
2398        u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400        if (hotplug_trigger)
2401                ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403        if (de_iir & DE_AUX_CHANNEL_A)
2404                dp_aux_irq_handler(dev_priv);
2405
2406        if (de_iir & DE_GSE)
2407                intel_opregion_asle_intr(dev_priv);
2408
2409        if (de_iir & DE_POISON)
2410                DRM_ERROR("Poison interrupt\n");
2411
2412        for_each_pipe(dev_priv, pipe) {
2413                if (de_iir & DE_PIPE_VBLANK(pipe))
2414                        drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416                if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419                if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420                        i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421        }
2422
2423        /* check event from PCH */
2424        if (de_iir & DE_PCH_EVENT) {
2425                u32 pch_iir = I915_READ(SDEIIR);
2426
2427                if (HAS_PCH_CPT(dev_priv))
2428                        cpt_irq_handler(dev_priv, pch_iir);
2429                else
2430                        ibx_irq_handler(dev_priv, pch_iir);
2431
2432                /* should clear PCH hotplug event before clear CPU irq */
2433                I915_WRITE(SDEIIR, pch_iir);
2434        }
2435
2436        if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437                ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441                                    u32 de_iir)
2442{
2443        enum pipe pipe;
2444        u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446        if (hotplug_trigger)
2447                ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449        if (de_iir & DE_ERR_INT_IVB)
2450                ivb_err_int_handler(dev_priv);
2451
2452        if (de_iir & DE_EDP_PSR_INT_HSW) {
2453                u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455                intel_psr_irq_handler(dev_priv, psr_iir);
2456                I915_WRITE(EDP_PSR_IIR, psr_iir);
2457        }
2458
2459        if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460                dp_aux_irq_handler(dev_priv);
2461
2462        if (de_iir & DE_GSE_IVB)
2463                intel_opregion_asle_intr(dev_priv);
2464
2465        for_each_pipe(dev_priv, pipe) {
2466                if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467                        drm_handle_vblank(&dev_priv->drm, pipe);
2468        }
2469
2470        /* check event from PCH */
2471        if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472                u32 pch_iir = I915_READ(SDEIIR);
2473
2474                cpt_irq_handler(dev_priv, pch_iir);
2475
2476                /* clear PCH hotplug event before clear CPU irq */
2477                I915_WRITE(SDEIIR, pch_iir);
2478        }
2479}
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491        struct drm_i915_private *dev_priv = arg;
2492        u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493        irqreturn_t ret = IRQ_NONE;
2494
2495        if (!intel_irqs_enabled(dev_priv))
2496                return IRQ_NONE;
2497
2498        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501        /* disable master interrupt before clearing iir  */
2502        de_ier = I915_READ(DEIER);
2503        I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2504
2505        /* Disable south interrupts. We'll only write to SDEIIR once, so further
2506         * interrupts will will be stored on its back queue, and then we'll be
2507         * able to process them after we restore SDEIER (as soon as we restore
2508         * it, we'll get an interrupt if SDEIIR still has something to process
2509         * due to its back queue). */
2510        if (!HAS_PCH_NOP(dev_priv)) {
2511                sde_ier = I915_READ(SDEIER);
2512                I915_WRITE(SDEIER, 0);
2513        }
2514
2515        /* Find, clear, then process each source of interrupt */
2516
2517        gt_iir = I915_READ(GTIIR);
2518        if (gt_iir) {
2519                I915_WRITE(GTIIR, gt_iir);
2520                ret = IRQ_HANDLED;
2521                if (INTEL_GEN(dev_priv) >= 6)
2522                        gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523                else
2524                        gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525        }
2526
2527        de_iir = I915_READ(DEIIR);
2528        if (de_iir) {
2529                I915_WRITE(DEIIR, de_iir);
2530                ret = IRQ_HANDLED;
2531                if (INTEL_GEN(dev_priv) >= 7)
2532                        ivb_display_irq_handler(dev_priv, de_iir);
2533                else
2534                        ilk_display_irq_handler(dev_priv, de_iir);
2535        }
2536
2537        if (INTEL_GEN(dev_priv) >= 6) {
2538                u32 pm_iir = I915_READ(GEN6_PMIIR);
2539                if (pm_iir) {
2540                        I915_WRITE(GEN6_PMIIR, pm_iir);
2541                        ret = IRQ_HANDLED;
2542                        gen6_rps_irq_handler(dev_priv, pm_iir);
2543                }
2544        }
2545
2546        I915_WRITE(DEIER, de_ier);
2547        if (!HAS_PCH_NOP(dev_priv))
2548                I915_WRITE(SDEIER, sde_ier);
2549
2550        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553        return ret;
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557                                u32 hotplug_trigger,
2558                                const u32 hpd[HPD_NUM_PINS])
2559{
2560        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562        dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563        I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565        intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566                           dig_hotplug_reg, hpd,
2567                           bxt_port_hotplug_long_detect);
2568
2569        intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573{
2574        u32 pin_mask = 0, long_mask = 0;
2575        u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576        u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577        long_pulse_detect_func long_pulse_detect;
2578        const u32 *hpd;
2579
2580        if (INTEL_GEN(dev_priv) >= 12) {
2581                long_pulse_detect = gen12_port_hotplug_long_detect;
2582                hpd = hpd_gen12;
2583        } else {
2584                long_pulse_detect = gen11_port_hotplug_long_detect;
2585                hpd = hpd_gen11;
2586        }
2587
2588        if (trigger_tc) {
2589                u32 dig_hotplug_reg;
2590
2591                dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592                I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595                                   dig_hotplug_reg, hpd, long_pulse_detect);
2596        }
2597
2598        if (trigger_tbt) {
2599                u32 dig_hotplug_reg;
2600
2601                dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602                I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604                intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605                                   dig_hotplug_reg, hpd, long_pulse_detect);
2606        }
2607
2608        if (pin_mask)
2609                intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610        else
2611                DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615{
2616        u32 mask;
2617
2618        if (INTEL_GEN(dev_priv) >= 12)
2619                /* TODO: Add AUX entries for USBC */
2620                return TGL_DE_PORT_AUX_DDIA |
2621                        TGL_DE_PORT_AUX_DDIB |
2622                        TGL_DE_PORT_AUX_DDIC;
2623
2624        mask = GEN8_AUX_CHANNEL_A;
2625        if (INTEL_GEN(dev_priv) >= 9)
2626                mask |= GEN9_AUX_CHANNEL_B |
2627                        GEN9_AUX_CHANNEL_C |
2628                        GEN9_AUX_CHANNEL_D;
2629
2630        if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631                mask |= CNL_AUX_CHANNEL_F;
2632
2633        if (IS_GEN(dev_priv, 11))
2634                mask |= ICL_AUX_CHANNEL_E;
2635
2636        return mask;
2637}
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641        if (INTEL_GEN(dev_priv) >= 9)
2642                return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643        else
2644                return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649{
2650        bool found = false;
2651
2652        if (iir & GEN8_DE_MISC_GSE) {
2653                intel_opregion_asle_intr(dev_priv);
2654                found = true;
2655        }
2656
2657        if (iir & GEN8_DE_EDP_PSR) {
2658                u32 psr_iir = I915_READ(EDP_PSR_IIR);
2659
2660                intel_psr_irq_handler(dev_priv, psr_iir);
2661                I915_WRITE(EDP_PSR_IIR, psr_iir);
