linux/drivers/iio/magnetometer/bmc150_magn.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Bosch BMC150 three-axis magnetic field sensor driver
   4 *
   5 * Copyright (c) 2015, Intel Corporation.
   6 *
   7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
   8 *
   9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/i2c.h>
  14#include <linux/interrupt.h>
  15#include <linux/delay.h>
  16#include <linux/slab.h>
  17#include <linux/acpi.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/iio/iio.h>
  21#include <linux/iio/sysfs.h>
  22#include <linux/iio/buffer.h>
  23#include <linux/iio/events.h>
  24#include <linux/iio/trigger.h>
  25#include <linux/iio/trigger_consumer.h>
  26#include <linux/iio/triggered_buffer.h>
  27#include <linux/regmap.h>
  28
  29#include "bmc150_magn.h"
  30
  31#define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
  32#define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
  33
  34#define BMC150_MAGN_REG_CHIP_ID                 0x40
  35#define BMC150_MAGN_CHIP_ID_VAL                 0x32
  36
  37#define BMC150_MAGN_REG_X_L                     0x42
  38#define BMC150_MAGN_REG_X_M                     0x43
  39#define BMC150_MAGN_REG_Y_L                     0x44
  40#define BMC150_MAGN_REG_Y_M                     0x45
  41#define BMC150_MAGN_SHIFT_XY_L                  3
  42#define BMC150_MAGN_REG_Z_L                     0x46
  43#define BMC150_MAGN_REG_Z_M                     0x47
  44#define BMC150_MAGN_SHIFT_Z_L                   1
  45#define BMC150_MAGN_REG_RHALL_L                 0x48
  46#define BMC150_MAGN_REG_RHALL_M                 0x49
  47#define BMC150_MAGN_SHIFT_RHALL_L               2
  48
  49#define BMC150_MAGN_REG_INT_STATUS              0x4A
  50
  51#define BMC150_MAGN_REG_POWER                   0x4B
  52#define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
  53
  54#define BMC150_MAGN_REG_OPMODE_ODR              0x4C
  55#define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
  56#define BMC150_MAGN_SHIFT_OPMODE                1
  57#define BMC150_MAGN_MODE_NORMAL                 0x00
  58#define BMC150_MAGN_MODE_FORCED                 0x01
  59#define BMC150_MAGN_MODE_SLEEP                  0x03
  60#define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
  61#define BMC150_MAGN_SHIFT_ODR                   3
  62
  63#define BMC150_MAGN_REG_INT                     0x4D
  64
  65#define BMC150_MAGN_REG_INT_DRDY                0x4E
  66#define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
  67#define BMC150_MAGN_SHIFT_DRDY_EN               7
  68#define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
  69#define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
  70#define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
  71#define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
  72#define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
  73#define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
  74#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
  75
  76#define BMC150_MAGN_REG_LOW_THRESH              0x4F
  77#define BMC150_MAGN_REG_HIGH_THRESH             0x50
  78#define BMC150_MAGN_REG_REP_XY                  0x51
  79#define BMC150_MAGN_REG_REP_Z                   0x52
  80#define BMC150_MAGN_REG_REP_DATAMASK            GENMASK(7, 0)
  81
  82#define BMC150_MAGN_REG_TRIM_START              0x5D
  83#define BMC150_MAGN_REG_TRIM_END                0x71
  84
  85#define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
  86#define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
  87
  88/* Time from SUSPEND to SLEEP */
  89#define BMC150_MAGN_START_UP_TIME_MS            3
  90
  91#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
  92
  93#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
  94#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
  95#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
  96#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
  97
  98enum bmc150_magn_axis {
  99        AXIS_X,
 100        AXIS_Y,
 101        AXIS_Z,
 102        RHALL,
 103        AXIS_XYZ_MAX = RHALL,
 104        AXIS_XYZR_MAX,
 105};
 106
 107enum bmc150_magn_power_modes {
 108        BMC150_MAGN_POWER_MODE_SUSPEND,
 109        BMC150_MAGN_POWER_MODE_SLEEP,
 110        BMC150_MAGN_POWER_MODE_NORMAL,
 111};
 112
 113struct bmc150_magn_trim_regs {
 114        s8 x1;
 115        s8 y1;
 116        __le16 reserved1;
 117        u8 reserved2;
 118        __le16 z4;
 119        s8 x2;
 120        s8 y2;
 121        __le16 reserved3;
 122        __le16 z2;
 123        __le16 z1;
 124        __le16 xyz1;
 125        __le16 z3;
 126        s8 xy2;
 127        u8 xy1;
 128} __packed;
 129
 130struct bmc150_magn_data {
 131        struct device *dev;
 132        /*
 133         * 1. Protect this structure.
