linux/drivers/gpu/drm/i915/i915_request.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/dma-fence-array.h>
  26#include <linux/irq_work.h>
  27#include <linux/prefetch.h>
  28#include <linux/sched.h>
  29#include <linux/sched/clock.h>
  30#include <linux/sched/signal.h>
  31
  32#include "gem/i915_gem_context.h"
  33#include "gt/intel_context.h"
  34
  35#include "i915_active.h"
  36#include "i915_drv.h"
  37#include "i915_globals.h"
  38#include "i915_trace.h"
  39#include "intel_pm.h"
  40
  41struct execute_cb {
  42        struct list_head link;
  43        struct irq_work work;
  44        struct i915_sw_fence *fence;
  45        void (*hook)(struct i915_request *rq, struct dma_fence *signal);
  46        struct i915_request *signal;
  47};
  48
  49static struct i915_global_request {
  50        struct i915_global base;
  51        struct kmem_cache *slab_requests;
  52        struct kmem_cache *slab_dependencies;
  53        struct kmem_cache *slab_execute_cbs;
  54} global;
  55
  56static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  57{
  58        return "i915";
  59}
  60
  61static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  62{
  63        /*
  64         * The timeline struct (as part of the ppgtt underneath a context)
  65         * may be freed when the request is no longer in use by the GPU.
  66         * We could extend the life of a context to beyond that of all
  67         * fences, possibly keeping the hw resource around indefinitely,
  68         * or we just give them a false name. Since
  69         * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  70         * lie seems justifiable.
  71         */
  72        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  73                return "signaled";
  74
  75        return to_request(fence)->gem_context->name ?: "[i915]";
  76}
  77
  78static bool i915_fence_signaled(struct dma_fence *fence)
  79{
  80        return i915_request_completed(to_request(fence));
  81}
  82
  83static bool i915_fence_enable_signaling(struct dma_fence *fence)
  84{
  85        return i915_request_enable_breadcrumb(to_request(fence));
  86}
  87
  88static signed long i915_fence_wait(struct dma_fence *fence,
  89                                   bool interruptible,
  90                                   signed long timeout)
  91{
  92        return i915_request_wait(to_request(fence),
  93                                 interruptible | I915_WAIT_PRIORITY,
  94                                 timeout);
  95}
  96
  97static void i915_fence_release(struct dma_fence *fence)
  98{
  99        struct i915_request *rq = to_request(fence);
 100
 101        /*
 102         * The request is put onto a RCU freelist (i.e. the address
 103         * is immediately reused), mark the fences as being freed now.
 104         * Otherwise the debugobjects for the fences are only marked as
 105         * freed when the slab cache itself is freed, and so we would get
 106         * caught trying to reuse dead objects.
 107         */
 108        i915_sw_fence_fini(&rq->submit);
 109        i915_sw_fence_fini(&rq->semaphore);
 110
 111        kmem_cache_free(global.slab_requests, rq);
 112}
 113
 114const struct dma_fence_ops i915_fence_ops = {
 115        .get_driver_name = i915_fence_get_driver_name,
 116        .get_timeline_name = i915_fence_get_timeline_name,
 117        .enable_signaling = i915_fence_enable_signaling,
 118        .signaled = i915_fence_signaled,
 119        .wait = i915_fence_wait,
 120        .release = i915_fence_release,
 121};
 122
 123static void irq_execute_cb(struct irq_work *wrk)
 124{
 125        struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 126
 127        i915_sw_fence_complete(cb->fence);
 128        kmem_cache_free(global.slab_execute_cbs, cb);
 129}
 130
 131static void irq_execute_cb_hook(struct irq_work *wrk)
 132{
 133        struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 134
 135        cb->hook(container_of(cb->fence, struct i915_request, submit),
 136                 &cb->signal->fence);
 137        i915_request_put(cb->signal);
 138
 139        irq_execute_cb(wrk);
 140}
 141
 142static void __notify_execute_cb(struct i915_request *rq)
 143{
 144        struct execute_cb *cb;
 145
 146        lockdep_assert_held(&rq->lock);
 147
 148        if (list_empty(&rq->execute_cb))
 149                return;
 150
 151        list_for_each_entry(cb, &rq->execute_cb, link)
 152                irq_work_queue(&cb->work);
 153
 154        /*
 155         * XXX Rollback on __i915_request_unsubmit()
 156         *
 157         * In the future, perhaps when we have an active time-slicing scheduler,
 158         * it will be interesting to unsubmit parallel execution and remove
 159         * busywaits from the GPU until their master is restarted. This is
 160         * quite hairy, we have to carefully rollback the fence and do a
 161         * preempt-to-idle cycle on the target engine, all the while the
 162         * master execute_cb may refire.
 163         */
 164        INIT_LIST_HEAD(&rq->execute_cb);
 165}
 166
 167static inline void
 168remove_from_client(struct i915_request *request)
 169{
 170        struct drm_i915_file_private *file_priv;
 171
 172        file_priv = READ_ONCE(request->file_priv);
 173        if (!file_priv)
 174                return;
 175
 176        spin_lock(&file_priv->mm.lock);
 177        if (request->file_priv) {
 178                list_del(&request->client_link);
 179                request->file_priv = NULL;
 180        }
 181        spin_unlock(&file_priv->mm.lock);
 182}
 183
 184static void free_capture_list(struct i915_request *request)
 185{
 186        struct i915_capture_list *capture;
 187
 188        capture = request->capture_list;
 189        while (capture) {
 190                struct i915_capture_list *next = capture->next;
 191
 192                kfree(capture);
 193                capture = next;
 194        }
 195}
 196
 197static void remove_from_engine(struct i915_request *rq)
 198{
 199        struct intel_engine_cs *engine, *locked;
 200
 201        /*
 202         * Virtual engines complicate acquiring the engine timeline lock,
 203         * as their rq->engine pointer is not stable until under that
 204         * engine lock. The simple ploy we use is to take the lock then
 205         * check that the rq still belongs to the newly locked engine.
 206         */
 207        locked = READ_ONCE(rq->engine);
 208        spin_lock(&locked->active.lock);
 209        while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
 210                spin_unlock(&locked->active.lock);
 211                spin_lock(&engine->active.lock);
 212                locked = engine;
 213        }
 214        list_del(&rq->sched.link);
 215        spin_unlock(&locked->active.lock);
 216}
 217
 218static bool i915_request_retire(struct i915_request *rq)
 219{
 220        struct i915_active_request *active, *next;
 221
 222        lockdep_assert_held(&rq->timeline->mutex);
 223        if (!i915_request_completed(rq))
 224                return false;
 225
 226        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 227                  rq->engine->name,
 228                  rq->fence.context, rq->fence.seqno,
 229                  hwsp_seqno(rq));
 230
 231        GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
 232        trace_i915_request_retire(rq);
 233
 234        /*
 235         * We know the GPU must have read the request to have
 236         * sent us the seqno + interrupt, so use the position
 237         * of tail of the request to update the last known position
 238         * of the GPU head.