2662                found = true;
2663        }
2664
2665        if (!found)
2666                DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671{
2672        irqreturn_t ret = IRQ_NONE;
2673        u32 iir;
2674        enum pipe pipe;
2675
2676        if (master_ctl & GEN8_DE_MISC_IRQ) {
2677                iir = I915_READ(GEN8_DE_MISC_IIR);
2678                if (iir) {
2679                        I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680                        ret = IRQ_HANDLED;
2681                        gen8_de_misc_irq_handler(dev_priv, iir);
2682                } else {
2683                        DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684                }
2685        }
2686
2687        if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688                iir = I915_READ(GEN11_DE_HPD_IIR);
2689                if (iir) {
2690                        I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691                        ret = IRQ_HANDLED;
2692                        gen11_hpd_irq_handler(dev_priv, iir);
2693                } else {
2694                        DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695                }
2696        }
2697
2698        if (master_ctl & GEN8_DE_PORT_IRQ) {
2699                iir = I915_READ(GEN8_DE_PORT_IIR);
2700                if (iir) {
2701                        u32 tmp_mask;
2702                        bool found = false;
2703
2704                        I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705                        ret = IRQ_HANDLED;
2706
2707                        if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708                                dp_aux_irq_handler(dev_priv);
2709                                found = true;
2710                        }
2711
2712                        if (IS_GEN9_LP(dev_priv)) {
2713                                tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714                                if (tmp_mask) {
2715                                        bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716                                                            hpd_bxt);
2717                                        found = true;
2718                                }
2719                        } else if (IS_BROADWELL(dev_priv)) {
2720                                tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721                                if (tmp_mask) {
2722                                        ilk_hpd_irq_handler(dev_priv,
2723                                                            tmp_mask, hpd_bdw);
2724                                        found = true;
2725                                }
2726                        }
2727
2728                        if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729                                gmbus_irq_handler(dev_priv);
2730                                found = true;
2731                        }
2732
2733                        if (!found)
2734                                DRM_ERROR("Unexpected DE Port interrupt\n");
2735                }
2736                else
2737                        DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738        }
2739
2740        for_each_pipe(dev_priv, pipe) {
2741                u32 fault_errors;
2742
2743                if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744                        continue;
2745
2746                iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747                if (!iir) {
2748                        DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749                        continue;
2750                }
2751
2752                ret = IRQ_HANDLED;
2753                I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755                if (iir & GEN8_PIPE_VBLANK)
2756                        drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758                if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759                        hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761                if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764                fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765                if (fault_errors)
2766                        DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767                                  pipe_name(pipe),
2768                                  fault_errors);
2769        }
2770
2771        if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772            master_ctl & GEN8_DE_PCH_IRQ) {
2773                /*
2774                 * FIXME(BDW): Assume for now that the new interrupt handling
2775                 * scheme also closed the SDE interrupt handling race we've seen
2776                 * on older pch-split platforms. But this needs testing.
2777                 */
2778                iir = I915_READ(SDEIIR);
2779                if (iir) {
2780                        I915_WRITE(SDEIIR, iir);
2781                        ret = IRQ_HANDLED;
2782
2783                        if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784                                tgp_irq_handler(dev_priv, iir);
2785                        else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786                                icp_irq_handler(dev_priv, iir, hpd_mcc);
2787                        else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788                                icp_irq_handler(dev_priv, iir, hpd_icp);
2789                        else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790                                spt_irq_handler(dev_priv, iir);
2791                        else
2792                                cpt_irq_handler(dev_priv, iir);
2793                } else {
2794                        /*
2795                         * Like on previous PCH there seems to be something
2796                         * fishy going on with forwarding PCH interrupts.
2797                         */
2798                        DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799                }
2800        }
2801
2802        return ret;
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806{
2807        raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2808
2809        /*
2810         * Now with master disabled, get a sample of level indications
2811         * for this interrupt. Indications will be cleared on related acks.
2812         * New indications can and will light up during processing,
2813         * and will generate new interrupt after enabling master.
2814         */
2815        return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820        raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821}
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824{
2825        struct drm_i915_private *dev_priv = arg;
2826        void __iomem * const regs = dev_priv->uncore.regs;
2827        u32 master_ctl;
2828        u32 gt_iir[4];
2829
2830        if (!intel_irqs_enabled(dev_priv))
2831                return IRQ_NONE;
2832
2833        master_ctl = gen8_master_intr_disable(regs);
2834        if (!master_ctl) {
2835                gen8_master_intr_enable(regs);
2836                return IRQ_NONE;
2837        }
2838
2839        /* Find, clear, then process each source of interrupt */
2840        gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843        if (master_ctl & ~GEN8_GT_IRQS) {
2844                disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845                gen8_de_irq_handler(dev_priv, master_ctl);
2846                enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847        }
2848
2849        gen8_master_intr_enable(regs);
2850
2851        gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853        return IRQ_HANDLED;
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858{
2859        void __iomem * const regs = gt->uncore->regs;
2860        u32 iir;
2861
2862        if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863                return 0;
2864
2865        iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866        if (likely(iir))
2867                raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869        return iir;
2870}
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874{
2875        if (iir & GEN11_GU_MISC_GSE)
2876                intel_opregion_asle_intr(gt->i915);
2877}
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880{
2881        raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2882
2883        /*
2884         * Now with master disabled, get a sample of level indications
2885         * for this interrupt. Indications will be cleared on related acks.
2886         * New indications can and will light up during processing,
2887         * and will generate new interrupt after enabling master.
