linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53
  54#include "core_priv.h"
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57                               struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60        [IB_EVENT_CQ_ERR]               = "CQ error",
  61        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  62        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  63        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  64        [IB_EVENT_COMM_EST]             = "communication established",
  65        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  66        [IB_EVENT_PATH_MIG]             = "path migration successful",
  67        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  68        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  69        [IB_EVENT_PORT_ACTIVE]          = "port active",
  70        [IB_EVENT_PORT_ERR]             = "port error",
  71        [IB_EVENT_LID_CHANGE]           = "LID change",
  72        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  73        [IB_EVENT_SM_CHANGE]            = "SM change",
  74        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  75        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  76        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  77        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  78        [IB_EVENT_GID_CHANGE]           = "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83        size_t index = event;
  84
  85        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86                        ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91        [IB_WC_SUCCESS]                 = "success",
  92        [IB_WC_LOC_LEN_ERR]             = "local length error",
  93        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  94        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  95        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  96        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  97        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
  98        [IB_WC_BAD_RESP_ERR]            = "bad response error",
  99        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 100        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 101        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 102        [IB_WC_REM_OP_ERR]              = "remote operation error",
 103        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 104        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 105        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 106        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 107        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 108        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 109        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 110        [IB_WC_FATAL_ERR]               = "fatal error",
 111        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 112        [IB_WC_GENERAL_ERR]             = "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117        size_t index = status;
 118
 119        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120                        wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126        switch (rate) {
 127        case IB_RATE_2_5_GBPS: return   1;
 128        case IB_RATE_5_GBPS:   return   2;
 129        case IB_RATE_10_GBPS:  return   4;
 130        case IB_RATE_20_GBPS:  return   8;
 131        case IB_RATE_30_GBPS:  return  12;
 132        case IB_RATE_40_GBPS:  return  16;
 133        case IB_RATE_60_GBPS:  return  24;
 134        case IB_RATE_80_GBPS:  return  32;
 135        case IB_RATE_120_GBPS: return  48;
 136        case IB_RATE_14_GBPS:  return   6;
 137        case IB_RATE_56_GBPS:  return  22;
 138        case IB_RATE_112_GBPS: return  45;
 139        case IB_RATE_168_GBPS: return  67;
 140        case IB_RATE_25_GBPS:  return  10;
 141        case IB_RATE_100_GBPS: return  40;
 142        case IB_RATE_200_GBPS: return  80;
 143        case IB_RATE_300_GBPS: return 120;
 144        case IB_RATE_28_GBPS:  return  11;
 145        case IB_RATE_50_GBPS:  return  20;
 146        case IB_RATE_400_GBPS: return 160;
 147        case IB_RATE_600_GBPS: return 240;
 148        default:               return  -1;
 149        }
 150}
 151EXPORT_SYMBOL(ib_rate_to_mult);
 152
 153__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 154{
 155        switch (mult) {
 156        case 1:   return IB_RATE_2_5_GBPS;
 157        case 2:   return IB_RATE_5_GBPS;
 158        case 4:   return IB_RATE_10_GBPS;
 159        case 8:   return IB_RATE_20_GBPS;
 160        case 12:  return IB_RATE_30_GBPS;
 161        case 16:  return IB_RATE_40_GBPS;
 162        case 24:  return IB_RATE_60_GBPS;
 163        case 32:  return IB_RATE_80_GBPS;
 164        case 48:  return IB_RATE_120_GBPS;
 165        case 6:   return IB_RATE_14_GBPS;
 166        case 22:  return IB_RATE_56_GBPS;
 167        case 45:  return IB_RATE_112_GBPS;
 168        case 67:  return IB_RATE_168_GBPS;
 169        case 10:  return IB_RATE_25_GBPS;
 170        case 40:  return IB_RATE_100_GBPS;
 171        case 80:  return IB_RATE_200_GBPS;
 172        case 120: return IB_RATE_300_GBPS;
 173        case 11:  return IB_RATE_28_GBPS;
 174        case 20:  return IB_RATE_50_GBPS;
 175        case 160: return IB_RATE_400_GBPS;
 176        case 240: return IB_RATE_600_GBPS;
 177        default:  return IB_RATE_PORT_CURRENT;
 178        }
 179}
 180EXPORT_SYMBOL(mult_to_ib_rate);
 181
 182__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 183{
 184        switch (rate) {
 185        case IB_RATE_2_5_GBPS: return 2500;
 186        case IB_RATE_5_GBPS:   return 5000;
 187        case IB_RATE_10_GBPS:  return 10000;
 188        case IB_RATE_20_GBPS:  return 20000;
 189        case IB_RATE_30_GBPS:  return 30000;
 190        case IB_RATE_40_GBPS:  return 40000;
 191        case IB_RATE_60_GBPS:  return 60000;
 192        case IB_RATE_80_GBPS:  return 80000;
 193        case IB_RATE_120_GBPS: return 120000;
 194        case IB_RATE_14_GBPS:  return 14062;
 195        case IB_RATE_56_GBPS:  return 56250;
 196        case IB_RATE_112_GBPS: return 112500;
 197        case IB_RATE_168_GBPS: return 168750;
 198        case IB_RATE_25_GBPS:  return 25781;
 199        case IB_RATE_100_GBPS: return 103125;
 200        case IB_RATE_200_GBPS: return 206250;
 201        case IB_RATE_300_GBPS: return 309375;
 202        case IB_RATE_28_GBPS:  return 28125;
 203        case IB_RATE_50_GBPS:  return 53125;
 204        case IB_RATE_400_GBPS: return 425000;
 205        case IB_RATE_600_GBPS: return 637500;
 206        default:               return -1;
 207        }
 208}
 209EXPORT_SYMBOL(ib_rate_to_mbps);
 210
 211__attribute_const__ enum rdma_transport_type
 212rdma_node_get_transport(unsigned int node_type)
 213{
 214
 215        if (node_type == RDMA_NODE_USNIC)
 216                return RDMA_TRANSPORT_USNIC;
 217        if (node_type == RDMA_NODE_USNIC_UDP)
 218                return RDMA_TRANSPORT_USNIC_UDP;
 219        if (node_type == RDMA_NODE_RNIC)
 220                return RDMA_TRANSPORT_IWARP;
 221        if (node_type == RDMA_NODE_UNSPECIFIED)
 222                return RDMA_TRANSPORT_UNSPECIFIED;
 223
 224        return RDMA_TRANSPORT_IB;
 225}
 226EXPORT_SYMBOL(rdma_node_get_transport);
 227
 228enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 229{
 230        enum rdma_transport_type lt;
 231        if (device->ops.get_link_layer)
 232                return device->ops.get_link_layer(device, port_num);
 233
 234        lt = rdma_node_get_transport(device->node_type);
 235        if (lt == RDMA_TRANSPORT_IB)
 236                return IB_LINK_LAYER_INFINIBAND;
 237
 238        return IB_LINK_LAYER_ETHERNET;
 239}
 240EXPORT_SYMBOL(rdma_port_get_link_layer);
 241
 242/* Protection domains */
 243
 244/**
 245 * ib_alloc_pd - Allocates an unused protection domain.
 246 * @device: The device on which to allocate the protection domain.
 247 *
 248 * A protection domain object provides an association between QPs, shared
 249 * receive queues, address handles, memory regions, and memory windows.
 250 *
 251 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 252 * memory operations.
 253 */
 254struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 255                const char *caller)
 256{
 257        struct ib_pd *pd;
 258        int mr_access_flags = 0;
 259        int ret;
 260
 261        pd = rdma_zalloc_drv_obj(device, ib_pd);
 262        if (!pd)
 263                return ERR_PTR(-ENOMEM);
 264
 265        pd->device = device;
 266        pd->uobject = NULL;
 267        pd->__internal_mr = NULL;
 268        atomic_set(&pd->usecnt, 0);
 269        pd->flags = flags;
 270
 271        pd->res.type = RDMA_RESTRACK_PD;
 272        rdma_restrack_set_task(&pd->res, caller);
 273
 274        ret = device->ops.alloc_pd(pd, NULL);
 275        if (ret) {
 276                kfree(pd);
 277                return ERR_PTR(ret);
 278        }
 279        rdma_restrack_kadd(&pd->res);
 280
 281        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 282                pd->local_dma_lkey = device->local_dma_lkey;
 283        else
 284                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 285
 286        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 287                pr_warn("%s: enabling unsafe global rkey\n", caller);
 288                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 289        }
 290
 291        if (mr_access_flags) {
 292                struct ib_mr *mr;
 293
 294                mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 295                if (IS_ERR(mr)) {
 296                        ib_dealloc_pd(pd);
 297                        return ERR_CAST(mr);
 298                }
 299
 300                mr->device      = pd->device;
 301                mr->pd          = pd;
 302                mr->type        = IB_MR_TYPE_DMA;
 303                mr->uobject     = NULL;
 304                mr->need_inval  = false;
 305
 306                pd->__internal_mr = mr;
 307
 308                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 309                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 310
 311                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 312                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 313        }
 314
 315        return pd;
 316}
 317EXPORT_SYMBOL(__ib_alloc_pd);
 318
 319/**
 320 * ib_dealloc_pd_user - Deallocates a protection domain.
 321 * @pd: The protection domain to deallocate.
 322 * @udata: Valid user data or NULL for kernel object
 323 *
 324 * It is an error to call this function while any resources in the pd still
 325 * exist.  The caller is responsible to synchronously destroy them and
 326 * guarantee no new allocations will happen.
 327 */
 328void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
 329{
 330        int ret;
 331
 332        if (pd->__internal_mr) {
 333                ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
 334                WARN_ON(ret);
 335                pd->__internal_mr = NULL;
 336        }
 337
 338        /* uverbs manipulates usecnt with proper locking, while the kabi
 339           requires the caller to guarantee we can't race here. */
 340        WARN_ON(atomic_read(&pd->usecnt));
 341
 342        rdma_restrack_del(&pd->res);
 343        pd->device->ops.dealloc_pd(pd, udata);
 344        kfree(pd);
 345}
 346EXPORT_SYMBOL(ib_dealloc_pd_user);
 347
 348/* Address handles */
 349
 350/**
 351 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 352 * @dest:       Pointer to destination ah_attr. Contents of the destination
 353 *              pointer is assumed to be invalid and attribute are overwritten.
 354 * @src:        Pointer to source ah_attr.
 355 */
 356void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 357                       const struct rdma_ah_attr *src)
 358{
 359        *dest = *src;
 360        if (dest->grh.sgid_attr)
 361                rdma_hold_gid_attr(dest->grh.sgid_attr);
 362}
 363EXPORT_SYMBOL(rdma_copy_ah_attr);
 364
 365/**
 366 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 367 * @old:        Pointer to existing ah_attr which needs to be replaced.
 368 *              old is assumed to be valid or zero'd
 369 * @new:        Pointer to the new ah_attr.
 370 *
 371 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 372 * old the ah_attr is valid; after that it copies the new attribute and holds
 373 * the reference to the replaced ah_attr.
 374 */
 375void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 376                          const struct rdma_ah_attr *new)
 377{
 378        rdma_destroy_ah_attr(old);
 379        *old = *new;
 380        if (old->grh.sgid_attr)
 381                rdma_hold_gid_attr(old->grh.sgid_attr);
 382}
 383EXPORT_SYMBOL(rdma_replace_ah_attr);
 384
 385/**
 386 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 387 * @dest:       Pointer to destination ah_attr to copy to.