 239         *
 240         * Note this requires that we are always called in request
 241         * completion order.
 242         */
 243        GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
 244        rq->ring->head = rq->postfix;
 245
 246        /*
 247         * Walk through the active list, calling retire on each. This allows
 248         * objects to track their GPU activity and mark themselves as idle
 249         * when their *last* active request is completed (updating state
 250         * tracking lists for eviction, active references for GEM, etc).
 251         *
 252         * As the ->retire() may free the node, we decouple it first and
 253         * pass along the auxiliary information (to avoid dereferencing
 254         * the node after the callback).
 255         */
 256        list_for_each_entry_safe(active, next, &rq->active_list, link) {
 257                /*
 258                 * In microbenchmarks or focusing upon time inside the kernel,
 259                 * we may spend an inordinate amount of time simply handling
 260                 * the retirement of requests and processing their callbacks.
 261                 * Of which, this loop itself is particularly hot due to the
 262                 * cache misses when jumping around the list of
 263                 * i915_active_request.  So we try to keep this loop as
 264                 * streamlined as possible and also prefetch the next
 265                 * i915_active_request to try and hide the likely cache miss.
 266                 */
 267                prefetchw(next);
 268
 269                INIT_LIST_HEAD(&active->link);
 270                RCU_INIT_POINTER(active->request, NULL);
 271
 272                active->retire(active, rq);
 273        }
 274
 275        local_irq_disable();
 276
 277        /*
 278         * We only loosely track inflight requests across preemption,
 279         * and so we may find ourselves attempting to retire a _completed_
 280         * request that we have removed from the HW and put back on a run
 281         * queue.
 282         */
 283        remove_from_engine(rq);
 284
 285        spin_lock(&rq->lock);
 286        i915_request_mark_complete(rq);
 287        if (!i915_request_signaled(rq))
 288                dma_fence_signal_locked(&rq->fence);
 289        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
 290                i915_request_cancel_breadcrumb(rq);
 291        if (i915_request_has_waitboost(rq)) {
 292                GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
 293                atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
 294        }
 295        if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
 296                set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
 297                __notify_execute_cb(rq);
 298        }
 299        GEM_BUG_ON(!list_empty(&rq->execute_cb));
 300        spin_unlock(&rq->lock);
 301
 302        local_irq_enable();
 303
 304        remove_from_client(rq);
 305        list_del(&rq->link);
 306
 307        intel_context_exit(rq->hw_context);
 308        intel_context_unpin(rq->hw_context);
 309
 310        free_capture_list(rq);
 311        i915_sched_node_fini(&rq->sched);
 312        i915_request_put(rq);
 313
 314        return true;
 315}
 316
 317void i915_request_retire_upto(struct i915_request *rq)
 318{
 319        struct intel_timeline * const tl = rq->timeline;
 320        struct i915_request *tmp;
 321
 322        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 323                  rq->engine->name,
 324                  rq->fence.context, rq->fence.seqno,
 325                  hwsp_seqno(rq));
 326
 327        lockdep_assert_held(&tl->mutex);
 328        GEM_BUG_ON(!i915_request_completed(rq));
 329
 330        do {
 331                tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
 332        } while (i915_request_retire(tmp) && tmp != rq);
 333}
 334
 335static int
 336__i915_request_await_execution(struct i915_request *rq,
 337                               struct i915_request *signal,
 338                               void (*hook)(struct i915_request *rq,
 339                                            struct dma_fence *signal),
 340                               gfp_t gfp)
 341{
 342        struct execute_cb *cb;
 343
 344        if (i915_request_is_active(signal)) {
 345                if (hook)
 346                        hook(rq, &signal->fence);
 347                return 0;
 348        }
 349
 350        cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
 351        if (!cb)
 352                return -ENOMEM;
 353
 354        cb->fence = &rq->submit;
 355        i915_sw_fence_await(cb->fence);
 356        init_irq_work(&cb->work, irq_execute_cb);
 357
 358        if (hook) {
 359                cb->hook = hook;
 360                cb->signal = i915_request_get(signal);
 361                cb->work.func = irq_execute_cb_hook;
 362        }
 363
 364        spin_lock_irq(&signal->lock);
 365        if (i915_request_is_active(signal)) {
 366                if (hook) {
 367                        hook(rq, &signal->fence);
 368                        i915_request_put(signal);
 369                }
 370                i915_sw_fence_complete(cb->fence);
 371                kmem_cache_free(global.slab_execute_cbs, cb);
 372        } else {
 373                list_add_tail(&cb->link, &signal->execute_cb);
 374        }
 375        spin_unlock_irq(&signal->lock);
 376
 377        return 0;
 378}
 379
 380bool __i915_request_submit(struct i915_request *request)
 381{
 382        struct intel_engine_cs *engine = request->engine;
 383        bool result = false;
 384
 385        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 386                  engine->name,
 387                  request->fence.context, request->fence.seqno,
 388                  hwsp_seqno(request));
 389
 390        GEM_BUG_ON(!irqs_disabled());
 391        lockdep_assert_held(&engine->active.lock);
 392
 393        /*
 394         * With the advent of preempt-to-busy, we frequently encounter
 395         * requests that we have unsubmitted from HW, but left running
 396         * until the next ack and so have completed in the meantime. On
 397         * resubmission of that completed request, we can skip
 398         * updating the payload, and execlists can even skip submitting
 399         * the request.
 400         *
 401         * We must remove the request from the caller's priority queue,
 402         * and the caller must only call us when the request is in their
 403         * priority queue, under the active.lock. This ensures that the
 404         * request has *not* yet been retired and we can safely move
 405         * the request into the engine->active.list where it will be
 406         * dropped upon retiring. (Otherwise if resubmit a *retired*
 407         * request, this would be a horrible use-after-free.)
 408         */
 409        if (i915_request_completed(request))
 410                goto xfer;
 411
 412        if (i915_gem_context_is_banned(request->gem_context))
 413                i915_request_skip(request, -EIO);
 414
 415        /*
 416         * Are we using semaphores when the gpu is already saturated?
 417         *
 418         * Using semaphores incurs a cost in having the GPU poll a
 419         * memory location, busywaiting for it to change. The continual
 420         * memory reads can have a noticeable impact on the rest of the
 421         * system with the extra bus traffic, stalling the cpu as it too
 422         * tries to access memory across the bus (perf stat -e bus-cycles).