 134         * 2. Serialize sequences that power on/off the device and access HW.
 135         */
 136        struct mutex mutex;
 137        struct regmap *regmap;
 138        struct iio_mount_matrix orientation;
 139        /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
 140        s32 buffer[6];
 141        struct iio_trigger *dready_trig;
 142        bool dready_trigger_on;
 143        int max_odr;
 144        int irq;
 145};
 146
 147static const struct {
 148        int freq;
 149        u8 reg_val;
 150} bmc150_magn_samp_freq_table[] = { {2, 0x01},
 151                                    {6, 0x02},
 152                                    {8, 0x03},
 153                                    {10, 0x00},
 154                                    {15, 0x04},
 155                                    {20, 0x05},
 156                                    {25, 0x06},
 157                                    {30, 0x07} };
 158
 159enum bmc150_magn_presets {
 160        LOW_POWER_PRESET,
 161        REGULAR_PRESET,
 162        ENHANCED_REGULAR_PRESET,
 163        HIGH_ACCURACY_PRESET
 164};
 165
 166static const struct bmc150_magn_preset {
 167        u8 rep_xy;
 168        u8 rep_z;
 169        u8 odr;
 170} bmc150_magn_presets_table[] = {
 171        [LOW_POWER_PRESET] = {3, 3, 10},
 172        [REGULAR_PRESET] =  {9, 15, 10},
 173        [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
 174        [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
 175};
 176
 177#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
 178
 179static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
 180{
 181        switch (reg) {
 182        case BMC150_MAGN_REG_POWER:
 183        case BMC150_MAGN_REG_OPMODE_ODR:
 184        case BMC150_MAGN_REG_INT:
 185        case BMC150_MAGN_REG_INT_DRDY:
 186        case BMC150_MAGN_REG_LOW_THRESH:
 187        case BMC150_MAGN_REG_HIGH_THRESH:
 188        case BMC150_MAGN_REG_REP_XY:
 189        case BMC150_MAGN_REG_REP_Z:
 190                return true;
 191        default:
 192                return false;
 193        };
 194}
 195
 196static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
 197{
 198        switch (reg) {
 199        case BMC150_MAGN_REG_X_L:
 200        case BMC150_MAGN_REG_X_M:
 201        case BMC150_MAGN_REG_Y_L:
 202        case BMC150_MAGN_REG_Y_M:
 203        case BMC150_MAGN_REG_Z_L:
 204        case BMC150_MAGN_REG_Z_M:
 205        case BMC150_MAGN_REG_RHALL_L:
 206        case BMC150_MAGN_REG_RHALL_M:
 207        case BMC150_MAGN_REG_INT_STATUS:
 208                return true;
 209        default:
 210                return false;
 211        }
 212}
 213
 214const struct regmap_config bmc150_magn_regmap_config = {
 215        .reg_bits = 8,
 216        .val_bits = 8,
 217
 218        .max_register = BMC150_MAGN_REG_TRIM_END,
 219        .cache_type = REGCACHE_RBTREE,
 220
 221        .writeable_reg = bmc150_magn_is_writeable_reg,
 222        .volatile_reg = bmc150_magn_is_volatile_reg,
 223};
 224EXPORT_SYMBOL(bmc150_magn_regmap_config);
 225
 226static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
 227                                      enum bmc150_magn_power_modes mode,
 228                                      bool state)
 229{
 230        int ret;
 231
 232        switch (mode) {
 233        case BMC150_MAGN_POWER_MODE_SUSPEND:
 234                ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
 235                                         BMC150_MAGN_MASK_POWER_CTL, !state);
 236                if (ret < 0)
 237                        return ret;
 238                usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
 239                return 0;
 240        case BMC150_MAGN_POWER_MODE_SLEEP:
 241                return regmap_update_bits(data->regmap,
 242                                          BMC150_MAGN_REG_OPMODE_ODR,
 243                                          BMC150_MAGN_MASK_OPMODE,
 244                                          BMC150_MAGN_MODE_SLEEP <<
 245                                          BMC150_MAGN_SHIFT_OPMODE);
 246        case BMC150_MAGN_POWER_MODE_NORMAL:
 247                return regmap_update_bits(data->regmap,
 248                                          BMC150_MAGN_REG_OPMODE_ODR,
 249                                          BMC150_MAGN_MASK_OPMODE,
 250                                          BMC150_MAGN_MODE_NORMAL <<
 251                                          BMC150_MAGN_SHIFT_OPMODE);
