linux/drivers/md/raid5.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid5.c : Multiple Devices driver for Linux
   4 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   5 *         Copyright (C) 1999, 2000 Ingo Molnar
   6 *         Copyright (C) 2002, 2003 H. Peter Anvin
   7 *
   8 * RAID-4/5/6 management functions.
   9 * Thanks to Penguin Computing for making the RAID-6 development possible
  10 * by donating a test server!
  11 */
  12
  13/*
  14 * BITMAP UNPLUGGING:
  15 *
  16 * The sequencing for updating the bitmap reliably is a little
  17 * subtle (and I got it wrong the first time) so it deserves some
  18 * explanation.
  19 *
  20 * We group bitmap updates into batches.  Each batch has a number.
  21 * We may write out several batches at once, but that isn't very important.
  22 * conf->seq_write is the number of the last batch successfully written.
  23 * conf->seq_flush is the number of the last batch that was closed to
  24 *    new additions.
  25 * When we discover that we will need to write to any block in a stripe
  26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  27 * the number of the batch it will be in. This is seq_flush+1.
  28 * When we are ready to do a write, if that batch hasn't been written yet,
  29 *   we plug the array and queue the stripe for later.
  30 * When an unplug happens, we increment bm_flush, thus closing the current
  31 *   batch.
  32 * When we notice that bm_flush > bm_write, we write out all pending updates
  33 * to the bitmap, and advance bm_write to where bm_flush was.
  34 * This may occasionally write a bit out twice, but is sure never to
  35 * miss any bits.
  36 */
  37
  38#include <linux/blkdev.h>
  39#include <linux/kthread.h>
  40#include <linux/raid/pq.h>
  41#include <linux/async_tx.h>
  42#include <linux/module.h>
  43#include <linux/async.h>
  44#include <linux/seq_file.h>
  45#include <linux/cpu.h>
  46#include <linux/slab.h>
  47#include <linux/ratelimit.h>
  48#include <linux/nodemask.h>
  49
  50#include <trace/events/block.h>
  51#include <linux/list_sort.h>
  52
  53#include "md.h"
  54#include "raid5.h"
  55#include "raid0.h"
  56#include "md-bitmap.h"
  57#include "raid5-log.h"
  58
  59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  60
  61#define cpu_to_group(cpu) cpu_to_node(cpu)
  62#define ANY_GROUP NUMA_NO_NODE
  63
  64static bool devices_handle_discard_safely = false;
  65module_param(devices_handle_discard_safely, bool, 0644);
  66MODULE_PARM_DESC(devices_handle_discard_safely,
  67                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  68static struct workqueue_struct *raid5_wq;
  69
  70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  71{
  72        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  73        return &conf->stripe_hashtbl[hash];
  74}
  75
  76static inline int stripe_hash_locks_hash(sector_t sect)
  77{
  78        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  79}
  80
  81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  82{
  83        spin_lock_irq(conf->hash_locks + hash);
  84        spin_lock(&conf->device_lock);
  85}
  86
  87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  88{
  89        spin_unlock(&conf->device_lock);
  90        spin_unlock_irq(conf->hash_locks + hash);
  91}
  92
  93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
  94{
  95        int i;
  96        spin_lock_irq(conf->hash_locks);
  97        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
  98                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
  99        spin_lock(&conf->device_lock);
 100}
 101
 102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104        int i;
 105        spin_unlock(&conf->device_lock);
 106        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 107                spin_unlock(conf->hash_locks + i);
 108        spin_unlock_irq(conf->hash_locks);
 109}
 110
 111/* Find first data disk in a raid6 stripe */
 112static inline int raid6_d0(struct stripe_head *sh)
 113{
 114        if (sh->ddf_layout)
 115                /* ddf always start from first device */
 116                return 0;
 117        /* md starts just after Q block */
 118        if (sh->qd_idx == sh->disks - 1)
 119                return 0;
 120        else
 121                return sh->qd_idx + 1;
 122}
 123static inline int raid6_next_disk(int disk, int raid_disks)
 124{
 125        disk++;
 126        return (disk < raid_disks) ? disk : 0;
 127}
 128
 129/* When walking through the disks in a raid5, starting at raid6_d0,
 130 * We need to map each disk to a 'slot', where the data disks are slot
 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 132 * is raid_disks-1.  This help does that mapping.
 133 */
 134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 135                             int *count, int syndrome_disks)
 136{
 137        int slot = *count;
 138
 139        if (sh->ddf_layout)
 140                (*count)++;
 141        if (idx == sh->pd_idx)
 142                return syndrome_disks;
 143        if (idx == sh->qd_idx)
 144                return syndrome_disks + 1;
 145        if (!sh->ddf_layout)
 146                (*count)++;
 147        return slot;
 148}
 149
 150static void print_raid5_conf (struct r5conf *conf);
 151
 152static int stripe_operations_active(struct stripe_head *sh)
 153{
 154        return sh->check_state || sh->reconstruct_state ||
 155               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 156               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 157}
 158
 159static bool stripe_is_lowprio(struct stripe_head *sh)
 160{
 161        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 162                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 163               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 164}
 165
 166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 167{
 168        struct r5conf *conf = sh->raid_conf;
 169        struct r5worker_group *group;
 170        int thread_cnt;
 171        int i, cpu = sh->cpu;
 172
 173        if (!cpu_online(cpu)) {
 174                cpu = cpumask_any(cpu_online_mask);
 175                sh->cpu = cpu;
 176        }
 177
 178        if (list_empty(&sh->lru)) {
 179                struct r5worker_group *group;
 180                group = conf->worker_groups + cpu_to_group(cpu);
 181                if (stripe_is_lowprio(sh))
 182                        list_add_tail(&sh->lru, &group->loprio_list);
 183                else
 184                        list_add_tail(&sh->lru, &group->handle_list);
 185                group->stripes_cnt++;
 186                sh->group = group;
 187        }
 188
 189        if (conf->worker_cnt_per_group == 0) {
 190                md_wakeup_thread(conf->mddev->thread);
 191                return;
 192        }
 193
 194        group = conf->worker_groups + cpu_to_group(sh->cpu);
 195
 196        group->workers[0].working = true;
 197        /* at least one worker should run to avoid race */
 198        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 199
 200        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 201        /* wakeup more workers */
 202        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 203                if (group->workers[i].working == false) {
 204                        group->workers[i].working = true;
 205                        queue_work_on(sh->cpu, raid5_wq,
 206                                      &group->workers[i].work);
 207                        thread_cnt--;
 208                }
 209        }
 210}
 211
 212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 213                              struct list_head *temp_inactive_list)
 214{
 215        int i;
 216        int injournal = 0;      /* number of date pages with R5_InJournal */
 217
 218        BUG_ON(!list_empty(&sh->lru));
 219        BUG_ON(atomic_read(&conf->active_stripes)==0);
 220
 221        if (r5c_is_writeback(conf->log))
 222                for (i = sh->disks; i--; )
 223                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 224                                injournal++;
 225        /*
 226         * In the following cases, the stripe cannot be released to cached
 227         * lists. Therefore, we make the stripe write out and set
 228         * STRIPE_HANDLE:
 229         *   1. when quiesce in r5c write back;
 230         *   2. when resync is requested fot the stripe.
 231         */
 232        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 233            (conf->quiesce && r5c_is_writeback(conf->log) &&
 234             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 235                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 236                        r5c_make_stripe_write_out(sh);
 237                set_bit(STRIPE_HANDLE, &sh->state);
 238        }
 239
 240        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 241                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 242                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 243                        list_add_tail(&sh->lru, &conf->delayed_list);
 244                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 245                           sh->bm_seq - conf->seq_write > 0)
 246                        list_add_tail(&sh->lru, &conf->bitmap_list);
 247                else {
 248                        clear_bit(STRIPE_DELAYED, &sh->state);
 249                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 250                        if (conf->worker_cnt_per_group == 0) {
 251                                if (stripe_is_lowprio(sh))
 252                                        list_add_tail(&sh->lru,
 253                                                        &conf->loprio_list);
 254                                else
 255                                        list_add_tail(&sh->lru,
 256                                                        &conf->handle_list);
 257                        } else {
 258                                raid5_wakeup_stripe_thread(sh);
 259                                return;
 260                        }
 261                }
 262                md_wakeup_thread(conf->mddev->thread);
 263        } else {
 264                BUG_ON(stripe_operations_active(sh));
 265                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 266                        if (atomic_dec_return(&conf->preread_active_stripes)
 267                            < IO_THRESHOLD)
 268                                md_wakeup_thread(conf->mddev->thread);
 269                atomic_dec(&conf->active_stripes);
 270                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 271                        if (!r5c_is_writeback(conf->log))
 272                                list_add_tail(&sh->lru, temp_inactive_list);
 273                        else {
 274                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 275                                if (injournal == 0)
 276                                        list_add_tail(&sh->lru, temp_inactive_list);
 277                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 278                                        /* full stripe */
 279                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 280                                                atomic_inc(&conf->r5c_cached_full_stripes);
 281                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 282                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 283                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 284                                        r5c_check_cached_full_stripe(conf);
 285                                } else
 286                                        /*
 287                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 288                                         * r5c_try_caching_write(). No need to
 289                                         * set it again.
 290                                         */
 291                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 292                        }
 293                }
 294        }
 295}
 296
 297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 298                             struct list_head *temp_inactive_list)
 299{
 300        if (atomic_dec_and_test(&sh->count))
 301                do_release_stripe(conf, sh, temp_inactive_list);
 302}
 303
 304/*
 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 306 *
 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 308 * given time. Adding stripes only takes device lock, while deleting stripes
 309 * only takes hash lock.
 310 */
 311static void release_inactive_stripe_list(struct r5conf *conf,
 312                                         struct list_head *temp_inactive_list,
 313                                         int hash)
 314{
 315        int size;
 316        bool do_wakeup = false;
 317        unsigned long flags;
 318
 319        if (hash == NR_STRIPE_HASH_LOCKS) {
 320                size = NR_STRIPE_HASH_LOCKS;
 321                hash = NR_STRIPE_HASH_LOCKS - 1;
 322        } else
 323                size = 1;
 324        while (size) {
 325                struct list_head *list = &temp_inactive_list[size - 1];
 326
 327                /*
 328                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 329                 * remove stripes from the list
 330                 */
 331                if (!list_empty_careful(list)) {
 332                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 333                        if (list_empty(conf->inactive_list + hash) &&
 334                            !list_empty(list))
 335                                atomic_dec(&conf->empty_inactive_list_nr);
 336                        list_splice_tail_init(list, conf->inactive_list + hash);
 337                        do_wakeup = true;
 338                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 339                }
 340                size--;
 341                hash--;
 342        }
 343
 344        if (do_wakeup) {
 345                wake_up(&conf->wait_for_stripe);
 346                if (atomic_read(&conf->active_stripes) == 0)
 347                        wake_up(&conf->wait_for_quiescent);
 348                if (conf->retry_read_aligned)
 349                        md_wakeup_thread(conf->mddev->thread);
 350        }
 351}
 352
 353/* should hold conf->device_lock already */
 354static int release_stripe_list(struct r5conf *conf,
 355                               struct list_head *temp_inactive_list)
 356{
 357        struct stripe_head *sh, *t;
 358        int count = 0;
 359        struct llist_node *head;
 360
 361        head = llist_del_all(&conf->released_stripes);
 362        head = llist_reverse_order(head);
 363        llist_for_each_entry_safe(sh, t, head, release_list) {
 364                int hash;
 365
 366                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 367                smp_mb();
 368                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 369                /*
 370                 * Don't worry the bit is set here, because if the bit is set
 371                 * again, the count is always > 1. This is true for
 372                 * STRIPE_ON_UNPLUG_LIST bit too.
 373                 */
 374                hash = sh->hash_lock_index;
 375                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 376                count++;
 377        }
 378
 379        return count;
 380}
 381
 382void raid5_release_stripe(struct stripe_head *sh)
 383{
 384        struct r5conf *conf = sh->raid_conf;
 385        unsigned long flags;
 386        struct list_head list;
 387        int hash;
 388        bool wakeup;
 389
 390        /* Avoid release_list until the last reference.
 391         */
 392        if (atomic_add_unless(&sh->count, -1, 1))
 393                return;
 394
 395        if (unlikely(!conf->mddev->thread) ||
 396                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 397                goto slow_path;
 398        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 399        if (wakeup)
 400                md_wakeup_thread(conf->mddev->thread);
 401        return;
 402slow_path:
 403        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 404        if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 405                INIT_LIST_HEAD(&list);
 406                hash = sh->hash_lock_index;
 407                do_release_stripe(conf, sh, &list);
 408                spin_unlock_irqrestore(&conf->device_lock, flags);
 409                release_inactive_stripe_list(conf, &list, hash);
 410        }
 411}
 412
 413static inline void remove_hash(struct stripe_head *sh)
 414{
 415        pr_debug("remove_hash(), stripe %llu\n",
 416                (unsigned long long)sh->sector);
 417
 418        hlist_del_init(&sh->hash);
 419}
 420
 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 422{
 423        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 424
 425        pr_debug("insert_hash(), stripe %llu\n",
 426                (unsigned long long)sh->sector);
 427
 428        hlist_add_head(&sh->hash, hp);
 429}
 430
 431/* find an idle stripe, make sure it is unhashed, and return it. */
 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 433{
 434        struct stripe_head *sh = NULL;
 435        struct list_head *first;
 436
 437        if (list_empty(conf->inactive_list + hash))
 438                goto out;
 439        first = (conf->inactive_list + hash)->next;
 440        sh = list_entry(first, struct stripe_head, lru);
 441        list_del_init(first);
 442        remove_hash(sh);
 443        atomic_inc(&conf->active_stripes);
 444        BUG_ON(hash != sh->hash_lock_index);
 445        if (list_empty(conf->inactive_list + hash))
 446                atomic_inc(&conf->empty_inactive_list_nr);
 447out:
 448        return sh;
 449}
 450
 451static void shrink_buffers(struct stripe_head *sh)
 452{
 453        struct page *p;
 454        int i;
 455        int num = sh->raid_conf->pool_size;
 456
 457        for (i = 0; i < num ; i++) {
 458                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 459                p = sh->dev[i].page;
 460                if (!p)
 461                        continue;
 462                sh->dev[i].page = NULL;
 463                put_page(p);
 464        }
 465}
 466
 467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 468{
 469        int i;
 470        int num = sh->raid_conf->pool_size;
 471
 472        for (i = 0; i < num; i++) {
 473                struct page *page;
 474
 475                if (!(page = alloc_page(gfp))) {
 476                        return 1;
 477                }
 478                sh->dev[i].page = page;
 479                sh->dev[i].orig_page = page;
 480        }
 481
 482        return 0;
 483}
 484
 485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 486                            struct stripe_head *sh);
 487
 488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 489{
 490        struct r5conf *conf = sh->raid_conf;
 491        int i, seq;
 492
 493        BUG_ON(atomic_read(&sh->count) != 0);
 494        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 495        BUG_ON(stripe_operations_active(sh));
 496        BUG_ON(sh->batch_head);
 497
 498        pr_debug("init_stripe called, stripe %llu\n",
 499                (unsigned long long)sector);
 500retry:
 501        seq = read_seqcount_begin(&conf->gen_lock);
 502        sh->generation = conf->generation - previous;
 503        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 504        sh->sector = sector;
 505        stripe_set_idx(sector, conf, previous, sh);
 506        sh->state = 0;
 507
 508        for (i = sh->disks; i--; ) {
 509                struct r5dev *dev = &sh->dev[i];
 510
 511                if (dev->toread || dev->read || dev->towrite || dev->written ||
 512                    test_bit(R5_LOCKED, &dev->flags)) {
 513                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 514                               (unsigned long long)sh->sector, i, dev->toread,
 515                               dev->read, dev->towrite, dev->written,
 516                               test_bit(R5_LOCKED, &dev->flags));
 517                        WARN_ON(1);
 518                }
 519                dev->flags = 0;
 520                dev->sector = raid5_compute_blocknr(sh, i, previous);
 521        }
 522        if (read_seqcount_retry(&conf->gen_lock, seq))
 523                goto retry;
 524        sh->overwrite_disks = 0;
 525        insert_hash(conf, sh);
 526        sh->cpu = smp_processor_id();
 527        set_bit(STRIPE_BATCH_READY, &sh->state);
 528}
 529
 530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 531                                         short generation)
 532{
 533        struct stripe_head *sh;
 534
 535        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 536        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 537                if (sh->sector == sector && sh->generation == generation)
 538                        return sh;
 539        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 540        return NULL;
 541}
 542
 543/*
 544 * Need to check if array has failed when deciding whether to:
 545 *  - start an array
 546 *  - remove non-faulty devices
 547 *  - add a spare
 548 *  - allow a reshape
 549 * This determination is simple when no reshape is happening.
 550 * However if there is a reshape, we need to carefully check
 551 * both the before and after sections.
 552 * This is because some failed devices may only affect one
 553 * of the two sections, and some non-in_sync devices may
 554 * be insync in the section most affected by failed devices.
 555 */
 556int raid5_calc_degraded(struct r5conf *conf)
 557{
 558        int degraded, degraded2;
 559        int i;
 560
 561        rcu_read_lock();
 562        degraded = 0;
 563        for (i = 0; i < conf->previous_raid_disks; i++) {
 564                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 565                if (rdev && test_bit(Faulty, &rdev->flags))
 566                        rdev = rcu_dereference(conf->disks[i].replacement);
 567                if (!rdev || test_bit(Faulty, &rdev->flags))
 568                        degraded++;
 569                else if (test_bit(In_sync, &rdev->flags))
 570                        ;
 571                else
 572                        /* not in-sync or faulty.
 573                         * If the reshape increases the number of devices,
 574                         * this is being recovered by the reshape, so
 575                         * this 'previous' section is not in_sync.
 576                         * If the number of devices is being reduced however,
 577                         * the device can only be part of the array if
 578                         * we are reverting a reshape, so this section will
 579                         * be in-sync.
 580                         */
 581                        if (conf->raid_disks >= conf->previous_raid_disks)
 582                                degraded++;
 583        }
 584        rcu_read_unlock();
 585        if (conf->raid_disks == conf->previous_raid_disks)
 586                return degraded;
 587        rcu_read_lock();
 588        degraded2 = 0;
 589        for (i = 0; i < conf->raid_disks; i++) {
 590                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 591                if (rdev && test_bit(Faulty, &rdev->flags))
 592                        rdev = rcu_dereference(conf->disks[i].replacement);
 593                if (!rdev || test_bit(Faulty, &rdev->flags))
 594                        degraded2++;
 595                else if (test_bit(In_sync, &rdev->flags))
 596                        ;
 597                else
 598                        /* not in-sync or faulty.
 599                         * If reshape increases the number of devices, this
 600                         * section has already been recovered, else it
 601                         * almost certainly hasn't.
 602                         */
 603                        if (conf->raid_disks <= conf->previous_raid_disks)
 604                                degraded2++;
 605        }
 606        rcu_read_unlock();
 607        if (degraded2 > degraded)
 608                return degraded2;
 609        return degraded;
 610}
 611
 612static int has_failed(struct r5conf *conf)
 613{
 614        int degraded;
 615
 616        if (conf->mddev->reshape_position == MaxSector)
 617                return conf->mddev->degraded > conf->max_degraded;
 618
 619        degraded = raid5_calc_degraded(conf);
 620        if (degraded > conf->max_degraded)
 621                return 1;
 622        return 0;
 623}
 624
 625struct stripe_head *
 626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 627                        int previous, int noblock, int noquiesce)
 628{
 629        struct stripe_head *sh;
 630        int hash = stripe_hash_locks_hash(sector);
 631        int inc_empty_inactive_list_flag;
 632
 633        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 634
 635        spin_lock_irq(conf->hash_locks + hash);
 636
 637        do {
 638                wait_event_lock_irq(conf->wait_for_quiescent,
 639                                    conf->quiesce == 0 || noquiesce,
 640                                    *(conf->hash_locks + hash));
 641                sh = __find_stripe(conf, sector, conf->generation - previous);
 642                if (!sh) {
 643                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 644                                sh = get_free_stripe(conf, hash);
 645                                if (!sh && !test_bit(R5_DID_ALLOC,
 646                                                     &conf->cache_state))
 647                                        set_bit(R5_ALLOC_MORE,
 648                                                &conf->cache_state);
 649                        }
 650                        if (noblock && sh == NULL)
 651                                break;
 652
 653                        r5c_check_stripe_cache_usage(conf);
 654                        if (!sh) {
 655                                set_bit(R5_INACTIVE_BLOCKED,
 656                                        &conf->cache_state);
 657                                r5l_wake_reclaim(conf->log, 0);
 658                                wait_event_lock_irq(
 659                                        conf->wait_for_stripe,
 660                                        !list_empty(conf->inactive_list + hash) &&
 661                                        (atomic_read(&conf->active_stripes)
 662                                         < (conf->max_nr_stripes * 3 / 4)
 663                                         || !test_bit(R5_INACTIVE_BLOCKED,
 664                                                      &conf->cache_state)),
 665                                        *(conf->hash_locks + hash));
 666                                clear_bit(R5_INACTIVE_BLOCKED,
 667                                          &conf->cache_state);
 668                        } else {
 669                                init_stripe(sh, sector, previous);
 670                                atomic_inc(&sh->count);
 671                        }
 672                } else if (!atomic_inc_not_zero(&sh->count)) {
 673                        spin_lock(&conf->device_lock);
 674                        if (!atomic_read(&sh->count)) {
 675                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 676                                        atomic_inc(&conf->active_stripes);
 677                                BUG_ON(list_empty(&sh->lru) &&
 678                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 679                                inc_empty_inactive_list_flag = 0;
 680                                if (!list_empty(conf->inactive_list + hash))
 681                                        inc_empty_inactive_list_flag = 1;
 682                                list_del_init(&sh->lru);
 683                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 684                                        atomic_inc(&conf->empty_inactive_list_nr);
 685                                if (sh->group) {
 686                                        sh->group->stripes_cnt--;
 687                                        sh->group = NULL;
 688                                }
 689                        }
 690                        atomic_inc(&sh->count);
 691                        spin_unlock(&conf->device_lock);
 692                }
 693        } while (sh == NULL);
 694
 695        spin_unlock_irq(conf->hash_locks + hash);
 696        return sh;
 697}
 698
 699static bool is_full_stripe_write(struct stripe_head *sh)
 700{
 701        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 702        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 703}
 704
 705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 706                __acquires(&sh1->stripe_lock)
 707                __acquires(&sh2->stripe_lock)
 708{
 709        if (sh1 > sh2) {
 710                spin_lock_irq(&sh2->stripe_lock);
 711                spin_lock_nested(&sh1->stripe_lock, 1);
 712        } else {
 713                spin_lock_irq(&sh1->stripe_lock);
 714                spin_lock_nested(&sh2->stripe_lock, 1);
 715        }
 716}
 717
 718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 719                __releases(&sh1->stripe_lock)
 720                __releases(&sh2->stripe_lock)
 721{
 722        spin_unlock(&sh1->stripe_lock);
 723        spin_unlock_irq(&sh2->stripe_lock);
 724}
 725
 726/* Only freshly new full stripe normal write stripe can be added to a batch list */
 727static bool stripe_can_batch(struct stripe_head *sh)
 728{
 729        struct r5conf *conf = sh->raid_conf;
 730
 731        if (raid5_has_log(conf) || raid5_has_ppl(conf))
 732                return false;
 733        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 734                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 735                is_full_stripe_write(sh);
 736}
 737
 738/* we only do back search */
 739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 740{
 741        struct stripe_head *head;
 742        sector_t head_sector, tmp_sec;
 743        int hash;
 744        int dd_idx;
 745        int inc_empty_inactive_list_flag;
 746
 747        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 748        tmp_sec = sh->sector;
 749        if (!sector_div(tmp_sec, conf->chunk_sectors))
 750                return;
 751        head_sector = sh->sector - STRIPE_SECTORS;
 752
 753        hash = stripe_hash_locks_hash(head_sector);
 754        spin_lock_irq(conf->hash_locks + hash);
 755        head = __find_stripe(conf, head_sector, conf->generation);
 756        if (head && !atomic_inc_not_zero(&head->count)) {
 757                spin_lock(&conf->device_lock);
 758                if (!atomic_read(&head->count)) {
 759                        if (!test_bit(STRIPE_HANDLE, &head->state))
 760                                atomic_inc(&conf->active_stripes);
 761                        BUG_ON(list_empty(&head->lru) &&
 762                               !test_bit(STRIPE_EXPANDING, &head->state));
 763                        inc_empty_inactive_list_flag = 0;
 764                        if (!list_empty(conf->inactive_list + hash))
 765                                inc_empty_inactive_list_flag = 1;
 766                        list_del_init(&head->lru);
 767                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 768                                atomic_inc(&conf->empty_inactive_list_nr);
 769                        if (head->group) {
 770                                head->group->stripes_cnt--;
 771                                head->group = NULL;
 772                        }
 773                }
 774                atomic_inc(&head->count);
 775                spin_unlock(&conf->device_lock);
 776        }
 777        spin_unlock_irq(conf->hash_locks + hash);
 778
 779        if (!head)
 780                return;
 781        if (!stripe_can_batch(head))
 782                goto out;
 783
 784        lock_two_stripes(head, sh);
 785        /* clear_batch_ready clear the flag */
 786        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 787                goto unlock_out;
 788
 789        if (sh->batch_head)
 790                goto unlock_out;
 791
 792        dd_idx = 0;
 793        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 794                dd_idx++;
 795        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 796            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 797                goto unlock_out;
 798
 799        if (head->batch_head) {
 800                spin_lock(&head->batch_head->batch_lock);
 801                /* This batch list is already running */
 802                if (!stripe_can_batch(head)) {
 803                        spin_unlock(&head->batch_head->batch_lock);
 804                        goto unlock_out;
 805                }
 806                /*
 807                 * We must assign batch_head of this stripe within the
 808                 * batch_lock, otherwise clear_batch_ready of batch head
 809                 * stripe could clear BATCH_READY bit of this stripe and
 810                 * this stripe->batch_head doesn't get assigned, which
 811                 * could confuse clear_batch_ready for this stripe
 812                 */
 813                sh->batch_head = head->batch_head;
 814
 815                /*
 816                 * at this point, head's BATCH_READY could be cleared, but we
 817                 * can still add the stripe to batch list
 818                 */
 819                list_add(&sh->batch_list, &head->batch_list);
 820                spin_unlock(&head->batch_head->batch_lock);
 821        } else {
 822                head->batch_head = head;
 823                sh->batch_head = head->batch_head;
 824                spin_lock(&head->batch_lock);
 825                list_add_tail(&sh->batch_list, &head->batch_list);
 826                spin_unlock(&head->batch_lock);
 827        }
 828
 829        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 830                if (atomic_dec_return(&conf->preread_active_stripes)
 831                    < IO_THRESHOLD)
 832                        md_wakeup_thread(conf->mddev->thread);
 833
 834        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 835                int seq = sh->bm_seq;
 836                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 837                    sh->batch_head->bm_seq > seq)
 838                        seq = sh->batch_head->bm_seq;
 839                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 840                sh->batch_head->bm_seq = seq;
 841        }
 842
 843        atomic_inc(&sh->count);
 844unlock_out:
 845        unlock_two_stripes(head, sh);
 846out:
 847        raid5_release_stripe(head);
 848}
 849
 850/* Determine if 'data_offset' or 'new_data_offset' should be used
 851 * in this stripe_head.
 852 */
 853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 854{
 855        sector_t progress = conf->reshape_progress;
 856        /* Need a memory barrier to make sure we see the value
 857         * of conf->generation, or ->data_offset that was set before
 858         * reshape_progress was updated.
 859         */
 860        smp_rmb();
 861        if (progress == MaxSector)
 862                return 0;
 863        if (sh->generation == conf->generation - 1)
 864                return 0;
 865        /* We are in a reshape, and this is a new-generation stripe,
 866         * so use new_data_offset.