 423         *
 424         * If we installed a semaphore on this request and we only submit
 425         * the request after the signaler completed, that indicates the
 426         * system is overloaded and using semaphores at this time only
 427         * increases the amount of work we are doing. If so, we disable
 428         * further use of semaphores until we are idle again, whence we
 429         * optimistically try again.
 430         */
 431        if (request->sched.semaphores &&
 432            i915_sw_fence_signaled(&request->semaphore))
 433                engine->saturated |= request->sched.semaphores;
 434
 435        engine->emit_fini_breadcrumb(request,
 436                                     request->ring->vaddr + request->postfix);
 437
 438        trace_i915_request_execute(request);
 439        engine->serial++;
 440        result = true;
 441
 442xfer:   /* We may be recursing from the signal callback of another i915 fence */
 443        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 444
 445        if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
 446                list_move_tail(&request->sched.link, &engine->active.requests);
 447
 448        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
 449            !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
 450            !i915_request_enable_breadcrumb(request))
 451                intel_engine_queue_breadcrumbs(engine);
 452
 453        __notify_execute_cb(request);
 454
 455        spin_unlock(&request->lock);
 456
 457        return result;
 458}
 459
 460void i915_request_submit(struct i915_request *request)
 461{
 462        struct intel_engine_cs *engine = request->engine;
 463        unsigned long flags;
 464
 465        /* Will be called from irq-context when using foreign fences. */
 466        spin_lock_irqsave(&engine->active.lock, flags);
 467
 468        __i915_request_submit(request);
 469
 470        spin_unlock_irqrestore(&engine->active.lock, flags);
 471}
 472
 473void __i915_request_unsubmit(struct i915_request *request)
 474{
 475        struct intel_engine_cs *engine = request->engine;
 476
 477        GEM_TRACE("%s fence %llx:%lld, current %d\n",
 478                  engine->name,
 479                  request->fence.context, request->fence.seqno,
 480                  hwsp_seqno(request));
 481
 482        GEM_BUG_ON(!irqs_disabled());
 483        lockdep_assert_held(&engine->active.lock);
 484
 485        /*
 486         * Only unwind in reverse order, required so that the per-context list
 487         * is kept in seqno/ring order.
 488         */
 489
 490        /* We may be recursing from the signal callback of another i915 fence */
 491        spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 492
 493        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 494                i915_request_cancel_breadcrumb(request);
 495
 496        GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
 497        clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
 498
 499        spin_unlock(&request->lock);
 500
 501        /* We've already spun, don't charge on resubmitting. */
 502        if (request->sched.semaphores && i915_request_started(request)) {
 503                request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
 504                request->sched.semaphores = 0;
 505        }
 506
 507        /*
 508         * We don't need to wake_up any waiters on request->execute, they
 509         * will get woken by any other event or us re-adding this request
 510         * to the engine timeline (__i915_request_submit()). The waiters
 511         * should be quite adapt at finding that the request now has a new
 512         * global_seqno to the one they went to sleep on.
 513         */
 514}
 515
 516void i915_request_unsubmit(struct i915_request *request)
 517{
 518        struct intel_engine_cs *engine = request->engine;
 519        unsigned long flags;
 520
 521        /* Will be called from irq-context when using foreign fences. */
 522        spin_lock_irqsave(&engine->active.lock, flags);
 523
 524        __i915_request_unsubmit(request);
 525
 526        spin_unlock_irqrestore(&engine->active.lock, flags);
 527}
 528
 529static int __i915_sw_fence_call
 530submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 531{
 532        struct i915_request *request =
 533                container_of(fence, typeof(*request), submit);
 534
 535        switch (state) {
 536        case FENCE_COMPLETE:
 537                trace_i915_request_submit(request);
 538
 539                if (unlikely(fence->error))
 540                        i915_request_skip(request, fence->error);
 541
 542                /*
 543                 * We need to serialize use of the submit_request() callback
 544                 * with its hotplugging performed during an emergency
 545                 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 546                 * critical section in order to force i915_gem_set_wedged() to
 547                 * wait until the submit_request() is completed before
 548                 * proceeding.
 549                 */
 550                rcu_read_lock();
 551                request->engine->submit_request(request);
 552                rcu_read_unlock();
 553                break;
 554
 555        case FENCE_FREE:
 556                i915_request_put(request);
 557                break;
 558        }
 559
 560        return NOTIFY_DONE;
 561}
 562
 563static int __i915_sw_fence_call
 564semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 565{
 566        struct i915_request *request =
 567                container_of(fence, typeof(*request), semaphore);
 568
 569        switch (state) {
 570        case FENCE_COMPLETE:
 571                i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
 572                break;
 573
 574        case FENCE_FREE:
 575                i915_request_put(request);
 576                break;
 577        }
 578
 579        return NOTIFY_DONE;
 580}
 581
 582static void retire_requests(struct intel_timeline *tl)
 583{
 584        struct i915_request *rq, *rn;
 585
 586        list_for_each_entry_safe(rq, rn, &tl->requests, link)
 587                if (!i915_request_retire(rq))
 588                        break;
 589}
 590
 591static noinline struct i915_request *
 592request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
 593{
 594        struct i915_request *rq;
 595
 596        if (list_empty(&tl->requests))
 597                goto out;
 598
 599        if (!gfpflags_allow_blocking(gfp))
 600                goto out;
 601
 602        /* Move our oldest request to the slab-cache (if not in use!) */
 603        rq = list_first_entry(&tl->requests, typeof(*rq), link);
 604        i915_request_retire(rq);
 605
 606        rq = kmem_cache_alloc(global.slab_requests,
 607                              gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 608        if (rq)
 609                return rq;
 610
 611        /* Ratelimit ourselves to prevent oom from malicious clients */
 612        rq = list_last_entry(&tl->requests, typeof(*rq), link);
 613        cond_synchronize_rcu(rq->rcustate);
 614
 615        /* Retire our old requests in the hope that we free some */
 616        retire_requests(tl);
 617
 618out:
 619        return kmem_cache_alloc(global.slab_requests, gfp);
 620}
 621
 622struct i915_request *
 623__i915_request_create(struct intel_context *ce, gfp_t gfp)
 624{
 625        struct intel_timeline *tl = ce->timeline;
 626        struct i915_request *rq;
 627        u32 seqno;
 628        int ret;
 629
 630        might_sleep_if(gfpflags_allow_blocking(gfp));
 631
 632        /* Check that the caller provided an already pinned context */
 633        __intel_context_pin(ce);
 634
 635        /*
 636         * Beware: Dragons be flying overhead.
 637         *
 638         * We use RCU to look up requests in flight. The lookups may
 639         * race with the request being allocated from the slab freelist.