 388 *              dest is assumed to be valid or zero'd
 389 * @src:        Pointer to the new ah_attr.
 390 *
 391 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 392 * if it is valid. This also transfers ownership of internal references from
 393 * src to dest, making src invalid in the process. No new reference of the src
 394 * ah_attr is taken.
 395 */
 396void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 397{
 398        rdma_destroy_ah_attr(dest);
 399        *dest = *src;
 400        src->grh.sgid_attr = NULL;
 401}
 402EXPORT_SYMBOL(rdma_move_ah_attr);
 403
 404/*
 405 * Validate that the rdma_ah_attr is valid for the device before passing it
 406 * off to the driver.
 407 */
 408static int rdma_check_ah_attr(struct ib_device *device,
 409                              struct rdma_ah_attr *ah_attr)
 410{
 411        if (!rdma_is_port_valid(device, ah_attr->port_num))
 412                return -EINVAL;
 413
 414        if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 415             ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 416            !(ah_attr->ah_flags & IB_AH_GRH))
 417                return -EINVAL;
 418
 419        if (ah_attr->grh.sgid_attr) {
 420                /*
 421                 * Make sure the passed sgid_attr is consistent with the
 422                 * parameters
 423                 */
 424                if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 425                    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 426                        return -EINVAL;
 427        }
 428        return 0;
 429}
 430
 431/*
 432 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 433 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 434 */
 435static int rdma_fill_sgid_attr(struct ib_device *device,
 436                               struct rdma_ah_attr *ah_attr,
 437                               const struct ib_gid_attr **old_sgid_attr)
 438{
 439        const struct ib_gid_attr *sgid_attr;
 440        struct ib_global_route *grh;
 441        int ret;
 442
 443        *old_sgid_attr = ah_attr->grh.sgid_attr;
 444
 445        ret = rdma_check_ah_attr(device, ah_attr);
 446        if (ret)
 447                return ret;
 448
 449        if (!(ah_attr->ah_flags & IB_AH_GRH))
 450                return 0;
 451
 452        grh = rdma_ah_retrieve_grh(ah_attr);
 453        if (grh->sgid_attr)
 454                return 0;
 455
 456        sgid_attr =
 457                rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 458        if (IS_ERR(sgid_attr))
 459                return PTR_ERR(sgid_attr);
 460
 461        /* Move ownerhip of the kref into the ah_attr */
 462        grh->sgid_attr = sgid_attr;
 463        return 0;
 464}
 465
 466static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 467                                  const struct ib_gid_attr *old_sgid_attr)
 468{
 469        /*
 470         * Fill didn't change anything, the caller retains ownership of
 471         * whatever it passed
 472         */
 473        if (ah_attr->grh.sgid_attr == old_sgid_attr)
 474                return;
 475
 476        /*
 477         * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 478         * doesn't see any change in the rdma_ah_attr. If we get here
 479         * old_sgid_attr is NULL.
 480         */
 481        rdma_destroy_ah_attr(ah_attr);
 482}
 483
 484static const struct ib_gid_attr *
 485rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 486                      const struct ib_gid_attr *old_attr)
 487{
 488        if (old_attr)
 489                rdma_put_gid_attr(old_attr);
 490        if (ah_attr->ah_flags & IB_AH_GRH) {
 491                rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 492                return ah_attr->grh.sgid_attr;
 493        }
 494        return NULL;
 495}
 496
 497static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 498                                     struct rdma_ah_attr *ah_attr,
 499                                     u32 flags,
 500                                     struct ib_udata *udata)
 501{
 502        struct ib_device *device = pd->device;
 503        struct ib_ah *ah;
 504        int ret;
 505
 506        might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 507
 508        if (!device->ops.create_ah)
 509                return ERR_PTR(-EOPNOTSUPP);
 510
 511        ah = rdma_zalloc_drv_obj_gfp(
 512                device, ib_ah,
 513                (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
 514        if (!ah)
 515                return ERR_PTR(-ENOMEM);
 516
 517        ah->device = device;
 518        ah->pd = pd;
 519        ah->type = ah_attr->type;
 520        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 521
 522        ret = device->ops.create_ah(ah, ah_attr, flags, udata);
 523        if (ret) {
 524                kfree(ah);
 525                return ERR_PTR(ret);
 526        }
 527
 528        atomic_inc(&pd->usecnt);
 529        return ah;
 530}
 531
 532/**
 533 * rdma_create_ah - Creates an address handle for the
 534 * given address vector.
 535 * @pd: The protection domain associated with the address handle.
 536 * @ah_attr: The attributes of the address vector.
 537 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 538 *
 539 * It returns 0 on success and returns appropriate error code on error.
 540 * The address handle is used to reference a local or global destination
 541 * in all UD QP post sends.
 542 */
 543struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 544                             u32 flags)
 545{
 546        const struct ib_gid_attr *old_sgid_attr;
 547        struct ib_ah *ah;
 548        int ret;
 549
 550        ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 551        if (ret)
 552                return ERR_PTR(ret);
 553
 554        ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
 555
 556        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 557        return ah;
 558}
 559EXPORT_SYMBOL(rdma_create_ah);
 560
 561/**
 562 * rdma_create_user_ah - Creates an address handle for the
 563 * given address vector.
 564 * It resolves destination mac address for ah attribute of RoCE type.
 565 * @pd: The protection domain associated with the address handle.
 566 * @ah_attr: The attributes of the address vector.
 567 * @udata: pointer to user's input output buffer information need by
 568 *         provider driver.
 569 *
 570 * It returns 0 on success and returns appropriate error code on error.
 571 * The address handle is used to reference a local or global destination
 572 * in all UD QP post sends.
 573 */
 574struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 575                                  struct rdma_ah_attr *ah_attr,
 576                                  struct ib_udata *udata)
 577{
 578        const struct ib_gid_attr *old_sgid_attr;
 579        struct ib_ah *ah;
 580        int err;
 581
 582        err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 583        if (err)
 584                return ERR_PTR(err);
 585
 586        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 587                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 588                if (err) {
 589                        ah = ERR_PTR(err);
 590                        goto out;
 591                }
 592        }
 593
 594        ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
 595
 596out:
 597        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 598        return ah;
 599}
 600EXPORT_SYMBOL(rdma_create_user_ah);
 601
 602int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 603{
 604        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 605        struct iphdr ip4h_checked;
 606        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 607
 608        /* If it's IPv6, the version must be 6, otherwise, the first
 609         * 20 bytes (before the IPv4 header) are garbled.
 610         */
 611        if (ip6h->version != 6)
 612                return (ip4h->version == 4) ? 4 : 0;
 613        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 614
 615        /* RoCE v2 requires no options, thus header length
 616         * must be 5 words
 617         */
 618        if (ip4h->ihl != 5)
 619                return 6;
 620
 621        /* Verify checksum.
 622         * We can't write on scattered buffers so we need to copy to
 623         * temp buffer.
 624         */
 625        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 626        ip4h_checked.check = 0;
 627        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 628        /* if IPv4 header checksum is OK, believe it */
 629        if (ip4h->check == ip4h_checked.check)
 630                return 4;
 631        return 6;
 632}
 633EXPORT_SYMBOL(ib_get_rdma_header_version);
 634
 635static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 636                                                     u8 port_num,
 637                                                     const struct ib_grh *grh)
 638{
 639        int grh_version;
 640
 641        if (rdma_protocol_ib(device, port_num))
 642                return RDMA_NETWORK_IB;
 643
 644        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 645
 646        if (grh_version == 4)
 647                return RDMA_NETWORK_IPV4;
 648
 649        if (grh->next_hdr == IPPROTO_UDP)
 650                return RDMA_NETWORK_IPV6;
 651
 652        return RDMA_NETWORK_ROCE_V1;
 653}
 654
 655struct find_gid_index_context {
 656        u16 vlan_id;
 657        enum ib_gid_type gid_type;
 658};
 659
 660static bool find_gid_index(const union ib_gid *gid,
 661                           const struct ib_gid_attr *gid_attr,
 662                           void *context)
 663{
 664        struct find_gid_index_context *ctx = context;
 665        u16 vlan_id = 0xffff;
 666        int ret;
 667
 668        if (ctx->gid_type != gid_attr->gid_type)
 669                return false;
 670
 671        ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
 672        if (ret)
 673                return false;
 674
 675        return ctx->vlan_id == vlan_id;
 676}
 677
 678static const struct ib_gid_attr *
 679get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 680                       u16 vlan_id, const union ib_gid *sgid,
 681                       enum ib_gid_type gid_type)
 682{
 683        struct find_gid_index_context context = {.vlan_id = vlan_id,
 684                                                 .gid_type = gid_type};
 685
 686        return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 687                                       &context);
 688}
 689
 690int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 691                              enum rdma_network_type net_type,
 692                              union ib_gid *sgid, union ib_gid *dgid)
 693{
 694        struct sockaddr_in  src_in;
 695        struct sockaddr_in  dst_in;
 696        __be32 src_saddr, dst_saddr;
 697
 698        if (!sgid || !dgid)
 699                return -EINVAL;
 700
 701        if (net_type == RDMA_NETWORK_IPV4) {
 702                memcpy(&src_in.sin_addr.s_addr,
 703                       &hdr->roce4grh.saddr, 4);
 704                memcpy(&dst_in.sin_addr.s_addr,
 705                       &hdr->roce4grh.daddr, 4);
 706                src_saddr = src_in.sin_addr.s_addr;
 707                dst_saddr = dst_in.sin_addr.s_addr;
 708                ipv6_addr_set_v4mapped(src_saddr,
 709                                       (struct in6_addr *)sgid);
 710                ipv6_addr_set_v4mapped(dst_saddr,
 711                                       (struct in6_addr *)dgid);
 712                return 0;
 713        } else if (net_type == RDMA_NETWORK_IPV6 ||
 714                   net_type == RDMA_NETWORK_IB) {
 715                *dgid = hdr->ibgrh.dgid;
 716                *sgid = hdr->ibgrh.sgid;
 717                return 0;
 718        } else {
 719                return -EINVAL;
 720        }
 721}
 722EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 723
 724/* Resolve destination mac address and hop limit for unicast destination
 725 * GID entry, considering the source GID entry as well.
 726 * ah_attribute must have have valid port_num, sgid_index.
 727 */
 728static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 729                                       struct rdma_ah_attr *ah_attr)
 730{
 731        struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 732        const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 733        int hop_limit = 0xff;
 734        int ret = 0;
 735
 736        /* If destination is link local and source GID is RoCEv1,
 737         * IP stack is not used.
 738         */
 739        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 740            sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 741                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 742                                ah_attr->roce.dmac);
 743                return ret;
 744        }
 745
 746        ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 747                                           ah_attr->roce.dmac,
 748                                           sgid_attr, &hop_limit);
 749
 750        grh->hop_limit = hop_limit;
 751        return ret;
 752}
 753
 754/*
 755 * This function initializes address handle attributes from the incoming packet.
 756 * Incoming packet has dgid of the receiver node on which this code is
 757 * getting executed and, sgid contains the GID of the sender.
 758 *
 759 * When resolving mac address of destination, the arrived dgid is used
 760 * as sgid and, sgid is used as dgid because sgid contains destinations
 761 * GID whom to respond to.