 867         */
 868        return 1;
 869}
 870
 871static void dispatch_bio_list(struct bio_list *tmp)
 872{
 873        struct bio *bio;
 874
 875        while ((bio = bio_list_pop(tmp)))
 876                generic_make_request(bio);
 877}
 878
 879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 880{
 881        const struct r5pending_data *da = list_entry(a,
 882                                struct r5pending_data, sibling);
 883        const struct r5pending_data *db = list_entry(b,
 884                                struct r5pending_data, sibling);
 885        if (da->sector > db->sector)
 886                return 1;
 887        if (da->sector < db->sector)
 888                return -1;
 889        return 0;
 890}
 891
 892static void dispatch_defer_bios(struct r5conf *conf, int target,
 893                                struct bio_list *list)
 894{
 895        struct r5pending_data *data;
 896        struct list_head *first, *next = NULL;
 897        int cnt = 0;
 898
 899        if (conf->pending_data_cnt == 0)
 900                return;
 901
 902        list_sort(NULL, &conf->pending_list, cmp_stripe);
 903
 904        first = conf->pending_list.next;
 905
 906        /* temporarily move the head */
 907        if (conf->next_pending_data)
 908                list_move_tail(&conf->pending_list,
 909                                &conf->next_pending_data->sibling);
 910
 911        while (!list_empty(&conf->pending_list)) {
 912                data = list_first_entry(&conf->pending_list,
 913                        struct r5pending_data, sibling);
 914                if (&data->sibling == first)
 915                        first = data->sibling.next;
 916                next = data->sibling.next;
 917
 918                bio_list_merge(list, &data->bios);
 919                list_move(&data->sibling, &conf->free_list);
 920                cnt++;
 921                if (cnt >= target)
 922                        break;
 923        }
 924        conf->pending_data_cnt -= cnt;
 925        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 926
 927        if (next != &conf->pending_list)
 928                conf->next_pending_data = list_entry(next,
 929                                struct r5pending_data, sibling);
 930        else
 931                conf->next_pending_data = NULL;
 932        /* list isn't empty */
 933        if (first != &conf->pending_list)
 934                list_move_tail(&conf->pending_list, first);
 935}
 936
 937static void flush_deferred_bios(struct r5conf *conf)
 938{
 939        struct bio_list tmp = BIO_EMPTY_LIST;
 940
 941        if (conf->pending_data_cnt == 0)
 942                return;
 943
 944        spin_lock(&conf->pending_bios_lock);
 945        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 946        BUG_ON(conf->pending_data_cnt != 0);
 947        spin_unlock(&conf->pending_bios_lock);
 948
 949        dispatch_bio_list(&tmp);
 950}
 951
 952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 953                                struct bio_list *bios)
 954{
 955        struct bio_list tmp = BIO_EMPTY_LIST;
 956        struct r5pending_data *ent;
 957
 958        spin_lock(&conf->pending_bios_lock);
 959        ent = list_first_entry(&conf->free_list, struct r5pending_data,
 960                                                        sibling);
 961        list_move_tail(&ent->sibling, &conf->pending_list);
 962        ent->sector = sector;
 963        bio_list_init(&ent->bios);
 964        bio_list_merge(&ent->bios, bios);
 965        conf->pending_data_cnt++;
 966        if (conf->pending_data_cnt >= PENDING_IO_MAX)
 967                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 968
 969        spin_unlock(&conf->pending_bios_lock);
 970
 971        dispatch_bio_list(&tmp);
 972}
 973
 974static void
 975raid5_end_read_request(struct bio *bi);
 976static void
 977raid5_end_write_request(struct bio *bi);
 978
 979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 980{
 981        struct r5conf *conf = sh->raid_conf;
 982        int i, disks = sh->disks;
 983        struct stripe_head *head_sh = sh;
 984        struct bio_list pending_bios = BIO_EMPTY_LIST;
 985        bool should_defer;
 986
 987        might_sleep();
 988
 989        if (log_stripe(sh, s) == 0)
 990                return;
 991
 992        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
 993
 994        for (i = disks; i--; ) {
 995                int op, op_flags = 0;
 996                int replace_only = 0;
 997                struct bio *bi, *rbi;
 998                struct md_rdev *rdev, *rrdev = NULL;
 999
1000                sh = head_sh;
1001                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002                        op = REQ_OP_WRITE;
1003                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004                                op_flags = REQ_FUA;
1005                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1006                                op = REQ_OP_DISCARD;
1007                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008                        op = REQ_OP_READ;
1009                else if (test_and_clear_bit(R5_WantReplace,
1010                                            &sh->dev[i].flags)) {
1011                        op = REQ_OP_WRITE;
1012                        replace_only = 1;
1013                } else
1014                        continue;
1015                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016                        op_flags |= REQ_SYNC;
1017
1018again:
1019                bi = &sh->dev[i].req;
1020                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022                rcu_read_lock();
1023                rrdev = rcu_dereference(conf->disks[i].replacement);
1024                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025                rdev = rcu_dereference(conf->disks[i].rdev);
1026                if (!rdev) {
1027                        rdev = rrdev;
1028                        rrdev = NULL;
1029                }
1030                if (op_is_write(op)) {
1031                        if (replace_only)
1032                                rdev = NULL;
1033                        if (rdev == rrdev)
1034                                /* We raced and saw duplicates */
1035                                rrdev = NULL;
1036                } else {
1037                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038                                rdev = rrdev;
1039                        rrdev = NULL;
1040                }
1041
1042                if (rdev && test_bit(Faulty, &rdev->flags))
1043                        rdev = NULL;
1044                if (rdev)
1045                        atomic_inc(&rdev->nr_pending);
1046                if (rrdev && test_bit(Faulty, &rrdev->flags))
1047                        rrdev = NULL;
1048                if (rrdev)
1049                        atomic_inc(&rrdev->nr_pending);
1050                rcu_read_unlock();
1051
1052                /* We have already checked bad blocks for reads.  Now
1053                 * need to check for writes.  We never accept write errors
1054                 * on the replacement, so we don't to check rrdev.
1055                 */
1056                while (op_is_write(op) && rdev &&
1057                       test_bit(WriteErrorSeen, &rdev->flags)) {
1058                        sector_t first_bad;
1059                        int bad_sectors;
1060                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061                                              &first_bad, &bad_sectors);
1062                        if (!bad)
1063                                break;
1064
1065                        if (bad < 0) {
1066                                set_bit(BlockedBadBlocks, &rdev->flags);
1067                                if (!conf->mddev->external &&
1068                                    conf->mddev->sb_flags) {
1069                                        /* It is very unlikely, but we might
1070                                         * still need to write out the
1071                                         * bad block log - better give it
1072                                         * a chance*/
1073                                        md_check_recovery(conf->mddev);
1074                                }
1075                                /*
1076                                 * Because md_wait_for_blocked_rdev
1077                                 * will dec nr_pending, we must
1078                                 * increment it first.
1079                                 */
1080                                atomic_inc(&rdev->nr_pending);
1081                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1082                        } else {
1083                                /* Acknowledged bad block - skip the write */
1084                                rdev_dec_pending(rdev, conf->mddev);
1085                                rdev = NULL;
1086                        }
1087                }
1088
1089                if (rdev) {
1090                        if (s->syncing || s->expanding || s->expanded
1091                            || s->replacing)
1092                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093
1094                        set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096                        bio_set_dev(bi, rdev->bdev);
1097                        bio_set_op_attrs(bi, op, op_flags);
1098                        bi->bi_end_io = op_is_write(op)
1099                                ? raid5_end_write_request
1100                                : raid5_end_read_request;
1101                        bi->bi_private = sh;
1102
1103                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104                                __func__, (unsigned long long)sh->sector,
1105                                bi->bi_opf, i);
1106                        atomic_inc(&sh->count);
1107                        if (sh != head_sh)
1108                                atomic_inc(&head_sh->count);
1109                        if (use_new_offset(conf, sh))
1110                                bi->bi_iter.bi_sector = (sh->sector
1111                                                 + rdev->new_data_offset);
1112                        else
1113                                bi->bi_iter.bi_sector = (sh->sector
1114                                                 + rdev->data_offset);
1115                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116                                bi->bi_opf |= REQ_NOMERGE;
1117
1118                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121                        if (!op_is_write(op) &&
1122                            test_bit(R5_InJournal, &sh->dev[i].flags))
1123                                /*
1124                                 * issuing read for a page in journal, this
1125                                 * must be preparing for prexor in rmw; read
1126                                 * the data into orig_page
1127                                 */
1128                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129                        else
1130                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1131                        bi->bi_vcnt = 1;
1132                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133                        bi->bi_io_vec[0].bv_offset = 0;
1134                        bi->bi_iter.bi_size = STRIPE_SIZE;
1135                        bi->bi_write_hint = sh->dev[i].write_hint;
1136                        if (!rrdev)
1137                                sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1138                        /*
1139                         * If this is discard request, set bi_vcnt 0. We don't
1140                         * want to confuse SCSI because SCSI will replace payload
1141                         */
1142                        if (op == REQ_OP_DISCARD)
1143                                bi->bi_vcnt = 0;
1144                        if (rrdev)
1145                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                        if (conf->mddev->gendisk)
1148                                trace_block_bio_remap(bi->bi_disk->queue,
1149                                                      bi, disk_devt(conf->mddev->gendisk),
1150                                                      sh->dev[i].sector);
1151                        if (should_defer && op_is_write(op))
1152                                bio_list_add(&pending_bios, bi);
1153                        else
1154                                generic_make_request(bi);
1155                }
1156                if (rrdev) {
1157                        if (s->syncing || s->expanding || s->expanded
1158                            || s->replacing)
1159                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161                        set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                        bio_set_dev(rbi, rrdev->bdev);
1164                        bio_set_op_attrs(rbi, op, op_flags);
1165                        BUG_ON(!op_is_write(op));
1166                        rbi->bi_end_io = raid5_end_write_request;
1167                        rbi->bi_private = sh;
1168
1169                        pr_debug("%s: for %llu schedule op %d on "
1170                                 "replacement disc %d\n",
1171                                __func__, (unsigned long long)sh->sector,
1172                                rbi->bi_opf, i);
1173                        atomic_inc(&sh->count);
1174                        if (sh != head_sh)
1175                                atomic_inc(&head_sh->count);
1176                        if (use_new_offset(conf, sh))
1177                                rbi->bi_iter.bi_sector = (sh->sector
1178                                                  + rrdev->new_data_offset);
1179                        else
1180                                rbi->bi_iter.bi_sector = (sh->sector
1181                                                  + rrdev->data_offset);
1182                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                        rbi->bi_vcnt = 1;
1186                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187                        rbi->bi_io_vec[0].bv_offset = 0;
1188                        rbi->bi_iter.bi_size = STRIPE_SIZE;
1189                        rbi->bi_write_hint = sh->dev[i].write_hint;
1190                        sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1191                        /*
1192                         * If this is discard request, set bi_vcnt 0. We don't
1193                         * want to confuse SCSI because SCSI will replace payload
1194                         */
1195                        if (op == REQ_OP_DISCARD)
1196                                rbi->bi_vcnt = 0;
1197                        if (conf->mddev->gendisk)
1198                                trace_block_bio_remap(rbi->bi_disk->queue,
1199                                                      rbi, disk_devt(conf->mddev->gendisk),
1200                                                      sh->dev[i].sector);
1201                        if (should_defer && op_is_write(op))
1202                                bio_list_add(&pending_bios, rbi);
1203                        else
1204                                generic_make_request(rbi);
1205                }
1206                if (!rdev && !rrdev) {
1207                        if (op_is_write(op))
1208                                set_bit(STRIPE_DEGRADED, &sh->state);
1209                        pr_debug("skip op %d on disc %d for sector %llu\n",
1210                                bi->bi_opf, i, (unsigned long long)sh->sector);
1211                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212                        set_bit(STRIPE_HANDLE, &sh->state);
1213                }
1214
1215                if (!head_sh->batch_head)
1216                        continue;
1217                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218                                      batch_list);
1219                if (sh != head_sh)
1220                        goto again;
1221        }
1222
1223        if (should_defer && !bio_list_empty(&pending_bios))
1224                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225}
1226
1227static struct dma_async_tx_descriptor *
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229        sector_t sector, struct dma_async_tx_descriptor *tx,
1230        struct stripe_head *sh, int no_skipcopy)
1231{
1232        struct bio_vec bvl;
1233        struct bvec_iter iter;
1234        struct page *bio_page;
1235        int page_offset;
1236        struct async_submit_ctl submit;
1237        enum async_tx_flags flags = 0;
1238
1239        if (bio->bi_iter.bi_sector >= sector)
1240                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241        else
1242                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243
1244        if (frombio)
1245                flags |= ASYNC_TX_FENCE;
1246        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247
1248        bio_for_each_segment(bvl, bio, iter) {
1249                int len = bvl.bv_len;
1250                int clen;
1251                int b_offset = 0;
1252
1253                if (page_offset < 0) {
1254                        b_offset = -page_offset;
1255                        page_offset += b_offset;
1256                        len -= b_offset;
1257                }
1258
1259                if (len > 0 && page_offset + len > STRIPE_SIZE)
1260                        clen = STRIPE_SIZE - page_offset;
1261                else
1262                        clen = len;
1263
1264                if (clen > 0) {
1265                        b_offset += bvl.bv_offset;
1266                        bio_page = bvl.bv_page;
1267                        if (frombio) {
1268                                if (sh->raid_conf->skip_copy &&
1269                                    b_offset == 0 && page_offset == 0 &&
1270                                    clen == STRIPE_SIZE &&
1271                                    !no_skipcopy)
1272                                        *page = bio_page;
1273                                else
1274                                        tx = async_memcpy(*page, bio_page, page_offset,
1275                                                  b_offset, clen, &submit);
1276                        } else
1277                                tx = async_memcpy(bio_page, *page, b_offset,
1278                                                  page_offset, clen, &submit);
1279                }
1280                /* chain the operations */
1281                submit.depend_tx = tx;
1282
1283                if (clen < len) /* hit end of page */
1284                        break;
1285                page_offset +=  len;
1286        }
1287
1288        return tx;
1289}
1290
1291static void ops_complete_biofill(void *stripe_head_ref)
1292{
1293        struct stripe_head *sh = stripe_head_ref;
1294        int i;
1295
1296        pr_debug("%s: stripe %llu\n", __func__,
1297                (unsigned long long)sh->sector);
1298
1299        /* clear completed biofills */
1300        for (i = sh->disks; i--; ) {
1301                struct r5dev *dev = &sh->dev[i];
1302
1303                /* acknowledge completion of a biofill operation */
1304                /* and check if we need to reply to a read request,
1305                 * new R5_Wantfill requests are held off until
1306                 * !STRIPE_BIOFILL_RUN
1307                 */
1308                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309                        struct bio *rbi, *rbi2;
1310
1311                        BUG_ON(!dev->read);
1312                        rbi = dev->read;
1313                        dev->read = NULL;
1314                        while (rbi && rbi->bi_iter.bi_sector <
1315                                dev->sector + STRIPE_SECTORS) {
1316                                rbi2 = r5_next_bio(rbi, dev->sector);
1317                                bio_endio(rbi);
1318                                rbi = rbi2;
1319                        }
1320                }
1321        }
1322        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323
1324        set_bit(STRIPE_HANDLE, &sh->state);
1325        raid5_release_stripe(sh);
1326}
1327
1328static void ops_run_biofill(struct stripe_head *sh)
1329{
1330        struct dma_async_tx_descriptor *tx = NULL;
1331        struct async_submit_ctl submit;
1332        int i;
1333
1334        BUG_ON(sh->batch_head);
1335        pr_debug("%s: stripe %llu\n", __func__,
1336                (unsigned long long)sh->sector);
1337
1338        for (i = sh->disks; i--; ) {
1339                struct r5dev *dev = &sh->dev[i];
1340                if (test_bit(R5_Wantfill, &dev->flags)) {
1341                        struct bio *rbi;
1342                        spin_lock_irq(&sh->stripe_lock);
1343                        dev->read = rbi = dev->toread;
1344                        dev->toread = NULL;
1345                        spin_unlock_irq(&sh->stripe_lock);
1346                        while (rbi && rbi->bi_iter.bi_sector <
1347                                dev->sector + STRIPE_SECTORS) {
1348                                tx = async_copy_data(0, rbi, &dev->page,
1349                                                     dev->sector, tx, sh, 0);
1350                                rbi = r5_next_bio(rbi, dev->sector);
1351                        }
1352                }
1353        }
1354
1355        atomic_inc(&sh->count);
1356        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357        async_trigger_callback(&submit);
1358}
1359
1360static void mark_target_uptodate(struct stripe_head *sh, int target)
1361{
1362        struct r5dev *tgt;
1363
1364        if (target < 0)
1365                return;
1366
1367        tgt = &sh->dev[target];
1368        set_bit(R5_UPTODATE, &tgt->flags);
1369        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370        clear_bit(R5_Wantcompute, &tgt->flags);
1371}
1372
1373static void ops_complete_compute(void *stripe_head_ref)
1374{
1375        struct stripe_head *sh = stripe_head_ref;
1376
1377        pr_debug("%s: stripe %llu\n", __func__,
1378                (unsigned long long)sh->sector);
1379
1380        /* mark the computed target(s) as uptodate */
1381        mark_target_uptodate(sh, sh->ops.target);
1382        mark_target_uptodate(sh, sh->ops.target2);
1383
1384        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385        if (sh->check_state == check_state_compute_run)
1386                sh->check_state = check_state_compute_result;
1387        set_bit(STRIPE_HANDLE, &sh->state);
1388        raid5_release_stripe(sh);
1389}
1390
1391/* return a pointer to the address conversion region of the scribble buffer */
1392static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393{
1394        return percpu->scribble + i * percpu->scribble_obj_size;
1395}
1396
1397/* return a pointer to the address conversion region of the scribble buffer */
1398static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399                                 struct raid5_percpu *percpu, int i)
1400{
1401        return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402}
1403
1404static struct dma_async_tx_descriptor *
1405ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406{
1407        int disks = sh->disks;
1408        struct page **xor_srcs = to_addr_page(percpu, 0);
1409        int target = sh->ops.target;
1410        struct r5dev *tgt = &sh->dev[target];
1411        struct page *xor_dest = tgt->page;
1412        int count = 0;
1413        struct dma_async_tx_descriptor *tx;
1414        struct async_submit_ctl submit;
1415        int i;
1416
1417        BUG_ON(sh->batch_head);
1418
1419        pr_debug("%s: stripe %llu block: %d\n",
1420                __func__, (unsigned long long)sh->sector, target);
1421        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423        for (i = disks; i--; )
1424                if (i != target)
1425                        xor_srcs[count++] = sh->dev[i].page;
1426
1427        atomic_inc(&sh->count);
1428
1429        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431        if (unlikely(count == 1))
1432                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433        else
1434                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435
1436        return tx;
1437}
1438
1439/* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1442 *
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1447 */
1448static int set_syndrome_sources(struct page **srcs,
1449                                struct stripe_head *sh,
1450                                int srctype)
1451{
1452        int disks = sh->disks;
1453        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454        int d0_idx = raid6_d0(sh);
1455        int count;
1456        int i;
1457
1458        for (i = 0; i < disks; i++)
1459                srcs[i] = NULL;
1460
1461        count = 0;
1462        i = d0_idx;
1463        do {
1464                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465                struct r5dev *dev = &sh->dev[i];
1466
1467                if (i == sh->qd_idx || i == sh->pd_idx ||
1468                    (srctype == SYNDROME_SRC_ALL) ||
1469                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470                     (test_bit(R5_Wantdrain, &dev->flags) ||
1471                      test_bit(R5_InJournal, &dev->flags))) ||
1472                    (srctype == SYNDROME_SRC_WRITTEN &&
1473                     (dev->written ||
1474                      test_bit(R5_InJournal, &dev->flags)))) {
1475                        if (test_bit(R5_InJournal, &dev->flags))
1476                                srcs[slot] = sh->dev[i].orig_page;
1477                        else
1478                                srcs[slot] = sh->dev[i].page;
1479                }
1480                i = raid6_next_disk(i, disks);
1481        } while (i != d0_idx);
1482
1483        return syndrome_disks;
1484}
1485
1486static struct dma_async_tx_descriptor *
1487ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488{
1489        int disks = sh->disks;
1490        struct page **blocks = to_addr_page(percpu, 0);
1491        int target;
1492        int qd_idx = sh->qd_idx;
1493        struct dma_async_tx_descriptor *tx;
1494        struct async_submit_ctl submit;
1495        struct r5dev *tgt;
1496        struct page *dest;
1497        int i;
1498        int count;
1499
1500        BUG_ON(sh->batch_head);
1501        if (sh->ops.target < 0)
1502                target = sh->ops.target2;
1503        else if (sh->ops.target2 < 0)
1504                target = sh->ops.target;
1505        else
1506                /* we should only have one valid target */
1507                BUG();
1508        BUG_ON(target < 0);
1509        pr_debug("%s: stripe %llu block: %d\n",
1510                __func__, (unsigned long long)sh->sector, target);
1511
1512        tgt = &sh->dev[target];
1513        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514        dest = tgt->page;
1515
1516        atomic_inc(&sh->count);
1517
1518        if (target == qd_idx) {
1519                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                blocks[count] = NULL; /* regenerating p is not necessary */
1521                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523                                  ops_complete_compute, sh,
1524                                  to_addr_conv(sh, percpu, 0));
1525                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526        } else {
1527                /* Compute any data- or p-drive using XOR */
1528                count = 0;
1529                for (i = disks; i-- ; ) {
1530                        if (i == target || i == qd_idx)
1531                                continue;
1532                        blocks[count++] = sh->dev[i].page;
1533                }
1534
1535                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536                                  NULL, ops_complete_compute, sh,
1537                                  to_addr_conv(sh, percpu, 0));
1538                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539        }
1540
1541        return tx;
1542}
1543
1544static struct dma_async_tx_descriptor *
1545ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546{
1547        int i, count, disks = sh->disks;
1548        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549        int d0_idx = raid6_d0(sh);
1550        int faila = -1, failb = -1;
1551        int target = sh->ops.target;
1552        int target2 = sh->ops.target2;
1553        struct r5dev *tgt = &sh->dev[target];
1554        struct r5dev *tgt2 = &sh->dev[target2];
1555        struct dma_async_tx_descriptor *tx;
1556        struct page **blocks = to_addr_page(percpu, 0);
1557        struct async_submit_ctl submit;
1558
1559        BUG_ON(sh->batch_head);
1560        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561                 __func__, (unsigned long long)sh->sector, target, target2);
1562        BUG_ON(target < 0 || target2 < 0);
1563        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
1566        /* we need to open-code set_syndrome_sources to handle the
1567         * slot number conversion for 'faila' and 'failb'
1568         */
1569        for (i = 0; i < disks ; i++)
1570                blocks[i] = NULL;
1571        count = 0;
1572        i = d0_idx;
1573        do {
1574                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576                blocks[slot] = sh->dev[i].page;
1577
1578                if (i == target)
1579                        faila = slot;
1580                if (i == target2)
1581                        failb = slot;
1582                i = raid6_next_disk(i, disks);
1583        } while (i != d0_idx);
1584
1585        BUG_ON(faila == failb);
1586        if (failb < faila)
1587                swap(faila, failb);
1588        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589                 __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591        atomic_inc(&sh->count);
1592
1593        if (failb == syndrome_disks+1) {
1594                /* Q disk is one of the missing disks */
1595                if (faila == syndrome_disks) {
1596                        /* Missing P+Q, just recompute */
1597                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598                                          ops_complete_compute, sh,
1599                                          to_addr_conv(sh, percpu, 0));
1600                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601                                                  STRIPE_SIZE, &submit);
1602                } else {
1603                        struct page *dest;
1604                        int data_target;
1605                        int qd_idx = sh->qd_idx;
1606
1607                        /* Missing D+Q: recompute D from P, then recompute Q */
1608                        if (target == qd_idx)
1609                                data_target = target2;
1610                        else
1611                                data_target = target;
1612
1613                        count = 0;
1614                        for (i = disks; i-- ; ) {
1615                                if (i == data_target || i == qd_idx)
1616                                        continue;
1617                                blocks[count++] = sh->dev[i].page;
1618                        }
1619                        dest = sh->dev[data_target].page;
1620                        init_async_submit(&submit,
1621                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622                                          NULL, NULL, NULL,
1623                                          to_addr_conv(sh, percpu, 0));
1624                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625                                       &submit);
1626
1627                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629                                          ops_complete_compute, sh,
1630                                          to_addr_conv(sh, percpu, 0));
1631                        return async_gen_syndrome(blocks, 0, count+2,
1632                                                  STRIPE_SIZE, &submit);
1633                }
1634        } else {
1635                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636                                  ops_complete_compute, sh,
1637                                  to_addr_conv(sh, percpu, 0));
1638                if (failb == syndrome_disks) {
1639                        /* We're missing D+P. */
1640                        return async_raid6_datap_recov(syndrome_disks+2,
1641                                                       STRIPE_SIZE, faila,
1642                                                       blocks, &submit);
1643                } else {
1644                        /* We're missing D+D. */
1645                        return async_raid6_2data_recov(syndrome_disks+2,
1646                                                       STRIPE_SIZE, faila, failb,
1647                                                       blocks, &submit);
1648                }
1649        }
1650}
1651
1652static void ops_complete_prexor(void *stripe_head_ref)
1653{
1654        struct stripe_head *sh = stripe_head_ref;
1655
1656        pr_debug("%s: stripe %llu\n", __func__,
1657                (unsigned long long)sh->sector);
1658
1659        if (r5c_is_writeback(sh->raid_conf->log))
1660                /*
1661                 * raid5-cache write back uses orig_page during prexor.