 640         * That is the request we are writing to here, may be in the process
 641         * of being read by __i915_active_request_get_rcu(). As such,
 642         * we have to be very careful when overwriting the contents. During
 643         * the RCU lookup, we change chase the request->engine pointer,
 644         * read the request->global_seqno and increment the reference count.
 645         *
 646         * The reference count is incremented atomically. If it is zero,
 647         * the lookup knows the request is unallocated and complete. Otherwise,
 648         * it is either still in use, or has been reallocated and reset
 649         * with dma_fence_init(). This increment is safe for release as we
 650         * check that the request we have a reference to and matches the active
 651         * request.
 652         *
 653         * Before we increment the refcount, we chase the request->engine
 654         * pointer. We must not call kmem_cache_zalloc() or else we set
 655         * that pointer to NULL and cause a crash during the lookup. If
 656         * we see the request is completed (based on the value of the
 657         * old engine and seqno), the lookup is complete and reports NULL.
 658         * If we decide the request is not completed (new engine or seqno),
 659         * then we grab a reference and double check that it is still the
 660         * active request - which it won't be and restart the lookup.
 661         *
 662         * Do not use kmem_cache_zalloc() here!
 663         */
 664        rq = kmem_cache_alloc(global.slab_requests,
 665                              gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 666        if (unlikely(!rq)) {
 667                rq = request_alloc_slow(tl, gfp);
 668                if (!rq) {
 669                        ret = -ENOMEM;
 670                        goto err_unreserve;
 671                }
 672        }
 673
 674        ret = intel_timeline_get_seqno(tl, rq, &seqno);
 675        if (ret)
 676                goto err_free;
 677
 678        rq->i915 = ce->engine->i915;
 679        rq->hw_context = ce;
 680        rq->gem_context = ce->gem_context;
 681        rq->engine = ce->engine;
 682        rq->ring = ce->ring;
 683        rq->timeline = tl;
 684        rq->hwsp_seqno = tl->hwsp_seqno;
 685        rq->hwsp_cacheline = tl->hwsp_cacheline;
 686        rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
 687
 688        spin_lock_init(&rq->lock);
 689        dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
 690                       tl->fence_context, seqno);
 691
 692        /* We bump the ref for the fence chain */
 693        i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
 694        i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
 695
 696        i915_sched_node_init(&rq->sched);
 697
 698        /* No zalloc, must clear what we need by hand */
 699        rq->file_priv = NULL;
 700        rq->batch = NULL;
 701        rq->capture_list = NULL;
 702        rq->flags = 0;
 703        rq->execution_mask = ALL_ENGINES;
 704
 705        INIT_LIST_HEAD(&rq->active_list);
 706        INIT_LIST_HEAD(&rq->execute_cb);
 707
 708        /*
 709         * Reserve space in the ring buffer for all the commands required to
 710         * eventually emit this request. This is to guarantee that the
 711         * i915_request_add() call can't fail. Note that the reserve may need
 712         * to be redone if the request is not actually submitted straight
 713         * away, e.g. because a GPU scheduler has deferred it.
 714         *
 715         * Note that due to how we add reserved_space to intel_ring_begin()
 716         * we need to double our request to ensure that if we need to wrap
 717         * around inside i915_request_add() there is sufficient space at
 718         * the beginning of the ring as well.
 719         */
 720        rq->reserved_space =
 721                2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
 722
 723        /*
 724         * Record the position of the start of the request so that
 725         * should we detect the updated seqno part-way through the
 726         * GPU processing the request, we never over-estimate the
 727         * position of the head.
 728         */
 729        rq->head = rq->ring->emit;
 730
 731        ret = rq->engine->request_alloc(rq);
 732        if (ret)
 733                goto err_unwind;
 734
 735        rq->infix = rq->ring->emit; /* end of header; start of user payload */
 736
 737        intel_context_mark_active(ce);
 738        return rq;
 739
 740err_unwind:
 741        ce->ring->emit = rq->head;
 742
 743        /* Make sure we didn't add ourselves to external state before freeing */
 744        GEM_BUG_ON(!list_empty(&rq->active_list));
 745        GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
 746        GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
 747
 748err_free:
 749        kmem_cache_free(global.slab_requests, rq);
 750err_unreserve:
 751        intel_context_unpin(ce);
 752        return ERR_PTR(ret);
 753}
 754
 755struct i915_request *
 756i915_request_create(struct intel_context *ce)
 757{
 758        struct i915_request *rq;
 759        struct intel_timeline *tl;
 760
 761        tl = intel_context_timeline_lock(ce);
 762        if (IS_ERR(tl))
 763                return ERR_CAST(tl);
 764
 765        /* Move our oldest request to the slab-cache (if not in use!) */
 766        rq = list_first_entry(&tl->requests, typeof(*rq), link);
 767        if (!list_is_last(&rq->link, &tl->requests))
 768                i915_request_retire(rq);
 769
 770        intel_context_enter(ce);
 771        rq = __i915_request_create(ce, GFP_KERNEL);
 772        intel_context_exit(ce); /* active reference transferred to request */
 773        if (IS_ERR(rq))
 774                goto err_unlock;
 775
 776        /* Check that we do not interrupt ourselves with a new request */
 777        rq->cookie = lockdep_pin_lock(&tl->mutex);
 778
 779        return rq;
 780
 781err_unlock:
 782        intel_context_timeline_unlock(tl);
 783        return rq;
 784}
 785
 786static int
 787i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
 788{
 789        if (list_is_first(&signal->link, &signal->timeline->requests))
 790                return 0;
 791
 792        signal = list_prev_entry(signal, link);
 793        if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
 794                return 0;
 795
 796        return i915_sw_fence_await_dma_fence(&rq->submit,
 797                                             &signal->fence, 0,
 798                                             I915_FENCE_GFP);
 799}
 800
 801static intel_engine_mask_t
 802already_busywaiting(struct i915_request *rq)
 803{
 804        /*
 805         * Polling a semaphore causes bus traffic, delaying other users of
 806         * both the GPU and CPU. We want to limit the impact on others,
 807         * while taking advantage of early submission to reduce GPU
 808         * latency. Therefore we restrict ourselves to not using more
 809         * than one semaphore from each source, and not using a semaphore
 810         * if we have detected the engine is saturated (i.e. would not be
 811         * submitted early and cause bus traffic reading an already passed
 812         * semaphore).
 813         *
 814         * See the are-we-too-late? check in __i915_request_submit().