2888         */
2889        return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894        raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898{
2899        struct drm_i915_private * const i915 = arg;
2900        void __iomem * const regs = i915->uncore.regs;
2901        struct intel_gt *gt = &i915->gt;
2902        u32 master_ctl;
2903        u32 gu_misc_iir;
2904
2905        if (!intel_irqs_enabled(i915))
2906                return IRQ_NONE;
2907
2908        master_ctl = gen11_master_intr_disable(regs);
2909        if (!master_ctl) {
2910                gen11_master_intr_enable(regs);
2911                return IRQ_NONE;
2912        }
2913
2914        /* Find, clear, then process each source of interrupt. */
2915        gen11_gt_irq_handler(gt, master_ctl);
2916
2917        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918        if (master_ctl & GEN11_DISPLAY_IRQ) {
2919                const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921                disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922                /*
2923                 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924                 * for the display related bits.
2925                 */
2926                gen8_de_irq_handler(i915, disp_ctl);
2927                enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928        }
2929
2930        gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932        gen11_master_intr_enable(regs);
2933
2934        gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936        return IRQ_HANDLED;
2937}
2938
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945        enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946        unsigned long irqflags;
2947
2948        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949        i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2950        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952        return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959        if (dev_priv->i945gm_vblank.enabled++ == 0)
2960                schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962        return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968        enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969        unsigned long irqflags;
2970
2971        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972        i915_enable_pipestat(dev_priv, pipe,
2973                             PIPE_START_VBLANK_INTERRUPT_STATUS);
2974        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976        return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982        enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983        unsigned long irqflags;
2984        u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985                DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988        ilk_enable_display_irq(dev_priv, bit);
2989        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991        /* Even though there is no DMC, frame counter can get stuck when
2992         * PSR is active as no frames are generated.
2993         */
2994        if (HAS_PSR(dev_priv))
2995                drm_crtc_vblank_restore(crtc);
2996
2997        return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004        unsigned long irqflags;
3005
3006        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007        bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3008        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010        /* Even if there is no DMC, frame counter can get stuck when
3011         * PSR is active as no frames are generated, so check only for PSR.
3012         */
3013        if (HAS_PSR(dev_priv))
3014                drm_crtc_vblank_restore(crtc);
3015
3016        return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026        unsigned long irqflags;
3027
3028        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029        i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3030        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037        i8xx_disable_vblank(crtc);
3038
3039        if (--dev_priv->i945gm_vblank.enabled == 0)
3040                schedule_work(&dev_priv->i945gm_vblank.work);
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047        unsigned long irqflags;
3048
3049        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050        i915_disable_pipestat(dev_priv, pipe,
3051                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3052        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059        unsigned long irqflags;
3060        u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061                DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064        ilk_disable_display_irq(dev_priv, bit);
3065        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
3069{
3070        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072        unsigned long irqflags;
3073
3074        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075        bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
3080{
3081        struct drm_i915_private *dev_priv =
3082                container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084        /*
3085         * Vblank interrupts fail to wake up the device from C3,
3086         * hence we want to prevent C3 usage while vblank interrupts
3087         * are enabled.
3088         */
3089        pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090                              READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091                              dev_priv->i945gm_vblank.c3_disable_latency :
3092                              PM_QOS_DEFAULT_VALUE);
3093}
3094
3095static int cstate_disable_latency(const char *name)
3096{
3097        const struct cpuidle_driver *drv;
3098        int i;
3099
3100        drv = cpuidle_get_driver();
3101        if (!drv)
3102                return 0;
3103
3104        for (i = 0; i < drv->state_count; i++) {
3105                const struct cpuidle_state *state = &drv->states[i];
3106
3107                if (!strcmp(state->name, name))
3108                        return state->exit_latency ?
3109                                state->exit_latency - 1 : 0;
3110        }
3111
3112        return 0;
3113}
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116{
3117        INIT_WORK(&dev_priv->i945gm_vblank.work,
3118                  i945gm_vblank_work_func);
3119
3120        dev_priv->i945gm_vblank.c3_disable_latency =
3121                cstate_disable_latency("C3");
3122        pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123                           PM_QOS_CPU_DMA_LATENCY,
3124                           PM_QOS_DEFAULT_VALUE);
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129        cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130        pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134{
3135        struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137        if (HAS_PCH_NOP(dev_priv))
3138                return;
3139
3140        GEN3_IRQ_RESET(uncore, SDE);
3141
3142        if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143                I915_WRITE(SERR_INT, 0xffffffff);
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155{
3156        if (HAS_PCH_NOP(dev_priv))
3157                return;
3158
3159        WARN_ON(I915_READ(SDEIER) != 0);
3160        I915_WRITE(SDEIER, 0xffffffff);
3161        POSTING_READ(SDEIER);
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165{
3166        struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168        if (IS_CHERRYVIEW(dev_priv))
3169                intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170        else
3171                intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173        i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174        intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176        i9xx_pipestat_irq_reset(dev_priv);
3177
3178        GEN3_IRQ_RESET(uncore, VLV_);
3179        dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183{
3184        struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186        u32 pipestat_mask;
3187        u32 enable_mask;
3188        enum pipe pipe;
3189
3190        pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193        for_each_pipe(dev_priv, pipe)
3194                i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196        enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199                I915_LPE_PIPE_A_INTERRUPT |
3200                I915_LPE_PIPE_B_INTERRUPT;
3201
3202        if (IS_CHERRYVIEW(dev_priv))
3203                enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204                        I915_LPE_PIPE_C_INTERRUPT;
3205
3206        WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208        dev_priv->irq_mask = ~enable_mask;
3209
3210        GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211}
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217        struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219        GEN3_IRQ_RESET(uncore, DE);
3220        if (IS_GEN(dev_priv, 7))
3221                intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223        if (IS_HASWELL(dev_priv)) {
3224                intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225                intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226        }
3227
3228        gen5_gt_irq_reset(&dev_priv->gt);
3229
3230        ibx_irq_reset(dev_priv);
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234{
3235        I915_WRITE(VLV_MASTER_IER, 0);
3236        POSTING_READ(VLV_MASTER_IER);
3237
3238        gen5_gt_irq_reset(&dev_priv->gt);
3239
3240        spin_lock_irq(&dev_priv->irq_lock);
3241        if (dev_priv->display_irqs_enabled)
3242                vlv_display_irq_reset(dev_priv);
3243        spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248        struct intel_uncore *uncore = &dev_priv->uncore;
3249        int pipe;
3250