 762 *
 763 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 764 * attr.
 765 */
 766int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 767                            const struct ib_wc *wc, const struct ib_grh *grh,
 768                            struct rdma_ah_attr *ah_attr)
 769{
 770        u32 flow_class;
 771        int ret;
 772        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 773        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 774        const struct ib_gid_attr *sgid_attr;
 775        int hoplimit = 0xff;
 776        union ib_gid dgid;
 777        union ib_gid sgid;
 778
 779        might_sleep();
 780
 781        memset(ah_attr, 0, sizeof *ah_attr);
 782        ah_attr->type = rdma_ah_find_type(device, port_num);
 783        if (rdma_cap_eth_ah(device, port_num)) {
 784                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 785                        net_type = wc->network_hdr_type;
 786                else
 787                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 788                gid_type = ib_network_to_gid_type(net_type);
 789        }
 790        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 791                                        &sgid, &dgid);
 792        if (ret)
 793                return ret;
 794
 795        rdma_ah_set_sl(ah_attr, wc->sl);
 796        rdma_ah_set_port_num(ah_attr, port_num);
 797
 798        if (rdma_protocol_roce(device, port_num)) {
 799                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 800                                wc->vlan_id : 0xffff;
 801
 802                if (!(wc->wc_flags & IB_WC_GRH))
 803                        return -EPROTOTYPE;
 804
 805                sgid_attr = get_sgid_attr_from_eth(device, port_num,
 806                                                   vlan_id, &dgid,
 807                                                   gid_type);
 808                if (IS_ERR(sgid_attr))
 809                        return PTR_ERR(sgid_attr);
 810
 811                flow_class = be32_to_cpu(grh->version_tclass_flow);
 812                rdma_move_grh_sgid_attr(ah_attr,
 813                                        &sgid,
 814                                        flow_class & 0xFFFFF,
 815                                        hoplimit,
 816                                        (flow_class >> 20) & 0xFF,
 817                                        sgid_attr);
 818
 819                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 820                if (ret)
 821                        rdma_destroy_ah_attr(ah_attr);
 822
 823                return ret;
 824        } else {
 825                rdma_ah_set_dlid(ah_attr, wc->slid);
 826                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 827
 828                if ((wc->wc_flags & IB_WC_GRH) == 0)
 829                        return 0;
 830
 831                if (dgid.global.interface_id !=
 832                                        cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 833                        sgid_attr = rdma_find_gid_by_port(
 834                                device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 835                } else
 836                        sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 837
 838                if (IS_ERR(sgid_attr))
 839                        return PTR_ERR(sgid_attr);
 840                flow_class = be32_to_cpu(grh->version_tclass_flow);
 841                rdma_move_grh_sgid_attr(ah_attr,
 842                                        &sgid,
 843                                        flow_class & 0xFFFFF,
 844                                        hoplimit,
 845                                        (flow_class >> 20) & 0xFF,
 846                                        sgid_attr);
 847
 848                return 0;
 849        }
 850}
 851EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 852
 853/**
 854 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 855 * of the reference
 856 *
 857 * @attr:       Pointer to AH attribute structure
 858 * @dgid:       Destination GID
 859 * @flow_label: Flow label
 860 * @hop_limit:  Hop limit
 861 * @traffic_class: traffic class
 862 * @sgid_attr:  Pointer to SGID attribute
 863 *
 864 * This takes ownership of the sgid_attr reference. The caller must ensure
 865 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 866 * calling this function.
 867 */
 868void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 869                             u32 flow_label, u8 hop_limit, u8 traffic_class,
 870                             const struct ib_gid_attr *sgid_attr)
 871{
 872        rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 873                        traffic_class);
 874        attr->grh.sgid_attr = sgid_attr;
 875}
 876EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 877
 878/**
 879 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 880 * ah attribute.
 881 * @ah_attr: Pointer to ah attribute
 882 *
 883 * Release reference to the SGID attribute of the ah attribute if it is
 884 * non NULL. It is safe to call this multiple times, and safe to call it on
 885 * a zero initialized ah_attr.
 886 */
 887void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 888{
 889        if (ah_attr->grh.sgid_attr) {
 890                rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 891                ah_attr->grh.sgid_attr = NULL;
 892        }
 893}
 894EXPORT_SYMBOL(rdma_destroy_ah_attr);
 895
 896struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 897                                   const struct ib_grh *grh, u8 port_num)
 898{
 899        struct rdma_ah_attr ah_attr;
 900        struct ib_ah *ah;
 901        int ret;
 902
 903        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 904        if (ret)
 905                return ERR_PTR(ret);
 906
 907        ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 908
 909        rdma_destroy_ah_attr(&ah_attr);
 910        return ah;
 911}
 912EXPORT_SYMBOL(ib_create_ah_from_wc);
 913
 914int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 915{
 916        const struct ib_gid_attr *old_sgid_attr;
 917        int ret;
 918
 919        if (ah->type != ah_attr->type)
 920                return -EINVAL;
 921
 922        ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 923        if (ret)
 924                return ret;
 925
 926        ret = ah->device->ops.modify_ah ?
 927                ah->device->ops.modify_ah(ah, ah_attr) :
 928                -EOPNOTSUPP;
 929
 930        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 931        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 932        return ret;
 933}
 934EXPORT_SYMBOL(rdma_modify_ah);
 935
 936int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 937{
 938        ah_attr->grh.sgid_attr = NULL;
 939
 940        return ah->device->ops.query_ah ?
 941                ah->device->ops.query_ah(ah, ah_attr) :
 942                -EOPNOTSUPP;
 943}
 944EXPORT_SYMBOL(rdma_query_ah);
 945
 946int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
 947{
 948        const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 949        struct ib_pd *pd;
 950
 951        might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 952
 953        pd = ah->pd;
 954
 955        ah->device->ops.destroy_ah(ah, flags);
 956        atomic_dec(&pd->usecnt);
 957        if (sgid_attr)
 958                rdma_put_gid_attr(sgid_attr);
 959
 960        kfree(ah);
 961        return 0;
 962}
 963EXPORT_SYMBOL(rdma_destroy_ah_user);
 964
 965/* Shared receive queues */
 966
 967struct ib_srq *ib_create_srq(struct ib_pd *pd,
 968                             struct ib_srq_init_attr *srq_init_attr)
 969{
 970        struct ib_srq *srq;
 971        int ret;
 972
 973        if (!pd->device->ops.create_srq)
 974                return ERR_PTR(-EOPNOTSUPP);
 975
 976        srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
 977        if (!srq)
 978                return ERR_PTR(-ENOMEM);
 979
 980        srq->device = pd->device;
 981        srq->pd = pd;
 982        srq->event_handler = srq_init_attr->event_handler;
 983        srq->srq_context = srq_init_attr->srq_context;
 984        srq->srq_type = srq_init_attr->srq_type;
 985
 986        if (ib_srq_has_cq(srq->srq_type)) {
 987                srq->ext.cq = srq_init_attr->ext.cq;
 988                atomic_inc(&srq->ext.cq->usecnt);
 989        }
 990        if (srq->srq_type == IB_SRQT_XRC) {
 991                srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 992                atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 993        }
 994        atomic_inc(&pd->usecnt);
 995
 996        ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
 997        if (ret) {
 998                atomic_dec(&srq->pd->usecnt);
 999                if (srq->srq_type == IB_SRQT_XRC)
1000                        atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1001                if (ib_srq_has_cq(srq->srq_type))
1002                        atomic_dec(&srq->ext.cq->usecnt);
1003                kfree(srq);
1004                return ERR_PTR(ret);
1005        }
1006
1007        return srq;
1008}
1009EXPORT_SYMBOL(ib_create_srq);
1010
1011int ib_modify_srq(struct ib_srq *srq,
1012                  struct ib_srq_attr *srq_attr,
1013                  enum ib_srq_attr_mask srq_attr_mask)
1014{
1015        return srq->device->ops.modify_srq ?
1016                srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1017                                            NULL) : -EOPNOTSUPP;
1018}
1019EXPORT_SYMBOL(ib_modify_srq);
1020
1021int ib_query_srq(struct ib_srq *srq,
1022                 struct ib_srq_attr *srq_attr)
1023{
1024        return srq->device->ops.query_srq ?
1025                srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1026}
1027EXPORT_SYMBOL(ib_query_srq);
1028
1029int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1030{
1031        if (atomic_read(&srq->usecnt))
1032                return -EBUSY;
1033
1034        srq->device->ops.destroy_srq(srq, udata);
1035
1036        atomic_dec(&srq->pd->usecnt);
1037        if (srq->srq_type == IB_SRQT_XRC)
1038                atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1039        if (ib_srq_has_cq(srq->srq_type))
1040                atomic_dec(&srq->ext.cq->usecnt);
1041        kfree(srq);
1042
1043        return 0;
1044}
1045EXPORT_SYMBOL(ib_destroy_srq_user);
1046
1047/* Queue pairs */
1048
1049static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1050{
1051        struct ib_qp *qp = context;
1052        unsigned long flags;
1053
1054        spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1055        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1056                if (event->element.qp->event_handler)
1057                        event->element.qp->event_handler(event, event->element.qp->qp_context);
1058        spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1059}
1060
1061static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1062{
1063        mutex_lock(&xrcd->tgt_qp_mutex);
1064        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1065        mutex_unlock(&xrcd->tgt_qp_mutex);
1066}
1067
1068static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1069                                  void (*event_handler)(struct ib_event *, void *),
1070                                  void *qp_context)
1071{
1072        struct ib_qp *qp;
1073        unsigned long flags;
1074        int err;
1075
1076        qp = kzalloc(sizeof *qp, GFP_KERNEL);
1077        if (!qp)
1078                return ERR_PTR(-ENOMEM);
1079
1080        qp->real_qp = real_qp;
1081        err = ib_open_shared_qp_security(qp, real_qp->device);
1082        if (err) {
1083                kfree(qp);
1084                return ERR_PTR(err);
1085        }
1086
1087        qp->real_qp = real_qp;
1088        atomic_inc(&real_qp->usecnt);
1089        qp->device = real_qp->device;
1090        qp->event_handler = event_handler;
1091        qp->qp_context = qp_context;
1092        qp->qp_num = real_qp->qp_num;
1093        qp->qp_type = real_qp->qp_type;
1094
1095        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1096        list_add(&qp->open_list, &real_qp->open_list);
1097        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1098
1099        return qp;
1100}
1101
1102struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1103                         struct ib_qp_open_attr *qp_open_attr)
1104{
1105        struct ib_qp *qp, *real_qp;
1106
1107        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1108                return ERR_PTR(-EINVAL);
1109
1110        qp = ERR_PTR(-EINVAL);
1111        mutex_lock(&xrcd->tgt_qp_mutex);
1112        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1113                if (real_qp->qp_num == qp_open_attr->qp_num) {
1114                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1115                                          qp_open_attr->qp_context);
1116                        break;
1117                }
1118        }
1119        mutex_unlock(&xrcd->tgt_qp_mutex);
1120        return qp;
1121}
1122EXPORT_SYMBOL(ib_open_qp);
1123
1124static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1125                                        struct ib_qp_init_attr *qp_init_attr,
1126                                        struct ib_udata *udata)
1127{
1128        struct ib_qp *real_qp = qp;
1129
1130        qp->event_handler = __ib_shared_qp_event_handler;
1131        qp->qp_context = qp;
1132        qp->pd = NULL;
1133        qp->send_cq = qp->recv_cq = NULL;
1134        qp->srq = NULL;
1135        qp->xrcd = qp_init_attr->xrcd;
1136        atomic_inc(&qp_init_attr->xrcd->usecnt);
1137        INIT_LIST_HEAD(&qp->open_list);
1138
1139        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1140                          qp_init_attr->qp_context);
1141        if (IS_ERR(qp))
1142                return qp;
1143
1144        __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1145        return qp;
1146}
1147
1148struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1149                                struct ib_qp_init_attr *qp_init_attr,
1150                                struct ib_udata *udata)
1151{
1152        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1153        struct ib_qp *qp;
1154        int ret;
1155
1156        if (qp_init_attr->rwq_ind_tbl &&
1157            (qp_init_attr->recv_cq ||
1158            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1159            qp_init_attr->cap.max_recv_sge))
1160                return ERR_PTR(-EINVAL);
1161
1162        if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1163            !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1164                return ERR_PTR(-EINVAL);
1165
1166        /*
1167         * If the callers is using the RDMA API calculate the resources
1168         * needed for the RDMA READ/WRITE operations.