 815         */
 816        return rq->sched.semaphores | rq->engine->saturated;
 817}
 818
 819static int
 820emit_semaphore_wait(struct i915_request *to,
 821                    struct i915_request *from,
 822                    gfp_t gfp)
 823{
 824        u32 hwsp_offset;
 825        u32 *cs;
 826        int err;
 827
 828        GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
 829        GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
 830
 831        /* Just emit the first semaphore we see as request space is limited. */
 832        if (already_busywaiting(to) & from->engine->mask)
 833                return i915_sw_fence_await_dma_fence(&to->submit,
 834                                                     &from->fence, 0,
 835                                                     I915_FENCE_GFP);
 836
 837        err = i915_request_await_start(to, from);
 838        if (err < 0)
 839                return err;
 840
 841        /* Only submit our spinner after the signaler is running! */
 842        err = __i915_request_await_execution(to, from, NULL, gfp);
 843        if (err)
 844                return err;
 845
 846        /* We need to pin the signaler's HWSP until we are finished reading. */
 847        err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
 848        if (err)
 849                return err;
 850
 851        cs = intel_ring_begin(to, 4);
 852        if (IS_ERR(cs))
 853                return PTR_ERR(cs);
 854
 855        /*
 856         * Using greater-than-or-equal here means we have to worry
 857         * about seqno wraparound. To side step that issue, we swap
 858         * the timeline HWSP upon wrapping, so that everyone listening
 859         * for the old (pre-wrap) values do not see the much smaller
 860         * (post-wrap) values than they were expecting (and so wait
 861         * forever).
 862         */
 863        *cs++ = MI_SEMAPHORE_WAIT |
 864                MI_SEMAPHORE_GLOBAL_GTT |
 865                MI_SEMAPHORE_POLL |
 866                MI_SEMAPHORE_SAD_GTE_SDD;
 867        *cs++ = from->fence.seqno;
 868        *cs++ = hwsp_offset;
 869        *cs++ = 0;
 870
 871        intel_ring_advance(to, cs);
 872        to->sched.semaphores |= from->engine->mask;
 873        to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
 874        return 0;
 875}
 876
 877static int
 878i915_request_await_request(struct i915_request *to, struct i915_request *from)
 879{
 880        int ret;
 881
 882        GEM_BUG_ON(to == from);
 883        GEM_BUG_ON(to->timeline == from->timeline);
 884
 885        if (i915_request_completed(from))
 886                return 0;
 887
 888        if (to->engine->schedule) {
 889                ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
 890                if (ret < 0)
 891                        return ret;
 892        }
 893
 894        if (to->engine == from->engine) {
 895                ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 896                                                       &from->submit,
 897                                                       I915_FENCE_GFP);
 898        } else if (intel_engine_has_semaphores(to->engine) &&
 899                   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
 900                ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
 901        } else {
 902                ret = i915_sw_fence_await_dma_fence(&to->submit,
 903                                                    &from->fence, 0,
 904                                                    I915_FENCE_GFP);
 905        }
 906        if (ret < 0)
 907                return ret;
 908
 909        if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
 910                ret = i915_sw_fence_await_dma_fence(&to->semaphore,
 911                                                    &from->fence, 0,
 912                                                    I915_FENCE_GFP);
 913                if (ret < 0)
 914                        return ret;
 915        }
 916
 917        return 0;
 918}
 919
 920int
 921i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
 922{
 923        struct dma_fence **child = &fence;
 924        unsigned int nchild = 1;
 925        int ret;
 926
 927        /*
 928         * Note that if the fence-array was created in signal-on-any mode,
 929         * we should *not* decompose it into its individual fences. However,
 930         * we don't currently store which mode the fence-array is operating
 931         * in. Fortunately, the only user of signal-on-any is private to
 932         * amdgpu and we should not see any incoming fence-array from
 933         * sync-file being in signal-on-any mode.
 934         */
 935        if (dma_fence_is_array(fence)) {
 936                struct dma_fence_array *array = to_dma_fence_array(fence);
 937
 938                child = array->fences;
 939                nchild = array->num_fences;
 940                GEM_BUG_ON(!nchild);
 941        }
 942
 943        do {
 944                fence = *child++;
 945                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 946                        continue;
 947
 948                /*
 949                 * Requests on the same timeline are explicitly ordered, along
 950                 * with their dependencies, by i915_request_add() which ensures
 951                 * that requests are submitted in-order through each ring.
 952                 */
 953                if (fence->context == rq->fence.context)
 954                        continue;
 955
 956                /* Squash repeated waits to the same timelines */
 957                if (fence->context &&
 958                    intel_timeline_sync_is_later(rq->timeline, fence))
 959                        continue;
 960
 961                if (dma_fence_is_i915(fence))
 962                        ret = i915_request_await_request(rq, to_request(fence));
 963                else
 964                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
 965                                                            I915_FENCE_TIMEOUT,
 966                                                            I915_FENCE_GFP);
 967                if (ret < 0)
 968                        return ret;
 969
 970                /* Record the latest fence used against each timeline */
 971                if (fence->context)
 972                        intel_timeline_sync_set(rq->timeline, fence);
 973        } while (--nchild);
 974
 975        return 0;
 976}
 977
 978int
 979i915_request_await_execution(struct i915_request *rq,
 980                             struct dma_fence *fence,
 981                             void (*hook)(struct i915_request *rq,
 982                                          struct dma_fence *signal))
 983{
 984        struct dma_fence **child = &fence;
 985        unsigned int nchild = 1;
 986        int ret;
 987
 988        if (dma_fence_is_array(fence)) {
 989                struct dma_fence_array *array = to_dma_fence_array(fence);
 990
 991                /* XXX Error for signal-on-any fence arrays */
 992
 993                child = array->fences;
 994                nchild = array->num_fences;
 995                GEM_BUG_ON(!nchild);
 996        }
 997
 998        do {
 999                fence = *child++;
1000                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1001                        continue;
1002
1003                /*
1004                 * We don't squash repeated fence dependencies here as we
1005                 * want to run our callback in all cases.
1006                 */
1007
1008                if (dma_fence_is_i915(fence))
1009                        ret = __i915_request_await_execution(rq,
1010                                                             to_request(fence),
1011                                                             hook,
1012                                                             I915_FENCE_GFP);
1013                else
1014                        ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1015                                                            I915_FENCE_TIMEOUT,
1016                                                            GFP_KERNEL);
1017                if (ret < 0)
1018                        return ret;
1019        } while (--nchild);
1020
1021        return 0;
1022}
1023
1024/**
1025 * i915_request_await_object - set this request to (async) wait upon a bo
1026 * @to: request we are wishing to use
1027 * @obj: object which may be in use on another ring.
1028 * @write: whether the wait is on behalf of a writer
1029 *
1030 * This code is meant to abstract object synchronization with the GPU.