3251        gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253        gen8_gt_irq_reset(&dev_priv->gt);
3254
3255        intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256        intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258        for_each_pipe(dev_priv, pipe)
3259                if (intel_display_power_is_enabled(dev_priv,
3260                                                   POWER_DOMAIN_PIPE(pipe)))
3261                        GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263        GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264        GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265        GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267        if (HAS_PCH_SPLIT(dev_priv))
3268                ibx_irq_reset(dev_priv);
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273        struct intel_uncore *uncore = &dev_priv->uncore;
3274        int pipe;
3275
3276        gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278        gen11_gt_irq_reset(&dev_priv->gt);
3279
3280        intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282        intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283        intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285        for_each_pipe(dev_priv, pipe)
3286                if (intel_display_power_is_enabled(dev_priv,
3287                                                   POWER_DOMAIN_PIPE(pipe)))
3288                        GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290        GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291        GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292        GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293        GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294        GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296        if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297                GEN3_IRQ_RESET(uncore, SDE);
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301                                     u8 pipe_mask)
3302{
3303        struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305        u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306        enum pipe pipe;
3307
3308        spin_lock_irq(&dev_priv->irq_lock);
3309
3310        if (!intel_irqs_enabled(dev_priv)) {
3311                spin_unlock_irq(&dev_priv->irq_lock);
3312                return;
3313        }
3314
3315        for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316                GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317                                  dev_priv->de_irq_mask[pipe],
3318                                  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320        spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324                                     u8 pipe_mask)
3325{
3326        struct intel_uncore *uncore = &dev_priv->uncore;
3327        enum pipe pipe;
3328
3329        spin_lock_irq(&dev_priv->irq_lock);
3330
3331        if (!intel_irqs_enabled(dev_priv)) {
3332                spin_unlock_irq(&dev_priv->irq_lock);
3333                return;
3334        }
3335
3336        for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337                GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339        spin_unlock_irq(&dev_priv->irq_lock);
3340
3341        /* make sure we're done processing display irqs */
3342        intel_synchronize_irq(dev_priv);
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347        struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349        I915_WRITE(GEN8_MASTER_IRQ, 0);
3350        POSTING_READ(GEN8_MASTER_IRQ);
3351
3352        gen8_gt_irq_reset(&dev_priv->gt);
3353
3354        GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356        spin_lock_irq(&dev_priv->irq_lock);
3357        if (dev_priv->display_irqs_enabled)
3358                vlv_display_irq_reset(dev_priv);
3359        spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363                                  const u32 hpd[HPD_NUM_PINS])
3364{
3365        struct intel_encoder *encoder;
3366        u32 enabled_irqs = 0;
3367
3368        for_each_intel_encoder(&dev_priv->drm, encoder)
3369                if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370                        enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372        return enabled_irqs;
3373}
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377        u32 hotplug;
3378
3379        /*
3380         * Enable digital hotplug on the PCH, and configure the DP short pulse
3381         * duration to 2ms (which is the minimum in the Display Port spec).
3382         * The pulse duration bits are reserved on LPT+.
3383         */
3384        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385        hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386                     PORTC_PULSE_DURATION_MASK |
3387                     PORTD_PULSE_DURATION_MASK);
3388        hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389        hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390        hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391        /*
3392         * When CPU and PCH are on the same package, port A
3393         * HPD must be enabled in both north and south.
3394         */
3395        if (HAS_PCH_LPT_LP(dev_priv))
3396                hotplug |= PORTA_HOTPLUG_ENABLE;
3397        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402        u32 hotplug_irqs, enabled_irqs;
3403
3404        if (HAS_PCH_IBX(dev_priv)) {
3405                hotplug_irqs = SDE_HOTPLUG_MASK;
3406                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407        } else {
3408                hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410        }
3411
3412        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414        ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418                                    u32 ddi_hotplug_enable_mask,
3419                                    u32 tc_hotplug_enable_mask)
3420{
3421        u32 hotplug;
3422
3423        hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424        hotplug |= ddi_hotplug_enable_mask;
3425        I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427        if (tc_hotplug_enable_mask) {
3428                hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429                hotplug |= tc_hotplug_enable_mask;
3430                I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431        }
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435{
3436        u32 hotplug_irqs, enabled_irqs;
3437
3438        hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443        icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444                                ICP_TC_HPD_ENABLE_MASK);
3445}
3446
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448{
3449        u32 hotplug_irqs, enabled_irqs;
3450
3451        hotplug_irqs = SDE_DDI_MASK_TGP;
3452        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456        icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460{
3461        u32 hotplug_irqs, enabled_irqs;
3462
3463        hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468        icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469                                TGP_TC_HPD_ENABLE_MASK);
3470}
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474        u32 hotplug;
3475
3476        hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477        hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481        I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483        hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484        hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487                   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488        I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493        u32 hotplug_irqs, enabled_irqs;
3494        const u32 *hpd;
3495        u32 val;
3496
3497        hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499        hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501        val = I915_READ(GEN11_DE_HPD_IMR);
3502        val &= ~hotplug_irqs;
3503        I915_WRITE(GEN11_DE_HPD_IMR, val);
3504        POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506        gen11_hpd_detection_setup(dev_priv);
3507
3508        if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509                tgp_hpd_irq_setup(dev_priv);
3510        else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511                icp_hpd_irq_setup(dev_priv);
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516        u32 val, hotplug;
3517
3518        /* Display WA #1179 WaHardHangonHotPlug: cnp */
3519        if (HAS_PCH_CNP(dev_priv)) {
3520                val = I915_READ(SOUTH_CHICKEN1);
3521                val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522                val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523                I915_WRITE(SOUTH_CHICKEN1, val);
3524        }
3525
3526        /* Enable digital hotplug on the PCH */
3527        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528        hotplug |= PORTA_HOTPLUG_ENABLE |
3529                   PORTB_HOTPLUG_ENABLE |
3530                   PORTC_HOTPLUG_ENABLE |
3531                   PORTD_HOTPLUG_ENABLE;
3532        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534        hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535        hotplug |= PORTE_HOTPLUG_ENABLE;
3536        I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541        u32 hotplug_irqs, enabled_irqs;
3542
3543        hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548        spt_hpd_detection_setup(dev_priv);
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553        u32 hotplug;
3554
3555        /*
3556         * Enable digital hotplug on the CPU, and configure the DP short pulse
3557         * duration to 2ms (which is the minimum in the Display Port spec)
3558         * The pulse duration bits are reserved on HSW+.