 252        }
 253
 254        return -EINVAL;
 255}
 256
 257static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
 258{
 259#ifdef CONFIG_PM
 260        int ret;
 261
 262        if (on) {
 263                ret = pm_runtime_get_sync(data->dev);
 264        } else {
 265                pm_runtime_mark_last_busy(data->dev);
 266                ret = pm_runtime_put_autosuspend(data->dev);
 267        }
 268
 269        if (ret < 0) {
 270                dev_err(data->dev,
 271                        "failed to change power state to %d\n", on);
 272                if (on)
 273                        pm_runtime_put_noidle(data->dev);
 274
 275                return ret;
 276        }
 277#endif
 278
 279        return 0;
 280}
 281
 282static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
 283{
 284        int ret, reg_val;
 285        u8 i, odr_val;
 286
 287        ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
 288        if (ret < 0)
 289                return ret;
 290        odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
 291
 292        for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
 293                if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
 294                        *val = bmc150_magn_samp_freq_table[i].freq;
 295                        return 0;
 296                }
 297
 298        return -EINVAL;
 299}
 300
 301static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
 302{
 303        int ret;
 304        u8 i;
 305
 306        for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
 307                if (bmc150_magn_samp_freq_table[i].freq == val) {
 308                        ret = regmap_update_bits(data->regmap,
 309                                                 BMC150_MAGN_REG_OPMODE_ODR,
 310                                                 BMC150_MAGN_MASK_ODR,
 311                                                 bmc150_magn_samp_freq_table[i].
 312                                                 reg_val <<
 313                                                 BMC150_MAGN_SHIFT_ODR);
 314                        if (ret < 0)
 315                                return ret;
 316                        return 0;
 317                }
 318        }
 319
 320        return -EINVAL;
 321}
 322
 323static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
 324                                   int rep_z, int odr)
 325{
 326        int ret, reg_val, max_odr;
 327
 328        if (rep_xy <= 0) {
 329                ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
 330                                  &reg_val);
 331                if (ret < 0)
 332                        return ret;
 333                rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
 334        }
 335        if (rep_z <= 0) {
 336                ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
 337                                  &reg_val);
 338                if (ret < 0)
 339                        return ret;
 340                rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
 341        }
 342        if (odr <= 0) {
 343                ret = bmc150_magn_get_odr(data, &odr);
 344                if (ret < 0)
 345                        return ret;
 346        }
 347        /* the maximum selectable read-out frequency from datasheet */
 348        max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
 349        if (odr > max_odr) {
 350                dev_err(data->dev,
 351                        "Can't set oversampling with sampling freq %d\n",
 352                        odr);
 353                return -EINVAL;
 354        }
 355        data->max_odr = max_odr;
 356
 357        return 0;
 358}
 359
 360static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
 361                                    u16 rhall)
 362{
 363        s16 val;
 364        u16 xyz1 = le16_to_cpu(tregs->xyz1);
 365
 366        if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
 367                return S32_MIN;
 368
 369        if (!rhall)
 370                rhall = xyz1;
 371
 372        val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
 373        val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
 374              ((s32)val)) >> 7)) + (((s32)val) *
 375              ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
 376              ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