1662                 * After prexor, it is time to free orig_page
1663                 */
1664                r5c_release_extra_page(sh);
1665}
1666
1667static struct dma_async_tx_descriptor *
1668ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669                struct dma_async_tx_descriptor *tx)
1670{
1671        int disks = sh->disks;
1672        struct page **xor_srcs = to_addr_page(percpu, 0);
1673        int count = 0, pd_idx = sh->pd_idx, i;
1674        struct async_submit_ctl submit;
1675
1676        /* existing parity data subtracted */
1677        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
1679        BUG_ON(sh->batch_head);
1680        pr_debug("%s: stripe %llu\n", __func__,
1681                (unsigned long long)sh->sector);
1682
1683        for (i = disks; i--; ) {
1684                struct r5dev *dev = &sh->dev[i];
1685                /* Only process blocks that are known to be uptodate */
1686                if (test_bit(R5_InJournal, &dev->flags))
1687                        xor_srcs[count++] = dev->orig_page;
1688                else if (test_bit(R5_Wantdrain, &dev->flags))
1689                        xor_srcs[count++] = dev->page;
1690        }
1691
1692        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695
1696        return tx;
1697}
1698
1699static struct dma_async_tx_descriptor *
1700ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701                struct dma_async_tx_descriptor *tx)
1702{
1703        struct page **blocks = to_addr_page(percpu, 0);
1704        int count;
1705        struct async_submit_ctl submit;
1706
1707        pr_debug("%s: stripe %llu\n", __func__,
1708                (unsigned long long)sh->sector);
1709
1710        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1715
1716        return tx;
1717}
1718
1719static struct dma_async_tx_descriptor *
1720ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721{
1722        struct r5conf *conf = sh->raid_conf;
1723        int disks = sh->disks;
1724        int i;
1725        struct stripe_head *head_sh = sh;
1726
1727        pr_debug("%s: stripe %llu\n", __func__,
1728                (unsigned long long)sh->sector);
1729
1730        for (i = disks; i--; ) {
1731                struct r5dev *dev;
1732                struct bio *chosen;
1733
1734                sh = head_sh;
1735                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736                        struct bio *wbi;
1737
1738again:
1739                        dev = &sh->dev[i];
1740                        /*
1741                         * clear R5_InJournal, so when rewriting a page in
1742                         * journal, it is not skipped by r5l_log_stripe()
1743                         */
1744                        clear_bit(R5_InJournal, &dev->flags);
1745                        spin_lock_irq(&sh->stripe_lock);
1746                        chosen = dev->towrite;
1747                        dev->towrite = NULL;
1748                        sh->overwrite_disks = 0;
1749                        BUG_ON(dev->written);
1750                        wbi = dev->written = chosen;
1751                        spin_unlock_irq(&sh->stripe_lock);
1752                        WARN_ON(dev->page != dev->orig_page);
1753
1754                        while (wbi && wbi->bi_iter.bi_sector <
1755                                dev->sector + STRIPE_SECTORS) {
1756                                if (wbi->bi_opf & REQ_FUA)
1757                                        set_bit(R5_WantFUA, &dev->flags);
1758                                if (wbi->bi_opf & REQ_SYNC)
1759                                        set_bit(R5_SyncIO, &dev->flags);
1760                                if (bio_op(wbi) == REQ_OP_DISCARD)
1761                                        set_bit(R5_Discard, &dev->flags);
1762                                else {
1763                                        tx = async_copy_data(1, wbi, &dev->page,
1764                                                             dev->sector, tx, sh,
1765                                                             r5c_is_writeback(conf->log));
1766                                        if (dev->page != dev->orig_page &&
1767                                            !r5c_is_writeback(conf->log)) {
1768                                                set_bit(R5_SkipCopy, &dev->flags);
1769                                                clear_bit(R5_UPTODATE, &dev->flags);
1770                                                clear_bit(R5_OVERWRITE, &dev->flags);
1771                                        }
1772                                }
1773                                wbi = r5_next_bio(wbi, dev->sector);
1774                        }
1775
1776                        if (head_sh->batch_head) {
1777                                sh = list_first_entry(&sh->batch_list,
1778                                                      struct stripe_head,
1779                                                      batch_list);
1780                                if (sh == head_sh)
1781                                        continue;
1782                                goto again;
1783                        }
1784                }
1785        }
1786
1787        return tx;
1788}
1789
1790static void ops_complete_reconstruct(void *stripe_head_ref)
1791{
1792        struct stripe_head *sh = stripe_head_ref;
1793        int disks = sh->disks;
1794        int pd_idx = sh->pd_idx;
1795        int qd_idx = sh->qd_idx;
1796        int i;
1797        bool fua = false, sync = false, discard = false;
1798
1799        pr_debug("%s: stripe %llu\n", __func__,
1800                (unsigned long long)sh->sector);
1801
1802        for (i = disks; i--; ) {
1803                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806        }
1807
1808        for (i = disks; i--; ) {
1809                struct r5dev *dev = &sh->dev[i];
1810
1811                if (dev->written || i == pd_idx || i == qd_idx) {
1812                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813                                set_bit(R5_UPTODATE, &dev->flags);
1814                                if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815                                        set_bit(R5_Expanded, &dev->flags);
1816                        }
1817                        if (fua)
1818                                set_bit(R5_WantFUA, &dev->flags);
1819                        if (sync)
1820                                set_bit(R5_SyncIO, &dev->flags);
1821                }
1822        }
1823
1824        if (sh->reconstruct_state == reconstruct_state_drain_run)
1825                sh->reconstruct_state = reconstruct_state_drain_result;
1826        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828        else {
1829                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830                sh->reconstruct_state = reconstruct_state_result;
1831        }
1832
1833        set_bit(STRIPE_HANDLE, &sh->state);
1834        raid5_release_stripe(sh);
1835}
1836
1837static void
1838ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839                     struct dma_async_tx_descriptor *tx)
1840{
1841        int disks = sh->disks;
1842        struct page **xor_srcs;
1843        struct async_submit_ctl submit;
1844        int count, pd_idx = sh->pd_idx, i;
1845        struct page *xor_dest;
1846        int prexor = 0;
1847        unsigned long flags;
1848        int j = 0;
1849        struct stripe_head *head_sh = sh;
1850        int last_stripe;
1851
1852        pr_debug("%s: stripe %llu\n", __func__,
1853                (unsigned long long)sh->sector);
1854
1855        for (i = 0; i < sh->disks; i++) {
1856                if (pd_idx == i)
1857                        continue;
1858                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859                        break;
1860        }
1861        if (i >= sh->disks) {
1862                atomic_inc(&sh->count);
1863                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864                ops_complete_reconstruct(sh);
1865                return;
1866        }
1867again:
1868        count = 0;
1869        xor_srcs = to_addr_page(percpu, j);
1870        /* check if prexor is active which means only process blocks
1871         * that are part of a read-modify-write (written)
1872         */
1873        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874                prexor = 1;
1875                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876                for (i = disks; i--; ) {
1877                        struct r5dev *dev = &sh->dev[i];
1878                        if (head_sh->dev[i].written ||
1879                            test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880                                xor_srcs[count++] = dev->page;
1881                }
1882        } else {
1883                xor_dest = sh->dev[pd_idx].page;
1884                for (i = disks; i--; ) {
1885                        struct r5dev *dev = &sh->dev[i];
1886                        if (i != pd_idx)
1887                                xor_srcs[count++] = dev->page;
1888                }
1889        }
1890
1891        /* 1/ if we prexor'd then the dest is reused as a source
1892         * 2/ if we did not prexor then we are redoing the parity
1893         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894         * for the synchronous xor case
1895         */
1896        last_stripe = !head_sh->batch_head ||
1897                list_first_entry(&sh->batch_list,
1898                                 struct stripe_head, batch_list) == head_sh;
1899        if (last_stripe) {
1900                flags = ASYNC_TX_ACK |
1901                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903                atomic_inc(&head_sh->count);
1904                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905                                  to_addr_conv(sh, percpu, j));
1906        } else {
1907                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908                init_async_submit(&submit, flags, tx, NULL, NULL,
1909                                  to_addr_conv(sh, percpu, j));
1910        }
1911
1912        if (unlikely(count == 1))
1913                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914        else
1915                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916        if (!last_stripe) {
1917                j++;
1918                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919                                      batch_list);
1920                goto again;
1921        }
1922}
1923
1924static void
1925ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926                     struct dma_async_tx_descriptor *tx)
1927{
1928        struct async_submit_ctl submit;
1929        struct page **blocks;
1930        int count, i, j = 0;
1931        struct stripe_head *head_sh = sh;
1932        int last_stripe;
1933        int synflags;
1934        unsigned long txflags;
1935
1936        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
1938        for (i = 0; i < sh->disks; i++) {
1939                if (sh->pd_idx == i || sh->qd_idx == i)
1940                        continue;
1941                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942                        break;
1943        }
1944        if (i >= sh->disks) {
1945                atomic_inc(&sh->count);
1946                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948                ops_complete_reconstruct(sh);
1949                return;
1950        }
1951
1952again:
1953        blocks = to_addr_page(percpu, j);
1954
1955        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956                synflags = SYNDROME_SRC_WRITTEN;
1957                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958        } else {
1959                synflags = SYNDROME_SRC_ALL;
1960                txflags = ASYNC_TX_ACK;
1961        }
1962
1963        count = set_syndrome_sources(blocks, sh, synflags);
1964        last_stripe = !head_sh->batch_head ||
1965                list_first_entry(&sh->batch_list,
1966                                 struct stripe_head, batch_list) == head_sh;
1967
1968        if (last_stripe) {
1969                atomic_inc(&head_sh->count);
1970                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971                                  head_sh, to_addr_conv(sh, percpu, j));
1972        } else
1973                init_async_submit(&submit, 0, tx, NULL, NULL,
1974                                  to_addr_conv(sh, percpu, j));
1975        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976        if (!last_stripe) {
1977                j++;
1978                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979                                      batch_list);
1980                goto again;
1981        }
1982}
1983
1984static void ops_complete_check(void *stripe_head_ref)
1985{
1986        struct stripe_head *sh = stripe_head_ref;
1987
1988        pr_debug("%s: stripe %llu\n", __func__,
1989                (unsigned long long)sh->sector);
1990
1991        sh->check_state = check_state_check_result;
1992        set_bit(STRIPE_HANDLE, &sh->state);
1993        raid5_release_stripe(sh);
1994}
1995
1996static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997{
1998        int disks = sh->disks;
1999        int pd_idx = sh->pd_idx;
2000        int qd_idx = sh->qd_idx;
2001        struct page *xor_dest;
2002        struct page **xor_srcs = to_addr_page(percpu, 0);
2003        struct dma_async_tx_descriptor *tx;
2004        struct async_submit_ctl submit;
2005        int count;
2006        int i;
2007
2008        pr_debug("%s: stripe %llu\n", __func__,
2009                (unsigned long long)sh->sector);
2010
2011        BUG_ON(sh->batch_head);
2012        count = 0;
2013        xor_dest = sh->dev[pd_idx].page;
2014        xor_srcs[count++] = xor_dest;
2015        for (i = disks; i--; ) {
2016                if (i == pd_idx || i == qd_idx)
2017                        continue;
2018                xor_srcs[count++] = sh->dev[i].page;
2019        }
2020
2021        init_async_submit(&submit, 0, NULL, NULL, NULL,
2022                          to_addr_conv(sh, percpu, 0));
2023        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024                           &sh->ops.zero_sum_result, &submit);
2025
2026        atomic_inc(&sh->count);
2027        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028        tx = async_trigger_callback(&submit);
2029}
2030
2031static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032{
2033        struct page **srcs = to_addr_page(percpu, 0);
2034        struct async_submit_ctl submit;
2035        int count;
2036
2037        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038                (unsigned long long)sh->sector, checkp);
2039
2040        BUG_ON(sh->batch_head);
2041        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042        if (!checkp)
2043                srcs[count] = NULL;
2044
2045        atomic_inc(&sh->count);
2046        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047                          sh, to_addr_conv(sh, percpu, 0));
2048        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050}
2051
2052static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053{
2054        int overlap_clear = 0, i, disks = sh->disks;
2055        struct dma_async_tx_descriptor *tx = NULL;
2056        struct r5conf *conf = sh->raid_conf;
2057        int level = conf->level;
2058        struct raid5_percpu *percpu;
2059        unsigned long cpu;
2060
2061        cpu = get_cpu();
2062        percpu = per_cpu_ptr(conf->percpu, cpu);
2063        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064                ops_run_biofill(sh);
2065                overlap_clear++;
2066        }
2067
2068        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069                if (level < 6)
2070                        tx = ops_run_compute5(sh, percpu);
2071                else {
2072                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073                                tx = ops_run_compute6_1(sh, percpu);
2074                        else
2075                                tx = ops_run_compute6_2(sh, percpu);
2076                }
2077                /* terminate the chain if reconstruct is not set to be run */
2078                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079                        async_tx_ack(tx);
2080        }
2081
2082        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083                if (level < 6)
2084                        tx = ops_run_prexor5(sh, percpu, tx);
2085                else
2086                        tx = ops_run_prexor6(sh, percpu, tx);
2087        }
2088
2089        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090                tx = ops_run_partial_parity(sh, percpu, tx);
2091
2092        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093                tx = ops_run_biodrain(sh, tx);
2094                overlap_clear++;
2095        }
2096
2097        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098                if (level < 6)
2099                        ops_run_reconstruct5(sh, percpu, tx);
2100                else
2101                        ops_run_reconstruct6(sh, percpu, tx);
2102        }
2103
2104        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105                if (sh->check_state == check_state_run)
2106                        ops_run_check_p(sh, percpu);
2107                else if (sh->check_state == check_state_run_q)
2108                        ops_run_check_pq(sh, percpu, 0);
2109                else if (sh->check_state == check_state_run_pq)
2110                        ops_run_check_pq(sh, percpu, 1);
2111                else
2112                        BUG();
2113        }
2114
2115        if (overlap_clear && !sh->batch_head)
2116                for (i = disks; i--; ) {
2117                        struct r5dev *dev = &sh->dev[i];
2118                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119                                wake_up(&sh->raid_conf->wait_for_overlap);
2120                }
2121        put_cpu();
2122}
2123
2124static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125{
2126        if (sh->ppl_page)
2127                __free_page(sh->ppl_page);
2128        kmem_cache_free(sc, sh);
2129}
2130
2131static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132        int disks, struct r5conf *conf)
2133{
2134        struct stripe_head *sh;
2135        int i;
2136
2137        sh = kmem_cache_zalloc(sc, gfp);
2138        if (sh) {
2139                spin_lock_init(&sh->stripe_lock);
2140                spin_lock_init(&sh->batch_lock);
2141                INIT_LIST_HEAD(&sh->batch_list);
2142                INIT_LIST_HEAD(&sh->lru);
2143                INIT_LIST_HEAD(&sh->r5c);
2144                INIT_LIST_HEAD(&sh->log_list);
2145                atomic_set(&sh->count, 1);
2146                sh->raid_conf = conf;
2147                sh->log_start = MaxSector;
2148                for (i = 0; i < disks; i++) {
2149                        struct r5dev *dev = &sh->dev[i];
2150
2151                        bio_init(&dev->req, &dev->vec, 1);
2152                        bio_init(&dev->rreq, &dev->rvec, 1);
2153                }
2154
2155                if (raid5_has_ppl(conf)) {
2156                        sh->ppl_page = alloc_page(gfp);
2157                        if (!sh->ppl_page) {
2158                                free_stripe(sc, sh);
2159                                sh = NULL;
2160                        }
2161                }
2162        }
2163        return sh;
2164}
2165static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166{
2167        struct stripe_head *sh;
2168
2169        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170        if (!sh)
2171                return 0;
2172
2173        if (grow_buffers(sh, gfp)) {
2174                shrink_buffers(sh);
2175                free_stripe(conf->slab_cache, sh);
2176                return 0;
2177        }
2178        sh->hash_lock_index =
2179                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180        /* we just created an active stripe so... */
2181        atomic_inc(&conf->active_stripes);
2182
2183        raid5_release_stripe(sh);
2184        conf->max_nr_stripes++;
2185        return 1;
2186}
2187
2188static int grow_stripes(struct r5conf *conf, int num)
2189{
2190        struct kmem_cache *sc;
2191        size_t namelen = sizeof(conf->cache_name[0]);
2192        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194        if (conf->mddev->gendisk)
2195                snprintf(conf->cache_name[0], namelen,
2196                        "raid%d-%s", conf->level, mdname(conf->mddev));
2197        else
2198                snprintf(conf->cache_name[0], namelen,
2199                        "raid%d-%p", conf->level, conf->mddev);
2200        snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201
2202        conf->active_name = 0;
2203        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205                               0, 0, NULL);
2206        if (!sc)
2207                return 1;
2208        conf->slab_cache = sc;
2209        conf->pool_size = devs;
2210        while (num--)
2211                if (!grow_one_stripe(conf, GFP_KERNEL))
2212                        return 1;
2213
2214        return 0;
2215}
2216
2217/**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 *    (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
2230static int scribble_alloc(struct raid5_percpu *percpu,
2231                          int num, int cnt, gfp_t flags)
2232{
2233        size_t obj_size =
2234                sizeof(struct page *) * (num+2) +
2235                sizeof(addr_conv_t) * (num+2);
2236        void *scribble;
2237
2238        scribble = kvmalloc_array(cnt, obj_size, flags);
2239        if (!scribble)
2240                return -ENOMEM;
2241
2242        kvfree(percpu->scribble);
2243
2244        percpu->scribble = scribble;
2245        percpu->scribble_obj_size = obj_size;
2246        return 0;
2247}
2248
2249static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2250{
2251        unsigned long cpu;
2252        int err = 0;
2253
2254        /*
2255         * Never shrink. And mddev_suspend() could deadlock if this is called
2256         * from raid5d. In that case, scribble_disks and scribble_sectors
2257         * should equal to new_disks and new_sectors
2258         */
2259        if (conf->scribble_disks >= new_disks &&
2260            conf->scribble_sectors >= new_sectors)
2261                return 0;
2262        mddev_suspend(conf->mddev);
2263        get_online_cpus();
2264
2265        for_each_present_cpu(cpu) {
2266                struct raid5_percpu *percpu;
2267
2268                percpu = per_cpu_ptr(conf->percpu, cpu);
2269                err = scribble_alloc(percpu, new_disks,
2270                                     new_sectors / STRIPE_SECTORS,
2271                                     GFP_NOIO);
2272                if (err)
2273                        break;
2274        }
2275
2276        put_online_cpus();
2277        mddev_resume(conf->mddev);
2278        if (!err) {
2279                conf->scribble_disks = new_disks;
2280                conf->scribble_sectors = new_sectors;
2281        }
2282        return err;
2283}
2284
2285static int resize_stripes(struct r5conf *conf, int newsize)
2286{
2287        /* Make all the stripes able to hold 'newsize' devices.
2288         * New slots in each stripe get 'page' set to a new page.
2289         *
2290         * This happens in stages:
2291         * 1/ create a new kmem_cache and allocate the required number of
2292         *    stripe_heads.
2293         * 2/ gather all the old stripe_heads and transfer the pages across
2294         *    to the new stripe_heads.  This will have the side effect of
2295         *    freezing the array as once all stripe_heads have been collected,
2296         *    no IO will be possible.  Old stripe heads are freed once their
2297         *    pages have been transferred over, and the old kmem_cache is
2298         *    freed when all stripes are done.
2299         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2300         *    we simple return a failure status - no need to clean anything up.
2301         * 4/ allocate new pages for the new slots in the new stripe_heads.
2302         *    If this fails, we don't bother trying the shrink the
2303         *    stripe_heads down again, we just leave them as they are.
2304         *    As each stripe_head is processed the new one is released into
2305         *    active service.
2306         *
2307         * Once step2 is started, we cannot afford to wait for a write,
2308         * so we use GFP_NOIO allocations.
2309         */
2310        struct stripe_head *osh, *nsh;
2311        LIST_HEAD(newstripes);
2312        struct disk_info *ndisks;
2313        int err = 0;
2314        struct kmem_cache *sc;
2315        int i;
2316        int hash, cnt;
2317
2318        md_allow_write(conf->mddev);
2319
2320        /* Step 1 */
2321        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2322                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2323                               0, 0, NULL);
2324        if (!sc)
2325                return -ENOMEM;
2326
2327        /* Need to ensure auto-resizing doesn't interfere */
2328        mutex_lock(&conf->cache_size_mutex);
2329
2330        for (i = conf->max_nr_stripes; i; i--) {
2331                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2332                if (!nsh)
2333                        break;
2334
2335                list_add(&nsh->lru, &newstripes);
2336        }
2337        if (i) {
2338                /* didn't get enough, give up */
2339                while (!list_empty(&newstripes)) {
2340                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2341                        list_del(&nsh->lru);
2342                        free_stripe(sc, nsh);
2343                }
2344                kmem_cache_destroy(sc);
2345                mutex_unlock(&conf->cache_size_mutex);
2346                return -ENOMEM;
2347        }
2348        /* Step 2 - Must use GFP_NOIO now.
2349         * OK, we have enough stripes, start collecting inactive
2350         * stripes and copying them over
2351         */
2352        hash = 0;
2353        cnt = 0;
2354        list_for_each_entry(nsh, &newstripes, lru) {
2355                lock_device_hash_lock(conf, hash);
2356                wait_event_cmd(conf->wait_for_stripe,
2357                                    !list_empty(conf->inactive_list + hash),
2358                                    unlock_device_hash_lock(conf, hash),
2359                                    lock_device_hash_lock(conf, hash));
2360                osh = get_free_stripe(conf, hash);
2361                unlock_device_hash_lock(conf, hash);
2362
2363                for(i=0; i<conf->pool_size; i++) {
2364                        nsh->dev[i].page = osh->dev[i].page;
2365                        nsh->dev[i].orig_page = osh->dev[i].page;
2366                }
2367                nsh->hash_lock_index = hash;
2368                free_stripe(conf->slab_cache, osh);
2369                cnt++;
2370                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2371                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2372                        hash++;
2373                        cnt = 0;
2374                }
2375        }
2376        kmem_cache_destroy(conf->slab_cache);
2377
2378        /* Step 3.
2379         * At this point, we are holding all the stripes so the array
2380         * is completely stalled, so now is a good time to resize
2381         * conf->disks and the scribble region
2382         */
2383        ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2384        if (ndisks) {
2385                for (i = 0; i < conf->pool_size; i++)
2386                        ndisks[i] = conf->disks[i];
2387
2388                for (i = conf->pool_size; i < newsize; i++) {
2389                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2390                        if (!ndisks[i].extra_page)
2391                                err = -ENOMEM;
2392                }
2393
2394                if (err) {
2395                        for (i = conf->pool_size; i < newsize; i++)
2396                                if (ndisks[i].extra_page)
2397                                        put_page(ndisks[i].extra_page);
2398                        kfree(ndisks);
2399                } else {
2400                        kfree(conf->disks);
2401                        conf->disks = ndisks;
2402                }
2403        } else
2404                err = -ENOMEM;
2405
2406        mutex_unlock(&conf->cache_size_mutex);
2407
2408        conf->slab_cache = sc;
2409        conf->active_name = 1-conf->active_name;
2410
2411        /* Step 4, return new stripes to service */
2412        while(!list_empty(&newstripes)) {
2413                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2414                list_del_init(&nsh->lru);
2415
2416                for (i=conf->raid_disks; i < newsize; i++)
2417                        if (nsh->dev[i].page == NULL) {
2418                                struct page *p = alloc_page(GFP_NOIO);
2419                                nsh->dev[i].page = p;
2420                                nsh->dev[i].orig_page = p;
2421                                if (!p)
2422                                        err = -ENOMEM;
2423                        }
2424                raid5_release_stripe(nsh);
2425        }
2426        /* critical section pass, GFP_NOIO no longer needed */
2427
2428        if (!err)
2429                conf->pool_size = newsize;
2430        return err;
2431}
2432
2433static int drop_one_stripe(struct r5conf *conf)
2434{
2435        struct stripe_head *sh;
2436        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2437
2438        spin_lock_irq(conf->hash_locks + hash);
2439        sh = get_free_stripe(conf, hash);
2440        spin_unlock_irq(conf->hash_locks + hash);
2441        if (!sh)
2442                return 0;
2443        BUG_ON(atomic_read(&sh->count));
2444        shrink_buffers(sh);
2445        free_stripe(conf->slab_cache, sh);
2446        atomic_dec(&conf->active_stripes);
2447        conf->max_nr_stripes--;
2448        return 1;
2449}
2450
2451static void shrink_stripes(struct r5conf *conf)
2452{
2453        while (conf->max_nr_stripes &&
2454               drop_one_stripe(conf))
2455                ;
2456
2457        kmem_cache_destroy(conf->slab_cache);
2458        conf->slab_cache = NULL;
2459}
2460
2461static void raid5_end_read_request(struct bio * bi)
2462{
2463        struct stripe_head *sh = bi->bi_private;
2464        struct r5conf *conf = sh->raid_conf;
2465        int disks = sh->disks, i;
2466        char b[BDEVNAME_SIZE];
2467        struct md_rdev *rdev = NULL;
2468        sector_t s;
2469
2470        for (i=0 ; i<disks; i++)
2471                if (bi == &sh->dev[i].req)
2472                        break;
2473
2474        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2475                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2476                bi->bi_status);
2477        if (i == disks) {
2478                bio_reset(bi);
2479                BUG();
2480                return;
2481        }
2482        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2483                /* If replacement finished while this request was outstanding,
2484                 * 'replacement' might be NULL already.
2485                 * In that case it moved down to 'rdev'.
2486                 * rdev is not removed until all requests are finished.
2487                 */
2488                rdev = conf->disks[i].replacement;
2489        if (!rdev)
2490                rdev = conf->disks[i].rdev;
2491
2492        if (use_new_offset(conf, sh))
2493                s = sh->sector + rdev->new_data_offset;
2494        else
2495                s = sh->sector + rdev->data_offset;
2496        if (!bi->bi_status) {
2497                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2498                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2499                        /* Note that this cannot happen on a
2500                         * replacement device.  We just fail those on
2501                         * any error
2502                         */
2503                        pr_info_ratelimited(
2504                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2505                                mdname(conf->mddev), STRIPE_SECTORS,
2506                                (unsigned long long)s,
2507                                bdevname(rdev->bdev, b));
2508                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2509                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2510                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2511                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2512                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2513
2514                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2515                        /*
2516                         * end read for a page in journal, this
2517                         * must be preparing for prexor in rmw
2518                         */
2519                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2520
2521                if (atomic_read(&rdev->read_errors))
2522                        atomic_set(&rdev->read_errors, 0);
2523        } else {
2524                const char *bdn = bdevname(rdev->bdev, b);
2525                int retry = 0;
2526                int set_bad = 0;
2527
2528                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2529                if (!(bi->bi_status == BLK_STS_PROTECTION))
2530                        atomic_inc(&rdev->read_errors);
2531                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2532                        pr_warn_ratelimited(
2533                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2534                                mdname(conf->mddev),
2535                                (unsigned long long)s,
2536                                bdn);
2537                else if (conf->mddev->degraded >= conf->max_degraded) {
2538                        set_bad = 1;
2539                        pr_warn_ratelimited(
2540                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2541                                mdname(conf->mddev),
2542                                (unsigned long long)s,
2543                                bdn);
2544                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2545                        /* Oh, no!!! */
2546                        set_bad = 1;
2547                        pr_warn_ratelimited(
2548                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2549                                mdname(conf->mddev),
2550                                (unsigned long long)s,
2551                                bdn);
2552                } else if (atomic_read(&rdev->read_errors)
2553                         > conf->max_nr_stripes) {
2554                        if (!test_bit(Faulty, &rdev->flags)) {
2555                                pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2556                                    mdname(conf->mddev),
2557                                    atomic_read(&rdev->read_errors),
2558                                    conf->max_nr_stripes);
2559                                pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2560                                    mdname(conf->mddev), bdn);
2561                        }
2562                } else
2563                        retry = 1;
2564                if (set_bad && test_bit(In_sync, &rdev->flags)
2565                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2566                        retry = 1;
2567                if (retry)
2568                        if (sh->qd_idx >= 0 && sh->pd_idx == i)
2569                                set_bit(R5_ReadError, &sh->dev[i].flags);
2570                        else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2571                                set_bit(R5_ReadError, &sh->dev[i].flags);
2572                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2573                        } else
2574                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575                else {
2576                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2577                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2578                        if (!(set_bad
2579                              && test_bit(In_sync, &rdev->flags)
2580                              && rdev_set_badblocks(
2581                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2582                                md_error(conf->mddev, rdev);
2583                }
2584        }
2585        rdev_dec_pending(rdev, conf->mddev);
2586        bio_reset(bi);
2587        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2588        set_bit(STRIPE_HANDLE, &sh->state);
2589        raid5_release_stripe(sh);
2590}
2591
2592static void raid5_end_write_request(struct bio *bi)
2593{
2594        struct stripe_head *sh = bi->bi_private;
2595        struct r5conf *conf = sh->raid_conf;
2596        int disks = sh->disks, i;
2597        struct md_rdev *uninitialized_var(rdev);
2598        sector_t first_bad;
2599        int bad_sectors;
2600        int replacement = 0;
2601
2602        for (i = 0 ; i < disks; i++) {
2603                if (bi == &sh->dev[i].req) {
2604                        rdev = conf->disks[i].rdev;
2605                        break;
2606                }
2607                if (bi == &sh->dev[i].rreq) {
2608                        rdev = conf->disks[i].replacement;
2609                        if (rdev)
2610                                replacement = 1;
2611                        else
2612                                /* rdev was removed and 'replacement'
2613                                 * replaced it.  rdev is not removed
2614                                 * until all requests are finished.
2615                                 */
2616                                rdev = conf->disks[i].rdev;
2617                        break;
2618                }
2619        }
2620        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2621                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2622                bi->bi_status);
2623        if (i == disks) {
2624                bio_reset(bi);
2625                BUG();
2626                return;
2627        }
2628
2629        if (replacement) {
2630                if (bi->bi_status)
2631                        md_error(conf->mddev, rdev);
2632                else if (is_badblock(rdev, sh->sector,
2633                                     STRIPE_SECTORS,
2634                                     &first_bad, &bad_sectors))
2635                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2636        } else {
2637                if (bi->bi_status) {
2638                        set_bit(STRIPE_DEGRADED, &sh->state);
2639                        set_bit(WriteErrorSeen, &rdev->flags);
2640                        set_bit(R5_WriteError, &sh->dev[i].flags);
2641                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2642                                set_bit(MD_RECOVERY_NEEDED,
2643                                        &rdev->mddev->recovery);
2644                } else if (is_badblock(rdev, sh->sector,
2645                                       STRIPE_SECTORS,
2646                                       &first_bad, &bad_sectors)) {
2647                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2648                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2649                                /* That was a successful write so make
2650                                 * sure it looks like we already did
2651                                 * a re-write.
2652                                 */
2653                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2654                }
2655        }
2656        rdev_dec_pending(rdev, conf->mddev);
2657
2658        if (sh->batch_head && bi->bi_status && !replacement)
2659                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2660
2661        bio_reset(bi);
2662        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2663                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2664        set_bit(STRIPE_HANDLE, &sh->state);
2665        raid5_release_stripe(sh);
2666
2667        if (sh->batch_head && sh != sh->batch_head)
2668                raid5_release_stripe(sh->batch_head);
2669}
2670
2671static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2672{
2673        char b[BDEVNAME_SIZE];
2674        struct r5conf *conf = mddev->private;
2675        unsigned long flags;
2676        pr_debug("raid456: error called\n");
2677
2678        spin_lock_irqsave(&conf->device_lock, flags);
2679
2680        if (test_bit(In_sync, &rdev->flags) &&
2681            mddev->degraded == conf->max_degraded) {
2682                /*
2683                 * Don't allow to achieve failed state
2684                 * Don't try to recover this device
2685                 */
2686                conf->recovery_disabled = mddev->recovery_disabled;
2687                spin_unlock_irqrestore(&conf->device_lock, flags);
2688                return;
2689        }
2690
2691        set_bit(Faulty, &rdev->flags);
2692        clear_bit(In_sync, &rdev->flags);
2693        mddev->degraded = raid5_calc_degraded(conf);
2694        spin_unlock_irqrestore(&conf->device_lock, flags);
2695        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2696
2697        set_bit(Blocked, &rdev->flags);
2698        set_mask_bits(&mddev->sb_flags, 0,
2699                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2700        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2701                "md/raid:%s: Operation continuing on %d devices.\n",
2702                mdname(mddev),
2703                bdevname(rdev->bdev, b),
2704                mdname(mddev),
2705                conf->raid_disks - mddev->degraded);
2706        r5c_update_on_rdev_error(mddev, rdev);
2707}
2708
2709/*
2710 * Input: a 'big' sector number,
2711 * Output: index of the data and parity disk, and the sector # in them.
2712 */
2713sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2714                              int previous, int *dd_idx,
2715                              struct stripe_head *sh)
2716{
2717        sector_t stripe, stripe2;
2718        sector_t chunk_number;
2719        unsigned int chunk_offset;
2720        int pd_idx, qd_idx;
2721        int ddf_layout = 0;
2722        sector_t new_sector;
2723        int algorithm = previous ? conf->prev_algo
2724                                 : conf->algorithm;
2725        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2726                                         : conf->chunk_sectors;
2727        int raid_disks = previous ? conf->previous_raid_disks
2728                                  : conf->raid_disks;
2729        int data_disks = raid_disks - conf->max_degraded;
2730
2731        /* First compute the information on this sector */
2732
2733        /*
2734         * Compute the chunk number and the sector offset inside the chunk
2735         */
2736        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2737        chunk_number = r_sector;
2738
2739        /*
2740         * Compute the stripe number
2741         */
2742        stripe = chunk_number;
2743        *dd_idx = sector_div(stripe, data_disks);
2744        stripe2 = stripe;
2745        /*
2746         * Select the parity disk based on the user selected algorithm.
2747         */
2748        pd_idx = qd_idx = -1;
2749        switch(conf->level) {
2750        case 4:
2751                pd_idx = data_disks;
2752                break;
2753        case 5:
2754                switch (algorithm) {
2755                case ALGORITHM_LEFT_ASYMMETRIC:
2756                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757                        if (*dd_idx >= pd_idx)
2758                                (*dd_idx)++;
2759                        break;
2760                case ALGORITHM_RIGHT_ASYMMETRIC:
2761                        pd_idx = sector_div(stripe2, raid_disks);
2762                        if (*dd_idx >= pd_idx)
2763                                (*dd_idx)++;
2764                        break;
2765                case ALGORITHM_LEFT_SYMMETRIC:
2766                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2767                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2768                        break;
2769                case ALGORITHM_RIGHT_SYMMETRIC:
2770                        pd_idx = sector_div(stripe2, raid_disks);
2771                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2772                        break;
2773                case ALGORITHM_PARITY_0:
2774                        pd_idx = 0;
2775                        (*dd_idx)++;
2776                        break;
2777                case ALGORITHM_PARITY_N:
2778                        pd_idx = data_disks;
2779                        break;
2780                default:
2781                        BUG();
2782                }
2783                break;
2784        case 6:
2785
2786                switch (algorithm) {
2787                case ALGORITHM_LEFT_ASYMMETRIC:
2788                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2789                        qd_idx = pd_idx + 1;
2790                        if (pd_idx == raid_disks-1) {
2791                                (*dd_idx)++;    /* Q D D D P */
2792                                qd_idx = 0;
2793                        } else if (*dd_idx >= pd_idx)
2794                                (*dd_idx) += 2; /* D D P Q D */
2795                        break;
2796                case ALGORITHM_RIGHT_ASYMMETRIC:
2797                        pd_idx = sector_div(stripe2, raid_disks);
2798                        qd_idx = pd_idx + 1;
2799                        if (pd_idx == raid_disks-1) {
2800                                (*dd_idx)++;    /* Q D D D P */
2801                                qd_idx = 0;
2802                        } else if (*dd_idx >= pd_idx)
2803                                (*dd_idx) += 2; /* D D P Q D */
2804                        break;
2805                case ALGORITHM_LEFT_SYMMETRIC:
2806                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2807                        qd_idx = (pd_idx + 1) % raid_disks;
2808                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2809                        break;
2810                case ALGORITHM_RIGHT_SYMMETRIC:
2811                        pd_idx = sector_div(stripe2, raid_disks);
2812                        qd_idx = (pd_idx + 1) % raid_disks;
2813                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2814                        break;
2815
2816                case ALGORITHM_PARITY_0:
2817                        pd_idx = 0;
2818                        qd_idx = 1;
2819                        (*dd_idx) += 2;
2820                        break;
2821                case ALGORITHM_PARITY_N:
2822                        pd_idx = data_disks;
2823                        qd_idx = data_disks + 1;
2824                        break;
2825
2826                case ALGORITHM_ROTATING_ZERO_RESTART:
2827                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2828                         * of blocks for computing Q is different.