3559         */
3560        hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561        hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562        hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563                   DIGITAL_PORTA_PULSE_DURATION_2ms;
3564        I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569        u32 hotplug_irqs, enabled_irqs;
3570
3571        if (INTEL_GEN(dev_priv) >= 8) {
3572                hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575                bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576        } else if (INTEL_GEN(dev_priv) >= 7) {
3577                hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580                ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581        } else {
3582                hotplug_irqs = DE_DP_A_HOTPLUG;
3583                enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585                ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586        }
3587
3588        ilk_hpd_detection_setup(dev_priv);
3589
3590        ibx_hpd_irq_setup(dev_priv);
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594                                      u32 enabled_irqs)
3595{
3596        u32 hotplug;
3597
3598        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599        hotplug |= PORTA_HOTPLUG_ENABLE |
3600                   PORTB_HOTPLUG_ENABLE |
3601                   PORTC_HOTPLUG_ENABLE;
3602
3603        DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604                      hotplug, enabled_irqs);
3605        hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607        /*
3608         * For BXT invert bit has to be set based on AOB design
3609         * for HPD detection logic, update it based on VBT fields.
3610         */
3611        if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612            intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613                hotplug |= BXT_DDIA_HPD_INVERT;
3614        if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615            intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616                hotplug |= BXT_DDIB_HPD_INVERT;
3617        if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618            intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619                hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626        __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627}
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631        u32 hotplug_irqs, enabled_irqs;
3632
3633        enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634        hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636        bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638        __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
3643        u32 mask;
3644
3645        if (HAS_PCH_NOP(dev_priv))
3646                return;
3647
3648        if (HAS_PCH_IBX(dev_priv))
3649                mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650        else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651                mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652        else
3653                mask = SDE_GMBUS_CPT;
3654
3655        gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656        I915_WRITE(SDEIMR, ~mask);
3657
3658        if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659            HAS_PCH_LPT(dev_priv))
3660                ibx_hpd_detection_setup(dev_priv);
3661        else
3662                spt_hpd_detection_setup(dev_priv);
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667        struct intel_uncore *uncore = &dev_priv->uncore;
3668        u32 display_mask, extra_mask;
3669
3670        if (INTEL_GEN(dev_priv) >= 7) {
3671                display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672                                DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673                extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674                              DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675                              DE_DP_A_HOTPLUG_IVB);
3676        } else {
3677                display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678                                DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679                                DE_PIPEA_CRC_DONE | DE_POISON);
3680                extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681                              DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682                              DE_DP_A_HOTPLUG);
3683        }
3684
3685        if (IS_HASWELL(dev_priv)) {
3686                gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687                intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688                display_mask |= DE_EDP_PSR_INT_HSW;
3689        }
3690
3691        dev_priv->irq_mask = ~display_mask;
3692
3693        ibx_irq_pre_postinstall(dev_priv);
3694
3695        GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696                      display_mask | extra_mask);
3697
3698        gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700        ilk_hpd_detection_setup(dev_priv);
3701
3702        ibx_irq_postinstall(dev_priv);
3703
3704        if (IS_IRONLAKE_M(dev_priv)) {
3705                /* Enable PCU event interrupts
3706                 *
3707                 * spinlocking not required here for correctness since interrupt
3708                 * setup is guaranteed to run in single-threaded context. But we
3709                 * need it to make the assert_spin_locked happy. */
3710                spin_lock_irq(&dev_priv->irq_lock);
3711                ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712                spin_unlock_irq(&dev_priv->irq_lock);
3713        }
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718        lockdep_assert_held(&dev_priv->irq_lock);
3719
3720        if (dev_priv->display_irqs_enabled)
3721                return;
3722
3723        dev_priv->display_irqs_enabled = true;
3724
3725        if (intel_irqs_enabled(dev_priv)) {
3726                vlv_display_irq_reset(dev_priv);
3727                vlv_display_irq_postinstall(dev_priv);
3728        }
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733        lockdep_assert_held(&dev_priv->irq_lock);
3734
3735        if (!dev_priv->display_irqs_enabled)
3736                return;
3737
3738        dev_priv->display_irqs_enabled = false;
3739
3740        if (intel_irqs_enabled(dev_priv))
3741                vlv_display_irq_reset(dev_priv);
3742}
3743
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747        gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749        spin_lock_irq(&dev_priv->irq_lock);
3750        if (dev_priv->display_irqs_enabled)
3751                vlv_display_irq_postinstall(dev_priv);
3752        spin_unlock_irq(&dev_priv->irq_lock);
3753
3754        I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755        POSTING_READ(VLV_MASTER_IER);
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760        struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762        u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763        u32 de_pipe_enables;
3764        u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765        u32 de_port_enables;
3766        u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767        enum pipe pipe;
3768
3769        if (INTEL_GEN(dev_priv) <= 10)
3770                de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772        if (INTEL_GEN(dev_priv) >= 9) {
3773                de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774                de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775                                  GEN9_AUX_CHANNEL_D;
3776                if (IS_GEN9_LP(dev_priv))
3777                        de_port_masked |= BXT_DE_PORT_GMBUS;
3778        } else {
3779                de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780        }
3781
3782        if (INTEL_GEN(dev_priv) >= 11)
3783                de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785        if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786                de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788        de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789                                           GEN8_PIPE_FIFO_UNDERRUN;
3790
3791        de_port_enables = de_port_masked;
3792        if (IS_GEN9_LP(dev_priv))
3793                de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794        else if (IS_BROADWELL(dev_priv))
3795                de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797        gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798        intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800        for_each_pipe(dev_priv, pipe) {
3801                dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803                if (intel_display_power_is_enabled(dev_priv,
3804                                POWER_DOMAIN_PIPE(pipe)))
3805                        GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806                                          dev_priv->de_irq_mask[pipe],
3807                                          de_pipe_enables);
3808        }
3809
3810        GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811        GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813        if (INTEL_GEN(dev_priv) >= 11) {