 377              (((s16)tregs->x1) << 3);
 378
 379        return (s32)val;
 380}
 381
 382static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
 383                                    u16 rhall)
 384{
 385        s16 val;
 386        u16 xyz1 = le16_to_cpu(tregs->xyz1);
 387
 388        if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
 389                return S32_MIN;
 390
 391        if (!rhall)
 392                rhall = xyz1;
 393
 394        val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
 395        val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
 396              ((s32)val)) >> 7)) + (((s32)val) *
 397              ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
 398              ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
 399              (((s16)tregs->y1) << 3);
 400
 401        return (s32)val;
 402}
 403
 404static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
 405                                    u16 rhall)
 406{
 407        s32 val;
 408        u16 xyz1 = le16_to_cpu(tregs->xyz1);
 409        u16 z1 = le16_to_cpu(tregs->z1);
 410        s16 z2 = le16_to_cpu(tregs->z2);
 411        s16 z3 = le16_to_cpu(tregs->z3);
 412        s16 z4 = le16_to_cpu(tregs->z4);
 413
 414        if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
 415                return S32_MIN;
 416
 417        val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
 418              ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
 419              ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
 420
 421        return val;
 422}
 423
 424static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
 425{
 426        int ret;
 427        __le16 values[AXIS_XYZR_MAX];
 428        s16 raw_x, raw_y, raw_z;
 429        u16 rhall;
 430        struct bmc150_magn_trim_regs tregs;
 431
 432        ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
 433                               values, sizeof(values));
 434        if (ret < 0)
 435                return ret;
 436
 437        raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
 438        raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
 439        raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
 440        rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
 441
 442        ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
 443                               &tregs, sizeof(tregs));
 444        if (ret < 0)
 445                return ret;
 446
 447        buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
 448        buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
 449        buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
 450
 451        return 0;
 452}
 453
 454static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
 455                                struct iio_chan_spec const *chan,
 456                                int *val, int *val2, long mask)
 457{
 458        struct bmc150_magn_data *data = iio_priv(indio_dev);
 459        int ret, tmp;
 460        s32 values[AXIS_XYZ_MAX];
 461
 462        switch (mask) {
 463        case IIO_CHAN_INFO_RAW:
 464                if (iio_buffer_enabled(indio_dev))
 465                        return -EBUSY;
 466                mutex_lock(&data->mutex);
 467
 468                ret = bmc150_magn_set_power_state(data, true);
 469                if (ret < 0) {
 470                        mutex_unlock(&data->mutex);
 471                        return ret;
 472                }
 473
 474                ret = bmc150_magn_read_xyz(data, values);
 475                if (ret < 0) {
 476                        bmc150_magn_set_power_state(data, false);
 477                        mutex_unlock(&data->mutex);
 478                        return ret;
 479                }
 480                *val = values[chan->scan_index];
 481
 482                ret = bmc150_magn_set_power_state(data, false);
 483                if (ret < 0) {
 484                        mutex_unlock(&data->mutex);
 485                        return ret;
 486                }
 487
 488                mutex_unlock(&data->mutex);
 489                return IIO_VAL_INT;
 490        case IIO_CHAN_INFO_SCALE:
 491                /*
 492                 * The API/driver performs an off-chip temperature
 493                 * compensation and outputs x/y/z magnetic field data in
 494                 * 16 LSB/uT to the upper application layer.