1169         *
1170         * Note that these callers need to pass in a port number.
1171         */
1172        if (qp_init_attr->cap.max_rdma_ctxs)
1173                rdma_rw_init_qp(device, qp_init_attr);
1174
1175        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1176        if (IS_ERR(qp))
1177                return qp;
1178
1179        ret = ib_create_qp_security(qp, device);
1180        if (ret)
1181                goto err;
1182
1183        qp->qp_type    = qp_init_attr->qp_type;
1184        qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1185
1186        atomic_set(&qp->usecnt, 0);
1187        qp->mrs_used = 0;
1188        spin_lock_init(&qp->mr_lock);
1189        INIT_LIST_HEAD(&qp->rdma_mrs);
1190        INIT_LIST_HEAD(&qp->sig_mrs);
1191        qp->port = 0;
1192
1193        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1194                struct ib_qp *xrc_qp =
1195                        create_xrc_qp_user(qp, qp_init_attr, udata);
1196
1197                if (IS_ERR(xrc_qp)) {
1198                        ret = PTR_ERR(xrc_qp);
1199                        goto err;
1200                }
1201                return xrc_qp;
1202        }
1203
1204        qp->event_handler = qp_init_attr->event_handler;
1205        qp->qp_context = qp_init_attr->qp_context;
1206        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1207                qp->recv_cq = NULL;
1208                qp->srq = NULL;
1209        } else {
1210                qp->recv_cq = qp_init_attr->recv_cq;
1211                if (qp_init_attr->recv_cq)
1212                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
1213                qp->srq = qp_init_attr->srq;
1214                if (qp->srq)
1215                        atomic_inc(&qp_init_attr->srq->usecnt);
1216        }
1217
1218        qp->send_cq = qp_init_attr->send_cq;
1219        qp->xrcd    = NULL;
1220
1221        atomic_inc(&pd->usecnt);
1222        if (qp_init_attr->send_cq)
1223                atomic_inc(&qp_init_attr->send_cq->usecnt);
1224        if (qp_init_attr->rwq_ind_tbl)
1225                atomic_inc(&qp->rwq_ind_tbl->usecnt);
1226
1227        if (qp_init_attr->cap.max_rdma_ctxs) {
1228                ret = rdma_rw_init_mrs(qp, qp_init_attr);
1229                if (ret)
1230                        goto err;
1231        }
1232
1233        /*
1234         * Note: all hw drivers guarantee that max_send_sge is lower than
1235         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1236         * max_send_sge <= max_sge_rd.
1237         */
1238        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1239        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1240                                 device->attrs.max_sge_rd);
1241        if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1242                qp->integrity_en = true;
1243
1244        return qp;
1245
1246err:
1247        ib_destroy_qp(qp);
1248        return ERR_PTR(ret);
1249
1250}
1251EXPORT_SYMBOL(ib_create_qp_user);
1252
1253static const struct {
1254        int                     valid;
1255        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1256        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1257} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1258        [IB_QPS_RESET] = {
1259                [IB_QPS_RESET] = { .valid = 1 },
1260                [IB_QPS_INIT]  = {
1261                        .valid = 1,
1262                        .req_param = {
1263                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1264                                                IB_QP_PORT                      |
1265                                                IB_QP_QKEY),
1266                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1267                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1268                                                IB_QP_PORT                      |
1269                                                IB_QP_ACCESS_FLAGS),
1270                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1271                                                IB_QP_PORT                      |
1272                                                IB_QP_ACCESS_FLAGS),
1273                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1274                                                IB_QP_PORT                      |
1275                                                IB_QP_ACCESS_FLAGS),
1276                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1277                                                IB_QP_PORT                      |
1278                                                IB_QP_ACCESS_FLAGS),
1279                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1280                                                IB_QP_QKEY),
1281                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1282                                                IB_QP_QKEY),
1283                        }
1284                },
1285        },
1286        [IB_QPS_INIT]  = {
1287                [IB_QPS_RESET] = { .valid = 1 },
1288                [IB_QPS_ERR] =   { .valid = 1 },
1289                [IB_QPS_INIT]  = {
1290                        .valid = 1,
1291                        .opt_param = {
1292                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1293                                                IB_QP_PORT                      |
1294                                                IB_QP_QKEY),
1295                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1296                                                IB_QP_PORT                      |
1297                                                IB_QP_ACCESS_FLAGS),
1298                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1299                                                IB_QP_PORT                      |
1300                                                IB_QP_ACCESS_FLAGS),
1301                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1302                                                IB_QP_PORT                      |
1303                                                IB_QP_ACCESS_FLAGS),
1304                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1305                                                IB_QP_PORT                      |
1306                                                IB_QP_ACCESS_FLAGS),
1307                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1308                                                IB_QP_QKEY),
1309                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1310                                                IB_QP_QKEY),
1311                        }
1312                },
1313                [IB_QPS_RTR]   = {
1314                        .valid = 1,
1315                        .req_param = {
1316                                [IB_QPT_UC]  = (IB_QP_AV                        |
1317                                                IB_QP_PATH_MTU                  |
1318                                                IB_QP_DEST_QPN                  |
1319                                                IB_QP_RQ_PSN),
1320                                [IB_QPT_RC]  = (IB_QP_AV                        |
1321                                                IB_QP_PATH_MTU                  |
1322                                                IB_QP_DEST_QPN                  |
1323                                                IB_QP_RQ_PSN                    |
1324                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1325                                                IB_QP_MIN_RNR_TIMER),
1326                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1327                                                IB_QP_PATH_MTU                  |
1328                                                IB_QP_DEST_QPN                  |
1329                                                IB_QP_RQ_PSN),
1330                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1331                                                IB_QP_PATH_MTU                  |
1332                                                IB_QP_DEST_QPN                  |
1333                                                IB_QP_RQ_PSN                    |
1334                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1335                                                IB_QP_MIN_RNR_TIMER),
1336                        },
1337                        .opt_param = {
1338                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1339                                                 IB_QP_QKEY),
1340                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1341                                                 IB_QP_ACCESS_FLAGS             |
1342                                                 IB_QP_PKEY_INDEX),
1343                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1344                                                 IB_QP_ACCESS_FLAGS             |
1345                                                 IB_QP_PKEY_INDEX),
1346                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1347                                                 IB_QP_ACCESS_FLAGS             |
1348                                                 IB_QP_PKEY_INDEX),
1349                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1350                                                 IB_QP_ACCESS_FLAGS             |
1351                                                 IB_QP_PKEY_INDEX),
1352                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1353                                                 IB_QP_QKEY),
1354                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1355                                                 IB_QP_QKEY),
1356                         },
1357                },
1358        },
1359        [IB_QPS_RTR]   = {
1360                [IB_QPS_RESET] = { .valid = 1 },
1361                [IB_QPS_ERR] =   { .valid = 1 },
1362                [IB_QPS_RTS]   = {
1363                        .valid = 1,
1364                        .req_param = {
1365                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1366                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1367                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1368                                                IB_QP_RETRY_CNT                 |
1369                                                IB_QP_RNR_RETRY                 |
1370                                                IB_QP_SQ_PSN                    |
1371                                                IB_QP_MAX_QP_RD_ATOMIC),
1372                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1373                                                IB_QP_RETRY_CNT                 |
1374                                                IB_QP_RNR_RETRY                 |
1375                                                IB_QP_SQ_PSN                    |
1376                                                IB_QP_MAX_QP_RD_ATOMIC),
1377                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1378                                                IB_QP_SQ_PSN),
1379                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1380                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1381                        },
1382                        .opt_param = {
1383                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1384                                                 IB_QP_QKEY),
1385                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1386                                                 IB_QP_ALT_PATH                 |
1387                                                 IB_QP_ACCESS_FLAGS             |
1388                                                 IB_QP_PATH_MIG_STATE),
1389                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1390                                                 IB_QP_ALT_PATH                 |
1391                                                 IB_QP_ACCESS_FLAGS             |
1392                                                 IB_QP_MIN_RNR_TIMER            |
1393                                                 IB_QP_PATH_MIG_STATE),
1394                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1395                                                 IB_QP_ALT_PATH                 |
1396                                                 IB_QP_ACCESS_FLAGS             |
1397                                                 IB_QP_PATH_MIG_STATE),
1398                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1399                                                 IB_QP_ALT_PATH                 |
1400                                                 IB_QP_ACCESS_FLAGS             |
1401                                                 IB_QP_MIN_RNR_TIMER            |
1402                                                 IB_QP_PATH_MIG_STATE),
1403                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1404                                                 IB_QP_QKEY),
1405                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1406                                                 IB_QP_QKEY),
1407                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1408                         }
1409                }
1410        },
1411        [IB_QPS_RTS]   = {
1412                [IB_QPS_RESET] = { .valid = 1 },
1413                [IB_QPS_ERR] =   { .valid = 1 },
1414                [IB_QPS_RTS]   = {
1415                        .valid = 1,
1416                        .opt_param = {
1417                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1418                                                IB_QP_QKEY),
1419                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1420                                                IB_QP_ACCESS_FLAGS              |
1421                                                IB_QP_ALT_PATH                  |
1422                                                IB_QP_PATH_MIG_STATE),
1423                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1424                                                IB_QP_ACCESS_FLAGS              |
1425                                                IB_QP_ALT_PATH                  |
1426                                                IB_QP_PATH_MIG_STATE            |
1427                                                IB_QP_MIN_RNR_TIMER),
1428                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1429                                                IB_QP_ACCESS_FLAGS              |
1430                                                IB_QP_ALT_PATH                  |
1431                                                IB_QP_PATH_MIG_STATE),
1432                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1433                                                IB_QP_ACCESS_FLAGS              |
1434                                                IB_QP_ALT_PATH                  |
1435                                                IB_QP_PATH_MIG_STATE            |
1436                                                IB_QP_MIN_RNR_TIMER),
1437                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1438                                                IB_QP_QKEY),
1439                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1440                                                IB_QP_QKEY),
1441                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1442                        }
1443                },
1444                [IB_QPS_SQD]   = {
1445                        .valid = 1,
1446                        .opt_param = {
1447                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1448                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1451                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1452                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1453                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1454                        }
1455                },
1456        },
1457        [IB_QPS_SQD]   = {
1458                [IB_QPS_RESET] = { .valid = 1 },
1459                [IB_QPS_ERR] =   { .valid = 1 },
1460                [IB_QPS_RTS]   = {
1461                        .valid = 1,