2829                         */
2830                        pd_idx = sector_div(stripe2, raid_disks);
2831                        qd_idx = pd_idx + 1;
2832                        if (pd_idx == raid_disks-1) {
2833                                (*dd_idx)++;    /* Q D D D P */
2834                                qd_idx = 0;
2835                        } else if (*dd_idx >= pd_idx)
2836                                (*dd_idx) += 2; /* D D P Q D */
2837                        ddf_layout = 1;
2838                        break;
2839
2840                case ALGORITHM_ROTATING_N_RESTART:
2841                        /* Same a left_asymmetric, by first stripe is
2842                         * D D D P Q  rather than
2843                         * Q D D D P
2844                         */
2845                        stripe2 += 1;
2846                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2847                        qd_idx = pd_idx + 1;
2848                        if (pd_idx == raid_disks-1) {
2849                                (*dd_idx)++;    /* Q D D D P */
2850                                qd_idx = 0;
2851                        } else if (*dd_idx >= pd_idx)
2852                                (*dd_idx) += 2; /* D D P Q D */
2853                        ddf_layout = 1;
2854                        break;
2855
2856                case ALGORITHM_ROTATING_N_CONTINUE:
2857                        /* Same as left_symmetric but Q is before P */
2858                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2859                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2860                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2861                        ddf_layout = 1;
2862                        break;
2863
2864                case ALGORITHM_LEFT_ASYMMETRIC_6:
2865                        /* RAID5 left_asymmetric, with Q on last device */
2866                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2867                        if (*dd_idx >= pd_idx)
2868                                (*dd_idx)++;
2869                        qd_idx = raid_disks - 1;
2870                        break;
2871
2872                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2873                        pd_idx = sector_div(stripe2, raid_disks-1);
2874                        if (*dd_idx >= pd_idx)
2875                                (*dd_idx)++;
2876                        qd_idx = raid_disks - 1;
2877                        break;
2878
2879                case ALGORITHM_LEFT_SYMMETRIC_6:
2880                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2881                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2882                        qd_idx = raid_disks - 1;
2883                        break;
2884
2885                case ALGORITHM_RIGHT_SYMMETRIC_6:
2886                        pd_idx = sector_div(stripe2, raid_disks-1);
2887                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2888                        qd_idx = raid_disks - 1;
2889                        break;
2890
2891                case ALGORITHM_PARITY_0_6:
2892                        pd_idx = 0;
2893                        (*dd_idx)++;
2894                        qd_idx = raid_disks - 1;
2895                        break;
2896
2897                default:
2898                        BUG();
2899                }
2900                break;
2901        }
2902
2903        if (sh) {
2904                sh->pd_idx = pd_idx;
2905                sh->qd_idx = qd_idx;
2906                sh->ddf_layout = ddf_layout;
2907        }
2908        /*
2909         * Finally, compute the new sector number
2910         */
2911        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2912        return new_sector;
2913}
2914
2915sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2916{
2917        struct r5conf *conf = sh->raid_conf;
2918        int raid_disks = sh->disks;
2919        int data_disks = raid_disks - conf->max_degraded;
2920        sector_t new_sector = sh->sector, check;
2921        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2922                                         : conf->chunk_sectors;
2923        int algorithm = previous ? conf->prev_algo
2924                                 : conf->algorithm;
2925        sector_t stripe;
2926        int chunk_offset;
2927        sector_t chunk_number;
2928        int dummy1, dd_idx = i;
2929        sector_t r_sector;
2930        struct stripe_head sh2;
2931
2932        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2933        stripe = new_sector;
2934
2935        if (i == sh->pd_idx)
2936                return 0;
2937        switch(conf->level) {
2938        case 4: break;
2939        case 5:
2940                switch (algorithm) {
2941                case ALGORITHM_LEFT_ASYMMETRIC:
2942                case ALGORITHM_RIGHT_ASYMMETRIC:
2943                        if (i > sh->pd_idx)
2944                                i--;
2945                        break;
2946                case ALGORITHM_LEFT_SYMMETRIC:
2947                case ALGORITHM_RIGHT_SYMMETRIC:
2948                        if (i < sh->pd_idx)
2949                                i += raid_disks;
2950                        i -= (sh->pd_idx + 1);
2951                        break;
2952                case ALGORITHM_PARITY_0:
2953                        i -= 1;
2954                        break;
2955                case ALGORITHM_PARITY_N:
2956                        break;
2957                default:
2958                        BUG();
2959                }
2960                break;
2961        case 6:
2962                if (i == sh->qd_idx)
2963                        return 0; /* It is the Q disk */
2964                switch (algorithm) {
2965                case ALGORITHM_LEFT_ASYMMETRIC:
2966                case ALGORITHM_RIGHT_ASYMMETRIC:
2967                case ALGORITHM_ROTATING_ZERO_RESTART:
2968                case ALGORITHM_ROTATING_N_RESTART:
2969                        if (sh->pd_idx == raid_disks-1)
2970                                i--;    /* Q D D D P */
2971                        else if (i > sh->pd_idx)
2972                                i -= 2; /* D D P Q D */
2973                        break;
2974                case ALGORITHM_LEFT_SYMMETRIC:
2975                case ALGORITHM_RIGHT_SYMMETRIC:
2976                        if (sh->pd_idx == raid_disks-1)
2977                                i--; /* Q D D D P */
2978                        else {
2979                                /* D D P Q D */
2980                                if (i < sh->pd_idx)
2981                                        i += raid_disks;
2982                                i -= (sh->pd_idx + 2);
2983                        }
2984                        break;
2985                case ALGORITHM_PARITY_0:
2986                        i -= 2;
2987                        break;
2988                case ALGORITHM_PARITY_N:
2989                        break;
2990                case ALGORITHM_ROTATING_N_CONTINUE:
2991                        /* Like left_symmetric, but P is before Q */
2992                        if (sh->pd_idx == 0)
2993                                i--;    /* P D D D Q */
2994                        else {
2995                                /* D D Q P D */
2996                                if (i < sh->pd_idx)
2997                                        i += raid_disks;
2998                                i -= (sh->pd_idx + 1);
2999                        }
3000                        break;
3001                case ALGORITHM_LEFT_ASYMMETRIC_6:
3002                case ALGORITHM_RIGHT_ASYMMETRIC_6:
3003                        if (i > sh->pd_idx)
3004                                i--;
3005                        break;
3006                case ALGORITHM_LEFT_SYMMETRIC_6:
3007                case ALGORITHM_RIGHT_SYMMETRIC_6:
3008                        if (i < sh->pd_idx)
3009                                i += data_disks + 1;
3010                        i -= (sh->pd_idx + 1);
3011                        break;
3012                case ALGORITHM_PARITY_0_6:
3013                        i -= 1;
3014                        break;
3015                default:
3016                        BUG();
3017                }
3018                break;
3019        }
3020
3021        chunk_number = stripe * data_disks + i;
3022        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3023
3024        check = raid5_compute_sector(conf, r_sector,
3025                                     previous, &dummy1, &sh2);
3026        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3027                || sh2.qd_idx != sh->qd_idx) {
3028                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3029                        mdname(conf->mddev));
3030                return 0;
3031        }
3032        return r_sector;
3033}
3034
3035/*
3036 * There are cases where we want handle_stripe_dirtying() and
3037 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3038 *
3039 * This function checks whether we want to delay the towrite. Specifically,
3040 * we delay the towrite when:
3041 *
3042 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3043 *      stripe has data in journal (for other devices).
3044 *
3045 *      In this case, when reading data for the non-overwrite dev, it is
3046 *      necessary to handle complex rmw of write back cache (prexor with
3047 *      orig_page, and xor with page). To keep read path simple, we would
3048 *      like to flush data in journal to RAID disks first, so complex rmw
3049 *      is handled in the write patch (handle_stripe_dirtying).
3050 *
3051 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3052 *
3053 *      It is important to be able to flush all stripes in raid5-cache.
3054 *      Therefore, we need reserve some space on the journal device for
3055 *      these flushes. If flush operation includes pending writes to the
3056 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3057 *      for the flush out. If we exclude these pending writes from flush
3058 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3059 *      Therefore, excluding pending writes in these cases enables more
3060 *      efficient use of the journal device.
3061 *
3062 *      Note: To make sure the stripe makes progress, we only delay
3063 *      towrite for stripes with data already in journal (injournal > 0).
3064 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3065 *      no_space_stripes list.
3066 *
3067 *   3. during journal failure
3068 *      In journal failure, we try to flush all cached data to raid disks
3069 *      based on data in stripe cache. The array is read-only to upper
3070 *      layers, so we would skip all pending writes.
3071 *
3072 */
3073static inline bool delay_towrite(struct r5conf *conf,
3074                                 struct r5dev *dev,
3075                                 struct stripe_head_state *s)
3076{
3077        /* case 1 above */
3078        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3079            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3080                return true;
3081        /* case 2 above */
3082        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3083            s->injournal > 0)
3084                return true;
3085        /* case 3 above */
3086        if (s->log_failed && s->injournal)
3087                return true;
3088        return false;
3089}
3090
3091static void
3092schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3093                         int rcw, int expand)
3094{
3095        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3096        struct r5conf *conf = sh->raid_conf;
3097        int level = conf->level;
3098
3099        if (rcw) {
3100                /*
3101                 * In some cases, handle_stripe_dirtying initially decided to
3102                 * run rmw and allocates extra page for prexor. However, rcw is
3103                 * cheaper later on. We need to free the extra page now,
3104                 * because we won't be able to do that in ops_complete_prexor().
3105                 */
3106                r5c_release_extra_page(sh);
3107
3108                for (i = disks; i--; ) {
3109                        struct r5dev *dev = &sh->dev[i];
3110
3111                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3112                                set_bit(R5_LOCKED, &dev->flags);
3113                                set_bit(R5_Wantdrain, &dev->flags);
3114                                if (!expand)
3115                                        clear_bit(R5_UPTODATE, &dev->flags);
3116                                s->locked++;
3117                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3118                                set_bit(R5_LOCKED, &dev->flags);
3119                                s->locked++;
3120                        }
3121                }
3122                /* if we are not expanding this is a proper write request, and
3123                 * there will be bios with new data to be drained into the
3124                 * stripe cache
3125                 */
3126                if (!expand) {
3127                        if (!s->locked)
3128                                /* False alarm, nothing to do */
3129                                return;
3130                        sh->reconstruct_state = reconstruct_state_drain_run;
3131                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3132                } else
3133                        sh->reconstruct_state = reconstruct_state_run;
3134
3135                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3136
3137                if (s->locked + conf->max_degraded == disks)
3138                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3139                                atomic_inc(&conf->pending_full_writes);
3140        } else {
3141                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3142                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3143                BUG_ON(level == 6 &&
3144                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3145                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3146
3147                for (i = disks; i--; ) {
3148                        struct r5dev *dev = &sh->dev[i];
3149                        if (i == pd_idx || i == qd_idx)
3150                                continue;
3151
3152                        if (dev->towrite &&
3153                            (test_bit(R5_UPTODATE, &dev->flags) ||
3154                             test_bit(R5_Wantcompute, &dev->flags))) {
3155                                set_bit(R5_Wantdrain, &dev->flags);
3156                                set_bit(R5_LOCKED, &dev->flags);
3157                                clear_bit(R5_UPTODATE, &dev->flags);
3158                                s->locked++;
3159                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3160                                set_bit(R5_LOCKED, &dev->flags);
3161                                s->locked++;
3162                        }
3163                }
3164                if (!s->locked)
3165                        /* False alarm - nothing to do */
3166                        return;
3167                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3168                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3169                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3170                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3171        }
3172
3173        /* keep the parity disk(s) locked while asynchronous operations
3174         * are in flight
3175         */
3176        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3177        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3178        s->locked++;
3179
3180        if (level == 6) {
3181                int qd_idx = sh->qd_idx;
3182                struct r5dev *dev = &sh->dev[qd_idx];
3183
3184                set_bit(R5_LOCKED, &dev->flags);
3185                clear_bit(R5_UPTODATE, &dev->flags);
3186                s->locked++;
3187        }
3188
3189        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3190            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3191            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3192            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3193                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3194
3195        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3196                __func__, (unsigned long long)sh->sector,
3197                s->locked, s->ops_request);
3198}
3199
3200/*
3201 * Each stripe/dev can have one or more bion attached.
3202 * toread/towrite point to the first in a chain.
3203 * The bi_next chain must be in order.
3204 */
3205static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3206                          int forwrite, int previous)
3207{
3208        struct bio **bip;
3209        struct r5conf *conf = sh->raid_conf;
3210        int firstwrite=0;
3211
3212        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3213                (unsigned long long)bi->bi_iter.bi_sector,
3214                (unsigned long long)sh->sector);
3215
3216        spin_lock_irq(&sh->stripe_lock);
3217        sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3218        /* Don't allow new IO added to stripes in batch list */
3219        if (sh->batch_head)
3220                goto overlap;
3221        if (forwrite) {
3222                bip = &sh->dev[dd_idx].towrite;
3223                if (*bip == NULL)
3224                        firstwrite = 1;
3225        } else
3226                bip = &sh->dev[dd_idx].toread;
3227        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3228                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3229                        goto overlap;
3230                bip = & (*bip)->bi_next;
3231        }
3232        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3233                goto overlap;
3234
3235        if (forwrite && raid5_has_ppl(conf)) {
3236                /*
3237                 * With PPL only writes to consecutive data chunks within a
3238                 * stripe are allowed because for a single stripe_head we can
3239                 * only have one PPL entry at a time, which describes one data
3240                 * range. Not really an overlap, but wait_for_overlap can be
3241                 * used to handle this.
3242                 */
3243                sector_t sector;
3244                sector_t first = 0;
3245                sector_t last = 0;
3246                int count = 0;
3247                int i;
3248
3249                for (i = 0; i < sh->disks; i++) {
3250                        if (i != sh->pd_idx &&
3251                            (i == dd_idx || sh->dev[i].towrite)) {
3252                                sector = sh->dev[i].sector;
3253                                if (count == 0 || sector < first)
3254                                        first = sector;
3255                                if (sector > last)
3256                                        last = sector;
3257                                count++;
3258                        }
3259                }
3260
3261                if (first + conf->chunk_sectors * (count - 1) != last)
3262                        goto overlap;
3263        }
3264
3265        if (!forwrite || previous)
3266                clear_bit(STRIPE_BATCH_READY, &sh->state);
3267
3268        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3269        if (*bip)
3270                bi->bi_next = *bip;
3271        *bip = bi;
3272        bio_inc_remaining(bi);
3273        md_write_inc(conf->mddev, bi);
3274
3275        if (forwrite) {
3276                /* check if page is covered */
3277                sector_t sector = sh->dev[dd_idx].sector;
3278                for (bi=sh->dev[dd_idx].towrite;
3279                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3280                             bi && bi->bi_iter.bi_sector <= sector;
3281                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3282                        if (bio_end_sector(bi) >= sector)
3283                                sector = bio_end_sector(bi);
3284                }
3285                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3286                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3287                                sh->overwrite_disks++;
3288        }
3289
3290        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3291                (unsigned long long)(*bip)->bi_iter.bi_sector,
3292                (unsigned long long)sh->sector, dd_idx);
3293
3294        if (conf->mddev->bitmap && firstwrite) {
3295                /* Cannot hold spinlock over bitmap_startwrite,
3296                 * but must ensure this isn't added to a batch until
3297                 * we have added to the bitmap and set bm_seq.
3298                 * So set STRIPE_BITMAP_PENDING to prevent
3299                 * batching.
3300                 * If multiple add_stripe_bio() calls race here they
3301                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3302                 * to complete "bitmap_startwrite" gets to set
3303                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3304                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3305                 * any more.
3306                 */
3307                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3308                spin_unlock_irq(&sh->stripe_lock);
3309                md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3310                                     STRIPE_SECTORS, 0);
3311                spin_lock_irq(&sh->stripe_lock);
3312                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3313                if (!sh->batch_head) {
3314                        sh->bm_seq = conf->seq_flush+1;
3315                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3316                }
3317        }
3318        spin_unlock_irq(&sh->stripe_lock);
3319
3320        if (stripe_can_batch(sh))
3321                stripe_add_to_batch_list(conf, sh);
3322        return 1;
3323
3324 overlap:
3325        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3326        spin_unlock_irq(&sh->stripe_lock);
3327        return 0;
3328}
3329
3330static void end_reshape(struct r5conf *conf);
3331
3332static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3333                            struct stripe_head *sh)
3334{
3335        int sectors_per_chunk =
3336                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3337        int dd_idx;
3338        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3339        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3340
3341        raid5_compute_sector(conf,
3342                             stripe * (disks - conf->max_degraded)
3343                             *sectors_per_chunk + chunk_offset,
3344                             previous,
3345                             &dd_idx, sh);
3346}
3347
3348static void
3349handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3350                     struct stripe_head_state *s, int disks)
3351{
3352        int i;
3353        BUG_ON(sh->batch_head);
3354        for (i = disks; i--; ) {
3355                struct bio *bi;
3356                int bitmap_end = 0;
3357
3358                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3359                        struct md_rdev *rdev;
3360                        rcu_read_lock();
3361                        rdev = rcu_dereference(conf->disks[i].rdev);
3362                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3363                            !test_bit(Faulty, &rdev->flags))
3364                                atomic_inc(&rdev->nr_pending);
3365                        else
3366                                rdev = NULL;
3367                        rcu_read_unlock();
3368                        if (rdev) {
3369                                if (!rdev_set_badblocks(
3370                                            rdev,
3371                                            sh->sector,
3372                                            STRIPE_SECTORS, 0))
3373                                        md_error(conf->mddev, rdev);
3374                                rdev_dec_pending(rdev, conf->mddev);
3375                        }
3376                }
3377                spin_lock_irq(&sh->stripe_lock);
3378                /* fail all writes first */
3379                bi = sh->dev[i].towrite;
3380                sh->dev[i].towrite = NULL;
3381                sh->overwrite_disks = 0;
3382                spin_unlock_irq(&sh->stripe_lock);
3383                if (bi)
3384                        bitmap_end = 1;
3385
3386                log_stripe_write_finished(sh);
3387
3388                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3389                        wake_up(&conf->wait_for_overlap);
3390
3391                while (bi && bi->bi_iter.bi_sector <
3392                        sh->dev[i].sector + STRIPE_SECTORS) {
3393                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3394
3395                        md_write_end(conf->mddev);
3396                        bio_io_error(bi);
3397                        bi = nextbi;
3398                }
3399                if (bitmap_end)
3400                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3401                                           STRIPE_SECTORS, 0, 0);
3402                bitmap_end = 0;
3403                /* and fail all 'written' */
3404                bi = sh->dev[i].written;
3405                sh->dev[i].written = NULL;
3406                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3407                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3408                        sh->dev[i].page = sh->dev[i].orig_page;
3409                }
3410
3411                if (bi) bitmap_end = 1;
3412                while (bi && bi->bi_iter.bi_sector <
3413                       sh->dev[i].sector + STRIPE_SECTORS) {
3414                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3415
3416                        md_write_end(conf->mddev);
3417                        bio_io_error(bi);
3418                        bi = bi2;
3419                }
3420
3421                /* fail any reads if this device is non-operational and
3422                 * the data has not reached the cache yet.
3423                 */
3424                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3425                    s->failed > conf->max_degraded &&
3426                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3427                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3428                        spin_lock_irq(&sh->stripe_lock);
3429                        bi = sh->dev[i].toread;
3430                        sh->dev[i].toread = NULL;
3431                        spin_unlock_irq(&sh->stripe_lock);
3432                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3433                                wake_up(&conf->wait_for_overlap);
3434                        if (bi)
3435                                s->to_read--;
3436                        while (bi && bi->bi_iter.bi_sector <
3437                               sh->dev[i].sector + STRIPE_SECTORS) {
3438                                struct bio *nextbi =
3439                                        r5_next_bio(bi, sh->dev[i].sector);
3440
3441                                bio_io_error(bi);
3442                                bi = nextbi;
3443                        }
3444                }
3445                if (bitmap_end)
3446                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3447                                           STRIPE_SECTORS, 0, 0);
3448                /* If we were in the middle of a write the parity block might
3449                 * still be locked - so just clear all R5_LOCKED flags
3450                 */
3451                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3452        }
3453        s->to_write = 0;
3454        s->written = 0;
3455
3456        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3457                if (atomic_dec_and_test(&conf->pending_full_writes))
3458                        md_wakeup_thread(conf->mddev->thread);
3459}
3460
3461static void
3462handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3463                   struct stripe_head_state *s)
3464{
3465        int abort = 0;
3466        int i;
3467
3468        BUG_ON(sh->batch_head);
3469        clear_bit(STRIPE_SYNCING, &sh->state);
3470        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3471                wake_up(&conf->wait_for_overlap);
3472        s->syncing = 0;
3473        s->replacing = 0;
3474        /* There is nothing more to do for sync/check/repair.
3475         * Don't even need to abort as that is handled elsewhere
3476         * if needed, and not always wanted e.g. if there is a known
3477         * bad block here.
3478         * For recover/replace we need to record a bad block on all
3479         * non-sync devices, or abort the recovery
3480         */
3481        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3482                /* During recovery devices cannot be removed, so
3483                 * locking and refcounting of rdevs is not needed
3484                 */
3485                rcu_read_lock();
3486                for (i = 0; i < conf->raid_disks; i++) {
3487                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3488                        if (rdev
3489                            && !test_bit(Faulty, &rdev->flags)
3490                            && !test_bit(In_sync, &rdev->flags)
3491                            && !rdev_set_badblocks(rdev, sh->sector,
3492                                                   STRIPE_SECTORS, 0))
3493                                abort = 1;
3494                        rdev = rcu_dereference(conf->disks[i].replacement);
3495                        if (rdev
3496                            && !test_bit(Faulty, &rdev->flags)
3497                            && !test_bit(In_sync, &rdev->flags)
3498                            && !rdev_set_badblocks(rdev, sh->sector,
3499                                                   STRIPE_SECTORS, 0))
3500                                abort = 1;
3501                }
3502                rcu_read_unlock();
3503                if (abort)
3504                        conf->recovery_disabled =
3505                                conf->mddev->recovery_disabled;
3506        }
3507        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3508}
3509
3510static int want_replace(struct stripe_head *sh, int disk_idx)
3511{
3512        struct md_rdev *rdev;
3513        int rv = 0;
3514
3515        rcu_read_lock();
3516        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3517        if (rdev
3518            && !test_bit(Faulty, &rdev->flags)
3519            && !test_bit(In_sync, &rdev->flags)
3520            && (rdev->recovery_offset <= sh->sector
3521                || rdev->mddev->recovery_cp <= sh->sector))
3522                rv = 1;
3523        rcu_read_unlock();
3524        return rv;
3525}
3526
3527static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3528                           int disk_idx, int disks)
3529{
3530        struct r5dev *dev = &sh->dev[disk_idx];
3531        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3532                                  &sh->dev[s->failed_num[1]] };
3533        int i;
3534
3535
3536        if (test_bit(R5_LOCKED, &dev->flags) ||
3537            test_bit(R5_UPTODATE, &dev->flags))
3538                /* No point reading this as we already have it or have
3539                 * decided to get it.
3540                 */
3541                return 0;
3542
3543        if (dev->toread ||
3544            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3545                /* We need this block to directly satisfy a request */
3546                return 1;
3547
3548        if (s->syncing || s->expanding ||
3549            (s->replacing && want_replace(sh, disk_idx)))
3550                /* When syncing, or expanding we read everything.
3551                 * When replacing, we need the replaced block.
3552                 */
3553                return 1;
3554
3555        if ((s->failed >= 1 && fdev[0]->toread) ||
3556            (s->failed >= 2 && fdev[1]->toread))
3557                /* If we want to read from a failed device, then
3558                 * we need to actually read every other device.
3559                 */
3560                return 1;
3561
3562        /* Sometimes neither read-modify-write nor reconstruct-write
3563         * cycles can work.  In those cases we read every block we
3564         * can.  Then the parity-update is certain to have enough to
3565         * work with.
3566         * This can only be a problem when we need to write something,
3567         * and some device has failed.  If either of those tests
3568         * fail we need look no further.
3569         */
3570        if (!s->failed || !s->to_write)
3571                return 0;
3572
3573        if (test_bit(R5_Insync, &dev->flags) &&
3574            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3575                /* Pre-reads at not permitted until after short delay
3576                 * to gather multiple requests.  However if this
3577                 * device is no Insync, the block could only be computed
3578                 * and there is no need to delay that.
3579                 */
3580                return 0;
3581
3582        for (i = 0; i < s->failed && i < 2; i++) {
3583                if (fdev[i]->towrite &&
3584                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3585                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3586                        /* If we have a partial write to a failed
3587                         * device, then we will need to reconstruct
3588                         * the content of that device, so all other
3589                         * devices must be read.
3590                         */
3591                        return 1;
3592        }
3593
3594        /* If we are forced to do a reconstruct-write, either because
3595         * the current RAID6 implementation only supports that, or
3596         * because parity cannot be trusted and we are currently
3597         * recovering it, there is extra need to be careful.
3598         * If one of the devices that we would need to read, because
3599         * it is not being overwritten (and maybe not written at all)
3600         * is missing/faulty, then we need to read everything we can.
3601         */
3602        if (sh->raid_conf->level != 6 &&
3603            sh->sector < sh->raid_conf->mddev->recovery_cp)
3604                /* reconstruct-write isn't being forced */
3605                return 0;
3606        for (i = 0; i < s->failed && i < 2; i++) {
3607                if (s->failed_num[i] != sh->pd_idx &&
3608                    s->failed_num[i] != sh->qd_idx &&
3609                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3610                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3611                        return 1;
3612        }
3613
3614        return 0;
3615}
3616
3617/* fetch_block - checks the given member device to see if its data needs
3618 * to be read or computed to satisfy a request.
3619 *
3620 * Returns 1 when no more member devices need to be checked, otherwise returns
3621 * 0 to tell the loop in handle_stripe_fill to continue
3622 */
3623static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3624                       int disk_idx, int disks)
3625{
3626        struct r5dev *dev = &sh->dev[disk_idx];
3627
3628        /* is the data in this block needed, and can we get it? */
3629        if (need_this_block(sh, s, disk_idx, disks)) {
3630                /* we would like to get this block, possibly by computing it,
3631                 * otherwise read it if the backing disk is insync
3632                 */
3633                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3634                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3635                BUG_ON(sh->batch_head);
3636
3637                /*
3638                 * In the raid6 case if the only non-uptodate disk is P
3639                 * then we already trusted P to compute the other failed
3640                 * drives. It is safe to compute rather than re-read P.
3641                 * In other cases we only compute blocks from failed
3642                 * devices, otherwise check/repair might fail to detect
3643                 * a real inconsistency.
3644                 */
3645
3646                if ((s->uptodate == disks - 1) &&
3647                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3648                    (s->failed && (disk_idx == s->failed_num[0] ||
3649                                   disk_idx == s->failed_num[1])))) {
3650                        /* have disk failed, and we're requested to fetch it;
3651                         * do compute it
3652                         */
3653                        pr_debug("Computing stripe %llu block %d\n",
3654                               (unsigned long long)sh->sector, disk_idx);
3655                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3656                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3657                        set_bit(R5_Wantcompute, &dev->flags);
3658                        sh->ops.target = disk_idx;
3659                        sh->ops.target2 = -1; /* no 2nd target */
3660                        s->req_compute = 1;
3661                        /* Careful: from this point on 'uptodate' is in the eye
3662                         * of raid_run_ops which services 'compute' operations
3663                         * before writes. R5_Wantcompute flags a block that will
3664                         * be R5_UPTODATE by the time it is needed for a
3665                         * subsequent operation.
3666                         */
3667                        s->uptodate++;
3668                        return 1;
3669                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3670                        /* Computing 2-failure is *very* expensive; only
3671                         * do it if failed >= 2
3672                         */
3673                        int other;
3674                        for (other = disks; other--; ) {
3675                                if (other == disk_idx)
3676                                        continue;
3677                                if (!test_bit(R5_UPTODATE,
3678                                      &sh->dev[other].flags))
3679                                        break;
3680                        }
3681                        BUG_ON(other < 0);
3682                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3683                               (unsigned long long)sh->sector,
3684                               disk_idx, other);
3685                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3686                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3687                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3688                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3689                        sh->ops.target = disk_idx;
3690                        sh->ops.target2 = other;
3691                        s->uptodate += 2;
3692                        s->req_compute = 1;
3693                        return 1;
3694                } else if (test_bit(R5_Insync, &dev->flags)) {
3695                        set_bit(R5_LOCKED, &dev->flags);
3696                        set_bit(R5_Wantread, &dev->flags);
3697                        s->locked++;
3698                        pr_debug("Reading block %d (sync=%d)\n",
3699                                disk_idx, s->syncing);
3700                }
3701        }
3702
3703        return 0;
3704}
3705
3706/**
3707 * handle_stripe_fill - read or compute data to satisfy pending requests.