 495                 */
 496                *val = 0;
 497                *val2 = 625;
 498                return IIO_VAL_INT_PLUS_MICRO;
 499        case IIO_CHAN_INFO_SAMP_FREQ:
 500                ret = bmc150_magn_get_odr(data, val);
 501                if (ret < 0)
 502                        return ret;
 503                return IIO_VAL_INT;
 504        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 505                switch (chan->channel2) {
 506                case IIO_MOD_X:
 507                case IIO_MOD_Y:
 508                        ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
 509                                          &tmp);
 510                        if (ret < 0)
 511                                return ret;
 512                        *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
 513                        return IIO_VAL_INT;
 514                case IIO_MOD_Z:
 515                        ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
 516                                          &tmp);
 517                        if (ret < 0)
 518                                return ret;
 519                        *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
 520                        return IIO_VAL_INT;
 521                default:
 522                        return -EINVAL;
 523                }
 524        default:
 525                return -EINVAL;
 526        }
 527}
 528
 529static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
 530                                 struct iio_chan_spec const *chan,
 531                                 int val, int val2, long mask)
 532{
 533        struct bmc150_magn_data *data = iio_priv(indio_dev);
 534        int ret;
 535
 536        switch (mask) {
 537        case IIO_CHAN_INFO_SAMP_FREQ:
 538                if (val > data->max_odr)
 539                        return -EINVAL;
 540                mutex_lock(&data->mutex);
 541                ret = bmc150_magn_set_odr(data, val);
 542                mutex_unlock(&data->mutex);
 543                return ret;
 544        case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 545                switch (chan->channel2) {
 546                case IIO_MOD_X:
 547                case IIO_MOD_Y:
 548                        if (val < 1 || val > 511)
 549                                return -EINVAL;
 550                        mutex_lock(&data->mutex);
 551                        ret = bmc150_magn_set_max_odr(data, val, 0, 0);
 552                        if (ret < 0) {
 553                                mutex_unlock(&data->mutex);
 554                                return ret;
 555                        }
 556                        ret = regmap_update_bits(data->regmap,
 557                                                 BMC150_MAGN_REG_REP_XY,
 558                                                 BMC150_MAGN_REG_REP_DATAMASK,
 559                                                 BMC150_MAGN_REPXY_TO_REGVAL
 560                                                 (val));
 561                        mutex_unlock(&data->mutex);
 562                        return ret;
 563                case IIO_MOD_Z:
 564                        if (val < 1 || val > 256)
 565                                return -EINVAL;
 566                        mutex_lock(&data->mutex);
 567                        ret = bmc150_magn_set_max_odr(data, 0, val, 0);
 568                        if (ret < 0) {
 569                                mutex_unlock(&data->mutex);
 570                                return ret;
 571                        }
 572                        ret = regmap_update_bits(data->regmap,
 573                                                 BMC150_MAGN_REG_REP_Z,
 574                                                 BMC150_MAGN_REG_REP_DATAMASK,
 575                                                 BMC150_MAGN_REPZ_TO_REGVAL
 576                                                 (val));
 577                        mutex_unlock(&data->mutex);
 578                        return ret;
 579                default:
 580                        return -EINVAL;
 581                }
 582        default:
 583                return -EINVAL;
 584        }
 585}
 586
 587static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
 588                                                struct device_attribute *attr,
 589                                                char *buf)
 590{
 591        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 592        struct bmc150_magn_data *data = iio_priv(indio_dev);
 593        size_t len = 0;
 594        u8 i;
 595
 596        for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
 597                if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
 598                        break;
 599                len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
 600                                 bmc150_magn_samp_freq_table[i].freq);
 601        }
 602        /* replace last space with a newline */
 603        buf[len - 1] = '\n';
 604
 605        return len;
 606}
 607
 608static const struct iio_mount_matrix *
 609bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
 610                              const struct iio_chan_spec *chan)
 611{
 612        struct bmc150_magn_data *data = iio_priv(indio_dev);
 613
 614        return &data->orientation;
 615}
 616
 617static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
 618        IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
 619        { }
 620};
 621
 622static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
 623