1031 * Conceptually we serialise writes between engines inside the GPU.
1032 * We only allow one engine to write into a buffer at any time, but
1033 * multiple readers. To ensure each has a coherent view of memory, we must:
1034 *
1035 * - If there is an outstanding write request to the object, the new
1036 *   request must wait for it to complete (either CPU or in hw, requests
1037 *   on the same ring will be naturally ordered).
1038 *
1039 * - If we are a write request (pending_write_domain is set), the new
1040 *   request must wait for outstanding read requests to complete.
1041 *
1042 * Returns 0 if successful, else propagates up the lower layer error.
1043 */
1044int
1045i915_request_await_object(struct i915_request *to,
1046                          struct drm_i915_gem_object *obj,
1047                          bool write)
1048{
1049        struct dma_fence *excl;
1050        int ret = 0;
1051
1052        if (write) {
1053                struct dma_fence **shared;
1054                unsigned int count, i;
1055
1056                ret = dma_resv_get_fences_rcu(obj->base.resv,
1057                                                        &excl, &count, &shared);
1058                if (ret)
1059                        return ret;
1060
1061                for (i = 0; i < count; i++) {
1062                        ret = i915_request_await_dma_fence(to, shared[i]);
1063                        if (ret)
1064                                break;
1065
1066                        dma_fence_put(shared[i]);
1067                }
1068
1069                for (; i < count; i++)
1070                        dma_fence_put(shared[i]);
1071                kfree(shared);
1072        } else {
1073                excl = dma_resv_get_excl_rcu(obj->base.resv);
1074        }
1075
1076        if (excl) {
1077                if (ret == 0)
1078                        ret = i915_request_await_dma_fence(to, excl);
1079
1080                dma_fence_put(excl);
1081        }
1082
1083        return ret;
1084}
1085
1086void i915_request_skip(struct i915_request *rq, int error)
1087{
1088        void *vaddr = rq->ring->vaddr;
1089        u32 head;
1090
1091        GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1092        dma_fence_set_error(&rq->fence, error);
1093
1094        if (rq->infix == rq->postfix)
1095                return;
1096
1097        /*
1098         * As this request likely depends on state from the lost
1099         * context, clear out all the user operations leaving the
1100         * breadcrumb at the end (so we get the fence notifications).
1101         */
1102        head = rq->infix;
1103        if (rq->postfix < head) {
1104                memset(vaddr + head, 0, rq->ring->size - head);
1105                head = 0;
1106        }
1107        memset(vaddr + head, 0, rq->postfix - head);
1108        rq->infix = rq->postfix;
1109}
1110
1111static struct i915_request *
1112__i915_request_add_to_timeline(struct i915_request *rq)
1113{
1114        struct intel_timeline *timeline = rq->timeline;
1115        struct i915_request *prev;
1116
1117        /*
1118         * Dependency tracking and request ordering along the timeline
1119         * is special cased so that we can eliminate redundant ordering
1120         * operations while building the request (we know that the timeline
1121         * itself is ordered, and here we guarantee it).
1122         *
1123         * As we know we will need to emit tracking along the timeline,
1124         * we embed the hooks into our request struct -- at the cost of
1125         * having to have specialised no-allocation interfaces (which will
1126         * be beneficial elsewhere).
1127         *
1128         * A second benefit to open-coding i915_request_await_request is
1129         * that we can apply a slight variant of the rules specialised
1130         * for timelines that jump between engines (such as virtual engines).
1131         * If we consider the case of virtual engine, we must emit a dma-fence
1132         * to prevent scheduling of the second request until the first is
1133         * complete (to maximise our greedy late load balancing) and this
1134         * precludes optimising to use semaphores serialisation of a single
1135         * timeline across engines.
1136         */
1137        prev = rcu_dereference_protected(timeline->last_request.request,
1138                                         lockdep_is_held(&timeline->mutex));
1139        if (prev && !i915_request_completed(prev)) {
1140                if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1141                        i915_sw_fence_await_sw_fence(&rq->submit,
1142                                                     &prev->submit,
1143                                                     &rq->submitq);
1144                else
1145                        __i915_sw_fence_await_dma_fence(&rq->submit,
1146                                                        &prev->fence,
1147                                                        &rq->dmaq);
1148                if (rq->engine->schedule)
1149                        __i915_sched_node_add_dependency(&rq->sched,
1150                                                         &prev->sched,
1151                                                         &rq->dep,
1152                                                         0);
1153        }
1154
1155        list_add_tail(&rq->link, &timeline->requests);
1156
1157        /*
1158         * Make sure that no request gazumped us - if it was allocated after
1159         * our i915_request_alloc() and called __i915_request_add() before
1160         * us, the timeline will hold its seqno which is later than ours.
1161         */
1162        GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1163        __i915_active_request_set(&timeline->last_request, rq);
1164
1165        return prev;
1166}
1167
1168/*
1169 * NB: This function is not allowed to fail. Doing so would mean the the
1170 * request is not being tracked for completion but the work itself is
1171 * going to happen on the hardware. This would be a Bad Thing(tm).
1172 */
1173struct i915_request *__i915_request_commit(struct i915_request *rq)
1174{
1175        struct intel_engine_cs *engine = rq->engine;
1176        struct intel_ring *ring = rq->ring;
1177        u32 *cs;
1178
1179        GEM_TRACE("%s fence %llx:%lld\n",
1180                  engine->name, rq->fence.context, rq->fence.seqno);
1181
1182        /*
1183         * To ensure that this call will not fail, space for its emissions
1184         * should already have been reserved in the ring buffer. Let the ring
1185         * know that it is time to use that space up.
1186         */
1187        GEM_BUG_ON(rq->reserved_space > ring->space);
1188        rq->reserved_space = 0;
1189        rq->emitted_jiffies = jiffies;
1190
1191        /*
1192         * Record the position of the start of the breadcrumb so that
1193         * should we detect the updated seqno part-way through the
1194         * GPU processing the request, we never over-estimate the
1195         * position of the ring's HEAD.
1196         */
1197        cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198        GEM_BUG_ON(IS_ERR(cs));
1199        rq->postfix = intel_ring_offset(rq, cs);
1200
1201        return __i915_request_add_to_timeline(rq);
1202}
1203
1204void __i915_request_queue(struct i915_request *rq,
1205                          const struct i915_sched_attr *attr)
1206{
1207        /*
1208         * Let the backend know a new request has arrived that may need
1209         * to adjust the existing execution schedule due to a high priority
1210         * request - i.e. we may want to preempt the current request in order
1211         * to run a high priority dependency chain *before* we can execute this
1212         * request.
1213         *
1214         * This is called before the request is ready to run so that we can
1215         * decide whether to preempt the entire chain so that it is ready to
1216         * run at the earliest possible convenience.