3708 */
3709static void handle_stripe_fill(struct stripe_head *sh,
3710                               struct stripe_head_state *s,
3711                               int disks)
3712{
3713        int i;
3714
3715        /* look for blocks to read/compute, skip this if a compute
3716         * is already in flight, or if the stripe contents are in the
3717         * midst of changing due to a write
3718         */
3719        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3720            !sh->reconstruct_state) {
3721
3722                /*
3723                 * For degraded stripe with data in journal, do not handle
3724                 * read requests yet, instead, flush the stripe to raid
3725                 * disks first, this avoids handling complex rmw of write
3726                 * back cache (prexor with orig_page, and then xor with
3727                 * page) in the read path
3728                 */
3729                if (s->injournal && s->failed) {
3730                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3731                                r5c_make_stripe_write_out(sh);
3732                        goto out;
3733                }
3734
3735                for (i = disks; i--; )
3736                        if (fetch_block(sh, s, i, disks))
3737                                break;
3738        }
3739out:
3740        set_bit(STRIPE_HANDLE, &sh->state);
3741}
3742
3743static void break_stripe_batch_list(struct stripe_head *head_sh,
3744                                    unsigned long handle_flags);
3745/* handle_stripe_clean_event
3746 * any written block on an uptodate or failed drive can be returned.
3747 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3748 * never LOCKED, so we don't need to test 'failed' directly.
3749 */
3750static void handle_stripe_clean_event(struct r5conf *conf,
3751        struct stripe_head *sh, int disks)
3752{
3753        int i;
3754        struct r5dev *dev;
3755        int discard_pending = 0;
3756        struct stripe_head *head_sh = sh;
3757        bool do_endio = false;
3758
3759        for (i = disks; i--; )
3760                if (sh->dev[i].written) {
3761                        dev = &sh->dev[i];
3762                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3763                            (test_bit(R5_UPTODATE, &dev->flags) ||
3764                             test_bit(R5_Discard, &dev->flags) ||
3765                             test_bit(R5_SkipCopy, &dev->flags))) {
3766                                /* We can return any write requests */
3767                                struct bio *wbi, *wbi2;
3768                                pr_debug("Return write for disc %d\n", i);
3769                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3770                                        clear_bit(R5_UPTODATE, &dev->flags);
3771                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3772                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3773                                }
3774                                do_endio = true;
3775
3776returnbi:
3777                                dev->page = dev->orig_page;
3778                                wbi = dev->written;
3779                                dev->written = NULL;
3780                                while (wbi && wbi->bi_iter.bi_sector <
3781                                        dev->sector + STRIPE_SECTORS) {
3782                                        wbi2 = r5_next_bio(wbi, dev->sector);
3783                                        md_write_end(conf->mddev);
3784                                        bio_endio(wbi);
3785                                        wbi = wbi2;
3786                                }
3787                                md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3788                                                   STRIPE_SECTORS,
3789                                                   !test_bit(STRIPE_DEGRADED, &sh->state),
3790                                                   0);
3791                                if (head_sh->batch_head) {
3792                                        sh = list_first_entry(&sh->batch_list,
3793                                                              struct stripe_head,
3794                                                              batch_list);
3795                                        if (sh != head_sh) {
3796                                                dev = &sh->dev[i];
3797                                                goto returnbi;
3798                                        }
3799                                }
3800                                sh = head_sh;
3801                                dev = &sh->dev[i];
3802                        } else if (test_bit(R5_Discard, &dev->flags))
3803                                discard_pending = 1;
3804                }
3805
3806        log_stripe_write_finished(sh);
3807
3808        if (!discard_pending &&
3809            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3810                int hash;
3811                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3812                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3813                if (sh->qd_idx >= 0) {
3814                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3815                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3816                }
3817                /* now that discard is done we can proceed with any sync */
3818                clear_bit(STRIPE_DISCARD, &sh->state);
3819                /*
3820                 * SCSI discard will change some bio fields and the stripe has
3821                 * no updated data, so remove it from hash list and the stripe
3822                 * will be reinitialized
3823                 */
3824unhash:
3825                hash = sh->hash_lock_index;
3826                spin_lock_irq(conf->hash_locks + hash);
3827                remove_hash(sh);
3828                spin_unlock_irq(conf->hash_locks + hash);
3829                if (head_sh->batch_head) {
3830                        sh = list_first_entry(&sh->batch_list,
3831                                              struct stripe_head, batch_list);
3832                        if (sh != head_sh)
3833                                        goto unhash;
3834                }
3835                sh = head_sh;
3836
3837                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3838                        set_bit(STRIPE_HANDLE, &sh->state);
3839
3840        }
3841
3842        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3843                if (atomic_dec_and_test(&conf->pending_full_writes))
3844                        md_wakeup_thread(conf->mddev->thread);
3845
3846        if (head_sh->batch_head && do_endio)
3847                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3848}
3849
3850/*
3851 * For RMW in write back cache, we need extra page in prexor to store the
3852 * old data. This page is stored in dev->orig_page.
3853 *
3854 * This function checks whether we have data for prexor. The exact logic
3855 * is:
3856 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3857 */
3858static inline bool uptodate_for_rmw(struct r5dev *dev)
3859{
3860        return (test_bit(R5_UPTODATE, &dev->flags)) &&
3861                (!test_bit(R5_InJournal, &dev->flags) ||
3862                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3863}
3864
3865static int handle_stripe_dirtying(struct r5conf *conf,
3866                                  struct stripe_head *sh,
3867                                  struct stripe_head_state *s,
3868                                  int disks)
3869{
3870        int rmw = 0, rcw = 0, i;
3871        sector_t recovery_cp = conf->mddev->recovery_cp;
3872
3873        /* Check whether resync is now happening or should start.
3874         * If yes, then the array is dirty (after unclean shutdown or
3875         * initial creation), so parity in some stripes might be inconsistent.
3876         * In this case, we need to always do reconstruct-write, to ensure
3877         * that in case of drive failure or read-error correction, we
3878         * generate correct data from the parity.
3879         */
3880        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3881            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3882             s->failed == 0)) {
3883                /* Calculate the real rcw later - for now make it
3884                 * look like rcw is cheaper
3885                 */
3886                rcw = 1; rmw = 2;
3887                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3888                         conf->rmw_level, (unsigned long long)recovery_cp,
3889                         (unsigned long long)sh->sector);
3890        } else for (i = disks; i--; ) {
3891                /* would I have to read this buffer for read_modify_write */
3892                struct r5dev *dev = &sh->dev[i];
3893                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3894                     i == sh->pd_idx || i == sh->qd_idx ||
3895                     test_bit(R5_InJournal, &dev->flags)) &&
3896                    !test_bit(R5_LOCKED, &dev->flags) &&
3897                    !(uptodate_for_rmw(dev) ||
3898                      test_bit(R5_Wantcompute, &dev->flags))) {
3899                        if (test_bit(R5_Insync, &dev->flags))
3900                                rmw++;
3901                        else
3902                                rmw += 2*disks;  /* cannot read it */
3903                }
3904                /* Would I have to read this buffer for reconstruct_write */
3905                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3906                    i != sh->pd_idx && i != sh->qd_idx &&
3907                    !test_bit(R5_LOCKED, &dev->flags) &&
3908                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3909                      test_bit(R5_Wantcompute, &dev->flags))) {
3910                        if (test_bit(R5_Insync, &dev->flags))
3911                                rcw++;
3912                        else
3913                                rcw += 2*disks;
3914                }
3915        }
3916
3917        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3918                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3919        set_bit(STRIPE_HANDLE, &sh->state);
3920        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3921                /* prefer read-modify-write, but need to get some data */
3922                if (conf->mddev->queue)
3923                        blk_add_trace_msg(conf->mddev->queue,
3924                                          "raid5 rmw %llu %d",
3925                                          (unsigned long long)sh->sector, rmw);
3926                for (i = disks; i--; ) {
3927                        struct r5dev *dev = &sh->dev[i];
3928                        if (test_bit(R5_InJournal, &dev->flags) &&
3929                            dev->page == dev->orig_page &&
3930                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3931                                /* alloc page for prexor */
3932                                struct page *p = alloc_page(GFP_NOIO);
3933
3934                                if (p) {
3935                                        dev->orig_page = p;
3936                                        continue;
3937                                }
3938
3939                                /*
3940                                 * alloc_page() failed, try use
3941                                 * disk_info->extra_page
3942                                 */
3943                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3944                                                      &conf->cache_state)) {
3945                                        r5c_use_extra_page(sh);
3946                                        break;
3947                                }
3948
3949                                /* extra_page in use, add to delayed_list */
3950                                set_bit(STRIPE_DELAYED, &sh->state);
3951                                s->waiting_extra_page = 1;
3952                                return -EAGAIN;
3953                        }
3954                }
3955
3956                for (i = disks; i--; ) {
3957                        struct r5dev *dev = &sh->dev[i];
3958                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3959                             i == sh->pd_idx || i == sh->qd_idx ||
3960                             test_bit(R5_InJournal, &dev->flags)) &&
3961                            !test_bit(R5_LOCKED, &dev->flags) &&
3962                            !(uptodate_for_rmw(dev) ||
3963                              test_bit(R5_Wantcompute, &dev->flags)) &&
3964                            test_bit(R5_Insync, &dev->flags)) {
3965                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3966                                             &sh->state)) {
3967                                        pr_debug("Read_old block %d for r-m-w\n",
3968                                                 i);
3969                                        set_bit(R5_LOCKED, &dev->flags);
3970                                        set_bit(R5_Wantread, &dev->flags);
3971                                        s->locked++;
3972                                } else {
3973                                        set_bit(STRIPE_DELAYED, &sh->state);
3974                                        set_bit(STRIPE_HANDLE, &sh->state);
3975                                }
3976                        }
3977                }
3978        }
3979        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3980                /* want reconstruct write, but need to get some data */
3981                int qread =0;
3982                rcw = 0;
3983                for (i = disks; i--; ) {
3984                        struct r5dev *dev = &sh->dev[i];
3985                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3986                            i != sh->pd_idx && i != sh->qd_idx &&
3987                            !test_bit(R5_LOCKED, &dev->flags) &&
3988                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3989                              test_bit(R5_Wantcompute, &dev->flags))) {
3990                                rcw++;
3991                                if (test_bit(R5_Insync, &dev->flags) &&
3992                                    test_bit(STRIPE_PREREAD_ACTIVE,
3993                                             &sh->state)) {
3994                                        pr_debug("Read_old block "
3995                                                "%d for Reconstruct\n", i);
3996                                        set_bit(R5_LOCKED, &dev->flags);
3997                                        set_bit(R5_Wantread, &dev->flags);
3998                                        s->locked++;
3999                                        qread++;
4000                                } else {
4001                                        set_bit(STRIPE_DELAYED, &sh->state);
4002                                        set_bit(STRIPE_HANDLE, &sh->state);
4003                                }
4004                        }
4005                }
4006                if (rcw && conf->mddev->queue)
4007                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4008                                          (unsigned long long)sh->sector,
4009                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4010        }
4011
4012        if (rcw > disks && rmw > disks &&
4013            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4014                set_bit(STRIPE_DELAYED, &sh->state);
4015
4016        /* now if nothing is locked, and if we have enough data,
4017         * we can start a write request
4018         */
4019        /* since handle_stripe can be called at any time we need to handle the
4020         * case where a compute block operation has been submitted and then a
4021         * subsequent call wants to start a write request.  raid_run_ops only
4022         * handles the case where compute block and reconstruct are requested
4023         * simultaneously.  If this is not the case then new writes need to be
4024         * held off until the compute completes.
4025         */
4026        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4027            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4028             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4029                schedule_reconstruction(sh, s, rcw == 0, 0);
4030        return 0;
4031}
4032
4033static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4034                                struct stripe_head_state *s, int disks)
4035{
4036        struct r5dev *dev = NULL;
4037
4038        BUG_ON(sh->batch_head);
4039        set_bit(STRIPE_HANDLE, &sh->state);
4040
4041        switch (sh->check_state) {
4042        case check_state_idle:
4043                /* start a new check operation if there are no failures */
4044                if (s->failed == 0) {
4045                        BUG_ON(s->uptodate != disks);
4046                        sh->check_state = check_state_run;
4047                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4048                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4049                        s->uptodate--;
4050                        break;
4051                }
4052                dev = &sh->dev[s->failed_num[0]];
4053                /* fall through */
4054        case check_state_compute_result:
4055                sh->check_state = check_state_idle;
4056                if (!dev)
4057                        dev = &sh->dev[sh->pd_idx];
4058
4059                /* check that a write has not made the stripe insync */
4060                if (test_bit(STRIPE_INSYNC, &sh->state))
4061                        break;
4062
4063                /* either failed parity check, or recovery is happening */
4064                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4065                BUG_ON(s->uptodate != disks);
4066
4067                set_bit(R5_LOCKED, &dev->flags);
4068                s->locked++;
4069                set_bit(R5_Wantwrite, &dev->flags);
4070
4071                clear_bit(STRIPE_DEGRADED, &sh->state);
4072                set_bit(STRIPE_INSYNC, &sh->state);
4073                break;
4074        case check_state_run:
4075                break; /* we will be called again upon completion */
4076        case check_state_check_result:
4077                sh->check_state = check_state_idle;
4078
4079                /* if a failure occurred during the check operation, leave
4080                 * STRIPE_INSYNC not set and let the stripe be handled again
4081                 */
4082                if (s->failed)
4083                        break;
4084
4085                /* handle a successful check operation, if parity is correct
4086                 * we are done.  Otherwise update the mismatch count and repair
4087                 * parity if !MD_RECOVERY_CHECK
4088                 */
4089                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4090                        /* parity is correct (on disc,
4091                         * not in buffer any more)
4092                         */
4093                        set_bit(STRIPE_INSYNC, &sh->state);
4094                else {
4095                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4096                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4097                                /* don't try to repair!! */
4098                                set_bit(STRIPE_INSYNC, &sh->state);
4099                                pr_warn_ratelimited("%s: mismatch sector in range "
4100                                                    "%llu-%llu\n", mdname(conf->mddev),
4101                                                    (unsigned long long) sh->sector,
4102                                                    (unsigned long long) sh->sector +
4103                                                    STRIPE_SECTORS);
4104                        } else {
4105                                sh->check_state = check_state_compute_run;
4106                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4107                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4108                                set_bit(R5_Wantcompute,
4109                                        &sh->dev[sh->pd_idx].flags);
4110                                sh->ops.target = sh->pd_idx;
4111                                sh->ops.target2 = -1;
4112                                s->uptodate++;
4113                        }
4114                }
4115                break;
4116        case check_state_compute_run:
4117                break;
4118        default:
4119                pr_err("%s: unknown check_state: %d sector: %llu\n",
4120                       __func__, sh->check_state,
4121                       (unsigned long long) sh->sector);
4122                BUG();
4123        }
4124}
4125
4126static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4127                                  struct stripe_head_state *s,
4128                                  int disks)
4129{
4130        int pd_idx = sh->pd_idx;
4131        int qd_idx = sh->qd_idx;
4132        struct r5dev *dev;
4133
4134        BUG_ON(sh->batch_head);
4135        set_bit(STRIPE_HANDLE, &sh->state);
4136
4137        BUG_ON(s->failed > 2);
4138
4139        /* Want to check and possibly repair P and Q.
4140         * However there could be one 'failed' device, in which
4141         * case we can only check one of them, possibly using the
4142         * other to generate missing data
4143         */
4144
4145        switch (sh->check_state) {
4146        case check_state_idle:
4147                /* start a new check operation if there are < 2 failures */
4148                if (s->failed == s->q_failed) {
4149                        /* The only possible failed device holds Q, so it
4150                         * makes sense to check P (If anything else were failed,
4151                         * we would have used P to recreate it).
4152                         */
4153                        sh->check_state = check_state_run;
4154                }
4155                if (!s->q_failed && s->failed < 2) {
4156                        /* Q is not failed, and we didn't use it to generate
4157                         * anything, so it makes sense to check it
4158                         */
4159                        if (sh->check_state == check_state_run)
4160                                sh->check_state = check_state_run_pq;
4161                        else
4162                                sh->check_state = check_state_run_q;
4163                }
4164
4165                /* discard potentially stale zero_sum_result */
4166                sh->ops.zero_sum_result = 0;
4167
4168                if (sh->check_state == check_state_run) {
4169                        /* async_xor_zero_sum destroys the contents of P */
4170                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4171                        s->uptodate--;
4172                }
4173                if (sh->check_state >= check_state_run &&
4174                    sh->check_state <= check_state_run_pq) {
4175                        /* async_syndrome_zero_sum preserves P and Q, so
4176                         * no need to mark them !uptodate here
4177                         */
4178                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4179                        break;
4180                }
4181
4182                /* we have 2-disk failure */
4183                BUG_ON(s->failed != 2);
4184                /* fall through */
4185        case check_state_compute_result:
4186                sh->check_state = check_state_idle;
4187
4188                /* check that a write has not made the stripe insync */
4189                if (test_bit(STRIPE_INSYNC, &sh->state))
4190                        break;
4191
4192                /* now write out any block on a failed drive,
4193                 * or P or Q if they were recomputed
4194                 */
4195                dev = NULL;
4196                if (s->failed == 2) {
4197                        dev = &sh->dev[s->failed_num[1]];
4198                        s->locked++;
4199                        set_bit(R5_LOCKED, &dev->flags);
4200                        set_bit(R5_Wantwrite, &dev->flags);
4201                }
4202                if (s->failed >= 1) {
4203                        dev = &sh->dev[s->failed_num[0]];
4204                        s->locked++;
4205                        set_bit(R5_LOCKED, &dev->flags);
4206                        set_bit(R5_Wantwrite, &dev->flags);
4207                }
4208                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4209                        dev = &sh->dev[pd_idx];
4210                        s->locked++;
4211                        set_bit(R5_LOCKED, &dev->flags);
4212                        set_bit(R5_Wantwrite, &dev->flags);
4213                }
4214                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4215                        dev = &sh->dev[qd_idx];
4216                        s->locked++;
4217                        set_bit(R5_LOCKED, &dev->flags);
4218                        set_bit(R5_Wantwrite, &dev->flags);
4219                }
4220                if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4221                              "%s: disk%td not up to date\n",
4222                              mdname(conf->mddev),
4223                              dev - (struct r5dev *) &sh->dev)) {
4224                        clear_bit(R5_LOCKED, &dev->flags);
4225                        clear_bit(R5_Wantwrite, &dev->flags);
4226                        s->locked--;
4227                }
4228                clear_bit(STRIPE_DEGRADED, &sh->state);
4229
4230                set_bit(STRIPE_INSYNC, &sh->state);
4231                break;
4232        case check_state_run:
4233        case check_state_run_q:
4234        case check_state_run_pq:
4235                break; /* we will be called again upon completion */
4236        case check_state_check_result:
4237                sh->check_state = check_state_idle;
4238
4239                /* handle a successful check operation, if parity is correct
4240                 * we are done.  Otherwise update the mismatch count and repair
4241                 * parity if !MD_RECOVERY_CHECK
4242                 */
4243                if (sh->ops.zero_sum_result == 0) {
4244                        /* both parities are correct */
4245                        if (!s->failed)
4246                                set_bit(STRIPE_INSYNC, &sh->state);
4247                        else {
4248                                /* in contrast to the raid5 case we can validate
4249                                 * parity, but still have a failure to write
4250                                 * back
4251                                 */
4252                                sh->check_state = check_state_compute_result;
4253                                /* Returning at this point means that we may go
4254                                 * off and bring p and/or q uptodate again so
4255                                 * we make sure to check zero_sum_result again
4256                                 * to verify if p or q need writeback
4257                                 */
4258                        }
4259                } else {
4260                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4261                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4262                                /* don't try to repair!! */
4263                                set_bit(STRIPE_INSYNC, &sh->state);
4264                                pr_warn_ratelimited("%s: mismatch sector in range "
4265                                                    "%llu-%llu\n", mdname(conf->mddev),
4266                                                    (unsigned long long) sh->sector,
4267                                                    (unsigned long long) sh->sector +
4268                                                    STRIPE_SECTORS);
4269                        } else {
4270                                int *target = &sh->ops.target;
4271
4272                                sh->ops.target = -1;
4273                                sh->ops.target2 = -1;
4274                                sh->check_state = check_state_compute_run;
4275                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4276                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4277                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4278                                        set_bit(R5_Wantcompute,
4279                                                &sh->dev[pd_idx].flags);
4280                                        *target = pd_idx;
4281                                        target = &sh->ops.target2;
4282                                        s->uptodate++;
4283                                }
4284                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4285                                        set_bit(R5_Wantcompute,
4286                                                &sh->dev[qd_idx].flags);
4287                                        *target = qd_idx;
4288                                        s->uptodate++;
4289                                }
4290                        }
4291                }
4292                break;
4293        case check_state_compute_run:
4294                break;
4295        default:
4296                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4297                        __func__, sh->check_state,
4298                        (unsigned long long) sh->sector);
4299                BUG();
4300        }
4301}
4302
4303static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4304{
4305        int i;
4306
4307        /* We have read all the blocks in this stripe and now we need to
4308         * copy some of them into a target stripe for expand.
4309         */
4310        struct dma_async_tx_descriptor *tx = NULL;
4311        BUG_ON(sh->batch_head);
4312        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4313        for (i = 0; i < sh->disks; i++)
4314                if (i != sh->pd_idx && i != sh->qd_idx) {
4315                        int dd_idx, j;
4316                        struct stripe_head *sh2;
4317                        struct async_submit_ctl submit;
4318
4319                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4320                        sector_t s = raid5_compute_sector(conf, bn, 0,
4321                                                          &dd_idx, NULL);
4322                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4323                        if (sh2 == NULL)
4324                                /* so far only the early blocks of this stripe
4325                                 * have been requested.  When later blocks
4326                                 * get requested, we will try again
4327                                 */
4328                                continue;
4329                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4330                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4331                                /* must have already done this block */
4332                                raid5_release_stripe(sh2);
4333                                continue;
4334                        }
4335
4336                        /* place all the copies on one channel */
4337                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4338                        tx = async_memcpy(sh2->dev[dd_idx].page,
4339                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
4340                                          &submit);
4341
4342                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4343                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4344                        for (j = 0; j < conf->raid_disks; j++)
4345                                if (j != sh2->pd_idx &&
4346                                    j != sh2->qd_idx &&
4347                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4348                                        break;
4349                        if (j == conf->raid_disks) {
4350                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4351                                set_bit(STRIPE_HANDLE, &sh2->state);
4352                        }
4353                        raid5_release_stripe(sh2);
4354
4355                }
4356        /* done submitting copies, wait for them to complete */
4357        async_tx_quiesce(&tx);
4358}
4359
4360/*
4361 * handle_stripe - do things to a stripe.
4362 *
4363 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4364 * state of various bits to see what needs to be done.
4365 * Possible results:
4366 *    return some read requests which now have data
4367 *    return some write requests which are safely on storage
4368 *    schedule a read on some buffers
4369 *    schedule a write of some buffers
4370 *    return confirmation of parity correctness
4371 *
4372 */
4373
4374static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4375{
4376        struct r5conf *conf = sh->raid_conf;
4377        int disks = sh->disks;
4378        struct r5dev *dev;
4379        int i;
4380        int do_recovery = 0;
4381
4382        memset(s, 0, sizeof(*s));
4383
4384        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4385        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4386        s->failed_num[0] = -1;
4387        s->failed_num[1] = -1;
4388        s->log_failed = r5l_log_disk_error(conf);
4389
4390        /* Now to look around and see what can be done */
4391        rcu_read_lock();
4392        for (i=disks; i--; ) {
4393                struct md_rdev *rdev;
4394                sector_t first_bad;
4395                int bad_sectors;
4396                int is_bad = 0;
4397
4398                dev = &sh->dev[i];
4399
4400                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4401                         i, dev->flags,
4402                         dev->toread, dev->towrite, dev->written);
4403                /* maybe we can reply to a read
4404                 *
4405                 * new wantfill requests are only permitted while
4406                 * ops_complete_biofill is guaranteed to be inactive
4407                 */
4408                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4409                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4410                        set_bit(R5_Wantfill, &dev->flags);
4411
4412                /* now count some things */
4413                if (test_bit(R5_LOCKED, &dev->flags))
4414                        s->locked++;
4415                if (test_bit(R5_UPTODATE, &dev->flags))
4416                        s->uptodate++;
4417                if (test_bit(R5_Wantcompute, &dev->flags)) {
4418                        s->compute++;
4419                        BUG_ON(s->compute > 2);
4420                }
4421
4422                if (test_bit(R5_Wantfill, &dev->flags))
4423                        s->to_fill++;
4424                else if (dev->toread)
4425                        s->to_read++;
4426                if (dev->towrite) {
4427                        s->to_write++;
4428                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4429                                s->non_overwrite++;
4430                }
4431                if (dev->written)
4432                        s->written++;
4433                /* Prefer to use the replacement for reads, but only
4434                 * if it is recovered enough and has no bad blocks.
4435                 */
4436                rdev = rcu_dereference(conf->disks[i].replacement);
4437                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4438                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4439                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4440                                 &first_bad, &bad_sectors))
4441                        set_bit(R5_ReadRepl, &dev->flags);
4442                else {
4443                        if (rdev && !test_bit(Faulty, &rdev->flags))
4444                                set_bit(R5_NeedReplace, &dev->flags);
4445                        else
4446                                clear_bit(R5_NeedReplace, &dev->flags);
4447                        rdev = rcu_dereference(conf->disks[i].rdev);
4448                        clear_bit(R5_ReadRepl, &dev->flags);
4449                }
4450                if (rdev && test_bit(Faulty, &rdev->flags))
4451                        rdev = NULL;
4452                if (rdev) {
4453                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4454                                             &first_bad, &bad_sectors);
4455                        if (s->blocked_rdev == NULL
4456                            && (test_bit(Blocked, &rdev->flags)
4457                                || is_bad < 0)) {
4458                                if (is_bad < 0)
4459                                        set_bit(BlockedBadBlocks,
4460                                                &rdev->flags);
4461                                s->blocked_rdev = rdev;
4462                                atomic_inc(&rdev->nr_pending);
4463                        }
4464                }
4465                clear_bit(R5_Insync, &dev->flags);
4466                if (!rdev)
4467                        /* Not in-sync */;
4468                else if (is_bad) {
4469                        /* also not in-sync */
4470                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4471                            test_bit(R5_UPTODATE, &dev->flags)) {
4472                                /* treat as in-sync, but with a read error
4473                                 * which we can now try to correct
4474                                 */
4475                                set_bit(R5_Insync, &dev->flags);
4476                                set_bit(R5_ReadError, &dev->flags);
4477                        }
4478                } else if (test_bit(In_sync, &rdev->flags))
4479                        set_bit(R5_Insync, &dev->flags);
4480                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4481                        /* in sync if before recovery_offset */
4482                        set_bit(R5_Insync, &dev->flags);
4483                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4484                         test_bit(R5_Expanded, &dev->flags))
4485                        /* If we've reshaped into here, we assume it is Insync.
4486                         * We will shortly update recovery_offset to make
4487                         * it official.
4488                         */
4489                        set_bit(R5_Insync, &dev->flags);
4490
4491                if (test_bit(R5_WriteError, &dev->flags)) {
4492                        /* This flag does not apply to '.replacement'
4493                         * only to .rdev, so make sure to check that*/
4494                        struct md_rdev *rdev2 = rcu_dereference(
4495                                conf->disks[i].rdev);
4496                        if (rdev2 == rdev)
4497                                clear_bit(R5_Insync, &dev->flags);
4498                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4499                                s->handle_bad_blocks = 1;
4500                                atomic_inc(&rdev2->nr_pending);
4501                        } else
4502                                clear_bit(R5_WriteError, &dev->flags);
4503                }
4504                if (test_bit(R5_MadeGood, &dev->flags)) {
4505                        /* This flag does not apply to '.replacement'
4506                         * only to .rdev, so make sure to check that*/
4507                        struct md_rdev *rdev2 = rcu_dereference(
4508                                conf->disks[i].rdev);
4509                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4510                                s->handle_bad_blocks = 1;
4511                                atomic_inc(&rdev2->nr_pending);
4512                        } else
4513                                clear_bit(R5_MadeGood, &dev->flags);
4514                }
4515                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4516                        struct md_rdev *rdev2 = rcu_dereference(
4517                                conf->disks[i].replacement);
4518                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4519                                s->handle_bad_blocks = 1;
4520                                atomic_inc(&rdev2->nr_pending);
4521                        } else
4522                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4523                }
4524                if (!test_bit(R5_Insync, &dev->flags)) {
4525                        /* The ReadError flag will just be confusing now */
4526                        clear_bit(R5_ReadError, &dev->flags);
4527                        clear_bit(R5_ReWrite, &dev->flags);
4528                }
4529                if (test_bit(R5_ReadError, &dev->flags))
4530                        clear_bit(R5_Insync, &dev->flags);
4531                if (!test_bit(R5_Insync, &dev->flags)) {
4532                        if (s->failed < 2)
4533                                s->failed_num[s->failed] = i;
4534                        s->failed++;
4535                        if (rdev && !test_bit(Faulty, &rdev->flags))
4536                                do_recovery = 1;
4537                        else if (!rdev) {
4538                                rdev = rcu_dereference(
4539                                    conf->disks[i].replacement);
4540                                if (rdev && !test_bit(Faulty, &rdev->flags))
4541                                        do_recovery = 1;
4542                        }
4543                }
4544
4545                if (test_bit(R5_InJournal, &dev->flags))
4546                        s->injournal++;
4547                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4548                        s->just_cached++;
4549        }
4550        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4551                /* If there is a failed device being replaced,
4552                 *     we must be recovering.
4553                 * else if we are after recovery_cp, we must be syncing
4554                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4555                 * else we can only be replacing
4556                 * sync and recovery both need to read all devices, and so
4557                 * use the same flag.
4558                 */
4559                if (do_recovery ||
4560                    sh->sector >= conf->mddev->recovery_cp ||
4561                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4562                        s->syncing = 1;
4563                else
4564                        s->replacing = 1;
4565        }
4566        rcu_read_unlock();
4567}
4568
4569static int clear_batch_ready(struct stripe_head *sh)
4570{
4571        /* Return '1' if this is a member of batch, or
4572         * '0' if it is a lone stripe or a head which can now be
4573         * handled.