1462                        .opt_param = {
1463                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1464                                                IB_QP_QKEY),
1465                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1466                                                IB_QP_ALT_PATH                  |
1467                                                IB_QP_ACCESS_FLAGS              |
1468                                                IB_QP_PATH_MIG_STATE),
1469                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1470                                                IB_QP_ALT_PATH                  |
1471                                                IB_QP_ACCESS_FLAGS              |
1472                                                IB_QP_MIN_RNR_TIMER             |
1473                                                IB_QP_PATH_MIG_STATE),
1474                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1475                                                IB_QP_ALT_PATH                  |
1476                                                IB_QP_ACCESS_FLAGS              |
1477                                                IB_QP_PATH_MIG_STATE),
1478                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1479                                                IB_QP_ALT_PATH                  |
1480                                                IB_QP_ACCESS_FLAGS              |
1481                                                IB_QP_MIN_RNR_TIMER             |
1482                                                IB_QP_PATH_MIG_STATE),
1483                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1484                                                IB_QP_QKEY),
1485                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1486                                                IB_QP_QKEY),
1487                        }
1488                },
1489                [IB_QPS_SQD]   = {
1490                        .valid = 1,
1491                        .opt_param = {
1492                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1493                                                IB_QP_QKEY),
1494                                [IB_QPT_UC]  = (IB_QP_AV                        |
1495                                                IB_QP_ALT_PATH                  |
1496                                                IB_QP_ACCESS_FLAGS              |
1497                                                IB_QP_PKEY_INDEX                |
1498                                                IB_QP_PATH_MIG_STATE),
1499                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1500                                                IB_QP_AV                        |
1501                                                IB_QP_TIMEOUT                   |
1502                                                IB_QP_RETRY_CNT                 |
1503                                                IB_QP_RNR_RETRY                 |
1504                                                IB_QP_MAX_QP_RD_ATOMIC          |
1505                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1506                                                IB_QP_ALT_PATH                  |
1507                                                IB_QP_ACCESS_FLAGS              |
1508                                                IB_QP_PKEY_INDEX                |
1509                                                IB_QP_MIN_RNR_TIMER             |
1510                                                IB_QP_PATH_MIG_STATE),
1511                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1512                                                IB_QP_AV                        |
1513                                                IB_QP_TIMEOUT                   |
1514                                                IB_QP_RETRY_CNT                 |
1515                                                IB_QP_RNR_RETRY                 |
1516                                                IB_QP_MAX_QP_RD_ATOMIC          |
1517                                                IB_QP_ALT_PATH                  |
1518                                                IB_QP_ACCESS_FLAGS              |
1519                                                IB_QP_PKEY_INDEX                |
1520                                                IB_QP_PATH_MIG_STATE),
1521                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1522                                                IB_QP_AV                        |
1523                                                IB_QP_TIMEOUT                   |
1524                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1525                                                IB_QP_ALT_PATH                  |
1526                                                IB_QP_ACCESS_FLAGS              |
1527                                                IB_QP_PKEY_INDEX                |
1528                                                IB_QP_MIN_RNR_TIMER             |
1529                                                IB_QP_PATH_MIG_STATE),
1530                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1531                                                IB_QP_QKEY),
1532                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1533                                                IB_QP_QKEY),
1534                        }
1535                }
1536        },
1537        [IB_QPS_SQE]   = {
1538                [IB_QPS_RESET] = { .valid = 1 },
1539                [IB_QPS_ERR] =   { .valid = 1 },
1540                [IB_QPS_RTS]   = {
1541                        .valid = 1,
1542                        .opt_param = {
1543                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1544                                                IB_QP_QKEY),
1545                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1546                                                IB_QP_ACCESS_FLAGS),
1547                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1548                                                IB_QP_QKEY),
1549                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1550                                                IB_QP_QKEY),
1551                        }
1552                }
1553        },
1554        [IB_QPS_ERR] = {
1555                [IB_QPS_RESET] = { .valid = 1 },
1556                [IB_QPS_ERR] =   { .valid = 1 }
1557        }
1558};
1559
1560bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1561                        enum ib_qp_type type, enum ib_qp_attr_mask mask)
1562{
1563        enum ib_qp_attr_mask req_param, opt_param;
1564
1565        if (mask & IB_QP_CUR_STATE  &&
1566            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1567            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1568                return false;
1569
1570        if (!qp_state_table[cur_state][next_state].valid)
1571                return false;
1572
1573        req_param = qp_state_table[cur_state][next_state].req_param[type];
1574        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1575
1576        if ((mask & req_param) != req_param)
1577                return false;
1578
1579        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1580                return false;
1581
1582        return true;
1583}
1584EXPORT_SYMBOL(ib_modify_qp_is_ok);
1585
1586/**
1587 * ib_resolve_eth_dmac - Resolve destination mac address
1588 * @device:             Device to consider
1589 * @ah_attr:            address handle attribute which describes the
1590 *                      source and destination parameters
1591 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1592 * returns 0 on success or appropriate error code. It initializes the
1593 * necessary ah_attr fields when call is successful.
1594 */
1595static int ib_resolve_eth_dmac(struct ib_device *device,
1596                               struct rdma_ah_attr *ah_attr)
1597{
1598        int ret = 0;
1599
1600        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1601                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1602                        __be32 addr = 0;
1603
1604                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1605                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1606                } else {
1607                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1608                                        (char *)ah_attr->roce.dmac);
1609                }
1610        } else {
1611                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1612        }
1613        return ret;
1614}
1615
1616static bool is_qp_type_connected(const struct ib_qp *qp)
1617{
1618        return (qp->qp_type == IB_QPT_UC ||
1619                qp->qp_type == IB_QPT_RC ||
1620                qp->qp_type == IB_QPT_XRC_INI ||
1621                qp->qp_type == IB_QPT_XRC_TGT);
1622}
1623
1624/**
1625 * IB core internal function to perform QP attributes modification.
1626 */
1627static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1628                         int attr_mask, struct ib_udata *udata)
1629{
1630        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1631        const struct ib_gid_attr *old_sgid_attr_av;
1632        const struct ib_gid_attr *old_sgid_attr_alt_av;
1633        int ret;
1634
1635        if (attr_mask & IB_QP_AV) {
1636                ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1637                                          &old_sgid_attr_av);
1638                if (ret)
1639                        return ret;
1640        }
1641        if (attr_mask & IB_QP_ALT_PATH) {
1642                /*
1643                 * FIXME: This does not track the migration state, so if the
1644                 * user loads a new alternate path after the HW has migrated
1645                 * from primary->alternate we will keep the wrong
1646                 * references. This is OK for IB because the reference
1647                 * counting does not serve any functional purpose.
1648                 */
1649                ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1650                                          &old_sgid_attr_alt_av);
1651                if (ret)
1652                        goto out_av;
1653
1654                /*
1655                 * Today the core code can only handle alternate paths and APM
1656                 * for IB. Ban them in roce mode.
1657                 */
1658                if (!(rdma_protocol_ib(qp->device,
1659                                       attr->alt_ah_attr.port_num) &&
1660                      rdma_protocol_ib(qp->device, port))) {
1661                        ret = EINVAL;
1662                        goto out;
1663                }
1664        }
1665
1666        /*
1667         * If the user provided the qp_attr then we have to resolve it. Kernel
1668         * users have to provide already resolved rdma_ah_attr's
1669         */
1670        if (udata && (attr_mask & IB_QP_AV) &&
1671            attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1672            is_qp_type_connected(qp)) {
1673                ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1674                if (ret)
1675                        goto out;
1676        }
1677
1678        if (rdma_ib_or_roce(qp->device, port)) {
1679                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1680                        dev_warn(&qp->device->dev,
1681                                 "%s rq_psn overflow, masking to 24 bits\n",
1682                                 __func__);
1683                        attr->rq_psn &= 0xffffff;
1684                }
1685
1686                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1687                        dev_warn(&qp->device->dev,
1688                                 " %s sq_psn overflow, masking to 24 bits\n",
1689                                 __func__);
1690                        attr->sq_psn &= 0xffffff;
1691                }
1692        }
1693
1694        /*
1695         * Bind this qp to a counter automatically based on the rdma counter
1696         * rules. This only set in RST2INIT with port specified
1697         */
1698        if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1699            ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1700                rdma_counter_bind_qp_auto(qp, attr->port_num);
1701
1702        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1703        if (ret)
1704                goto out;
1705
1706        if (attr_mask & IB_QP_PORT)
1707                qp->port = attr->port_num;
1708        if (attr_mask & IB_QP_AV)
1709                qp->av_sgid_attr =
1710                        rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1711        if (attr_mask & IB_QP_ALT_PATH)
1712                qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1713                        &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1714
1715out:
1716        if (attr_mask & IB_QP_ALT_PATH)
1717                rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1718out_av:
1719        if (attr_mask & IB_QP_AV)
1720                rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1721        return ret;
1722}
1723
1724/**
1725 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1726 * @ib_qp: The QP to modify.
1727 * @attr: On input, specifies the QP attributes to modify.  On output,
1728 *   the current values of selected QP attributes are returned.
1729 * @attr_mask: A bit-mask used to specify which attributes of the QP
1730 *   are being modified.
1731 * @udata: pointer to user's input output buffer information
1732 *   are being modified.
1733 * It returns 0 on success and returns appropriate error code on error.
1734 */
1735int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1736                            int attr_mask, struct ib_udata *udata)
1737{
1738        return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1739}
1740EXPORT_SYMBOL(ib_modify_qp_with_udata);
1741
1742int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1743{
1744        int rc;
1745        u32 netdev_speed;
1746        struct net_device *netdev;
1747        struct ethtool_link_ksettings lksettings;
1748
1749        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1750                return -EINVAL;
1751
1752        netdev = ib_device_get_netdev(dev, port_num);
1753        if (!netdev)
1754                return -ENODEV;
1755
1756        rtnl_lock();
1757        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1758        rtnl_unlock();
1759
1760        dev_put(netdev);
1761
1762        if (!rc) {
1763                netdev_speed = lksettings.base.speed;
1764        } else {
1765                netdev_speed = SPEED_1000;
1766                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1767                        netdev_speed);
1768        }
1769
1770        if (netdev_speed <= SPEED_1000) {
1771                *width = IB_WIDTH_1X;
1772                *speed = IB_SPEED_SDR;
1773        } else if (netdev_speed <= SPEED_10000) {
1774                *width = IB_WIDTH_1X;
1775                *speed = IB_SPEED_FDR10;
1776        } else if (netdev_speed <= SPEED_20000) {
1777                *width = IB_WIDTH_4X;
1778                *speed = IB_SPEED_DDR;
1779        } else if (netdev_speed <= SPEED_25000) {
1780                *width = IB_WIDTH_1X;
1781                *speed = IB_SPEED_EDR;
1782        } else if (netdev_speed <= SPEED_40000) {
1783                *width = IB_WIDTH_4X;
1784                *speed = IB_SPEED_FDR10;
1785        } else {
1786                *width = IB_WIDTH_4X;
1787                *speed = IB_SPEED_EDR;
1788        }
1789
1790        return 0;
1791}
1792EXPORT_SYMBOL(ib_get_eth_speed);
1793
1794int ib_modify_qp(struct ib_qp *qp,
1795                 struct ib_qp_attr *qp_attr,
1796                 int qp_attr_mask)
1797{
1798        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1799}
1800EXPORT_SYMBOL(ib_modify_qp);
1801
1802int ib_query_qp(struct ib_qp *qp,
1803                struct ib_qp_attr *qp_attr,
1804                int qp_attr_mask,
1805                struct ib_qp_init_attr *qp_init_attr)
1806{
1807        qp_attr->ah_attr.grh.sgid_attr = NULL;
1808        qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1809
1810        return qp->device->ops.query_qp ?