 624static struct attribute *bmc150_magn_attributes[] = {
 625        &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
 626        NULL,
 627};
 628
 629static const struct attribute_group bmc150_magn_attrs_group = {
 630        .attrs = bmc150_magn_attributes,
 631};
 632
 633#define BMC150_MAGN_CHANNEL(_axis) {                                    \
 634        .type = IIO_MAGN,                                               \
 635        .modified = 1,                                                  \
 636        .channel2 = IIO_MOD_##_axis,                                    \
 637        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
 638                              BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
 639        .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
 640                                    BIT(IIO_CHAN_INFO_SCALE),           \
 641        .scan_index = AXIS_##_axis,                                     \
 642        .scan_type = {                                                  \
 643                .sign = 's',                                            \
 644                .realbits = 32,                                         \
 645                .storagebits = 32,                                      \
 646                .endianness = IIO_LE                                    \
 647        },                                                              \
 648        .ext_info = bmc150_magn_ext_info,                               \
 649}
 650
 651static const struct iio_chan_spec bmc150_magn_channels[] = {
 652        BMC150_MAGN_CHANNEL(X),
 653        BMC150_MAGN_CHANNEL(Y),
 654        BMC150_MAGN_CHANNEL(Z),
 655        IIO_CHAN_SOFT_TIMESTAMP(3),
 656};
 657
 658static const struct iio_info bmc150_magn_info = {
 659        .attrs = &bmc150_magn_attrs_group,
 660        .read_raw = bmc150_magn_read_raw,
 661        .write_raw = bmc150_magn_write_raw,
 662};
 663
 664static const unsigned long bmc150_magn_scan_masks[] = {
 665                                        BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
 666                                        0};
 667
 668static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
 669{
 670        struct iio_poll_func *pf = p;
 671        struct iio_dev *indio_dev = pf->indio_dev;
 672        struct bmc150_magn_data *data = iio_priv(indio_dev);
 673        int ret;
 674
 675        mutex_lock(&data->mutex);
 676        ret = bmc150_magn_read_xyz(data, data->buffer);
 677        if (ret < 0)
 678                goto err;
 679
 680        iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
 681                                           pf->timestamp);
 682
 683err:
 684        mutex_unlock(&data->mutex);
 685        iio_trigger_notify_done(indio_dev->trig);
 686
 687        return IRQ_HANDLED;
 688}
 689
 690static int bmc150_magn_init(struct bmc150_magn_data *data)
 691{
 692        int ret, chip_id;
 693        struct bmc150_magn_preset preset;
 694
 695        ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
 696                                         false);
 697        if (ret < 0) {
 698                dev_err(data->dev,
 699                        "Failed to bring up device from suspend mode\n");
 700                return ret;
 701        }
 702
 703        ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
 704        if (ret < 0) {
 705                dev_err(data->dev, "Failed reading chip id\n");
 706                goto err_poweroff;
 707        }
 708        if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
 709                dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
 710                ret = -ENODEV;
 711                goto err_poweroff;
 712        }
 713        dev_dbg(data->dev, "Chip id %x\n", chip_id);
 714
 715        preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
 716        ret = bmc150_magn_set_odr(data, preset.odr);
 717        if (ret < 0) {
 718                dev_err(data->dev, "Failed to set ODR to %d\n",
 719                        preset.odr);
 720                goto err_poweroff;
 721        }
 722
 723        ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
 724                           BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
 725        if (ret < 0) {
 726                dev_err(data->dev, "Failed to set REP XY to %d\n",
 727                        preset.rep_xy);
 728                goto err_poweroff;
 729        }
 730
 731        ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
 732                           BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
 733        if (ret < 0) {
 734                dev_err(data->dev, "Failed to set REP Z to %d\n",
 735                        preset.rep_z);
 736                goto err_poweroff;
 737        }
 738
 739        ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
 740                                      preset.odr);
 741        if (ret < 0)
 742                goto err_poweroff;
 743
 744        ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
 745                                         true);
 746        if (ret < 0) {
 747                dev_err(data->dev, "Failed to power on device\n");
 748                goto err_poweroff;
 749        }
 750
 751        return 0;
 752
 753err_poweroff:
 754        bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
 755        return ret;
 756}
 757
 758static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
 759{
 760        int tmp;
 761
 762        /*
 763         * Data Ready (DRDY) is always cleared after
 764         * readout of data registers ends.