4574         */
4575        struct stripe_head *tmp;
4576        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4577                return (sh->batch_head && sh->batch_head != sh);
4578        spin_lock(&sh->stripe_lock);
4579        if (!sh->batch_head) {
4580                spin_unlock(&sh->stripe_lock);
4581                return 0;
4582        }
4583
4584        /*
4585         * this stripe could be added to a batch list before we check
4586         * BATCH_READY, skips it
4587         */
4588        if (sh->batch_head != sh) {
4589                spin_unlock(&sh->stripe_lock);
4590                return 1;
4591        }
4592        spin_lock(&sh->batch_lock);
4593        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4594                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4595        spin_unlock(&sh->batch_lock);
4596        spin_unlock(&sh->stripe_lock);
4597
4598        /*
4599         * BATCH_READY is cleared, no new stripes can be added.
4600         * batch_list can be accessed without lock
4601         */
4602        return 0;
4603}
4604
4605static void break_stripe_batch_list(struct stripe_head *head_sh,
4606                                    unsigned long handle_flags)
4607{
4608        struct stripe_head *sh, *next;
4609        int i;
4610        int do_wakeup = 0;
4611
4612        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4613
4614                list_del_init(&sh->batch_list);
4615
4616                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4617                                          (1 << STRIPE_SYNCING) |
4618                                          (1 << STRIPE_REPLACED) |
4619                                          (1 << STRIPE_DELAYED) |
4620                                          (1 << STRIPE_BIT_DELAY) |
4621                                          (1 << STRIPE_FULL_WRITE) |
4622                                          (1 << STRIPE_BIOFILL_RUN) |
4623                                          (1 << STRIPE_COMPUTE_RUN)  |
4624                                          (1 << STRIPE_DISCARD) |
4625                                          (1 << STRIPE_BATCH_READY) |
4626                                          (1 << STRIPE_BATCH_ERR) |
4627                                          (1 << STRIPE_BITMAP_PENDING)),
4628                        "stripe state: %lx\n", sh->state);
4629                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4630                                              (1 << STRIPE_REPLACED)),
4631                        "head stripe state: %lx\n", head_sh->state);
4632
4633                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4634                                            (1 << STRIPE_PREREAD_ACTIVE) |
4635                                            (1 << STRIPE_DEGRADED) |
4636                                            (1 << STRIPE_ON_UNPLUG_LIST)),
4637                              head_sh->state & (1 << STRIPE_INSYNC));
4638
4639                sh->check_state = head_sh->check_state;
4640                sh->reconstruct_state = head_sh->reconstruct_state;
4641                spin_lock_irq(&sh->stripe_lock);
4642                sh->batch_head = NULL;
4643                spin_unlock_irq(&sh->stripe_lock);
4644                for (i = 0; i < sh->disks; i++) {
4645                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4646                                do_wakeup = 1;
4647                        sh->dev[i].flags = head_sh->dev[i].flags &
4648                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4649                }
4650                if (handle_flags == 0 ||
4651                    sh->state & handle_flags)
4652                        set_bit(STRIPE_HANDLE, &sh->state);
4653                raid5_release_stripe(sh);
4654        }
4655        spin_lock_irq(&head_sh->stripe_lock);
4656        head_sh->batch_head = NULL;
4657        spin_unlock_irq(&head_sh->stripe_lock);
4658        for (i = 0; i < head_sh->disks; i++)
4659                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4660                        do_wakeup = 1;
4661        if (head_sh->state & handle_flags)
4662                set_bit(STRIPE_HANDLE, &head_sh->state);
4663
4664        if (do_wakeup)
4665                wake_up(&head_sh->raid_conf->wait_for_overlap);
4666}
4667
4668static void handle_stripe(struct stripe_head *sh)
4669{
4670        struct stripe_head_state s;
4671        struct r5conf *conf = sh->raid_conf;
4672        int i;
4673        int prexor;
4674        int disks = sh->disks;
4675        struct r5dev *pdev, *qdev;
4676
4677        clear_bit(STRIPE_HANDLE, &sh->state);
4678        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4679                /* already being handled, ensure it gets handled
4680                 * again when current action finishes */
4681                set_bit(STRIPE_HANDLE, &sh->state);
4682                return;
4683        }
4684
4685        if (clear_batch_ready(sh) ) {
4686                clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4687                return;
4688        }
4689
4690        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4691                break_stripe_batch_list(sh, 0);
4692
4693        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4694                spin_lock(&sh->stripe_lock);
4695                /*
4696                 * Cannot process 'sync' concurrently with 'discard'.
4697                 * Flush data in r5cache before 'sync'.
4698                 */
4699                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4700                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4701                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4702                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4703                        set_bit(STRIPE_SYNCING, &sh->state);
4704                        clear_bit(STRIPE_INSYNC, &sh->state);
4705                        clear_bit(STRIPE_REPLACED, &sh->state);
4706                }
4707                spin_unlock(&sh->stripe_lock);
4708        }
4709        clear_bit(STRIPE_DELAYED, &sh->state);
4710
4711        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4712                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4713               (unsigned long long)sh->sector, sh->state,
4714               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4715               sh->check_state, sh->reconstruct_state);
4716
4717        analyse_stripe(sh, &s);
4718
4719        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4720                goto finish;
4721
4722        if (s.handle_bad_blocks ||
4723            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4724                set_bit(STRIPE_HANDLE, &sh->state);
4725                goto finish;
4726        }
4727
4728        if (unlikely(s.blocked_rdev)) {
4729                if (s.syncing || s.expanding || s.expanded ||
4730                    s.replacing || s.to_write || s.written) {
4731                        set_bit(STRIPE_HANDLE, &sh->state);
4732                        goto finish;
4733                }
4734                /* There is nothing for the blocked_rdev to block */
4735                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4736                s.blocked_rdev = NULL;
4737        }
4738
4739        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4740                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4741                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4742        }
4743
4744        pr_debug("locked=%d uptodate=%d to_read=%d"
4745               " to_write=%d failed=%d failed_num=%d,%d\n",
4746               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4747               s.failed_num[0], s.failed_num[1]);
4748        /*
4749         * check if the array has lost more than max_degraded devices and,
4750         * if so, some requests might need to be failed.
4751         *
4752         * When journal device failed (log_failed), we will only process
4753         * the stripe if there is data need write to raid disks
4754         */
4755        if (s.failed > conf->max_degraded ||
4756            (s.log_failed && s.injournal == 0)) {
4757                sh->check_state = 0;
4758                sh->reconstruct_state = 0;
4759                break_stripe_batch_list(sh, 0);
4760                if (s.to_read+s.to_write+s.written)
4761                        handle_failed_stripe(conf, sh, &s, disks);
4762                if (s.syncing + s.replacing)
4763                        handle_failed_sync(conf, sh, &s);
4764        }
4765
4766        /* Now we check to see if any write operations have recently
4767         * completed
4768         */
4769        prexor = 0;
4770        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4771                prexor = 1;
4772        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4773            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4774                sh->reconstruct_state = reconstruct_state_idle;
4775
4776                /* All the 'written' buffers and the parity block are ready to
4777                 * be written back to disk
4778                 */
4779                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4780                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4781                BUG_ON(sh->qd_idx >= 0 &&
4782                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4783                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4784                for (i = disks; i--; ) {
4785                        struct r5dev *dev = &sh->dev[i];
4786                        if (test_bit(R5_LOCKED, &dev->flags) &&
4787                                (i == sh->pd_idx || i == sh->qd_idx ||
4788                                 dev->written || test_bit(R5_InJournal,
4789                                                          &dev->flags))) {
4790                                pr_debug("Writing block %d\n", i);
4791                                set_bit(R5_Wantwrite, &dev->flags);
4792                                if (prexor)
4793                                        continue;
4794                                if (s.failed > 1)
4795                                        continue;
4796                                if (!test_bit(R5_Insync, &dev->flags) ||
4797                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4798                                     s.failed == 0))
4799                                        set_bit(STRIPE_INSYNC, &sh->state);
4800                        }
4801                }
4802                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4803                        s.dec_preread_active = 1;
4804        }
4805
4806        /*
4807         * might be able to return some write requests if the parity blocks
4808         * are safe, or on a failed drive
4809         */
4810        pdev = &sh->dev[sh->pd_idx];
4811        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4812                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4813        qdev = &sh->dev[sh->qd_idx];
4814        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4815                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4816                || conf->level < 6;
4817
4818        if (s.written &&
4819            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4820                             && !test_bit(R5_LOCKED, &pdev->flags)
4821                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4822                                 test_bit(R5_Discard, &pdev->flags))))) &&
4823            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4824                             && !test_bit(R5_LOCKED, &qdev->flags)
4825                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4826                                 test_bit(R5_Discard, &qdev->flags))))))
4827                handle_stripe_clean_event(conf, sh, disks);
4828
4829        if (s.just_cached)
4830                r5c_handle_cached_data_endio(conf, sh, disks);
4831        log_stripe_write_finished(sh);
4832
4833        /* Now we might consider reading some blocks, either to check/generate
4834         * parity, or to satisfy requests
4835         * or to load a block that is being partially written.
4836         */
4837        if (s.to_read || s.non_overwrite
4838            || (conf->level == 6 && s.to_write && s.failed)
4839            || (s.syncing && (s.uptodate + s.compute < disks))
4840            || s.replacing
4841            || s.expanding)
4842                handle_stripe_fill(sh, &s, disks);
4843
4844        /*
4845         * When the stripe finishes full journal write cycle (write to journal
4846         * and raid disk), this is the clean up procedure so it is ready for
4847         * next operation.
4848         */
4849        r5c_finish_stripe_write_out(conf, sh, &s);
4850
4851        /*
4852         * Now to consider new write requests, cache write back and what else,
4853         * if anything should be read.  We do not handle new writes when:
4854         * 1/ A 'write' operation (copy+xor) is already in flight.
4855         * 2/ A 'check' operation is in flight, as it may clobber the parity
4856         *    block.
4857         * 3/ A r5c cache log write is in flight.
4858         */
4859
4860        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4861                if (!r5c_is_writeback(conf->log)) {
4862                        if (s.to_write)
4863                                handle_stripe_dirtying(conf, sh, &s, disks);
4864                } else { /* write back cache */
4865                        int ret = 0;
4866
4867                        /* First, try handle writes in caching phase */
4868                        if (s.to_write)
4869                                ret = r5c_try_caching_write(conf, sh, &s,
4870                                                            disks);
4871                        /*
4872                         * If caching phase failed: ret == -EAGAIN
4873                         *    OR
4874                         * stripe under reclaim: !caching && injournal
4875                         *
4876                         * fall back to handle_stripe_dirtying()
4877                         */
4878                        if (ret == -EAGAIN ||
4879                            /* stripe under reclaim: !caching && injournal */
4880                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4881                             s.injournal > 0)) {
4882                                ret = handle_stripe_dirtying(conf, sh, &s,
4883                                                             disks);
4884                                if (ret == -EAGAIN)
4885                                        goto finish;
4886                        }
4887                }
4888        }
4889
4890        /* maybe we need to check and possibly fix the parity for this stripe
4891         * Any reads will already have been scheduled, so we just see if enough
4892         * data is available.  The parity check is held off while parity
4893         * dependent operations are in flight.
4894         */
4895        if (sh->check_state ||
4896            (s.syncing && s.locked == 0 &&
4897             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4898             !test_bit(STRIPE_INSYNC, &sh->state))) {
4899                if (conf->level == 6)
4900                        handle_parity_checks6(conf, sh, &s, disks);
4901                else
4902                        handle_parity_checks5(conf, sh, &s, disks);
4903        }
4904
4905        if ((s.replacing || s.syncing) && s.locked == 0
4906            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4907            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4908                /* Write out to replacement devices where possible */
4909                for (i = 0; i < conf->raid_disks; i++)
4910                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4911                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4912                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4913                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4914                                s.locked++;
4915                        }
4916                if (s.replacing)
4917                        set_bit(STRIPE_INSYNC, &sh->state);
4918                set_bit(STRIPE_REPLACED, &sh->state);
4919        }
4920        if ((s.syncing || s.replacing) && s.locked == 0 &&
4921            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4922            test_bit(STRIPE_INSYNC, &sh->state)) {
4923                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4924                clear_bit(STRIPE_SYNCING, &sh->state);
4925                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4926                        wake_up(&conf->wait_for_overlap);
4927        }
4928
4929        /* If the failed drives are just a ReadError, then we might need
4930         * to progress the repair/check process
4931         */
4932        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4933                for (i = 0; i < s.failed; i++) {
4934                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4935                        if (test_bit(R5_ReadError, &dev->flags)
4936                            && !test_bit(R5_LOCKED, &dev->flags)
4937                            && test_bit(R5_UPTODATE, &dev->flags)
4938                                ) {
4939                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4940                                        set_bit(R5_Wantwrite, &dev->flags);
4941                                        set_bit(R5_ReWrite, &dev->flags);
4942                                        set_bit(R5_LOCKED, &dev->flags);
4943                                        s.locked++;
4944                                } else {
4945                                        /* let's read it back */
4946                                        set_bit(R5_Wantread, &dev->flags);
4947                                        set_bit(R5_LOCKED, &dev->flags);
4948                                        s.locked++;
4949                                }
4950                        }
4951                }
4952
4953        /* Finish reconstruct operations initiated by the expansion process */
4954        if (sh->reconstruct_state == reconstruct_state_result) {
4955                struct stripe_head *sh_src
4956                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4957                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4958                        /* sh cannot be written until sh_src has been read.
4959                         * so arrange for sh to be delayed a little
4960                         */
4961                        set_bit(STRIPE_DELAYED, &sh->state);
4962                        set_bit(STRIPE_HANDLE, &sh->state);
4963                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4964                                              &sh_src->state))
4965                                atomic_inc(&conf->preread_active_stripes);
4966                        raid5_release_stripe(sh_src);
4967                        goto finish;
4968                }
4969                if (sh_src)
4970                        raid5_release_stripe(sh_src);
4971
4972                sh->reconstruct_state = reconstruct_state_idle;
4973                clear_bit(STRIPE_EXPANDING, &sh->state);
4974                for (i = conf->raid_disks; i--; ) {
4975                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
4976                        set_bit(R5_LOCKED, &sh->dev[i].flags);
4977                        s.locked++;
4978                }
4979        }
4980
4981        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4982            !sh->reconstruct_state) {
4983                /* Need to write out all blocks after computing parity */
4984                sh->disks = conf->raid_disks;
4985                stripe_set_idx(sh->sector, conf, 0, sh);
4986                schedule_reconstruction(sh, &s, 1, 1);
4987        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4988                clear_bit(STRIPE_EXPAND_READY, &sh->state);
4989                atomic_dec(&conf->reshape_stripes);
4990                wake_up(&conf->wait_for_overlap);
4991                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4992        }
4993
4994        if (s.expanding && s.locked == 0 &&
4995            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4996                handle_stripe_expansion(conf, sh);
4997
4998finish:
4999        /* wait for this device to become unblocked */
5000        if (unlikely(s.blocked_rdev)) {
5001                if (conf->mddev->external)
5002                        md_wait_for_blocked_rdev(s.blocked_rdev,
5003                                                 conf->mddev);
5004                else
5005                        /* Internal metadata will immediately
5006                         * be written by raid5d, so we don't
5007                         * need to wait here.
5008                         */
5009                        rdev_dec_pending(s.blocked_rdev,
5010                                         conf->mddev);
5011        }
5012
5013        if (s.handle_bad_blocks)
5014                for (i = disks; i--; ) {
5015                        struct md_rdev *rdev;
5016                        struct r5dev *dev = &sh->dev[i];
5017                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5018                                /* We own a safe reference to the rdev */
5019                                rdev = conf->disks[i].rdev;
5020                                if (!rdev_set_badblocks(rdev, sh->sector,
5021                                                        STRIPE_SECTORS, 0))
5022                                        md_error(conf->mddev, rdev);
5023                                rdev_dec_pending(rdev, conf->mddev);
5024                        }
5025                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5026                                rdev = conf->disks[i].rdev;
5027                                rdev_clear_badblocks(rdev, sh->sector,
5028                                                     STRIPE_SECTORS, 0);
5029                                rdev_dec_pending(rdev, conf->mddev);
5030                        }
5031                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5032                                rdev = conf->disks[i].replacement;
5033                                if (!rdev)
5034                                        /* rdev have been moved down */
5035                                        rdev = conf->disks[i].rdev;
5036                                rdev_clear_badblocks(rdev, sh->sector,
5037                                                     STRIPE_SECTORS, 0);
5038                                rdev_dec_pending(rdev, conf->mddev);
5039                        }
5040                }
5041
5042        if (s.ops_request)
5043                raid_run_ops(sh, s.ops_request);
5044
5045        ops_run_io(sh, &s);
5046
5047        if (s.dec_preread_active) {
5048                /* We delay this until after ops_run_io so that if make_request
5049                 * is waiting on a flush, it won't continue until the writes
5050                 * have actually been submitted.
5051                 */
5052                atomic_dec(&conf->preread_active_stripes);
5053                if (atomic_read(&conf->preread_active_stripes) <
5054                    IO_THRESHOLD)
5055                        md_wakeup_thread(conf->mddev->thread);
5056        }
5057
5058        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5059}
5060
5061static void raid5_activate_delayed(struct r5conf *conf)
5062{
5063        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5064                while (!list_empty(&conf->delayed_list)) {
5065                        struct list_head *l = conf->delayed_list.next;
5066                        struct stripe_head *sh;
5067                        sh = list_entry(l, struct stripe_head, lru);
5068                        list_del_init(l);
5069                        clear_bit(STRIPE_DELAYED, &sh->state);
5070                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5071                                atomic_inc(&conf->preread_active_stripes);
5072                        list_add_tail(&sh->lru, &conf->hold_list);
5073                        raid5_wakeup_stripe_thread(sh);
5074                }
5075        }
5076}
5077
5078static void activate_bit_delay(struct r5conf *conf,
5079        struct list_head *temp_inactive_list)
5080{
5081        /* device_lock is held */
5082        struct list_head head;
5083        list_add(&head, &conf->bitmap_list);
5084        list_del_init(&conf->bitmap_list);
5085        while (!list_empty(&head)) {
5086                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5087                int hash;
5088                list_del_init(&sh->lru);
5089                atomic_inc(&sh->count);
5090                hash = sh->hash_lock_index;
5091                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5092        }
5093}
5094
5095static int raid5_congested(struct mddev *mddev, int bits)
5096{
5097        struct r5conf *conf = mddev->private;
5098
5099        /* No difference between reads and writes.  Just check
5100         * how busy the stripe_cache is
5101         */
5102
5103        if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5104                return 1;
5105
5106        /* Also checks whether there is pressure on r5cache log space */
5107        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5108                return 1;
5109        if (conf->quiesce)
5110                return 1;
5111        if (atomic_read(&conf->empty_inactive_list_nr))
5112                return 1;
5113
5114        return 0;
5115}
5116
5117static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5118{
5119        struct r5conf *conf = mddev->private;
5120        sector_t sector = bio->bi_iter.bi_sector;
5121        unsigned int chunk_sectors;
5122        unsigned int bio_sectors = bio_sectors(bio);
5123
5124        WARN_ON_ONCE(bio->bi_partno);
5125
5126        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5127        return  chunk_sectors >=
5128                ((sector & (chunk_sectors - 1)) + bio_sectors);
5129}
5130
5131/*
5132 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5133 *  later sampled by raid5d.
5134 */
5135static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5136{
5137        unsigned long flags;
5138
5139        spin_lock_irqsave(&conf->device_lock, flags);
5140
5141        bi->bi_next = conf->retry_read_aligned_list;
5142        conf->retry_read_aligned_list = bi;
5143
5144        spin_unlock_irqrestore(&conf->device_lock, flags);
5145        md_wakeup_thread(conf->mddev->thread);
5146}
5147
5148static struct bio *remove_bio_from_retry(struct r5conf *conf,
5149                                         unsigned int *offset)
5150{
5151        struct bio *bi;
5152
5153        bi = conf->retry_read_aligned;
5154        if (bi) {
5155                *offset = conf->retry_read_offset;
5156                conf->retry_read_aligned = NULL;
5157                return bi;
5158        }
5159        bi = conf->retry_read_aligned_list;
5160        if(bi) {
5161                conf->retry_read_aligned_list = bi->bi_next;
5162                bi->bi_next = NULL;
5163                *offset = 0;
5164        }
5165
5166        return bi;
5167}
5168
5169/*
5170 *  The "raid5_align_endio" should check if the read succeeded and if it
5171 *  did, call bio_endio on the original bio (having bio_put the new bio
5172 *  first).
5173 *  If the read failed..
5174 */
5175static void raid5_align_endio(struct bio *bi)
5176{
5177        struct bio* raid_bi  = bi->bi_private;
5178        struct mddev *mddev;
5179        struct r5conf *conf;
5180        struct md_rdev *rdev;
5181        blk_status_t error = bi->bi_status;
5182
5183        bio_put(bi);
5184
5185        rdev = (void*)raid_bi->bi_next;
5186        raid_bi->bi_next = NULL;
5187        mddev = rdev->mddev;
5188        conf = mddev->private;
5189
5190        rdev_dec_pending(rdev, conf->mddev);
5191
5192        if (!error) {
5193                bio_endio(raid_bi);
5194                if (atomic_dec_and_test(&conf->active_aligned_reads))
5195                        wake_up(&conf->wait_for_quiescent);
5196                return;
5197        }
5198
5199        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5200
5201        add_bio_to_retry(raid_bi, conf);
5202}
5203
5204static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5205{
5206        struct r5conf *conf = mddev->private;
5207        int dd_idx;
5208        struct bio* align_bi;
5209        struct md_rdev *rdev;
5210        sector_t end_sector;
5211
5212        if (!in_chunk_boundary(mddev, raid_bio)) {
5213                pr_debug("%s: non aligned\n", __func__);
5214                return 0;
5215        }
5216        /*
5217         * use bio_clone_fast to make a copy of the bio
5218         */
5219        align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5220        if (!align_bi)
5221                return 0;
5222        /*
5223         *   set bi_end_io to a new function, and set bi_private to the
5224         *     original bio.
5225         */
5226        align_bi->bi_end_io  = raid5_align_endio;
5227        align_bi->bi_private = raid_bio;
5228        /*
5229         *      compute position
5230         */
5231        align_bi->bi_iter.bi_sector =
5232                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5233                                     0, &dd_idx, NULL);
5234
5235        end_sector = bio_end_sector(align_bi);
5236        rcu_read_lock();
5237        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5238        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5239            rdev->recovery_offset < end_sector) {
5240                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5241                if (rdev &&
5242                    (test_bit(Faulty, &rdev->flags) ||
5243                    !(test_bit(In_sync, &rdev->flags) ||
5244                      rdev->recovery_offset >= end_sector)))
5245                        rdev = NULL;
5246        }
5247
5248        if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5249                rcu_read_unlock();
5250                bio_put(align_bi);
5251                return 0;
5252        }
5253
5254        if (rdev) {
5255                sector_t first_bad;
5256                int bad_sectors;
5257
5258                atomic_inc(&rdev->nr_pending);
5259                rcu_read_unlock();
5260                raid_bio->bi_next = (void*)rdev;
5261                bio_set_dev(align_bi, rdev->bdev);
5262
5263                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5264                                bio_sectors(align_bi),
5265                                &first_bad, &bad_sectors)) {
5266                        bio_put(align_bi);
5267                        rdev_dec_pending(rdev, mddev);
5268                        return 0;
5269                }
5270
5271                /* No reshape active, so we can trust rdev->data_offset */
5272                align_bi->bi_iter.bi_sector += rdev->data_offset;
5273
5274                spin_lock_irq(&conf->device_lock);
5275                wait_event_lock_irq(conf->wait_for_quiescent,
5276                                    conf->quiesce == 0,
5277                                    conf->device_lock);
5278                atomic_inc(&conf->active_aligned_reads);
5279                spin_unlock_irq(&conf->device_lock);
5280
5281                if (mddev->gendisk)
5282                        trace_block_bio_remap(align_bi->bi_disk->queue,
5283                                              align_bi, disk_devt(mddev->gendisk),
5284                                              raid_bio->bi_iter.bi_sector);
5285                generic_make_request(align_bi);
5286                return 1;
5287        } else {
5288                rcu_read_unlock();
5289                bio_put(align_bi);
5290                return 0;
5291        }
5292}
5293
5294static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5295{
5296        struct bio *split;
5297        sector_t sector = raid_bio->bi_iter.bi_sector;
5298        unsigned chunk_sects = mddev->chunk_sectors;
5299        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5300
5301        if (sectors < bio_sectors(raid_bio)) {
5302                struct r5conf *conf = mddev->private;
5303                split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5304                bio_chain(split, raid_bio);
5305                generic_make_request(raid_bio);
5306                raid_bio = split;
5307        }
5308
5309        if (!raid5_read_one_chunk(mddev, raid_bio))
5310                return raid_bio;
5311
5312        return NULL;
5313}
5314
5315/* __get_priority_stripe - get the next stripe to process
5316 *
5317 * Full stripe writes are allowed to pass preread active stripes up until
5318 * the bypass_threshold is exceeded.  In general the bypass_count
5319 * increments when the handle_list is handled before the hold_list; however, it
5320 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5321 * stripe with in flight i/o.  The bypass_count will be reset when the
5322 * head of the hold_list has changed, i.e. the head was promoted to the
5323 * handle_list.
5324 */
5325static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5326{
5327        struct stripe_head *sh, *tmp;
5328        struct list_head *handle_list = NULL;
5329        struct r5worker_group *wg;
5330        bool second_try = !r5c_is_writeback(conf->log) &&
5331                !r5l_log_disk_error(conf);
5332        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5333                r5l_log_disk_error(conf);
5334
5335again:
5336        wg = NULL;
5337        sh = NULL;
5338        if (conf->worker_cnt_per_group == 0) {
5339                handle_list = try_loprio ? &conf->loprio_list :
5340                                        &conf->handle_list;
5341        } else if (group != ANY_GROUP) {
5342                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5343                                &conf->worker_groups[group].handle_list;
5344                wg = &conf->worker_groups[group];
5345        } else {
5346                int i;
5347                for (i = 0; i < conf->group_cnt; i++) {
5348                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5349                                &conf->worker_groups[i].handle_list;
5350                        wg = &conf->worker_groups[i];
5351                        if (!list_empty(handle_list))
5352                                break;
5353                }
5354        }
5355
5356        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5357                  __func__,
5358                  list_empty(handle_list) ? "empty" : "busy",
5359                  list_empty(&conf->hold_list) ? "empty" : "busy",
5360                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5361
5362        if (!list_empty(handle_list)) {
5363                sh = list_entry(handle_list->next, typeof(*sh), lru);
5364
5365                if (list_empty(&conf->hold_list))
5366                        conf->bypass_count = 0;
5367                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5368                        if (conf->hold_list.next == conf->last_hold)
5369                                conf->bypass_count++;
5370                        else {
5371                                conf->last_hold = conf->hold_list.next;
5372                                conf->bypass_count -= conf->bypass_threshold;
5373                                if (conf->bypass_count < 0)
5374                                        conf->bypass_count = 0;
5375                        }
5376                }
5377        } else if (!list_empty(&conf->hold_list) &&
5378                   ((conf->bypass_threshold &&
5379                     conf->bypass_count > conf->bypass_threshold) ||
5380                    atomic_read(&conf->pending_full_writes) == 0)) {
5381
5382                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5383                        if (conf->worker_cnt_per_group == 0 ||
5384                            group == ANY_GROUP ||
5385                            !cpu_online(tmp->cpu) ||
5386                            cpu_to_group(tmp->cpu) == group) {
5387                                sh = tmp;
5388                                break;
5389                        }
5390                }
5391
5392                if (sh) {
5393                        conf->bypass_count -= conf->bypass_threshold;
5394                        if (conf->bypass_count < 0)
5395                                conf->bypass_count = 0;
5396                }
5397                wg = NULL;
5398        }
5399
5400        if (!sh) {
5401                if (second_try)
5402                        return NULL;
5403                second_try = true;
5404                try_loprio = !try_loprio;
5405                goto again;
5406        }
5407
5408        if (wg) {
5409                wg->stripes_cnt--;
5410                sh->group = NULL;
5411        }
5412        list_del_init(&sh->lru);
5413        BUG_ON(atomic_inc_return(&sh->count) != 1);
5414        return sh;
5415}
5416
5417struct raid5_plug_cb {
5418        struct blk_plug_cb      cb;
5419        struct list_head        list;
5420        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5421};
5422
5423static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5424{
5425        struct raid5_plug_cb *cb = container_of(
5426                blk_cb, struct raid5_plug_cb, cb);
5427        struct stripe_head *sh;
5428        struct mddev *mddev = cb->cb.data;
5429        struct r5conf *conf = mddev->private;
5430        int cnt = 0;
5431        int hash;
5432
5433        if (cb->list.next && !list_empty(&cb->list)) {
5434                spin_lock_irq(&conf->device_lock);
5435                while (!list_empty(&cb->list)) {
5436                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5437                        list_del_init(&sh->lru);
5438                        /*
5439                         * avoid race release_stripe_plug() sees
5440                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5441                         * is still in our list
5442                         */
5443                        smp_mb__before_atomic();
5444                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5445                        /*
5446                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5447                         * case, the count is always > 1 here
5448                         */
5449                        hash = sh->hash_lock_index;
5450                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5451                        cnt++;
5452                }
5453                spin_unlock_irq(&conf->device_lock);
5454        }
5455        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5456                                     NR_STRIPE_HASH_LOCKS);
5457        if (mddev->queue)
5458                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5459        kfree(cb);
5460}
5461
5462static void release_stripe_plug(struct mddev *mddev,
5463                                struct stripe_head *sh)
5464{
5465        struct blk_plug_cb *blk_cb = blk_check_plugged(
5466                raid5_unplug, mddev,
5467                sizeof(struct raid5_plug_cb));
5468        struct raid5_plug_cb *cb;
5469
5470        if (!blk_cb) {
5471                raid5_release_stripe(sh);
5472                return;
5473        }
5474
5475        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5476
5477        if (cb->list.next == NULL) {
5478                int i;
5479                INIT_LIST_HEAD(&cb->list);
5480                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5481                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5482        }
5483
5484        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5485                list_add_tail(&sh->lru, &cb->list);
5486        else
5487                raid5_release_stripe(sh);
5488}
5489
5490static void make_discard_request(struct mddev *mddev, struct bio *bi)
5491{
5492        struct r5conf *conf = mddev->private;
5493        sector_t logical_sector, last_sector;
5494        struct stripe_head *sh;
5495        int stripe_sectors;
5496
5497        if (mddev->reshape_position != MaxSector)
5498                /* Skip discard while reshape is happening */
5499                return;
5500
5501        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5502        last_sector = bio_end_sector(bi);
5503
5504        bi->bi_next = NULL;
5505
5506        stripe_sectors = conf->chunk_sectors *
5507                (conf->raid_disks - conf->max_degraded);
5508        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5509                                               stripe_sectors);
5510        sector_div(last_sector, stripe_sectors);
5511
5512        logical_sector *= conf->chunk_sectors;
5513        last_sector *= conf->chunk_sectors;
5514
5515        for (; logical_sector < last_sector;
5516             logical_sector += STRIPE_SECTORS) {
5517                DEFINE_WAIT(w);
5518                int d;
5519        again:
5520                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5521                prepare_to_wait(&conf->wait_for_overlap, &w,
5522                                TASK_UNINTERRUPTIBLE);
5523                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5524                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5525                        raid5_release_stripe(sh);
5526                        schedule();
5527                        goto again;
5528                }
5529                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5530                spin_lock_irq(&sh->stripe_lock);
5531                for (d = 0; d < conf->raid_disks; d++) {
5532                        if (d == sh->pd_idx || d == sh->qd_idx)
5533                                continue;
5534                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5535                                set_bit(R5_Overlap, &sh->dev[d].flags);
5536                                spin_unlock_irq(&sh->stripe_lock);
5537                                raid5_release_stripe(sh);
5538                                schedule();
5539                                goto again;
5540                        }
5541                }
5542                set_bit(STRIPE_DISCARD, &sh->state);
5543                finish_wait(&conf->wait_for_overlap, &w);
5544                sh->overwrite_disks = 0;
5545                for (d = 0; d < conf->raid_disks; d++) {
5546                        if (d == sh->pd_idx || d == sh->qd_idx)
5547                                continue;
5548                        sh->dev[d].towrite = bi;
5549                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5550                        bio_inc_remaining(bi);
5551                        md_write_inc(mddev, bi);
5552                        sh->overwrite_disks++;
5553                }
5554                spin_unlock_irq(&sh->stripe_lock);
5555                if (conf->mddev->bitmap) {
5556                        for (d = 0;
5557                             d < conf->raid_disks - conf->max_degraded;
5558                             d++)
5559                                md_bitmap_startwrite(mddev->bitmap,
5560                                                     sh->sector,
5561                                                     STRIPE_SECTORS,
5562                                                     0);
5563                        sh->bm_seq = conf->seq_flush + 1;
5564                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5565                }
5566
5567                set_bit(STRIPE_HANDLE, &sh->state);
5568                clear_bit(STRIPE_DELAYED, &sh->state);
5569                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5570                        atomic_inc(&conf->preread_active_stripes);
5571                release_stripe_plug(mddev, sh);
5572        }
5573
5574        bio_endio(bi);
5575}
5576
5577static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5578{
5579        struct r5conf *conf = mddev->private;
5580        int dd_idx;
5581        sector_t new_sector;
5582        sector_t logical_sector, last_sector;
5583        struct stripe_head *sh;
5584        const int rw = bio_data_dir(bi);
5585        DEFINE_WAIT(w);
5586        bool do_prepare;
5587        bool do_flush = false;
5588
5589        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5590                int ret = log_handle_flush_request(conf, bi);
5591
5592                if (ret == 0)
5593                        return true;
5594                if (ret == -ENODEV) {
5595                        md_flush_request(mddev, bi);
5596                        return true;
5597                }
5598                /* ret == -EAGAIN, fallback */
5599                /*
5600                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5601                 * we need to flush journal device
5602                 */
5603                do_flush = bi->bi_opf & REQ_PREFLUSH;
5604        }
5605
5606        if (!md_write_start(mddev, bi))
5607                return false;
5608        /*
5609         * If array is degraded, better not do chunk aligned read because
5610         * later we might have to read it again in order to reconstruct
5611         * data on failed drives.