1811                qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1812                                         qp_init_attr) : -EOPNOTSUPP;
1813}
1814EXPORT_SYMBOL(ib_query_qp);
1815
1816int ib_close_qp(struct ib_qp *qp)
1817{
1818        struct ib_qp *real_qp;
1819        unsigned long flags;
1820
1821        real_qp = qp->real_qp;
1822        if (real_qp == qp)
1823                return -EINVAL;
1824
1825        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1826        list_del(&qp->open_list);
1827        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1828
1829        atomic_dec(&real_qp->usecnt);
1830        if (qp->qp_sec)
1831                ib_close_shared_qp_security(qp->qp_sec);
1832        kfree(qp);
1833
1834        return 0;
1835}
1836EXPORT_SYMBOL(ib_close_qp);
1837
1838static int __ib_destroy_shared_qp(struct ib_qp *qp)
1839{
1840        struct ib_xrcd *xrcd;
1841        struct ib_qp *real_qp;
1842        int ret;
1843
1844        real_qp = qp->real_qp;
1845        xrcd = real_qp->xrcd;
1846
1847        mutex_lock(&xrcd->tgt_qp_mutex);
1848        ib_close_qp(qp);
1849        if (atomic_read(&real_qp->usecnt) == 0)
1850                list_del(&real_qp->xrcd_list);
1851        else
1852                real_qp = NULL;
1853        mutex_unlock(&xrcd->tgt_qp_mutex);
1854
1855        if (real_qp) {
1856                ret = ib_destroy_qp(real_qp);
1857                if (!ret)
1858                        atomic_dec(&xrcd->usecnt);
1859                else
1860                        __ib_insert_xrcd_qp(xrcd, real_qp);
1861        }
1862
1863        return 0;
1864}
1865
1866int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1867{
1868        const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1869        const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1870        struct ib_pd *pd;
1871        struct ib_cq *scq, *rcq;
1872        struct ib_srq *srq;
1873        struct ib_rwq_ind_table *ind_tbl;
1874        struct ib_qp_security *sec;
1875        int ret;
1876
1877        WARN_ON_ONCE(qp->mrs_used > 0);
1878
1879        if (atomic_read(&qp->usecnt))
1880                return -EBUSY;
1881
1882        if (qp->real_qp != qp)
1883                return __ib_destroy_shared_qp(qp);
1884
1885        pd   = qp->pd;
1886        scq  = qp->send_cq;
1887        rcq  = qp->recv_cq;
1888        srq  = qp->srq;
1889        ind_tbl = qp->rwq_ind_tbl;
1890        sec  = qp->qp_sec;
1891        if (sec)
1892                ib_destroy_qp_security_begin(sec);
1893
1894        if (!qp->uobject)
1895                rdma_rw_cleanup_mrs(qp);
1896
1897        rdma_counter_unbind_qp(qp, true);
1898        rdma_restrack_del(&qp->res);
1899        ret = qp->device->ops.destroy_qp(qp, udata);
1900        if (!ret) {
1901                if (alt_path_sgid_attr)
1902                        rdma_put_gid_attr(alt_path_sgid_attr);
1903                if (av_sgid_attr)
1904                        rdma_put_gid_attr(av_sgid_attr);
1905                if (pd)
1906                        atomic_dec(&pd->usecnt);
1907                if (scq)
1908                        atomic_dec(&scq->usecnt);
1909                if (rcq)
1910                        atomic_dec(&rcq->usecnt);
1911                if (srq)
1912                        atomic_dec(&srq->usecnt);
1913                if (ind_tbl)
1914                        atomic_dec(&ind_tbl->usecnt);
1915                if (sec)
1916                        ib_destroy_qp_security_end(sec);
1917        } else {
1918                if (sec)
1919                        ib_destroy_qp_security_abort(sec);
1920        }
1921
1922        return ret;
1923}
1924EXPORT_SYMBOL(ib_destroy_qp_user);
1925
1926/* Completion queues */
1927
1928struct ib_cq *__ib_create_cq(struct ib_device *device,
1929                             ib_comp_handler comp_handler,
1930                             void (*event_handler)(struct ib_event *, void *),
1931                             void *cq_context,
1932                             const struct ib_cq_init_attr *cq_attr,
1933                             const char *caller)
1934{
1935        struct ib_cq *cq;
1936        int ret;
1937
1938        cq = rdma_zalloc_drv_obj(device, ib_cq);
1939        if (!cq)
1940                return ERR_PTR(-ENOMEM);
1941
1942        cq->device = device;
1943        cq->uobject = NULL;
1944        cq->comp_handler = comp_handler;
1945        cq->event_handler = event_handler;
1946        cq->cq_context = cq_context;
1947        atomic_set(&cq->usecnt, 0);
1948        cq->res.type = RDMA_RESTRACK_CQ;
1949        rdma_restrack_set_task(&cq->res, caller);
1950
1951        ret = device->ops.create_cq(cq, cq_attr, NULL);
1952        if (ret) {
1953                kfree(cq);
1954                return ERR_PTR(ret);
1955        }
1956
1957        rdma_restrack_kadd(&cq->res);
1958        return cq;
1959}
1960EXPORT_SYMBOL(__ib_create_cq);
1961
1962int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1963{
1964        return cq->device->ops.modify_cq ?
1965                cq->device->ops.modify_cq(cq, cq_count,
1966                                          cq_period) : -EOPNOTSUPP;
1967}
1968EXPORT_SYMBOL(rdma_set_cq_moderation);
1969
1970int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1971{
1972        if (atomic_read(&cq->usecnt))
1973                return -EBUSY;
1974
1975        rdma_restrack_del(&cq->res);
1976        cq->device->ops.destroy_cq(cq, udata);
1977        kfree(cq);
1978        return 0;
1979}
1980EXPORT_SYMBOL(ib_destroy_cq_user);
1981
1982int ib_resize_cq(struct ib_cq *cq, int cqe)
1983{
1984        return cq->device->ops.resize_cq ?
1985                cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1986}
1987EXPORT_SYMBOL(ib_resize_cq);
1988
1989/* Memory regions */
1990
1991int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1992{
1993        struct ib_pd *pd = mr->pd;
1994        struct ib_dm *dm = mr->dm;
1995        struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1996        int ret;
1997
1998        rdma_restrack_del(&mr->res);
1999        ret = mr->device->ops.dereg_mr(mr, udata);
2000        if (!ret) {
2001                atomic_dec(&pd->usecnt);
2002                if (dm)
2003                        atomic_dec(&dm->usecnt);
2004                kfree(sig_attrs);
2005        }
2006
2007        return ret;
2008}
2009EXPORT_SYMBOL(ib_dereg_mr_user);
2010
2011/**
2012 * ib_alloc_mr_user() - Allocates a memory region
2013 * @pd:            protection domain associated with the region
2014 * @mr_type:       memory region type
2015 * @max_num_sg:    maximum sg entries available for registration.
2016 * @udata:         user data or null for kernel objects
2017 *
2018 * Notes:
2019 * Memory registeration page/sg lists must not exceed max_num_sg.
2020 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2021 * max_num_sg * used_page_size.
2022 *
2023 */
2024struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2025                               u32 max_num_sg, struct ib_udata *udata)
2026{
2027        struct ib_mr *mr;
2028
2029        if (!pd->device->ops.alloc_mr)
2030                return ERR_PTR(-EOPNOTSUPP);
2031
2032        if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2033                return ERR_PTR(-EINVAL);
2034
2035        mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2036        if (!IS_ERR(mr)) {
2037                mr->device  = pd->device;
2038                mr->pd      = pd;
2039                mr->dm      = NULL;
2040                mr->uobject = NULL;
2041                atomic_inc(&pd->usecnt);
2042                mr->need_inval = false;
2043                mr->res.type = RDMA_RESTRACK_MR;
2044                rdma_restrack_kadd(&mr->res);
2045                mr->type = mr_type;
2046                mr->sig_attrs = NULL;
2047        }
2048
2049        return mr;
2050}
2051EXPORT_SYMBOL(ib_alloc_mr_user);
2052
2053/**
2054 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2055 * @pd:                      protection domain associated with the region
2056 * @max_num_data_sg:         maximum data sg entries available for registration
2057 * @max_num_meta_sg:         maximum metadata sg entries available for
2058 *                           registration
2059 *
2060 * Notes:
2061 * Memory registration page/sg lists must not exceed max_num_sg,
2062 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2063 *
2064 */
2065struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2066                                    u32 max_num_data_sg,
2067                                    u32 max_num_meta_sg)
2068{
2069        struct ib_mr *mr;
2070        struct ib_sig_attrs *sig_attrs;
2071
2072        if (!pd->device->ops.alloc_mr_integrity ||
2073            !pd->device->ops.map_mr_sg_pi)
2074                return ERR_PTR(-EOPNOTSUPP);
2075
2076        if (!max_num_meta_sg)
2077                return ERR_PTR(-EINVAL);
2078
2079        sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2080        if (!sig_attrs)
2081                return ERR_PTR(-ENOMEM);
2082
2083        mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2084                                                max_num_meta_sg);
2085        if (IS_ERR(mr)) {
2086                kfree(sig_attrs);
2087                return mr;
2088        }
2089
2090        mr->device = pd->device;
2091        mr->pd = pd;
2092        mr->dm = NULL;
2093        mr->uobject = NULL;
2094        atomic_inc(&pd->usecnt);
2095        mr->need_inval = false;
2096        mr->res.type = RDMA_RESTRACK_MR;
2097        rdma_restrack_kadd(&mr->res);
2098        mr->type = IB_MR_TYPE_INTEGRITY;
2099        mr->sig_attrs = sig_attrs;
2100
2101        return mr;
2102}
2103EXPORT_SYMBOL(ib_alloc_mr_integrity);
2104
2105/* "Fast" memory regions */
2106
2107struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2108                            int mr_access_flags,
2109                            struct ib_fmr_attr *fmr_attr)
2110{
2111        struct ib_fmr *fmr;
2112
2113        if (!pd->device->ops.alloc_fmr)
2114                return ERR_PTR(-EOPNOTSUPP);
2115
2116        fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2117        if (!IS_ERR(fmr)) {
2118                fmr->device = pd->device;
2119                fmr->pd     = pd;
2120                atomic_inc(&pd->usecnt);
2121        }
2122
2123        return fmr;
2124}
2125EXPORT_SYMBOL(ib_alloc_fmr);
2126
2127int ib_unmap_fmr(struct list_head *fmr_list)
2128{
2129        struct ib_fmr *fmr;
2130
2131        if (list_empty(fmr_list))
2132                return 0;
2133
2134        fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2135        return fmr->device->ops.unmap_fmr(fmr_list);
2136}
2137EXPORT_SYMBOL(ib_unmap_fmr);
2138
2139int ib_dealloc_fmr(struct ib_fmr *fmr)
2140{
2141        struct ib_pd *pd;
2142        int ret;
2143
2144        pd = fmr->pd;
2145        ret = fmr->device->ops.dealloc_fmr(fmr);
2146        if (!ret)
2147                atomic_dec(&pd->usecnt);
2148
2149        return ret;
2150}
2151EXPORT_SYMBOL(ib_dealloc_fmr);
2152
2153/* Multicast groups */
2154
2155static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2156{
2157        struct ib_qp_init_attr init_attr = {};
2158        struct ib_qp_attr attr = {};
2159        int num_eth_ports = 0;
2160        int port;
2161
2162        /* If QP state >= init, it is assigned to a port and we can check this
2163         * port only.