1217         */
1218        i915_sw_fence_commit(&rq->semaphore);
1219        if (attr && rq->engine->schedule)
1220                rq->engine->schedule(rq, attr);
1221        i915_sw_fence_commit(&rq->submit);
1222}
1223
1224void i915_request_add(struct i915_request *rq)
1225{
1226        struct i915_sched_attr attr = rq->gem_context->sched;
1227        struct intel_timeline * const tl = rq->timeline;
1228        struct i915_request *prev;
1229
1230        lockdep_assert_held(&tl->mutex);
1231        lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232
1233        trace_i915_request_add(rq);
1234
1235        prev = __i915_request_commit(rq);
1236
1237        /*
1238         * Boost actual workloads past semaphores!
1239         *
1240         * With semaphores we spin on one engine waiting for another,
1241         * simply to reduce the latency of starting our work when
1242         * the signaler completes. However, if there is any other
1243         * work that we could be doing on this engine instead, that
1244         * is better utilisation and will reduce the overall duration
1245         * of the current work. To avoid PI boosting a semaphore
1246         * far in the distance past over useful work, we keep a history
1247         * of any semaphore use along our dependency chain.
1248         */
1249        if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1250                attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1251
1252        /*
1253         * Boost priorities to new clients (new request flows).
1254         *
1255         * Allow interactive/synchronous clients to jump ahead of
1256         * the bulk clients. (FQ_CODEL)
1257         */
1258        if (list_empty(&rq->sched.signalers_list))
1259                attr.priority |= I915_PRIORITY_WAIT;
1260
1261        local_bh_disable();
1262        __i915_request_queue(rq, &attr);
1263        local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264
1265        /*
1266         * In typical scenarios, we do not expect the previous request on
1267         * the timeline to be still tracked by timeline->last_request if it
1268         * has been completed. If the completed request is still here, that
1269         * implies that request retirement is a long way behind submission,
1270         * suggesting that we haven't been retiring frequently enough from
1271         * the combination of retire-before-alloc, waiters and the background
1272         * retirement worker. So if the last request on this timeline was
1273         * already completed, do a catch up pass, flushing the retirement queue
1274         * up to this client. Since we have now moved the heaviest operations
1275         * during retirement onto secondary workers, such as freeing objects
1276         * or contexts, retiring a bunch of requests is mostly list management
1277         * (and cache misses), and so we should not be overly penalizing this
1278         * client by performing excess work, though we may still performing
1279         * work on behalf of others -- but instead we should benefit from
1280         * improved resource management. (Well, that's the theory at least.)
1281         */
1282        if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283                i915_request_retire_upto(prev);
1284
1285        mutex_unlock(&tl->mutex);
1286}
1287
1288static unsigned long local_clock_us(unsigned int *cpu)
1289{
1290        unsigned long t;
1291
1292        /*
1293         * Cheaply and approximately convert from nanoseconds to microseconds.
1294         * The result and subsequent calculations are also defined in the same
1295         * approximate microseconds units. The principal source of timing
1296         * error here is from the simple truncation.
1297         *
1298         * Note that local_clock() is only defined wrt to the current CPU;
1299         * the comparisons are no longer valid if we switch CPUs. Instead of
1300         * blocking preemption for the entire busywait, we can detect the CPU
1301         * switch and use that as indicator of system load and a reason to
1302         * stop busywaiting, see busywait_stop().
1303         */
1304        *cpu = get_cpu();
1305        t = local_clock() >> 10;
1306        put_cpu();
1307
1308        return t;
1309}
1310
1311static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1312{
1313        unsigned int this_cpu;
1314
1315        if (time_after(local_clock_us(&this_cpu), timeout))
1316                return true;
1317
1318        return this_cpu != cpu;
1319}
1320
1321static bool __i915_spin_request(const struct i915_request * const rq,
1322                                int state, unsigned long timeout_us)
1323{
1324        unsigned int cpu;
1325
1326        /*
1327         * Only wait for the request if we know it is likely to complete.
1328         *
1329         * We don't track the timestamps around requests, nor the average
1330         * request length, so we do not have a good indicator that this
1331         * request will complete within the timeout. What we do know is the
1332         * order in which requests are executed by the context and so we can
1333         * tell if the request has been started. If the request is not even
1334         * running yet, it is a fair assumption that it will not complete
1335         * within our relatively short timeout.
1336         */
1337        if (!i915_request_is_running(rq))
1338                return false;
1339
1340        /*
1341         * When waiting for high frequency requests, e.g. during synchronous
1342         * rendering split between the CPU and GPU, the finite amount of time
1343         * required to set up the irq and wait upon it limits the response
1344         * rate. By busywaiting on the request completion for a short while we
1345         * can service the high frequency waits as quick as possible. However,
1346         * if it is a slow request, we want to sleep as quickly as possible.
1347         * The tradeoff between waiting and sleeping is roughly the time it
1348         * takes to sleep on a request, on the order of a microsecond.
1349         */
1350
1351        timeout_us += local_clock_us(&cpu);
1352        do {
1353                if (i915_request_completed(rq))
1354                        return true;
1355
1356                if (signal_pending_state(state, current))
1357                        break;
1358
1359                if (busywait_stop(timeout_us, cpu))
1360                        break;
1361
1362                cpu_relax();
1363        } while (!need_resched());
1364
1365        return false;
1366}
1367
1368struct request_wait {
1369        struct dma_fence_cb cb;
1370        struct task_struct *tsk;
1371};
1372
1373static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1374{
1375        struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1376
1377        wake_up_process(wait->tsk);
1378}
1379
1380/**
1381 * i915_request_wait - wait until execution of request has finished
1382 * @rq: the request to wait upon
1383 * @flags: how to wait
1384 * @timeout: how long to wait in jiffies
1385 *
1386 * i915_request_wait() waits for the request to be completed, for a
1387 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1388 * unbounded wait).
1389 *
1390 * Returns the remaining time (in jiffies) if the request completed, which may
1391 * be zero or -ETIME if the request is unfinished after the timeout expires.
1392 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1393 * pending before the request completes.
1394 */
1395long i915_request_wait(struct i915_request *rq,
1396                       unsigned int flags,
1397                       long timeout)
1398{
1399        const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1400                TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401        struct request_wait wait;
1402
1403        might_sleep();
1404        GEM_BUG_ON(timeout < 0);
1405
1406        if (dma_fence_is_signaled(&rq->fence))
1407                return timeout;
1408
1409        if (!timeout)
1410                return -ETIME;
1411
1412        trace_i915_request_wait_begin(rq, flags);
1413
1414        /*
1415         * We must never wait on the GPU while holding a lock as we
1416         * may need to perform a GPU reset. So while we don't need to
1417         * serialise wait/reset with an explicit lock, we do want
1418         * lockdep to detect potential dependency cycles.