5612         */
5613        if (rw == READ && mddev->degraded == 0 &&
5614            mddev->reshape_position == MaxSector) {
5615                bi = chunk_aligned_read(mddev, bi);
5616                if (!bi)
5617                        return true;
5618        }
5619
5620        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5621                make_discard_request(mddev, bi);
5622                md_write_end(mddev);
5623                return true;
5624        }
5625
5626        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5627        last_sector = bio_end_sector(bi);
5628        bi->bi_next = NULL;
5629
5630        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5631        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5632                int previous;
5633                int seq;
5634
5635                do_prepare = false;
5636        retry:
5637                seq = read_seqcount_begin(&conf->gen_lock);
5638                previous = 0;
5639                if (do_prepare)
5640                        prepare_to_wait(&conf->wait_for_overlap, &w,
5641                                TASK_UNINTERRUPTIBLE);
5642                if (unlikely(conf->reshape_progress != MaxSector)) {
5643                        /* spinlock is needed as reshape_progress may be
5644                         * 64bit on a 32bit platform, and so it might be
5645                         * possible to see a half-updated value
5646                         * Of course reshape_progress could change after
5647                         * the lock is dropped, so once we get a reference
5648                         * to the stripe that we think it is, we will have
5649                         * to check again.
5650                         */
5651                        spin_lock_irq(&conf->device_lock);
5652                        if (mddev->reshape_backwards
5653                            ? logical_sector < conf->reshape_progress
5654                            : logical_sector >= conf->reshape_progress) {
5655                                previous = 1;
5656                        } else {
5657                                if (mddev->reshape_backwards
5658                                    ? logical_sector < conf->reshape_safe
5659                                    : logical_sector >= conf->reshape_safe) {
5660                                        spin_unlock_irq(&conf->device_lock);
5661                                        schedule();
5662                                        do_prepare = true;
5663                                        goto retry;
5664                                }
5665                        }
5666                        spin_unlock_irq(&conf->device_lock);
5667                }
5668
5669                new_sector = raid5_compute_sector(conf, logical_sector,
5670                                                  previous,
5671                                                  &dd_idx, NULL);
5672                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5673                        (unsigned long long)new_sector,
5674                        (unsigned long long)logical_sector);
5675
5676                sh = raid5_get_active_stripe(conf, new_sector, previous,
5677                                       (bi->bi_opf & REQ_RAHEAD), 0);
5678                if (sh) {
5679                        if (unlikely(previous)) {
5680                                /* expansion might have moved on while waiting for a
5681                                 * stripe, so we must do the range check again.
5682                                 * Expansion could still move past after this
5683                                 * test, but as we are holding a reference to
5684                                 * 'sh', we know that if that happens,
5685                                 *  STRIPE_EXPANDING will get set and the expansion
5686                                 * won't proceed until we finish with the stripe.
5687                                 */
5688                                int must_retry = 0;
5689                                spin_lock_irq(&conf->device_lock);
5690                                if (mddev->reshape_backwards
5691                                    ? logical_sector >= conf->reshape_progress
5692                                    : logical_sector < conf->reshape_progress)
5693                                        /* mismatch, need to try again */
5694                                        must_retry = 1;
5695                                spin_unlock_irq(&conf->device_lock);
5696                                if (must_retry) {
5697                                        raid5_release_stripe(sh);
5698                                        schedule();
5699                                        do_prepare = true;
5700                                        goto retry;
5701                                }
5702                        }
5703                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5704                                /* Might have got the wrong stripe_head
5705                                 * by accident
5706                                 */
5707                                raid5_release_stripe(sh);
5708                                goto retry;
5709                        }
5710
5711                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5712                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5713                                /* Stripe is busy expanding or
5714                                 * add failed due to overlap.  Flush everything
5715                                 * and wait a while
5716                                 */
5717                                md_wakeup_thread(mddev->thread);
5718                                raid5_release_stripe(sh);
5719                                schedule();
5720                                do_prepare = true;
5721                                goto retry;
5722                        }
5723                        if (do_flush) {
5724                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5725                                /* we only need flush for one stripe */
5726                                do_flush = false;
5727                        }
5728
5729                        if (!sh->batch_head)
5730                                set_bit(STRIPE_HANDLE, &sh->state);
5731                        clear_bit(STRIPE_DELAYED, &sh->state);
5732                        if ((!sh->batch_head || sh == sh->batch_head) &&
5733                            (bi->bi_opf & REQ_SYNC) &&
5734                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5735                                atomic_inc(&conf->preread_active_stripes);
5736                        release_stripe_plug(mddev, sh);
5737                } else {
5738                        /* cannot get stripe for read-ahead, just give-up */
5739                        bi->bi_status = BLK_STS_IOERR;
5740                        break;
5741                }
5742        }
5743        finish_wait(&conf->wait_for_overlap, &w);
5744
5745        if (rw == WRITE)
5746                md_write_end(mddev);
5747        bio_endio(bi);
5748        return true;
5749}
5750
5751static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5752
5753static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5754{
5755        /* reshaping is quite different to recovery/resync so it is
5756         * handled quite separately ... here.
5757         *
5758         * On each call to sync_request, we gather one chunk worth of
5759         * destination stripes and flag them as expanding.
5760         * Then we find all the source stripes and request reads.
5761         * As the reads complete, handle_stripe will copy the data
5762         * into the destination stripe and release that stripe.
5763         */
5764        struct r5conf *conf = mddev->private;
5765        struct stripe_head *sh;
5766        struct md_rdev *rdev;
5767        sector_t first_sector, last_sector;
5768        int raid_disks = conf->previous_raid_disks;
5769        int data_disks = raid_disks - conf->max_degraded;
5770        int new_data_disks = conf->raid_disks - conf->max_degraded;
5771        int i;
5772        int dd_idx;
5773        sector_t writepos, readpos, safepos;
5774        sector_t stripe_addr;
5775        int reshape_sectors;
5776        struct list_head stripes;
5777        sector_t retn;
5778
5779        if (sector_nr == 0) {
5780                /* If restarting in the middle, skip the initial sectors */
5781                if (mddev->reshape_backwards &&
5782                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5783                        sector_nr = raid5_size(mddev, 0, 0)
5784                                - conf->reshape_progress;
5785                } else if (mddev->reshape_backwards &&
5786                           conf->reshape_progress == MaxSector) {
5787                        /* shouldn't happen, but just in case, finish up.*/
5788                        sector_nr = MaxSector;
5789                } else if (!mddev->reshape_backwards &&
5790                           conf->reshape_progress > 0)
5791                        sector_nr = conf->reshape_progress;
5792                sector_div(sector_nr, new_data_disks);
5793                if (sector_nr) {
5794                        mddev->curr_resync_completed = sector_nr;
5795                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5796                        *skipped = 1;
5797                        retn = sector_nr;
5798                        goto finish;
5799                }
5800        }
5801
5802        /* We need to process a full chunk at a time.
5803         * If old and new chunk sizes differ, we need to process the
5804         * largest of these
5805         */
5806
5807        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5808
5809        /* We update the metadata at least every 10 seconds, or when
5810         * the data about to be copied would over-write the source of
5811         * the data at the front of the range.  i.e. one new_stripe
5812         * along from reshape_progress new_maps to after where
5813         * reshape_safe old_maps to
5814         */
5815        writepos = conf->reshape_progress;
5816        sector_div(writepos, new_data_disks);
5817        readpos = conf->reshape_progress;
5818        sector_div(readpos, data_disks);
5819        safepos = conf->reshape_safe;
5820        sector_div(safepos, data_disks);
5821        if (mddev->reshape_backwards) {
5822                BUG_ON(writepos < reshape_sectors);
5823                writepos -= reshape_sectors;
5824                readpos += reshape_sectors;
5825                safepos += reshape_sectors;
5826        } else {
5827                writepos += reshape_sectors;
5828                /* readpos and safepos are worst-case calculations.
5829                 * A negative number is overly pessimistic, and causes
5830                 * obvious problems for unsigned storage.  So clip to 0.
5831                 */
5832                readpos -= min_t(sector_t, reshape_sectors, readpos);
5833                safepos -= min_t(sector_t, reshape_sectors, safepos);
5834        }
5835
5836        /* Having calculated the 'writepos' possibly use it
5837         * to set 'stripe_addr' which is where we will write to.
5838         */
5839        if (mddev->reshape_backwards) {
5840                BUG_ON(conf->reshape_progress == 0);
5841                stripe_addr = writepos;
5842                BUG_ON((mddev->dev_sectors &
5843                        ~((sector_t)reshape_sectors - 1))
5844                       - reshape_sectors - stripe_addr
5845                       != sector_nr);
5846        } else {
5847                BUG_ON(writepos != sector_nr + reshape_sectors);
5848                stripe_addr = sector_nr;
5849        }
5850
5851        /* 'writepos' is the most advanced device address we might write.
5852         * 'readpos' is the least advanced device address we might read.
5853         * 'safepos' is the least address recorded in the metadata as having
5854         *     been reshaped.
5855         * If there is a min_offset_diff, these are adjusted either by
5856         * increasing the safepos/readpos if diff is negative, or
5857         * increasing writepos if diff is positive.
5858         * If 'readpos' is then behind 'writepos', there is no way that we can
5859         * ensure safety in the face of a crash - that must be done by userspace
5860         * making a backup of the data.  So in that case there is no particular
5861         * rush to update metadata.
5862         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5863         * update the metadata to advance 'safepos' to match 'readpos' so that
5864         * we can be safe in the event of a crash.
5865         * So we insist on updating metadata if safepos is behind writepos and
5866         * readpos is beyond writepos.
5867         * In any case, update the metadata every 10 seconds.
5868         * Maybe that number should be configurable, but I'm not sure it is
5869         * worth it.... maybe it could be a multiple of safemode_delay???
5870         */
5871        if (conf->min_offset_diff < 0) {
5872                safepos += -conf->min_offset_diff;
5873                readpos += -conf->min_offset_diff;
5874        } else
5875                writepos += conf->min_offset_diff;
5876
5877        if ((mddev->reshape_backwards
5878             ? (safepos > writepos && readpos < writepos)
5879             : (safepos < writepos && readpos > writepos)) ||
5880            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5881                /* Cannot proceed until we've updated the superblock... */
5882                wait_event(conf->wait_for_overlap,
5883                           atomic_read(&conf->reshape_stripes)==0
5884                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5885                if (atomic_read(&conf->reshape_stripes) != 0)
5886                        return 0;
5887                mddev->reshape_position = conf->reshape_progress;
5888                mddev->curr_resync_completed = sector_nr;
5889                if (!mddev->reshape_backwards)
5890                        /* Can update recovery_offset */
5891                        rdev_for_each(rdev, mddev)
5892                                if (rdev->raid_disk >= 0 &&
5893                                    !test_bit(Journal, &rdev->flags) &&
5894                                    !test_bit(In_sync, &rdev->flags) &&
5895                                    rdev->recovery_offset < sector_nr)
5896                                        rdev->recovery_offset = sector_nr;
5897
5898                conf->reshape_checkpoint = jiffies;
5899                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5900                md_wakeup_thread(mddev->thread);
5901                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5902                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5903                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5904                        return 0;
5905                spin_lock_irq(&conf->device_lock);
5906                conf->reshape_safe = mddev->reshape_position;
5907                spin_unlock_irq(&conf->device_lock);
5908                wake_up(&conf->wait_for_overlap);
5909                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5910        }
5911
5912        INIT_LIST_HEAD(&stripes);
5913        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5914                int j;
5915                int skipped_disk = 0;
5916                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5917                set_bit(STRIPE_EXPANDING, &sh->state);
5918                atomic_inc(&conf->reshape_stripes);
5919                /* If any of this stripe is beyond the end of the old
5920                 * array, then we need to zero those blocks
5921                 */
5922                for (j=sh->disks; j--;) {
5923                        sector_t s;
5924                        if (j == sh->pd_idx)
5925                                continue;
5926                        if (conf->level == 6 &&
5927                            j == sh->qd_idx)
5928                                continue;
5929                        s = raid5_compute_blocknr(sh, j, 0);
5930                        if (s < raid5_size(mddev, 0, 0)) {
5931                                skipped_disk = 1;
5932                                continue;
5933                        }
5934                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5935                        set_bit(R5_Expanded, &sh->dev[j].flags);
5936                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5937                }
5938                if (!skipped_disk) {
5939                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5940                        set_bit(STRIPE_HANDLE, &sh->state);
5941                }
5942                list_add(&sh->lru, &stripes);
5943        }
5944        spin_lock_irq(&conf->device_lock);
5945        if (mddev->reshape_backwards)
5946                conf->reshape_progress -= reshape_sectors * new_data_disks;
5947        else
5948                conf->reshape_progress += reshape_sectors * new_data_disks;
5949        spin_unlock_irq(&conf->device_lock);
5950        /* Ok, those stripe are ready. We can start scheduling
5951         * reads on the source stripes.
5952         * The source stripes are determined by mapping the first and last
5953         * block on the destination stripes.
5954         */
5955        first_sector =
5956                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5957                                     1, &dd_idx, NULL);
5958        last_sector =
5959                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5960                                            * new_data_disks - 1),
5961                                     1, &dd_idx, NULL);
5962        if (last_sector >= mddev->dev_sectors)
5963                last_sector = mddev->dev_sectors - 1;
5964        while (first_sector <= last_sector) {
5965                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5966                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5967                set_bit(STRIPE_HANDLE, &sh->state);
5968                raid5_release_stripe(sh);
5969                first_sector += STRIPE_SECTORS;
5970        }
5971        /* Now that the sources are clearly marked, we can release
5972         * the destination stripes
5973         */
5974        while (!list_empty(&stripes)) {
5975                sh = list_entry(stripes.next, struct stripe_head, lru);
5976                list_del_init(&sh->lru);
5977                raid5_release_stripe(sh);
5978        }
5979        /* If this takes us to the resync_max point where we have to pause,
5980         * then we need to write out the superblock.
5981         */
5982        sector_nr += reshape_sectors;
5983        retn = reshape_sectors;
5984finish:
5985        if (mddev->curr_resync_completed > mddev->resync_max ||
5986            (sector_nr - mddev->curr_resync_completed) * 2
5987            >= mddev->resync_max - mddev->curr_resync_completed) {
5988                /* Cannot proceed until we've updated the superblock... */
5989                wait_event(conf->wait_for_overlap,
5990                           atomic_read(&conf->reshape_stripes) == 0
5991                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5992                if (atomic_read(&conf->reshape_stripes) != 0)
5993                        goto ret;
5994                mddev->reshape_position = conf->reshape_progress;
5995                mddev->curr_resync_completed = sector_nr;
5996                if (!mddev->reshape_backwards)
5997                        /* Can update recovery_offset */
5998                        rdev_for_each(rdev, mddev)
5999                                if (rdev->raid_disk >= 0 &&
6000                                    !test_bit(Journal, &rdev->flags) &&
6001                                    !test_bit(In_sync, &rdev->flags) &&
6002                                    rdev->recovery_offset < sector_nr)
6003                                        rdev->recovery_offset = sector_nr;
6004                conf->reshape_checkpoint = jiffies;
6005                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6006                md_wakeup_thread(mddev->thread);
6007                wait_event(mddev->sb_wait,
6008                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6009                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6010                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6011                        goto ret;
6012                spin_lock_irq(&conf->device_lock);
6013                conf->reshape_safe = mddev->reshape_position;
6014                spin_unlock_irq(&conf->device_lock);
6015                wake_up(&conf->wait_for_overlap);
6016                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6017        }
6018ret:
6019        return retn;
6020}
6021
6022static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6023                                          int *skipped)
6024{
6025        struct r5conf *conf = mddev->private;
6026        struct stripe_head *sh;
6027        sector_t max_sector = mddev->dev_sectors;
6028        sector_t sync_blocks;
6029        int still_degraded = 0;
6030        int i;
6031
6032        if (sector_nr >= max_sector) {
6033                /* just being told to finish up .. nothing much to do */
6034
6035                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6036                        end_reshape(conf);
6037                        return 0;
6038                }
6039
6040                if (mddev->curr_resync < max_sector) /* aborted */
6041                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6042                                           &sync_blocks, 1);
6043                else /* completed sync */
6044                        conf->fullsync = 0;
6045                md_bitmap_close_sync(mddev->bitmap);
6046
6047                return 0;
6048        }
6049
6050        /* Allow raid5_quiesce to complete */
6051        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6052
6053        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6054                return reshape_request(mddev, sector_nr, skipped);
6055
6056        /* No need to check resync_max as we never do more than one
6057         * stripe, and as resync_max will always be on a chunk boundary,
6058         * if the check in md_do_sync didn't fire, there is no chance
6059         * of overstepping resync_max here
6060         */
6061
6062        /* if there is too many failed drives and we are trying
6063         * to resync, then assert that we are finished, because there is
6064         * nothing we can do.
6065         */
6066        if (mddev->degraded >= conf->max_degraded &&
6067            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6068                sector_t rv = mddev->dev_sectors - sector_nr;
6069                *skipped = 1;
6070                return rv;
6071        }
6072        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6073            !conf->fullsync &&
6074            !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6075            sync_blocks >= STRIPE_SECTORS) {
6076                /* we can skip this block, and probably more */
6077                sync_blocks /= STRIPE_SECTORS;
6078                *skipped = 1;
6079                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6080        }
6081
6082        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6083
6084        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6085        if (sh == NULL) {
6086                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6087                /* make sure we don't swamp the stripe cache if someone else
6088                 * is trying to get access
6089                 */
6090                schedule_timeout_uninterruptible(1);
6091        }
6092        /* Need to check if array will still be degraded after recovery/resync
6093         * Note in case of > 1 drive failures it's possible we're rebuilding
6094         * one drive while leaving another faulty drive in array.
6095         */
6096        rcu_read_lock();
6097        for (i = 0; i < conf->raid_disks; i++) {
6098                struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6099
6100                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6101                        still_degraded = 1;
6102        }
6103        rcu_read_unlock();
6104
6105        md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6106
6107        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6108        set_bit(STRIPE_HANDLE, &sh->state);
6109
6110        raid5_release_stripe(sh);
6111
6112        return STRIPE_SECTORS;
6113}
6114
6115static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6116                               unsigned int offset)
6117{
6118        /* We may not be able to submit a whole bio at once as there
6119         * may not be enough stripe_heads available.
6120         * We cannot pre-allocate enough stripe_heads as we may need
6121         * more than exist in the cache (if we allow ever large chunks).
6122         * So we do one stripe head at a time and record in
6123         * ->bi_hw_segments how many have been done.
6124         *
6125         * We *know* that this entire raid_bio is in one chunk, so
6126         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6127         */
6128        struct stripe_head *sh;
6129        int dd_idx;
6130        sector_t sector, logical_sector, last_sector;
6131        int scnt = 0;
6132        int handled = 0;
6133
6134        logical_sector = raid_bio->bi_iter.bi_sector &
6135                ~((sector_t)STRIPE_SECTORS-1);
6136        sector = raid5_compute_sector(conf, logical_sector,
6137                                      0, &dd_idx, NULL);
6138        last_sector = bio_end_sector(raid_bio);
6139
6140        for (; logical_sector < last_sector;
6141             logical_sector += STRIPE_SECTORS,
6142                     sector += STRIPE_SECTORS,
6143                     scnt++) {
6144
6145                if (scnt < offset)
6146                        /* already done this stripe */
6147                        continue;
6148
6149                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6150
6151                if (!sh) {
6152                        /* failed to get a stripe - must wait */
6153                        conf->retry_read_aligned = raid_bio;
6154                        conf->retry_read_offset = scnt;
6155                        return handled;
6156                }
6157
6158                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6159                        raid5_release_stripe(sh);
6160                        conf->retry_read_aligned = raid_bio;
6161                        conf->retry_read_offset = scnt;
6162                        return handled;
6163                }
6164
6165                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6166                handle_stripe(sh);
6167                raid5_release_stripe(sh);
6168                handled++;
6169        }
6170
6171        bio_endio(raid_bio);
6172
6173        if (atomic_dec_and_test(&conf->active_aligned_reads))
6174                wake_up(&conf->wait_for_quiescent);
6175        return handled;
6176}
6177
6178static int handle_active_stripes(struct r5conf *conf, int group,
6179                                 struct r5worker *worker,
6180                                 struct list_head *temp_inactive_list)
6181                __releases(&conf->device_lock)
6182                __acquires(&conf->device_lock)
6183{
6184        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6185        int i, batch_size = 0, hash;
6186        bool release_inactive = false;
6187
6188        while (batch_size < MAX_STRIPE_BATCH &&
6189                        (sh = __get_priority_stripe(conf, group)) != NULL)
6190                batch[batch_size++] = sh;
6191
6192        if (batch_size == 0) {
6193                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6194                        if (!list_empty(temp_inactive_list + i))
6195                                break;
6196                if (i == NR_STRIPE_HASH_LOCKS) {
6197                        spin_unlock_irq(&conf->device_lock);
6198                        log_flush_stripe_to_raid(conf);
6199                        spin_lock_irq(&conf->device_lock);
6200                        return batch_size;
6201                }
6202                release_inactive = true;
6203        }
6204        spin_unlock_irq(&conf->device_lock);
6205
6206        release_inactive_stripe_list(conf, temp_inactive_list,
6207                                     NR_STRIPE_HASH_LOCKS);
6208
6209        r5l_flush_stripe_to_raid(conf->log);
6210        if (release_inactive) {
6211                spin_lock_irq(&conf->device_lock);
6212                return 0;
6213        }
6214
6215        for (i = 0; i < batch_size; i++)
6216                handle_stripe(batch[i]);
6217        log_write_stripe_run(conf);
6218
6219        cond_resched();
6220
6221        spin_lock_irq(&conf->device_lock);
6222        for (i = 0; i < batch_size; i++) {
6223                hash = batch[i]->hash_lock_index;
6224                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6225        }
6226        return batch_size;
6227}
6228
6229static void raid5_do_work(struct work_struct *work)
6230{
6231        struct r5worker *worker = container_of(work, struct r5worker, work);
6232        struct r5worker_group *group = worker->group;
6233        struct r5conf *conf = group->conf;
6234        struct mddev *mddev = conf->mddev;
6235        int group_id = group - conf->worker_groups;
6236        int handled;
6237        struct blk_plug plug;
6238
6239        pr_debug("+++ raid5worker active\n");
6240
6241        blk_start_plug(&plug);
6242        handled = 0;
6243        spin_lock_irq(&conf->device_lock);
6244        while (1) {
6245                int batch_size, released;
6246
6247                released = release_stripe_list(conf, worker->temp_inactive_list);
6248
6249                batch_size = handle_active_stripes(conf, group_id, worker,
6250                                                   worker->temp_inactive_list);
6251                worker->working = false;
6252                if (!batch_size && !released)
6253                        break;
6254                handled += batch_size;
6255                wait_event_lock_irq(mddev->sb_wait,
6256                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6257                        conf->device_lock);
6258        }
6259        pr_debug("%d stripes handled\n", handled);
6260
6261        spin_unlock_irq(&conf->device_lock);
6262
6263        flush_deferred_bios(conf);
6264
6265        r5l_flush_stripe_to_raid(conf->log);
6266
6267        async_tx_issue_pending_all();
6268        blk_finish_plug(&plug);
6269
6270        pr_debug("--- raid5worker inactive\n");
6271}
6272
6273/*
6274 * This is our raid5 kernel thread.
6275 *
6276 * We scan the hash table for stripes which can be handled now.
6277 * During the scan, completed stripes are saved for us by the interrupt
6278 * handler, so that they will not have to wait for our next wakeup.