3814                u32 de_hpd_masked = 0;
3815                u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816                                     GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818                GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819                              de_hpd_enables);
3820                gen11_hpd_detection_setup(dev_priv);
3821        } else if (IS_GEN9_LP(dev_priv)) {
3822                bxt_hpd_detection_setup(dev_priv);
3823        } else if (IS_BROADWELL(dev_priv)) {
3824                ilk_hpd_detection_setup(dev_priv);
3825        }
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830        if (HAS_PCH_SPLIT(dev_priv))
3831                ibx_irq_pre_postinstall(dev_priv);
3832
3833        gen8_gt_irq_postinstall(&dev_priv->gt);
3834        gen8_de_irq_postinstall(dev_priv);
3835
3836        if (HAS_PCH_SPLIT(dev_priv))
3837                ibx_irq_postinstall(dev_priv);
3838
3839        gen8_master_intr_enable(dev_priv->uncore.regs);
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844        u32 mask = SDE_GMBUS_ICP;
3845
3846        WARN_ON(I915_READ(SDEIER) != 0);
3847        I915_WRITE(SDEIER, 0xffffffff);
3848        POSTING_READ(SDEIER);
3849
3850        gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851        I915_WRITE(SDEIMR, ~mask);
3852
3853        if (HAS_PCH_TGP(dev_priv))
3854                icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855                                        TGP_TC_HPD_ENABLE_MASK);
3856        else if (HAS_PCH_MCC(dev_priv))
3857                icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858        else
3859                icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860                                        ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865        struct intel_uncore *uncore = &dev_priv->uncore;
3866        u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868        if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869                icp_irq_postinstall(dev_priv);
3870
3871        gen11_gt_irq_postinstall(&dev_priv->gt);
3872        gen8_de_irq_postinstall(dev_priv);
3873
3874        GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876        I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878        gen11_master_intr_enable(uncore->regs);
3879        POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880}
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884        gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886        spin_lock_irq(&dev_priv->irq_lock);
3887        if (dev_priv->display_irqs_enabled)
3888                vlv_display_irq_postinstall(dev_priv);
3889        spin_unlock_irq(&dev_priv->irq_lock);
3890
3891        I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892        POSTING_READ(GEN8_MASTER_IRQ);
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897        struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899        i9xx_pipestat_irq_reset(dev_priv);
3900
3901        GEN2_IRQ_RESET(uncore);
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906        struct intel_uncore *uncore = &dev_priv->uncore;
3907        u16 enable_mask;
3908
3909        intel_uncore_write16(uncore,
3910                             EMR,
3911                             ~(I915_ERROR_PAGE_TABLE |
3912                               I915_ERROR_MEMORY_REFRESH));
3913
3914        /* Unmask the interrupts that we always want on. */
3915        dev_priv->irq_mask =
3916                ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918                  I915_MASTER_ERROR_INTERRUPT);
3919
3920        enable_mask =
3921                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923                I915_MASTER_ERROR_INTERRUPT |
3924                I915_USER_INTERRUPT;
3925
3926        GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928        /* Interrupt setup is already guaranteed to be single-threaded, this is
3929         * just to make the assert_spin_locked check happy. */
3930        spin_lock_irq(&dev_priv->irq_lock);
3931        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933        spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937                               u16 *eir, u16 *eir_stuck)
3938{
3939        struct intel_uncore *uncore = &i915->uncore;
3940        u16 emr;
3941
3942        *eir = intel_uncore_read16(uncore, EIR);
3943
3944        if (*eir)
3945                intel_uncore_write16(uncore, EIR, *eir);
3946
3947        *eir_stuck = intel_uncore_read16(uncore, EIR);
3948        if (*eir_stuck == 0)
3949                return;
3950
3951        /*
3952         * Toggle all EMR bits to make sure we get an edge
3953         * in the ISR master error bit if we don't clear
3954         * all the EIR bits. Otherwise the edge triggered
3955         * IIR on i965/g4x wouldn't notice that an interrupt
3956         * is still pending. Also some EIR bits can't be
3957         * cleared except by handling the underlying error
3958         * (or by a GPU reset) so we mask any bit that
3959         * remains set.
3960         */
3961        emr = intel_uncore_read16(uncore, EMR);
3962        intel_uncore_write16(uncore, EMR, 0xffff);
3963        intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967                                   u16 eir, u16 eir_stuck)
3968{
3969        DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971        if (eir_stuck)
3972                DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976                               u32 *eir, u32 *eir_stuck)
3977{
3978        u32 emr;
3979
3980        *eir = I915_READ(EIR);
3981
3982        I915_WRITE(EIR, *eir);
3983
3984        *eir_stuck = I915_READ(EIR);
3985        if (*eir_stuck == 0)
3986                return;
3987
3988        /*
3989         * Toggle all EMR bits to make sure we get an edge
3990         * in the ISR master error bit if we don't clear
3991         * all the EIR bits. Otherwise the edge triggered
3992         * IIR on i965/g4x wouldn't notice that an interrupt
3993         * is still pending. Also some EIR bits can't be
3994         * cleared except by handling the underlying error
3995         * (or by a GPU reset) so we mask any bit that
3996         * remains set.
3997         */
3998        emr = I915_READ(EMR);
3999        I915_WRITE(EMR, 0xffffffff);
4000        I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004                                   u32 eir, u32 eir_stuck)
4005{
4006        DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008        if (eir_stuck)
4009                DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014        struct drm_i915_private *dev_priv = arg;
4015        irqreturn_t ret = IRQ_NONE;
4016
4017        if (!intel_irqs_enabled(dev_priv))
4018                return IRQ_NONE;
4019
4020        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023        do {
4024                u32 pipe_stats[I915_MAX_PIPES] = {};
4025                u16 eir = 0, eir_stuck = 0;
4026                u16 iir;
4027
4028                iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029                if (iir == 0)
4030                        break;
4031
4032                ret = IRQ_HANDLED;
4033
4034                /* Call regardless, as some status bits might not be
4035                 * signalled in iir */
4036                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038                if (iir & I915_MASTER_ERROR_INTERRUPT)
4039                        i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041                intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043                if (iir & I915_USER_INTERRUPT)
4044                        intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046                if (iir & I915_MASTER_ERROR_INTERRUPT)
4047                        i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049                i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050        } while (0);
4051
4052        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054        return ret;
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059        struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061        if (I915_HAS_HOTPLUG(dev_priv)) {
4062                i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063                I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064        }
4065
4066        i9xx_pipestat_irq_reset(dev_priv);
4067
4068        GEN3_IRQ_RESET(uncore, GEN2_);
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072{
4073        struct intel_uncore *uncore = &dev_priv->uncore;
4074        u32 enable_mask;
4075
4076        I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077                          I915_ERROR_MEMORY_REFRESH));
4078
4079        /* Unmask the interrupts that we always want on. */
4080        dev_priv->irq_mask =
4081                ~(I915_ASLE_INTERRUPT |
4082                  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084                  I915_MASTER_ERROR_INTERRUPT);
4085
4086        enable_mask =
4087                I915_ASLE_INTERRUPT |
4088                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090                I915_MASTER_ERROR_INTERRUPT |
4091                I915_USER_INTERRUPT;
4092
4093        if (I915_HAS_HOTPLUG(dev_priv)) {
4094                /* Enable in IER... */