2164         */
2165        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2166                if (attr.qp_state >= IB_QPS_INIT) {
2167                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2168                            IB_LINK_LAYER_INFINIBAND)
2169                                return true;
2170                        goto lid_check;
2171                }
2172        }
2173
2174        /* Can't get a quick answer, iterate over all ports */
2175        for (port = 0; port < qp->device->phys_port_cnt; port++)
2176                if (rdma_port_get_link_layer(qp->device, port) !=
2177                    IB_LINK_LAYER_INFINIBAND)
2178                        num_eth_ports++;
2179
2180        /* If we have at lease one Ethernet port, RoCE annex declares that
2181         * multicast LID should be ignored. We can't tell at this step if the
2182         * QP belongs to an IB or Ethernet port.
2183         */
2184        if (num_eth_ports)
2185                return true;
2186
2187        /* If all the ports are IB, we can check according to IB spec. */
2188lid_check:
2189        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2190                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2191}
2192
2193int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2194{
2195        int ret;
2196
2197        if (!qp->device->ops.attach_mcast)
2198                return -EOPNOTSUPP;
2199
2200        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2201            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2202                return -EINVAL;
2203
2204        ret = qp->device->ops.attach_mcast(qp, gid, lid);
2205        if (!ret)
2206                atomic_inc(&qp->usecnt);
2207        return ret;
2208}
2209EXPORT_SYMBOL(ib_attach_mcast);
2210
2211int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2212{
2213        int ret;
2214
2215        if (!qp->device->ops.detach_mcast)
2216                return -EOPNOTSUPP;
2217
2218        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2219            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2220                return -EINVAL;
2221
2222        ret = qp->device->ops.detach_mcast(qp, gid, lid);
2223        if (!ret)
2224                atomic_dec(&qp->usecnt);
2225        return ret;
2226}
2227EXPORT_SYMBOL(ib_detach_mcast);
2228
2229struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2230{
2231        struct ib_xrcd *xrcd;
2232
2233        if (!device->ops.alloc_xrcd)
2234                return ERR_PTR(-EOPNOTSUPP);
2235
2236        xrcd = device->ops.alloc_xrcd(device, NULL);
2237        if (!IS_ERR(xrcd)) {
2238                xrcd->device = device;
2239                xrcd->inode = NULL;
2240                atomic_set(&xrcd->usecnt, 0);
2241                mutex_init(&xrcd->tgt_qp_mutex);
2242                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2243        }
2244
2245        return xrcd;
2246}
2247EXPORT_SYMBOL(__ib_alloc_xrcd);
2248
2249int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2250{
2251        struct ib_qp *qp;
2252        int ret;
2253
2254        if (atomic_read(&xrcd->usecnt))
2255                return -EBUSY;
2256
2257        while (!list_empty(&xrcd->tgt_qp_list)) {
2258                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2259                ret = ib_destroy_qp(qp);
2260                if (ret)
2261                        return ret;
2262        }
2263        mutex_destroy(&xrcd->tgt_qp_mutex);
2264
2265        return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2266}
2267EXPORT_SYMBOL(ib_dealloc_xrcd);
2268
2269/**
2270 * ib_create_wq - Creates a WQ associated with the specified protection
2271 * domain.
2272 * @pd: The protection domain associated with the WQ.
2273 * @wq_attr: A list of initial attributes required to create the
2274 * WQ. If WQ creation succeeds, then the attributes are updated to
2275 * the actual capabilities of the created WQ.
2276 *
2277 * wq_attr->max_wr and wq_attr->max_sge determine
2278 * the requested size of the WQ, and set to the actual values allocated
2279 * on return.
2280 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2281 * at least as large as the requested values.
2282 */
2283struct ib_wq *ib_create_wq(struct ib_pd *pd,
2284                           struct ib_wq_init_attr *wq_attr)
2285{
2286        struct ib_wq *wq;
2287
2288        if (!pd->device->ops.create_wq)
2289                return ERR_PTR(-EOPNOTSUPP);
2290
2291        wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2292        if (!IS_ERR(wq)) {
2293                wq->event_handler = wq_attr->event_handler;
2294                wq->wq_context = wq_attr->wq_context;
2295                wq->wq_type = wq_attr->wq_type;
2296                wq->cq = wq_attr->cq;
2297                wq->device = pd->device;
2298                wq->pd = pd;
2299                wq->uobject = NULL;
2300                atomic_inc(&pd->usecnt);
2301                atomic_inc(&wq_attr->cq->usecnt);
2302                atomic_set(&wq->usecnt, 0);
2303        }
2304        return wq;
2305}
2306EXPORT_SYMBOL(ib_create_wq);
2307
2308/**
2309 * ib_destroy_wq - Destroys the specified user WQ.
2310 * @wq: The WQ to destroy.
2311 * @udata: Valid user data
2312 */
2313int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2314{
2315        struct ib_cq *cq = wq->cq;
2316        struct ib_pd *pd = wq->pd;
2317
2318        if (atomic_read(&wq->usecnt))
2319                return -EBUSY;
2320
2321        wq->device->ops.destroy_wq(wq, udata);
2322        atomic_dec(&pd->usecnt);
2323        atomic_dec(&cq->usecnt);
2324
2325        return 0;
2326}
2327EXPORT_SYMBOL(ib_destroy_wq);
2328
2329/**
2330 * ib_modify_wq - Modifies the specified WQ.
2331 * @wq: The WQ to modify.
2332 * @wq_attr: On input, specifies the WQ attributes to modify.
2333 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2334 *   are being modified.
2335 * On output, the current values of selected WQ attributes are returned.
2336 */
2337int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2338                 u32 wq_attr_mask)
2339{
2340        int err;
2341
2342        if (!wq->device->ops.modify_wq)
2343                return -EOPNOTSUPP;
2344
2345        err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2346        return err;
2347}
2348EXPORT_SYMBOL(ib_modify_wq);
2349
2350/*
2351 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2352 * @device: The device on which to create the rwq indirection table.
2353 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2354 * create the Indirection Table.
2355 *
2356 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2357 *      than the created ib_rwq_ind_table object and the caller is responsible
2358 *      for its memory allocation/free.
2359 */
2360struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2361                                                 struct ib_rwq_ind_table_init_attr *init_attr)
2362{
2363        struct ib_rwq_ind_table *rwq_ind_table;
2364        int i;
2365        u32 table_size;
2366
2367        if (!device->ops.create_rwq_ind_table)
2368                return ERR_PTR(-EOPNOTSUPP);
2369
2370        table_size = (1 << init_attr->log_ind_tbl_size);
2371        rwq_ind_table = device->ops.create_rwq_ind_table(device,
2372                                                         init_attr, NULL);
2373        if (IS_ERR(rwq_ind_table))
2374                return rwq_ind_table;
2375
2376        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2377        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2378        rwq_ind_table->device = device;
2379        rwq_ind_table->uobject = NULL;
2380        atomic_set(&rwq_ind_table->usecnt, 0);
2381
2382        for (i = 0; i < table_size; i++)
2383                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2384
2385        return rwq_ind_table;
2386}
2387EXPORT_SYMBOL(ib_create_rwq_ind_table);
2388
2389/*
2390 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2391 * @wq_ind_table: The Indirection Table to destroy.
2392*/
2393int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2394{
2395        int err, i;
2396        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2397        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2398
2399        if (atomic_read(&rwq_ind_table->usecnt))
2400                return -EBUSY;
2401
2402        err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2403        if (!err) {
2404                for (i = 0; i < table_size; i++)
2405                        atomic_dec(&ind_tbl[i]->usecnt);
2406        }
2407
2408        return err;
2409}
2410EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2411
2412int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2413                       struct ib_mr_status *mr_status)
2414{
2415        if (!mr->device->ops.check_mr_status)
2416                return -EOPNOTSUPP;
2417
2418        return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2419}
2420EXPORT_SYMBOL(ib_check_mr_status);
2421
2422int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2423                         int state)
2424{
2425        if (!device->ops.set_vf_link_state)
2426                return -EOPNOTSUPP;
2427
2428        return device->ops.set_vf_link_state(device, vf, port, state);
2429}
2430EXPORT_SYMBOL(ib_set_vf_link_state);
2431
2432int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2433                     struct ifla_vf_info *info)
2434{
2435        if (!device->ops.get_vf_config)
2436                return -EOPNOTSUPP;
2437
2438        return device->ops.get_vf_config(device, vf, port, info);
2439}
2440EXPORT_SYMBOL(ib_get_vf_config);
2441
2442int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2443                    struct ifla_vf_stats *stats)
2444{
2445        if (!device->ops.get_vf_stats)
2446                return -EOPNOTSUPP;
2447
2448        return device->ops.get_vf_stats(device, vf, port, stats);
2449}
2450EXPORT_SYMBOL(ib_get_vf_stats);
2451
2452int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2453                   int type)
2454{
2455        if (!device->ops.set_vf_guid)
2456                return -EOPNOTSUPP;
2457
2458        return device->ops.set_vf_guid(device, vf, port, guid, type);
2459}
2460EXPORT_SYMBOL(ib_set_vf_guid);
2461
2462/**
2463 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2464 *     information) and set an appropriate memory region for registration.
2465 * @mr:             memory region
2466 * @data_sg:        dma mapped scatterlist for data
2467 * @data_sg_nents:  number of entries in data_sg
2468 * @data_sg_offset: offset in bytes into data_sg
2469 * @meta_sg:        dma mapped scatterlist for metadata
2470 * @meta_sg_nents:  number of entries in meta_sg
2471 * @meta_sg_offset: offset in bytes into meta_sg
2472 * @page_size:      page vector desired page size
2473 *
2474 * Constraints:
2475 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2476 *
2477 * Return: 0 on success.
2478 *
2479 * After this completes successfully, the  memory region
2480 * is ready for registration.
2481 */
2482int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2483                    int data_sg_nents, unsigned int *data_sg_offset,
2484                    struct scatterlist *meta_sg, int meta_sg_nents,
2485                    unsigned int *meta_sg_offset, unsigned int page_size)
2486{
2487        if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2488                     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2489                return -EOPNOTSUPP;
2490
2491        mr->page_size = page_size;
2492
2493        return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2494                                            data_sg_offset, meta_sg,
2495                                            meta_sg_nents, meta_sg_offset);
2496}
2497EXPORT_SYMBOL(ib_map_mr_sg_pi);
2498
2499/**
2500 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2501 *     and set it the memory region.