 765         */
 766        return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
 767}
 768
 769static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
 770{
 771        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 772        struct bmc150_magn_data *data = iio_priv(indio_dev);
 773        int ret;
 774
 775        if (!data->dready_trigger_on)
 776                return 0;
 777
 778        mutex_lock(&data->mutex);
 779        ret = bmc150_magn_reset_intr(data);
 780        mutex_unlock(&data->mutex);
 781
 782        return ret;
 783}
 784
 785static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
 786                                                  bool state)
 787{
 788        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 789        struct bmc150_magn_data *data = iio_priv(indio_dev);
 790        int ret = 0;
 791
 792        mutex_lock(&data->mutex);
 793        if (state == data->dready_trigger_on)
 794                goto err_unlock;
 795
 796        ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
 797                                 BMC150_MAGN_MASK_DRDY_EN,
 798                                 state << BMC150_MAGN_SHIFT_DRDY_EN);
 799        if (ret < 0)
 800                goto err_unlock;
 801
 802        data->dready_trigger_on = state;
 803
 804        if (state) {
 805                ret = bmc150_magn_reset_intr(data);
 806                if (ret < 0)
 807                        goto err_unlock;
 808        }
 809        mutex_unlock(&data->mutex);
 810
 811        return 0;
 812
 813err_unlock:
 814        mutex_unlock(&data->mutex);
 815        return ret;
 816}
 817
 818static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
 819        .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
 820        .try_reenable = bmc150_magn_trig_try_reen,
 821};
 822
 823static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
 824{
 825        struct bmc150_magn_data *data = iio_priv(indio_dev);
 826
 827        return bmc150_magn_set_power_state(data, true);
 828}
 829
 830static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
 831{
 832        struct bmc150_magn_data *data = iio_priv(indio_dev);
 833
 834        return bmc150_magn_set_power_state(data, false);
 835}
 836
 837static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
 838        .preenable = bmc150_magn_buffer_preenable,
 839        .postenable = iio_triggered_buffer_postenable,
 840        .predisable = iio_triggered_buffer_predisable,
 841        .postdisable = bmc150_magn_buffer_postdisable,
 842};
 843
 844static const char *bmc150_magn_match_acpi_device(struct device *dev)
 845{
 846        const struct acpi_device_id *id;
 847
 848        id = acpi_match_device(dev->driver->acpi_match_table, dev);
 849        if (!id)
 850                return NULL;
 851
 852        return dev_name(dev);
 853}
 854
 855int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
 856                      int irq, const char *name)
 857{
 858        struct bmc150_magn_data *data;
 859        struct iio_dev *indio_dev;
 860        int ret;
 861
 862        indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
 863        if (!indio_dev)
 864                return -ENOMEM;
 865
 866        data = iio_priv(indio_dev);
 867        dev_set_drvdata(dev, indio_dev);
 868        data->regmap = regmap;
 869        data->irq = irq;
 870        data->dev = dev;
 871
 872        ret = iio_read_mount_matrix(dev, "mount-matrix",
 873                                &data->orientation);
 874        if (ret)
 875                return ret;
 876
 877        if (!name && ACPI_HANDLE(dev))
 878                name = bmc150_magn_match_acpi_device(dev);
 879
 880        mutex_init(&data->mutex);
 881
 882        ret = bmc150_magn_init(data);
 883        if (ret < 0)
 884                return ret;
 885
 886        indio_dev->dev.parent = dev;
 887        indio_dev->channels = bmc150_magn_channels;
 888        indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
 889        indio_dev->available_scan_masks = bmc150_magn_scan_masks;
 890        indio_dev->name = name;
 891        indio_dev->modes = INDIO_DIRECT_MODE;
 892        indio_dev->info = &bmc150_magn_info;
 893
 894        if (irq > 0) {
 895                data->dready_trig = devm_iio_trigger_alloc(dev,
 896                                                           "%s-dev%d",
 897                                                           indio_dev->name,
 898                                                           indio_dev->id);
 899                if (!data->dready_trig) {
 900                        ret = -ENOMEM;
 901                        dev_err(dev, "iio trigger alloc failed\n");
 902                        goto err_poweroff;
 903                }
 904
 905                data->dready_trig->dev.parent = dev;
 906                data->dready_trig->ops = &bmc150_magn_trigger_ops;
 907                iio_trigger_set_drvdata(data->dready_trig, indio_dev);
 908                ret = iio_trigger_register(data->dready_trig);
 909                if (ret) {
 910                        dev_err(dev, "iio trigger register failed\n");
 911                        goto err_poweroff;
 912                }
 913
 914                ret = request_threaded_irq(irq,