4095                enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096                /* and unmask in IMR */
4097                dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098        }
4099
4100        GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4101
4102        /* Interrupt setup is already guaranteed to be single-threaded, this is
4103         * just to make the assert_spin_locked check happy. */
4104        spin_lock_irq(&dev_priv->irq_lock);
4105        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107        spin_unlock_irq(&dev_priv->irq_lock);
4108
4109        i915_enable_asle_pipestat(dev_priv);
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
4113{
4114        struct drm_i915_private *dev_priv = arg;
4115        irqreturn_t ret = IRQ_NONE;
4116
4117        if (!intel_irqs_enabled(dev_priv))
4118                return IRQ_NONE;
4119
4120        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
4123        do {
4124                u32 pipe_stats[I915_MAX_PIPES] = {};
4125                u32 eir = 0, eir_stuck = 0;
4126                u32 hotplug_status = 0;
4127                u32 iir;
4128
4129                iir = I915_READ(GEN2_IIR);
4130                if (iir == 0)
4131                        break;
4132
4133                ret = IRQ_HANDLED;
4134
4135                if (I915_HAS_HOTPLUG(dev_priv) &&
4136                    iir & I915_DISPLAY_PORT_INTERRUPT)
4137                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139                /* Call regardless, as some status bits might not be
4140                 * signalled in iir */
4141                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143                if (iir & I915_MASTER_ERROR_INTERRUPT)
4144                        i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146                I915_WRITE(GEN2_IIR, iir);
4147
4148                if (iir & I915_USER_INTERRUPT)
4149                        intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151                if (iir & I915_MASTER_ERROR_INTERRUPT)
4152                        i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154                if (hotplug_status)
4155                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157                i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158        } while (0);
4159
4160        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162        return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167        struct intel_uncore *uncore = &dev_priv->uncore;
4168
4169        i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170        I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172        i9xx_pipestat_irq_reset(dev_priv);
4173
4174        GEN3_IRQ_RESET(uncore, GEN2_);
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179        struct intel_uncore *uncore = &dev_priv->uncore;
4180        u32 enable_mask;
4181        u32 error_mask;
4182
4183        /*
4184         * Enable some error detection, note the instruction error mask
4185         * bit is reserved, so we leave it masked.
4186         */
4187        if (IS_G4X(dev_priv)) {
4188                error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189                               GM45_ERROR_MEM_PRIV |
4190                               GM45_ERROR_CP_PRIV |
4191                               I915_ERROR_MEMORY_REFRESH);
4192        } else {
4193                error_mask = ~(I915_ERROR_PAGE_TABLE |
4194                               I915_ERROR_MEMORY_REFRESH);
4195        }
4196        I915_WRITE(EMR, error_mask);
4197
4198        /* Unmask the interrupts that we always want on. */
4199        dev_priv->irq_mask =
4200                ~(I915_ASLE_INTERRUPT |
4201                  I915_DISPLAY_PORT_INTERRUPT |
4202                  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204                  I915_MASTER_ERROR_INTERRUPT);
4205
4206        enable_mask =
4207                I915_ASLE_INTERRUPT |
4208                I915_DISPLAY_PORT_INTERRUPT |
4209                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211                I915_MASTER_ERROR_INTERRUPT |
4212                I915_USER_INTERRUPT;
4213
4214        if (IS_G4X(dev_priv))
4215                enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217        GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219        /* Interrupt setup is already guaranteed to be single-threaded, this is
4220         * just to make the assert_spin_locked check happy. */
4221        spin_lock_irq(&dev_priv->irq_lock);
4222        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225        spin_unlock_irq(&dev_priv->irq_lock);
4226
4227        i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
4232        u32 hotplug_en;
4233
4234        lockdep_assert_held(&dev_priv->irq_lock);
4235
4236        /* Note HDMI and DP share hotplug bits */
4237        /* enable bits are the same for all generations */
4238        hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239        /* Programming the CRT detection parameters tends
4240           to generate a spurious hotplug event about three
4241           seconds later.  So just do it once.
4242        */
4243        if (IS_G4X(dev_priv))
4244                hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245        hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247        /* Ignore TV since it's buggy */
4248        i915_hotplug_interrupt_update_locked(dev_priv,
4249                                             HOTPLUG_INT_EN_MASK |
4250                                             CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251                                             CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252                                             hotplug_en);
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257        struct drm_i915_private *dev_priv = arg;
4258        irqreturn_t ret = IRQ_NONE;
4259
4260        if (!intel_irqs_enabled(dev_priv))
4261                return IRQ_NONE;
4262
4263        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264        disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4265
4266        do {
4267                u32 pipe_stats[I915_MAX_PIPES] = {};
4268                u32 eir = 0, eir_stuck = 0;
4269                u32 hotplug_status = 0;
4270                u32 iir;
4271
4272                iir = I915_READ(GEN2_IIR);
4273                if (iir == 0)
4274                        break;
4275
4276                ret = IRQ_HANDLED;
4277
4278                if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279                        hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281                /* Call regardless, as some status bits might not be
4282                 * signalled in iir */
4283                i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285                if (iir & I915_MASTER_ERROR_INTERRUPT)
4286                        i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288                I915_WRITE(GEN2_IIR, iir);
4289
4290                if (iir & I915_USER_INTERRUPT)
4291                        intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293                if (iir & I915_BSD_USER_INTERRUPT)
4294                        intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296                if (iir & I915_MASTER_ERROR_INTERRUPT)
4297                        i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299                if (hotplug_status)
4300                        i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302                i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303        } while (0);
4304
4305        enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307        return ret;
4308}
4309
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319        struct drm_device *dev = &dev_priv->drm;
4320        struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321        int i;
4322
4323        if (IS_I945GM(dev_priv))
4324                i945gm_vblank_work_init(dev_priv);
4325
4326        intel_hpd_init_work(dev_priv);
4327
4328        INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330        INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331        for (i = 0; i < MAX_L3_SLICES; ++i)
4332                dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334        /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335        if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336                dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338        /* Let's track the enabled rps events */
4339        if (IS_VALLEYVIEW(dev_priv))
4340                /* WaGsvRC0ResidencyMethod:vlv */
4341                dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342        else
4343                dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344                                           GEN6_PM_RP_DOWN_THRESHOLD |
4345                                           GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347        /* We share the register with other engine */
4348        if (INTEL_GEN(dev_priv) > 9)
4349                GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351        rps->pm_intrmsk_mbz = 0;
4352
4353        /*
4354         * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355         * if GEN6_PM_UP_EI_EXPIRED is masked.