2502 * @mr:            memory region
2503 * @sg:            dma mapped scatterlist
2504 * @sg_nents:      number of entries in sg
2505 * @sg_offset:     offset in bytes into sg
2506 * @page_size:     page vector desired page size
2507 *
2508 * Constraints:
2509 * - The first sg element is allowed to have an offset.
2510 * - Each sg element must either be aligned to page_size or virtually
2511 *   contiguous to the previous element. In case an sg element has a
2512 *   non-contiguous offset, the mapping prefix will not include it.
2513 * - The last sg element is allowed to have length less than page_size.
2514 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2515 *   then only max_num_sg entries will be mapped.
2516 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2517 *   constraints holds and the page_size argument is ignored.
2518 *
2519 * Returns the number of sg elements that were mapped to the memory region.
2520 *
2521 * After this completes successfully, the  memory region
2522 * is ready for registration.
2523 */
2524int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2525                 unsigned int *sg_offset, unsigned int page_size)
2526{
2527        if (unlikely(!mr->device->ops.map_mr_sg))
2528                return -EOPNOTSUPP;
2529
2530        mr->page_size = page_size;
2531
2532        return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2533}
2534EXPORT_SYMBOL(ib_map_mr_sg);
2535
2536/**
2537 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2538 *     to a page vector
2539 * @mr:            memory region
2540 * @sgl:           dma mapped scatterlist
2541 * @sg_nents:      number of entries in sg
2542 * @sg_offset_p:   IN:  start offset in bytes into sg
2543 *                 OUT: offset in bytes for element n of the sg of the first
2544 *                      byte that has not been processed where n is the return
2545 *                      value of this function.
2546 * @set_page:      driver page assignment function pointer
2547 *
2548 * Core service helper for drivers to convert the largest
2549 * prefix of given sg list to a page vector. The sg list
2550 * prefix converted is the prefix that meet the requirements
2551 * of ib_map_mr_sg.
2552 *
2553 * Returns the number of sg elements that were assigned to
2554 * a page vector.
2555 */
2556int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2557                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2558{
2559        struct scatterlist *sg;
2560        u64 last_end_dma_addr = 0;
2561        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2562        unsigned int last_page_off = 0;
2563        u64 page_mask = ~((u64)mr->page_size - 1);
2564        int i, ret;
2565
2566        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2567                return -EINVAL;
2568
2569        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2570        mr->length = 0;
2571
2572        for_each_sg(sgl, sg, sg_nents, i) {
2573                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2574                u64 prev_addr = dma_addr;
2575                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2576                u64 end_dma_addr = dma_addr + dma_len;
2577                u64 page_addr = dma_addr & page_mask;
2578
2579                /*
2580                 * For the second and later elements, check whether either the
2581                 * end of element i-1 or the start of element i is not aligned
2582                 * on a page boundary.
2583                 */
2584                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2585                        /* Stop mapping if there is a gap. */
2586                        if (last_end_dma_addr != dma_addr)
2587                                break;
2588
2589                        /*
2590                         * Coalesce this element with the last. If it is small
2591                         * enough just update mr->length. Otherwise start
2592                         * mapping from the next page.
2593                         */
2594                        goto next_page;
2595                }
2596
2597                do {
2598                        ret = set_page(mr, page_addr);
2599                        if (unlikely(ret < 0)) {
2600                                sg_offset = prev_addr - sg_dma_address(sg);
2601                                mr->length += prev_addr - dma_addr;
2602                                if (sg_offset_p)
2603                                        *sg_offset_p = sg_offset;
2604                                return i || sg_offset ? i : ret;
2605                        }
2606                        prev_addr = page_addr;
2607next_page:
2608                        page_addr += mr->page_size;
2609                } while (page_addr < end_dma_addr);
2610
2611                mr->length += dma_len;
2612                last_end_dma_addr = end_dma_addr;
2613                last_page_off = end_dma_addr & ~page_mask;
2614
2615                sg_offset = 0;
2616        }
2617
2618        if (sg_offset_p)
2619                *sg_offset_p = 0;
2620        return i;
2621}
2622EXPORT_SYMBOL(ib_sg_to_pages);
2623
2624struct ib_drain_cqe {
2625        struct ib_cqe cqe;
2626        struct completion done;
2627};
2628
2629static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2630{
2631        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2632                                                cqe);
2633
2634        complete(&cqe->done);
2635}
2636
2637/*
2638 * Post a WR and block until its completion is reaped for the SQ.
2639 */
2640static void __ib_drain_sq(struct ib_qp *qp)
2641{
2642        struct ib_cq *cq = qp->send_cq;
2643        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2644        struct ib_drain_cqe sdrain;
2645        struct ib_rdma_wr swr = {
2646                .wr = {
2647                        .next = NULL,
2648                        { .wr_cqe       = &sdrain.cqe, },
2649                        .opcode = IB_WR_RDMA_WRITE,
2650                },
2651        };
2652        int ret;
2653
2654        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2655        if (ret) {
2656                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2657                return;
2658        }
2659
2660        sdrain.cqe.done = ib_drain_qp_done;
2661        init_completion(&sdrain.done);
2662
2663        ret = ib_post_send(qp, &swr.wr, NULL);
2664        if (ret) {
2665                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2666                return;
2667        }
2668
2669        if (cq->poll_ctx == IB_POLL_DIRECT)
2670                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2671                        ib_process_cq_direct(cq, -1);
2672        else
2673                wait_for_completion(&sdrain.done);
2674}
2675
2676/*
2677 * Post a WR and block until its completion is reaped for the RQ.
2678 */
2679static void __ib_drain_rq(struct ib_qp *qp)
2680{
2681        struct ib_cq *cq = qp->recv_cq;
2682        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2683        struct ib_drain_cqe rdrain;
2684        struct ib_recv_wr rwr = {};
2685        int ret;
2686
2687        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2688        if (ret) {
2689                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2690                return;
2691        }
2692
2693        rwr.wr_cqe = &rdrain.cqe;
2694        rdrain.cqe.done = ib_drain_qp_done;
2695        init_completion(&rdrain.done);
2696
2697        ret = ib_post_recv(qp, &rwr, NULL);
2698        if (ret) {
2699                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2700                return;
2701        }
2702
2703        if (cq->poll_ctx == IB_POLL_DIRECT)
2704                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2705                        ib_process_cq_direct(cq, -1);
2706        else
2707                wait_for_completion(&rdrain.done);
2708}
2709
2710/**
2711 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2712 *                 application.
2713 * @qp:            queue pair to drain
2714 *
2715 * If the device has a provider-specific drain function, then
2716 * call that.  Otherwise call the generic drain function
2717 * __ib_drain_sq().
2718 *
2719 * The caller must:
2720 *
2721 * ensure there is room in the CQ and SQ for the drain work request and
2722 * completion.
2723 *
2724 * allocate the CQ using ib_alloc_cq().
2725 *
2726 * ensure that there are no other contexts that are posting WRs concurrently.
2727 * Otherwise the drain is not guaranteed.
2728 */
2729void ib_drain_sq(struct ib_qp *qp)
2730{
2731        if (qp->device->ops.drain_sq)
2732                qp->device->ops.drain_sq(qp);
2733        else
2734                __ib_drain_sq(qp);
2735}
2736EXPORT_SYMBOL(ib_drain_sq);
2737
2738/**
2739 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2740 *                 application.
2741 * @qp:            queue pair to drain
2742 *
2743 * If the device has a provider-specific drain function, then
2744 * call that.  Otherwise call the generic drain function
2745 * __ib_drain_rq().
2746 *
2747 * The caller must:
2748 *
2749 * ensure there is room in the CQ and RQ for the drain work request and
2750 * completion.
2751 *
2752 * allocate the CQ using ib_alloc_cq().
2753 *
2754 * ensure that there are no other contexts that are posting WRs concurrently.
2755 * Otherwise the drain is not guaranteed.
2756 */
2757void ib_drain_rq(struct ib_qp *qp)
2758{
2759        if (qp->device->ops.drain_rq)
2760                qp->device->ops.drain_rq(qp);
2761        else
2762                __ib_drain_rq(qp);
2763}
2764EXPORT_SYMBOL(ib_drain_rq);
2765
2766/**
2767 * ib_drain_qp() - Block until all CQEs have been consumed by the
2768 *                 application on both the RQ and SQ.
2769 * @qp:            queue pair to drain
2770 *
2771 * The caller must:
2772 *
2773 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2774 * and completions.
2775 *
2776 * allocate the CQs using ib_alloc_cq().
2777 *
2778 * ensure that there are no other contexts that are posting WRs concurrently.
2779 * Otherwise the drain is not guaranteed.
2780 */
2781void ib_drain_qp(struct ib_qp *qp)
2782{
2783        ib_drain_sq(qp);
2784        if (!qp->srq)
2785                ib_drain_rq(qp);
2786}
2787EXPORT_SYMBOL(ib_drain_qp);
2788
2789struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2790                                     enum rdma_netdev_t type, const char *name,
2791                                     unsigned char name_assign_type,
2792                                     void (*setup)(struct net_device *))
2793{
2794        struct rdma_netdev_alloc_params params;
2795        struct net_device *netdev;
2796        int rc;
2797
2798        if (!device->ops.rdma_netdev_get_params)
2799                return ERR_PTR(-EOPNOTSUPP);
2800
2801        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2802                                                &params);
2803        if (rc)
2804                return ERR_PTR(rc);
2805
2806        netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2807                                  setup, params.txqs, params.rxqs);
2808        if (!netdev)
2809                return ERR_PTR(-ENOMEM);
2810
2811        return netdev;
2812}
2813EXPORT_SYMBOL(rdma_alloc_netdev);
2814
2815int rdma_init_netdev(struct ib_device *device, u8 port_num,
2816                     enum rdma_netdev_t type, const char *name,
2817                     unsigned char name_assign_type,
2818                     void (*setup)(struct net_device *),
2819                     struct net_device *netdev)
2820{
2821        struct rdma_netdev_alloc_params params;
2822        int rc;
2823
2824        if (!device->ops.rdma_netdev_get_params)
2825                return -EOPNOTSUPP;
2826
2827        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2828                                                &params);
2829        if (rc)
2830                return rc;
2831
2832        return params.initialize_rdma_netdev(device, port_num,
2833                                             netdev, params.param);
2834}
2835EXPORT_SYMBOL(rdma_init_netdev);
2836
2837void __rdma_block_iter_start(struct ib_block_iter *biter,
2838                             struct scatterlist *sglist, unsigned int nents,
2839                             unsigned long pgsz)
2840{
2841        memset(biter, 0, sizeof(struct ib_block_iter));
2842        biter->__sg = sglist;
2843        biter->__sg_nents = nents;
2844
2845        /* Driver provides best block size to use */
2846        biter->__pg_bit = __fls(pgsz);
2847}
2848EXPORT_SYMBOL(__rdma_block_iter_start);
2849
2850bool __rdma_block_iter_next(struct ib_block_iter *biter)
2851{
2852        unsigned int block_offset;
2853
2854        if (!biter->__sg_nents || !biter->__sg)
2855                return false;
2856
2857        biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2858        block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2859        biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2860
2861        if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2862                biter->__sg_advance = 0;
2863                biter->__sg = sg_next(biter->__sg);
2864                biter->__sg_nents--;
2865        }
2866
2867        return true;
2868}
2869EXPORT_SYMBOL(__rdma_block_iter_next);
2870