 915                                           iio_trigger_generic_data_rdy_poll,
 916                                           NULL,
 917                                           IRQF_TRIGGER_RISING | IRQF_ONESHOT,
 918                                           BMC150_MAGN_IRQ_NAME,
 919                                           data->dready_trig);
 920                if (ret < 0) {
 921                        dev_err(dev, "request irq %d failed\n", irq);
 922                        goto err_trigger_unregister;
 923                }
 924        }
 925
 926        ret = iio_triggered_buffer_setup(indio_dev,
 927                                         iio_pollfunc_store_time,
 928                                         bmc150_magn_trigger_handler,
 929                                         &bmc150_magn_buffer_setup_ops);
 930        if (ret < 0) {
 931                dev_err(dev, "iio triggered buffer setup failed\n");
 932                goto err_free_irq;
 933        }
 934
 935        ret = pm_runtime_set_active(dev);
 936        if (ret)
 937                goto err_buffer_cleanup;
 938
 939        pm_runtime_enable(dev);
 940        pm_runtime_set_autosuspend_delay(dev,
 941                                         BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
 942        pm_runtime_use_autosuspend(dev);
 943
 944        ret = iio_device_register(indio_dev);
 945        if (ret < 0) {
 946                dev_err(dev, "unable to register iio device\n");
 947                goto err_buffer_cleanup;
 948        }
 949
 950        dev_dbg(dev, "Registered device %s\n", name);
 951        return 0;
 952
 953err_buffer_cleanup:
 954        iio_triggered_buffer_cleanup(indio_dev);
 955err_free_irq:
 956        if (irq > 0)
 957                free_irq(irq, data->dready_trig);
 958err_trigger_unregister:
 959        if (data->dready_trig)
 960                iio_trigger_unregister(data->dready_trig);
 961err_poweroff:
 962        bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
 963        return ret;
 964}
 965EXPORT_SYMBOL(bmc150_magn_probe);
 966
 967int bmc150_magn_remove(struct device *dev)
 968{
 969        struct iio_dev *indio_dev = dev_get_drvdata(dev);
 970        struct bmc150_magn_data *data = iio_priv(indio_dev);
 971
 972        iio_device_unregister(indio_dev);
 973
 974        pm_runtime_disable(dev);
 975        pm_runtime_set_suspended(dev);
 976        pm_runtime_put_noidle(dev);
 977
 978        iio_triggered_buffer_cleanup(indio_dev);
 979
 980        if (data->irq > 0)
 981                free_irq(data->irq, data->dready_trig);
 982
 983        if (data->dready_trig)
 984                iio_trigger_unregister(data->dready_trig);
 985
 986        mutex_lock(&data->mutex);
 987        bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
 988        mutex_unlock(&data->mutex);
 989
 990        return 0;
 991}
 992EXPORT_SYMBOL(bmc150_magn_remove);
 993
 994#ifdef CONFIG_PM
 995static int bmc150_magn_runtime_suspend(struct device *dev)
 996{
 997        struct iio_dev *indio_dev = dev_get_drvdata(dev);
 998        struct bmc150_magn_data *data = iio_priv(indio_dev);
 999        int ret;
1000
1001        mutex_lock(&data->mutex);
1002        ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1003                                         true);
1004        mutex_unlock(&data->mutex);
1005        if (ret < 0) {
1006                dev_err(dev, "powering off device failed\n");
1007                return ret;
1008        }
1009        return 0;
1010}
1011
1012/*
1013 * Should be called with data->mutex held.
1014 */
1015static int bmc150_magn_runtime_resume(struct device *dev)
1016{
1017        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1018        struct bmc150_magn_data *data = iio_priv(indio_dev);
1019
1020        return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1021                                          true);
1022}
1023#endif
1024
1025#ifdef CONFIG_PM_SLEEP
1026static int bmc150_magn_suspend(struct device *dev)
1027{
1028        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1029        struct bmc150_magn_data *data = iio_priv(indio_dev);
1030        int ret;
1031
1032        mutex_lock(&data->mutex);
1033        ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1034                                         true);
1035        mutex_unlock(&data->mutex);
1036
1037        return ret;
1038}
1039
1040static int bmc150_magn_resume(struct device *dev)
1041{
1042        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1043        struct bmc150_magn_data *data = iio_priv(indio_dev);
1044        int ret;
1045
1046        mutex_lock(&data->mutex);
1047        ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1048                                         true);
1049        mutex_unlock(&data->mutex);
1050
1051        return ret;
1052}
1053#endif
1054
1055const struct dev_pm_ops bmc150_magn_pm_ops = {
1056        SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1057        SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1058                           bmc150_magn_runtime_resume, NULL)
1059};
1060EXPORT_SYMBOL(bmc150_magn_pm_ops);
1061
1062MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1063MODULE_LICENSE("GPL v2");
1064MODULE_DESCRIPTION("BMC150 magnetometer core driver");
1065