4356         *
4357         * TODO: verify if this can be reproduced on VLV,CHV.
4358         */
4359        if (INTEL_GEN(dev_priv) <= 7)
4360                rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362        if (INTEL_GEN(dev_priv) >= 8)
4363                rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365        dev->vblank_disable_immediate = true;
4366
4367        /* Most platforms treat the display irq block as an always-on
4368         * power domain. vlv/chv can disable it at runtime and need
4369         * special care to avoid writing any of the display block registers
4370         * outside of the power domain. We defer setting up the display irqs
4371         * in this case to the runtime pm.
4372         */
4373        dev_priv->display_irqs_enabled = true;
4374        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375                dev_priv->display_irqs_enabled = false;
4376
4377        dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378        /* If we have MST support, we want to avoid doing short HPD IRQ storm
4379         * detection, as short HPD storms will occur as a natural part of
4380         * sideband messaging with MST.
4381         * On older platforms however, IRQ storms can occur with both long and
4382         * short pulses, as seen on some G4x systems.
4383         */
4384        dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386        if (HAS_GMCH(dev_priv)) {
4387                if (I915_HAS_HOTPLUG(dev_priv))
4388                        dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389        } else {
4390                if (HAS_PCH_MCC(dev_priv))
4391                        /* EHL doesn't need most of gen11_hpd_irq_setup */
4392                        dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393                else if (INTEL_GEN(dev_priv) >= 11)
4394                        dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395                else if (IS_GEN9_LP(dev_priv))
4396                        dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397                else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398                        dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399                else
4400                        dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401        }
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412        int i;
4413
4414        if (IS_I945GM(i915))
4415                i945gm_vblank_work_fini(i915);
4416
4417        for (i = 0; i < MAX_L3_SLICES; ++i)
4418                kfree(i915->l3_parity.remap_info[i]);
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423        if (HAS_GMCH(dev_priv)) {
4424                if (IS_CHERRYVIEW(dev_priv))
4425                        return cherryview_irq_handler;
4426                else if (IS_VALLEYVIEW(dev_priv))
4427                        return valleyview_irq_handler;
4428                else if (IS_GEN(dev_priv, 4))
4429                        return i965_irq_handler;
4430                else if (IS_GEN(dev_priv, 3))
4431                        return i915_irq_handler;
4432                else
4433                        return i8xx_irq_handler;
4434        } else {
4435                if (INTEL_GEN(dev_priv) >= 11)
4436                        return gen11_irq_handler;
4437                else if (INTEL_GEN(dev_priv) >= 8)
4438                        return gen8_irq_handler;
4439                else
4440                        return ironlake_irq_handler;
4441        }
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446        if (HAS_GMCH(dev_priv)) {
4447                if (IS_CHERRYVIEW(dev_priv))
4448                        cherryview_irq_reset(dev_priv);
4449                else if (IS_VALLEYVIEW(dev_priv))
4450                        valleyview_irq_reset(dev_priv);
4451                else if (IS_GEN(dev_priv, 4))
4452                        i965_irq_reset(dev_priv);
4453                else if (IS_GEN(dev_priv, 3))
4454                        i915_irq_reset(dev_priv);
4455                else
4456                        i8xx_irq_reset(dev_priv);
4457        } else {
4458                if (INTEL_GEN(dev_priv) >= 11)
4459                        gen11_irq_reset(dev_priv);
4460                else if (INTEL_GEN(dev_priv) >= 8)
4461                        gen8_irq_reset(dev_priv);
4462                else
4463                        ironlake_irq_reset(dev_priv);
4464        }
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469        if (HAS_GMCH(dev_priv)) {
4470                if (IS_CHERRYVIEW(dev_priv))
4471                        cherryview_irq_postinstall(dev_priv);
4472                else if (IS_VALLEYVIEW(dev_priv))
4473                        valleyview_irq_postinstall(dev_priv);
4474                else if (IS_GEN(dev_priv, 4))
4475                        i965_irq_postinstall(dev_priv);
4476                else if (IS_GEN(dev_priv, 3))
4477                        i915_irq_postinstall(dev_priv);
4478                else
4479                        i8xx_irq_postinstall(dev_priv);
4480        } else {
4481                if (INTEL_GEN(dev_priv) >= 11)
4482                        gen11_irq_postinstall(dev_priv);
4483                else if (INTEL_GEN(dev_priv) >= 8)
4484                        gen8_irq_postinstall(dev_priv);
4485                else
4486                        ironlake_irq_postinstall(dev_priv);
4487        }
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503        int irq = dev_priv->drm.pdev->irq;
4504        int ret;
4505
4506        /*
4507         * We enable some interrupt sources in our postinstall hooks, so mark
4508         * interrupts as enabled _before_ actually enabling them to avoid
4509         * special cases in our ordering checks.
4510         */
4511        dev_priv->runtime_pm.irqs_enabled = true;
4512
4513        dev_priv->drm.irq_enabled = true;
4514
4515        intel_irq_reset(dev_priv);
4516
4517        ret = request_irq(irq, intel_irq_handler(dev_priv),
4518                          IRQF_SHARED, DRIVER_NAME, dev_priv);
4519        if (ret < 0) {
4520                dev_priv->drm.irq_enabled = false;
4521                return ret;
4522        }
4523
4524        intel_irq_postinstall(dev_priv);
4525
4526        return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538        int irq = dev_priv->drm.pdev->irq;
4539
4540        /*
4541         * FIXME we can get called twice during driver load
4542         * error handling due to intel_modeset_cleanup()
4543         * calling us out of sequence. Would be nice if
4544         * it didn't do that...
4545         */
4546        if (!dev_priv->drm.irq_enabled)
4547                return;
4548
4549        dev_priv->drm.irq_enabled = false;
4550
4551        intel_irq_reset(dev_priv);
4552
4553        free_irq(irq, dev_priv);
4554
4555        intel_hpd_cancel_work(dev_priv);
4556        dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568        intel_irq_reset(dev_priv);
4569        dev_priv->runtime_pm.irqs_enabled = false;
4570        intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582        dev_priv->runtime_pm.irqs_enabled = true;
4583        intel_irq_reset(dev_priv);
4584        intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589        /*
4590         * We only use drm_irq_uninstall() at unload and VT switch, so
4591         * this is the only thing we need to check.
4592         */
4593        return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598        synchronize_irq(i915->drm.pdev->irq);
4599}
4600