1419         */
1420        mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421
1422        /*
1423         * Optimistic spin before touching IRQs.
1424         *
1425         * We may use a rather large value here to offset the penalty of
1426         * switching away from the active task. Frequently, the client will
1427         * wait upon an old swapbuffer to throttle itself to remain within a
1428         * frame of the gpu. If the client is running in lockstep with the gpu,
1429         * then it should not be waiting long at all, and a sleep now will incur
1430         * extra scheduler latency in producing the next frame. To try to
1431         * avoid adding the cost of enabling/disabling the interrupt to the
1432         * short wait, we first spin to see if the request would have completed
1433         * in the time taken to setup the interrupt.
1434         *
1435         * We need upto 5us to enable the irq, and upto 20us to hide the
1436         * scheduler latency of a context switch, ignoring the secondary
1437         * impacts from a context switch such as cache eviction.
1438         *
1439         * The scheme used for low-latency IO is called "hybrid interrupt
1440         * polling". The suggestion there is to sleep until just before you
1441         * expect to be woken by the device interrupt and then poll for its
1442         * completion. That requires having a good predictor for the request
1443         * duration, which we currently lack.
1444         */
1445        if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446            __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1447                dma_fence_signal(&rq->fence);
1448                goto out;
1449        }
1450
1451        /*
1452         * This client is about to stall waiting for the GPU. In many cases
1453         * this is undesirable and limits the throughput of the system, as
1454         * many clients cannot continue processing user input/output whilst
1455         * blocked. RPS autotuning may take tens of milliseconds to respond
1456         * to the GPU load and thus incurs additional latency for the client.
1457         * We can circumvent that by promoting the GPU frequency to maximum
1458         * before we sleep. This makes the GPU throttle up much more quickly
1459         * (good for benchmarks and user experience, e.g. window animations),
1460         * but at a cost of spending more power processing the workload
1461         * (bad for battery).
1462         */
1463        if (flags & I915_WAIT_PRIORITY) {
1464                if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1465                        gen6_rps_boost(rq);
1466                i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467        }
1468
1469        wait.tsk = current;
1470        if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1471                goto out;
1472
1473        for (;;) {
1474                set_current_state(state);
1475
1476                if (i915_request_completed(rq)) {
1477                        dma_fence_signal(&rq->fence);
1478                        break;
1479                }
1480
1481                if (signal_pending_state(state, current)) {
1482                        timeout = -ERESTARTSYS;
1483                        break;
1484                }
1485
1486                if (!timeout) {
1487                        timeout = -ETIME;
1488                        break;
1489                }
1490
1491                timeout = io_schedule_timeout(timeout);
1492        }
1493        __set_current_state(TASK_RUNNING);
1494
1495        dma_fence_remove_callback(&rq->fence, &wait.cb);
1496
1497out:
1498        mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1499        trace_i915_request_wait_end(rq);
1500        return timeout;
1501}
1502
1503bool i915_retire_requests(struct drm_i915_private *i915)
1504{
1505        struct intel_gt_timelines *timelines = &i915->gt.timelines;
1506        struct intel_timeline *tl, *tn;
1507        unsigned long flags;
1508        LIST_HEAD(free);
1509
1510        spin_lock_irqsave(&timelines->lock, flags);
1511        list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1512                if (!mutex_trylock(&tl->mutex))
1513                        continue;
1514
1515                intel_timeline_get(tl);
1516                GEM_BUG_ON(!tl->active_count);
1517                tl->active_count++; /* pin the list element */
1518                spin_unlock_irqrestore(&timelines->lock, flags);
1519
1520                retire_requests(tl);
1521
1522                spin_lock_irqsave(&timelines->lock, flags);
1523
1524                /* Resume iteration after dropping lock */
1525                list_safe_reset_next(tl, tn, link);
1526                if (!--tl->active_count)
1527                        list_del(&tl->link);
1528
1529                mutex_unlock(&tl->mutex);
1530
1531                /* Defer the final release to after the spinlock */
1532                if (refcount_dec_and_test(&tl->kref.refcount)) {
1533                        GEM_BUG_ON(tl->active_count);
1534                        list_add(&tl->link, &free);
1535                }
1536        }
1537        spin_unlock_irqrestore(&timelines->lock, flags);
1538
1539        list_for_each_entry_safe(tl, tn, &free, link)
1540                __intel_timeline_free(&tl->kref);
1541
1542        return !list_empty(&timelines->active_list);
1543}
1544
1545#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1546#include "selftests/mock_request.c"
1547#include "selftests/i915_request.c"
1548#endif
1549
1550static void i915_global_request_shrink(void)
1551{
1552        kmem_cache_shrink(global.slab_dependencies);
1553        kmem_cache_shrink(global.slab_execute_cbs);
1554        kmem_cache_shrink(global.slab_requests);
1555}
1556
1557static void i915_global_request_exit(void)
1558{
1559        kmem_cache_destroy(global.slab_dependencies);
1560        kmem_cache_destroy(global.slab_execute_cbs);
1561        kmem_cache_destroy(global.slab_requests);
1562}
1563
1564static struct i915_global_request global = { {
1565        .shrink = i915_global_request_shrink,
1566        .exit = i915_global_request_exit,
1567} };
1568
1569int __init i915_global_request_init(void)
1570{
1571        global.slab_requests = KMEM_CACHE(i915_request,
1572                                          SLAB_HWCACHE_ALIGN |
1573                                          SLAB_RECLAIM_ACCOUNT |
1574                                          SLAB_TYPESAFE_BY_RCU);
1575        if (!global.slab_requests)
1576                return -ENOMEM;
1577
1578        global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1579                                             SLAB_HWCACHE_ALIGN |
1580                                             SLAB_RECLAIM_ACCOUNT |
1581                                             SLAB_TYPESAFE_BY_RCU);
1582        if (!global.slab_execute_cbs)
1583                goto err_requests;
1584
1585        global.slab_dependencies = KMEM_CACHE(i915_dependency,
1586                                              SLAB_HWCACHE_ALIGN |
1587                                              SLAB_RECLAIM_ACCOUNT);
1588        if (!global.slab_dependencies)
1589                goto err_execute_cbs;
1590
1591        i915_global_register(&global.base);
1592        return 0;
1593
1594err_execute_cbs:
1595        kmem_cache_destroy(global.slab_execute_cbs);
1596err_requests:
1597        kmem_cache_destroy(global.slab_requests);
1598        return -ENOMEM;
1599}
1600