6279 */
6280static void raid5d(struct md_thread *thread)
6281{
6282        struct mddev *mddev = thread->mddev;
6283        struct r5conf *conf = mddev->private;
6284        int handled;
6285        struct blk_plug plug;
6286
6287        pr_debug("+++ raid5d active\n");
6288
6289        md_check_recovery(mddev);
6290
6291        blk_start_plug(&plug);
6292        handled = 0;
6293        spin_lock_irq(&conf->device_lock);
6294        while (1) {
6295                struct bio *bio;
6296                int batch_size, released;
6297                unsigned int offset;
6298
6299                released = release_stripe_list(conf, conf->temp_inactive_list);
6300                if (released)
6301                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6302
6303                if (
6304                    !list_empty(&conf->bitmap_list)) {
6305                        /* Now is a good time to flush some bitmap updates */
6306                        conf->seq_flush++;
6307                        spin_unlock_irq(&conf->device_lock);
6308                        md_bitmap_unplug(mddev->bitmap);
6309                        spin_lock_irq(&conf->device_lock);
6310                        conf->seq_write = conf->seq_flush;
6311                        activate_bit_delay(conf, conf->temp_inactive_list);
6312                }
6313                raid5_activate_delayed(conf);
6314
6315                while ((bio = remove_bio_from_retry(conf, &offset))) {
6316                        int ok;
6317                        spin_unlock_irq(&conf->device_lock);
6318                        ok = retry_aligned_read(conf, bio, offset);
6319                        spin_lock_irq(&conf->device_lock);
6320                        if (!ok)
6321                                break;
6322                        handled++;
6323                }
6324
6325                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6326                                                   conf->temp_inactive_list);
6327                if (!batch_size && !released)
6328                        break;
6329                handled += batch_size;
6330
6331                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6332                        spin_unlock_irq(&conf->device_lock);
6333                        md_check_recovery(mddev);
6334                        spin_lock_irq(&conf->device_lock);
6335                }
6336        }
6337        pr_debug("%d stripes handled\n", handled);
6338
6339        spin_unlock_irq(&conf->device_lock);
6340        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6341            mutex_trylock(&conf->cache_size_mutex)) {
6342                grow_one_stripe(conf, __GFP_NOWARN);
6343                /* Set flag even if allocation failed.  This helps
6344                 * slow down allocation requests when mem is short
6345                 */
6346                set_bit(R5_DID_ALLOC, &conf->cache_state);
6347                mutex_unlock(&conf->cache_size_mutex);
6348        }
6349
6350        flush_deferred_bios(conf);
6351
6352        r5l_flush_stripe_to_raid(conf->log);
6353
6354        async_tx_issue_pending_all();
6355        blk_finish_plug(&plug);
6356
6357        pr_debug("--- raid5d inactive\n");
6358}
6359
6360static ssize_t
6361raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6362{
6363        struct r5conf *conf;
6364        int ret = 0;
6365        spin_lock(&mddev->lock);
6366        conf = mddev->private;
6367        if (conf)
6368                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6369        spin_unlock(&mddev->lock);
6370        return ret;
6371}
6372
6373int
6374raid5_set_cache_size(struct mddev *mddev, int size)
6375{
6376        int result = 0;
6377        struct r5conf *conf = mddev->private;
6378
6379        if (size <= 16 || size > 32768)
6380                return -EINVAL;
6381
6382        conf->min_nr_stripes = size;
6383        mutex_lock(&conf->cache_size_mutex);
6384        while (size < conf->max_nr_stripes &&
6385               drop_one_stripe(conf))
6386                ;
6387        mutex_unlock(&conf->cache_size_mutex);
6388
6389        md_allow_write(mddev);
6390
6391        mutex_lock(&conf->cache_size_mutex);
6392        while (size > conf->max_nr_stripes)
6393                if (!grow_one_stripe(conf, GFP_KERNEL)) {
6394                        conf->min_nr_stripes = conf->max_nr_stripes;
6395                        result = -ENOMEM;
6396                        break;
6397                }
6398        mutex_unlock(&conf->cache_size_mutex);
6399
6400        return result;
6401}
6402EXPORT_SYMBOL(raid5_set_cache_size);
6403
6404static ssize_t
6405raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6406{
6407        struct r5conf *conf;
6408        unsigned long new;
6409        int err;
6410
6411        if (len >= PAGE_SIZE)
6412                return -EINVAL;
6413        if (kstrtoul(page, 10, &new))
6414                return -EINVAL;
6415        err = mddev_lock(mddev);
6416        if (err)
6417                return err;
6418        conf = mddev->private;
6419        if (!conf)
6420                err = -ENODEV;
6421        else
6422                err = raid5_set_cache_size(mddev, new);
6423        mddev_unlock(mddev);
6424
6425        return err ?: len;
6426}
6427
6428static struct md_sysfs_entry
6429raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6430                                raid5_show_stripe_cache_size,
6431                                raid5_store_stripe_cache_size);
6432
6433static ssize_t
6434raid5_show_rmw_level(struct mddev  *mddev, char *page)
6435{
6436        struct r5conf *conf = mddev->private;
6437        if (conf)
6438                return sprintf(page, "%d\n", conf->rmw_level);
6439        else
6440                return 0;
6441}
6442
6443static ssize_t
6444raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6445{
6446        struct r5conf *conf = mddev->private;
6447        unsigned long new;
6448
6449        if (!conf)
6450                return -ENODEV;
6451
6452        if (len >= PAGE_SIZE)
6453                return -EINVAL;
6454
6455        if (kstrtoul(page, 10, &new))
6456                return -EINVAL;
6457
6458        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6459                return -EINVAL;
6460
6461        if (new != PARITY_DISABLE_RMW &&
6462            new != PARITY_ENABLE_RMW &&
6463            new != PARITY_PREFER_RMW)
6464                return -EINVAL;
6465
6466        conf->rmw_level = new;
6467        return len;
6468}
6469
6470static struct md_sysfs_entry
6471raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6472                         raid5_show_rmw_level,
6473                         raid5_store_rmw_level);
6474
6475
6476static ssize_t
6477raid5_show_preread_threshold(struct mddev *mddev, char *page)
6478{
6479        struct r5conf *conf;
6480        int ret = 0;
6481        spin_lock(&mddev->lock);
6482        conf = mddev->private;
6483        if (conf)
6484                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6485        spin_unlock(&mddev->lock);
6486        return ret;
6487}
6488
6489static ssize_t
6490raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6491{
6492        struct r5conf *conf;
6493        unsigned long new;
6494        int err;
6495
6496        if (len >= PAGE_SIZE)
6497                return -EINVAL;
6498        if (kstrtoul(page, 10, &new))
6499                return -EINVAL;
6500
6501        err = mddev_lock(mddev);
6502        if (err)
6503                return err;
6504        conf = mddev->private;
6505        if (!conf)
6506                err = -ENODEV;
6507        else if (new > conf->min_nr_stripes)
6508                err = -EINVAL;
6509        else
6510                conf->bypass_threshold = new;
6511        mddev_unlock(mddev);
6512        return err ?: len;
6513}
6514
6515static struct md_sysfs_entry
6516raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6517                                        S_IRUGO | S_IWUSR,
6518                                        raid5_show_preread_threshold,
6519                                        raid5_store_preread_threshold);
6520
6521static ssize_t
6522raid5_show_skip_copy(struct mddev *mddev, char *page)
6523{
6524        struct r5conf *conf;
6525        int ret = 0;
6526        spin_lock(&mddev->lock);
6527        conf = mddev->private;
6528        if (conf)
6529                ret = sprintf(page, "%d\n", conf->skip_copy);
6530        spin_unlock(&mddev->lock);
6531        return ret;
6532}
6533
6534static ssize_t
6535raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6536{
6537        struct r5conf *conf;
6538        unsigned long new;
6539        int err;
6540
6541        if (len >= PAGE_SIZE)
6542                return -EINVAL;
6543        if (kstrtoul(page, 10, &new))
6544                return -EINVAL;
6545        new = !!new;
6546
6547        err = mddev_lock(mddev);
6548        if (err)
6549                return err;
6550        conf = mddev->private;
6551        if (!conf)
6552                err = -ENODEV;
6553        else if (new != conf->skip_copy) {
6554                mddev_suspend(mddev);
6555                conf->skip_copy = new;
6556                if (new)
6557                        mddev->queue->backing_dev_info->capabilities |=
6558                                BDI_CAP_STABLE_WRITES;
6559                else
6560                        mddev->queue->backing_dev_info->capabilities &=
6561                                ~BDI_CAP_STABLE_WRITES;
6562                mddev_resume(mddev);
6563        }
6564        mddev_unlock(mddev);
6565        return err ?: len;
6566}
6567
6568static struct md_sysfs_entry
6569raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6570                                        raid5_show_skip_copy,
6571                                        raid5_store_skip_copy);
6572
6573static ssize_t
6574stripe_cache_active_show(struct mddev *mddev, char *page)
6575{
6576        struct r5conf *conf = mddev->private;
6577        if (conf)
6578                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6579        else
6580                return 0;
6581}
6582
6583static struct md_sysfs_entry
6584raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6585
6586static ssize_t
6587raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6588{
6589        struct r5conf *conf;
6590        int ret = 0;
6591        spin_lock(&mddev->lock);
6592        conf = mddev->private;
6593        if (conf)
6594                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6595        spin_unlock(&mddev->lock);
6596        return ret;
6597}
6598
6599static int alloc_thread_groups(struct r5conf *conf, int cnt,
6600                               int *group_cnt,
6601                               int *worker_cnt_per_group,
6602                               struct r5worker_group **worker_groups);
6603static ssize_t
6604raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6605{
6606        struct r5conf *conf;
6607        unsigned int new;
6608        int err;
6609        struct r5worker_group *new_groups, *old_groups;
6610        int group_cnt, worker_cnt_per_group;
6611
6612        if (len >= PAGE_SIZE)
6613                return -EINVAL;
6614        if (kstrtouint(page, 10, &new))
6615                return -EINVAL;
6616        /* 8192 should be big enough */
6617        if (new > 8192)
6618                return -EINVAL;
6619
6620        err = mddev_lock(mddev);
6621        if (err)
6622                return err;
6623        conf = mddev->private;
6624        if (!conf)
6625                err = -ENODEV;
6626        else if (new != conf->worker_cnt_per_group) {
6627                mddev_suspend(mddev);
6628
6629                old_groups = conf->worker_groups;
6630                if (old_groups)
6631                        flush_workqueue(raid5_wq);
6632
6633                err = alloc_thread_groups(conf, new,
6634                                          &group_cnt, &worker_cnt_per_group,
6635                                          &new_groups);
6636                if (!err) {
6637                        spin_lock_irq(&conf->device_lock);
6638                        conf->group_cnt = group_cnt;
6639                        conf->worker_cnt_per_group = worker_cnt_per_group;
6640                        conf->worker_groups = new_groups;
6641                        spin_unlock_irq(&conf->device_lock);
6642
6643                        if (old_groups)
6644                                kfree(old_groups[0].workers);
6645                        kfree(old_groups);
6646                }
6647                mddev_resume(mddev);
6648        }
6649        mddev_unlock(mddev);
6650
6651        return err ?: len;
6652}
6653
6654static struct md_sysfs_entry
6655raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6656                                raid5_show_group_thread_cnt,
6657                                raid5_store_group_thread_cnt);
6658
6659static struct attribute *raid5_attrs[] =  {
6660        &raid5_stripecache_size.attr,
6661        &raid5_stripecache_active.attr,
6662        &raid5_preread_bypass_threshold.attr,
6663        &raid5_group_thread_cnt.attr,
6664        &raid5_skip_copy.attr,
6665        &raid5_rmw_level.attr,
6666        &r5c_journal_mode.attr,
6667        &ppl_write_hint.attr,
6668        NULL,
6669};
6670static struct attribute_group raid5_attrs_group = {
6671        .name = NULL,
6672        .attrs = raid5_attrs,
6673};
6674
6675static int alloc_thread_groups(struct r5conf *conf, int cnt,
6676                               int *group_cnt,
6677                               int *worker_cnt_per_group,
6678                               struct r5worker_group **worker_groups)
6679{
6680        int i, j, k;
6681        ssize_t size;
6682        struct r5worker *workers;
6683
6684        *worker_cnt_per_group = cnt;
6685        if (cnt == 0) {
6686                *group_cnt = 0;
6687                *worker_groups = NULL;
6688                return 0;
6689        }
6690        *group_cnt = num_possible_nodes();
6691        size = sizeof(struct r5worker) * cnt;
6692        workers = kcalloc(size, *group_cnt, GFP_NOIO);
6693        *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6694                                 GFP_NOIO);
6695        if (!*worker_groups || !workers) {
6696                kfree(workers);
6697                kfree(*worker_groups);
6698                return -ENOMEM;
6699        }
6700
6701        for (i = 0; i < *group_cnt; i++) {
6702                struct r5worker_group *group;
6703
6704                group = &(*worker_groups)[i];
6705                INIT_LIST_HEAD(&group->handle_list);
6706                INIT_LIST_HEAD(&group->loprio_list);
6707                group->conf = conf;
6708                group->workers = workers + i * cnt;
6709
6710                for (j = 0; j < cnt; j++) {
6711                        struct r5worker *worker = group->workers + j;
6712                        worker->group = group;
6713                        INIT_WORK(&worker->work, raid5_do_work);
6714
6715                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6716                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6717                }
6718        }
6719
6720        return 0;
6721}
6722
6723static void free_thread_groups(struct r5conf *conf)
6724{
6725        if (conf->worker_groups)
6726                kfree(conf->worker_groups[0].workers);
6727        kfree(conf->worker_groups);
6728        conf->worker_groups = NULL;
6729}
6730
6731static sector_t
6732raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6733{
6734        struct r5conf *conf = mddev->private;
6735
6736        if (!sectors)
6737                sectors = mddev->dev_sectors;
6738        if (!raid_disks)
6739                /* size is defined by the smallest of previous and new size */
6740                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6741
6742        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6743        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6744        return sectors * (raid_disks - conf->max_degraded);
6745}
6746
6747static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6748{
6749        safe_put_page(percpu->spare_page);
6750        percpu->spare_page = NULL;
6751        kvfree(percpu->scribble);
6752        percpu->scribble = NULL;
6753}
6754
6755static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6756{
6757        if (conf->level == 6 && !percpu->spare_page) {
6758                percpu->spare_page = alloc_page(GFP_KERNEL);
6759                if (!percpu->spare_page)
6760                        return -ENOMEM;
6761        }
6762
6763        if (scribble_alloc(percpu,
6764                           max(conf->raid_disks,
6765                               conf->previous_raid_disks),
6766                           max(conf->chunk_sectors,
6767                               conf->prev_chunk_sectors)
6768                           / STRIPE_SECTORS,
6769                           GFP_KERNEL)) {
6770                free_scratch_buffer(conf, percpu);
6771                return -ENOMEM;
6772        }
6773
6774        return 0;
6775}
6776
6777static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6778{
6779        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6780
6781        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6782        return 0;
6783}
6784
6785static void raid5_free_percpu(struct r5conf *conf)
6786{
6787        if (!conf->percpu)
6788                return;
6789
6790        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6791        free_percpu(conf->percpu);
6792}
6793
6794static void free_conf(struct r5conf *conf)
6795{
6796        int i;
6797
6798        log_exit(conf);
6799
6800        unregister_shrinker(&conf->shrinker);
6801        free_thread_groups(conf);
6802        shrink_stripes(conf);
6803        raid5_free_percpu(conf);
6804        for (i = 0; i < conf->pool_size; i++)
6805                if (conf->disks[i].extra_page)
6806                        put_page(conf->disks[i].extra_page);
6807        kfree(conf->disks);
6808        bioset_exit(&conf->bio_split);
6809        kfree(conf->stripe_hashtbl);
6810        kfree(conf->pending_data);
6811        kfree(conf);
6812}
6813
6814static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6815{
6816        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6817        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6818
6819        if (alloc_scratch_buffer(conf, percpu)) {
6820                pr_warn("%s: failed memory allocation for cpu%u\n",
6821                        __func__, cpu);
6822                return -ENOMEM;
6823        }
6824        return 0;
6825}
6826
6827static int raid5_alloc_percpu(struct r5conf *conf)
6828{
6829        int err = 0;
6830
6831        conf->percpu = alloc_percpu(struct raid5_percpu);
6832        if (!conf->percpu)
6833                return -ENOMEM;
6834
6835        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6836        if (!err) {
6837                conf->scribble_disks = max(conf->raid_disks,
6838                        conf->previous_raid_disks);
6839                conf->scribble_sectors = max(conf->chunk_sectors,
6840                        conf->prev_chunk_sectors);
6841        }
6842        return err;
6843}
6844
6845static unsigned long raid5_cache_scan(struct shrinker *shrink,
6846                                      struct shrink_control *sc)
6847{
6848        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6849        unsigned long ret = SHRINK_STOP;
6850
6851        if (mutex_trylock(&conf->cache_size_mutex)) {
6852                ret= 0;
6853                while (ret < sc->nr_to_scan &&
6854                       conf->max_nr_stripes > conf->min_nr_stripes) {
6855                        if (drop_one_stripe(conf) == 0) {
6856                                ret = SHRINK_STOP;
6857                                break;
6858                        }
6859                        ret++;
6860                }
6861                mutex_unlock(&conf->cache_size_mutex);
6862        }
6863        return ret;
6864}
6865
6866static unsigned long raid5_cache_count(struct shrinker *shrink,
6867                                       struct shrink_control *sc)
6868{
6869        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6870
6871        if (conf->max_nr_stripes < conf->min_nr_stripes)
6872                /* unlikely, but not impossible */
6873                return 0;
6874        return conf->max_nr_stripes - conf->min_nr_stripes;
6875}
6876
6877static struct r5conf *setup_conf(struct mddev *mddev)
6878{
6879        struct r5conf *conf;
6880        int raid_disk, memory, max_disks;
6881        struct md_rdev *rdev;
6882        struct disk_info *disk;
6883        char pers_name[6];
6884        int i;
6885        int group_cnt, worker_cnt_per_group;
6886        struct r5worker_group *new_group;
6887        int ret;
6888
6889        if (mddev->new_level != 5
6890            && mddev->new_level != 4
6891            && mddev->new_level != 6) {
6892                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6893                        mdname(mddev), mddev->new_level);
6894                return ERR_PTR(-EIO);
6895        }
6896        if ((mddev->new_level == 5
6897             && !algorithm_valid_raid5(mddev->new_layout)) ||
6898            (mddev->new_level == 6
6899             && !algorithm_valid_raid6(mddev->new_layout))) {
6900                pr_warn("md/raid:%s: layout %d not supported\n",
6901                        mdname(mddev), mddev->new_layout);
6902                return ERR_PTR(-EIO);
6903        }
6904        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6905                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6906                        mdname(mddev), mddev->raid_disks);
6907                return ERR_PTR(-EINVAL);
6908        }
6909
6910        if (!mddev->new_chunk_sectors ||
6911            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6912            !is_power_of_2(mddev->new_chunk_sectors)) {
6913                pr_warn("md/raid:%s: invalid chunk size %d\n",
6914                        mdname(mddev), mddev->new_chunk_sectors << 9);
6915                return ERR_PTR(-EINVAL);
6916        }
6917
6918        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6919        if (conf == NULL)
6920                goto abort;
6921        INIT_LIST_HEAD(&conf->free_list);
6922        INIT_LIST_HEAD(&conf->pending_list);
6923        conf->pending_data = kcalloc(PENDING_IO_MAX,
6924                                     sizeof(struct r5pending_data),
6925                                     GFP_KERNEL);
6926        if (!conf->pending_data)
6927                goto abort;
6928        for (i = 0; i < PENDING_IO_MAX; i++)
6929                list_add(&conf->pending_data[i].sibling, &conf->free_list);
6930        /* Don't enable multi-threading by default*/
6931        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6932                                 &new_group)) {
6933                conf->group_cnt = group_cnt;
6934                conf->worker_cnt_per_group = worker_cnt_per_group;
6935                conf->worker_groups = new_group;
6936        } else
6937                goto abort;
6938        spin_lock_init(&conf->device_lock);
6939        seqcount_init(&conf->gen_lock);
6940        mutex_init(&conf->cache_size_mutex);
6941        init_waitqueue_head(&conf->wait_for_quiescent);
6942        init_waitqueue_head(&conf->wait_for_stripe);
6943        init_waitqueue_head(&conf->wait_for_overlap);
6944        INIT_LIST_HEAD(&conf->handle_list);
6945        INIT_LIST_HEAD(&conf->loprio_list);
6946        INIT_LIST_HEAD(&conf->hold_list);
6947        INIT_LIST_HEAD(&conf->delayed_list);
6948        INIT_LIST_HEAD(&conf->bitmap_list);
6949        init_llist_head(&conf->released_stripes);
6950        atomic_set(&conf->active_stripes, 0);
6951        atomic_set(&conf->preread_active_stripes, 0);
6952        atomic_set(&conf->active_aligned_reads, 0);
6953        spin_lock_init(&conf->pending_bios_lock);
6954        conf->batch_bio_dispatch = true;
6955        rdev_for_each(rdev, mddev) {
6956                if (test_bit(Journal, &rdev->flags))
6957                        continue;
6958                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6959                        conf->batch_bio_dispatch = false;
6960                        break;
6961                }
6962        }
6963
6964        conf->bypass_threshold = BYPASS_THRESHOLD;
6965        conf->recovery_disabled = mddev->recovery_disabled - 1;
6966
6967        conf->raid_disks = mddev->raid_disks;
6968        if (mddev->reshape_position == MaxSector)
6969                conf->previous_raid_disks = mddev->raid_disks;
6970        else
6971                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6972        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6973
6974        conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6975                              GFP_KERNEL);
6976
6977        if (!conf->disks)
6978                goto abort;
6979
6980        for (i = 0; i < max_disks; i++) {
6981                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6982                if (!conf->disks[i].extra_page)
6983                        goto abort;
6984        }
6985
6986        ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6987        if (ret)
6988                goto abort;
6989        conf->mddev = mddev;
6990
6991        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6992                goto abort;
6993
6994        /* We init hash_locks[0] separately to that it can be used
6995         * as the reference lock in the spin_lock_nest_lock() call
6996         * in lock_all_device_hash_locks_irq in order to convince
6997         * lockdep that we know what we are doing.
6998         */
6999        spin_lock_init(conf->hash_locks);
7000        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7001                spin_lock_init(conf->hash_locks + i);
7002
7003        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7004                INIT_LIST_HEAD(conf->inactive_list + i);
7005
7006        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7007                INIT_LIST_HEAD(conf->temp_inactive_list + i);
7008
7009        atomic_set(&conf->r5c_cached_full_stripes, 0);
7010        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7011        atomic_set(&conf->r5c_cached_partial_stripes, 0);
7012        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7013        atomic_set(&conf->r5c_flushing_full_stripes, 0);
7014        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7015
7016        conf->level = mddev->new_level;
7017        conf->chunk_sectors = mddev->new_chunk_sectors;
7018        if (raid5_alloc_percpu(conf) != 0)
7019                goto abort;
7020
7021        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7022
7023        rdev_for_each(rdev, mddev) {
7024                raid_disk = rdev->raid_disk;
7025                if (raid_disk >= max_disks
7026                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7027                        continue;
7028                disk = conf->disks + raid_disk;
7029
7030                if (test_bit(Replacement, &rdev->flags)) {
7031                        if (disk->replacement)
7032                                goto abort;
7033                        disk->replacement = rdev;
7034                } else {
7035                        if (disk->rdev)
7036                                goto abort;
7037                        disk->rdev = rdev;
7038                }
7039
7040                if (test_bit(In_sync, &rdev->flags)) {
7041                        char b[BDEVNAME_SIZE];
7042                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7043                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7044                } else if (rdev->saved_raid_disk != raid_disk)
7045                        /* Cannot rely on bitmap to complete recovery */
7046                        conf->fullsync = 1;
7047        }
7048
7049        conf->level = mddev->new_level;
7050        if (conf->level == 6) {
7051                conf->max_degraded = 2;
7052                if (raid6_call.xor_syndrome)
7053                        conf->rmw_level = PARITY_ENABLE_RMW;
7054                else
7055                        conf->rmw_level = PARITY_DISABLE_RMW;
7056        } else {
7057                conf->max_degraded = 1;
7058                conf->rmw_level = PARITY_ENABLE_RMW;
7059        }
7060        conf->algorithm = mddev->new_layout;
7061        conf->reshape_progress = mddev->reshape_position;
7062        if (conf->reshape_progress != MaxSector) {
7063                conf->prev_chunk_sectors = mddev->chunk_sectors;
7064                conf->prev_algo = mddev->layout;
7065        } else {
7066                conf->prev_chunk_sectors = conf->chunk_sectors;
7067                conf->prev_algo = conf->algorithm;
7068        }
7069
7070        conf->min_nr_stripes = NR_STRIPES;
7071        if (mddev->reshape_position != MaxSector) {
7072                int stripes = max_t(int,
7073                        ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7074                        ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7075                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7076                if (conf->min_nr_stripes != NR_STRIPES)
7077                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7078                                mdname(mddev), conf->min_nr_stripes);
7079        }
7080        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7081                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7082        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7083        if (grow_stripes(conf, conf->min_nr_stripes)) {
7084                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7085                        mdname(mddev), memory);
7086                goto abort;
7087        } else
7088                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7089        /*
7090         * Losing a stripe head costs more than the time to refill it,
7091         * it reduces the queue depth and so can hurt throughput.
7092         * So set it rather large, scaled by number of devices.
7093         */
7094        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7095        conf->shrinker.scan_objects = raid5_cache_scan;
7096        conf->shrinker.count_objects = raid5_cache_count;
7097        conf->shrinker.batch = 128;
7098        conf->shrinker.flags = 0;
7099        if (register_shrinker(&conf->shrinker)) {
7100                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7101                        mdname(mddev));
7102                goto abort;
7103        }
7104
7105        sprintf(pers_name, "raid%d", mddev->new_level);
7106        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7107        if (!conf->thread) {
7108                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7109                        mdname(mddev));
7110                goto abort;
7111        }
7112
7113        return conf;
7114
7115 abort:
7116        if (conf) {
7117                free_conf(conf);
7118                return ERR_PTR(-EIO);
7119        } else
7120                return ERR_PTR(-ENOMEM);
7121}
7122
7123static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7124{
7125        switch (algo) {
7126        case ALGORITHM_PARITY_0:
7127                if (raid_disk < max_degraded)
7128                        return 1;
7129                break;
7130        case ALGORITHM_PARITY_N:
7131                if (raid_disk >= raid_disks - max_degraded)
7132                        return 1;
7133                break;
7134        case ALGORITHM_PARITY_0_6:
7135                if (raid_disk == 0 ||
7136                    raid_disk == raid_disks - 1)
7137                        return 1;
7138                break;
7139        case ALGORITHM_LEFT_ASYMMETRIC_6:
7140        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7141        case ALGORITHM_LEFT_SYMMETRIC_6:
7142        case ALGORITHM_RIGHT_SYMMETRIC_6:
7143                if (raid_disk == raid_disks - 1)
7144                        return 1;
7145        }
7146        return 0;
7147}
7148
7149static int raid5_run(struct mddev *mddev)
7150{
7151        struct r5conf *conf;
7152        int working_disks = 0;
7153        int dirty_parity_disks = 0;
7154        struct md_rdev *rdev;
7155        struct md_rdev *journal_dev = NULL;
7156        sector_t reshape_offset = 0;
7157        int i;
7158        long long min_offset_diff = 0;
7159        int first = 1;
7160
7161        if (mddev_init_writes_pending(mddev) < 0)
7162                return -ENOMEM;
7163
7164        if (mddev->recovery_cp != MaxSector)
7165                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7166                          mdname(mddev));
7167
7168        rdev_for_each(rdev, mddev) {
7169                long long diff;
7170
7171                if (test_bit(Journal, &rdev->flags)) {
7172                        journal_dev = rdev;
7173                        continue;
7174                }
7175                if (rdev->raid_disk < 0)
7176                        continue;
7177                diff = (rdev->new_data_offset - rdev->data_offset);
7178                if (first) {
7179                        min_offset_diff = diff;
7180                        first = 0;
7181                } else if (mddev->reshape_backwards &&
7182                         diff < min_offset_diff)
7183                        min_offset_diff = diff;
7184                else if (!mddev->reshape_backwards &&
7185                         diff > min_offset_diff)
7186                        min_offset_diff = diff;
7187        }
7188
7189        if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7190            (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7191                pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7192                          mdname(mddev));
7193                return -EINVAL;
7194        }
7195
7196        if (mddev->reshape_position != MaxSector) {
7197                /* Check that we can continue the reshape.
7198                 * Difficulties arise if the stripe we would write to
7199                 * next is at or after the stripe we would read from next.
7200                 * For a reshape that changes the number of devices, this
7201                 * is only possible for a very short time, and mdadm makes
7202                 * sure that time appears to have past before assembling
7203                 * the array.  So we fail if that time hasn't passed.
7204                 * For a reshape that keeps the number of devices the same
7205                 * mdadm must be monitoring the reshape can keeping the
7206                 * critical areas read-only and backed up.  It will start
7207                 * the array in read-only mode, so we check for that.
7208                 */
7209                sector_t here_new, here_old;
7210                int old_disks;
7211                int max_degraded = (mddev->level == 6 ? 2 : 1);
7212                int chunk_sectors;
7213                int new_data_disks;
7214
7215                if (journal_dev) {
7216                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7217                                mdname(mddev));
7218                        return -EINVAL;
7219                }
7220
7221                if (mddev->new_level != mddev->level) {
7222                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7223                                mdname(mddev));
7224                        return -EINVAL;
7225                }
7226                old_disks = mddev->raid_disks - mddev->delta_disks;
7227                /* reshape_position must be on a new-stripe boundary, and one
7228                 * further up in new geometry must map after here in old
7229                 * geometry.
7230                 * If the chunk sizes are different, then as we perform reshape
7231                 * in units of the largest of the two, reshape_position needs
7232                 * be a multiple of the largest chunk size times new data disks.
7233                 */
7234                here_new = mddev->reshape_position;
7235                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7236                new_data_disks = mddev->raid_disks - max_degraded;
7237                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7238                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7239                                mdname(mddev));
7240                        return -EINVAL;
7241                }
7242                reshape_offset = here_new * chunk_sectors;
7243                /* here_new is the stripe we will write to */
7244                here_old = mddev->reshape_position;
7245                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7246                /* here_old is the first stripe that we might need to read
7247                 * from */
7248                if (mddev->delta_disks == 0) {
7249                        /* We cannot be sure it is safe to start an in-place
7250                         * reshape.  It is only safe if user-space is monitoring
7251                         * and taking constant backups.
7252                         * mdadm always starts a situation like this in
7253                         * readonly mode so it can take control before
7254                         * allowing any writes.  So just check for that.
7255                         */
7256                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7257                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7258                                /* not really in-place - so OK */;
7259                        else if (mddev->ro == 0) {
7260                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7261                                        mdname(mddev));
7262                                return -EINVAL;
7263                        }
7264                } else if (mddev->reshape_backwards
7265                    ? (here_new * chunk_sectors + min_offset_diff <=
7266                       here_old * chunk_sectors)
7267                    : (here_new * chunk_sectors >=
7268                       here_old * chunk_sectors + (-min_offset_diff))) {
7269                        /* Reading from the same stripe as writing to - bad */
7270                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7271                                mdname(mddev));
7272                        return -EINVAL;
7273                }
7274                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7275                /* OK, we should be able to continue; */
7276        } else {
7277                BUG_ON(mddev->level != mddev->new_level);
7278                BUG_ON(mddev->layout != mddev->new_layout);
7279                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7280                BUG_ON(mddev->delta_disks != 0);
7281        }
7282
7283        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7284            test_bit(MD_HAS_PPL, &mddev->flags)) {
7285                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7286                        mdname(mddev));
7287                clear_bit(MD_HAS_PPL, &mddev->flags);
7288                clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7289        }
7290
7291        if (mddev->private == NULL)
7292                conf = setup_conf(mddev);
7293        else
7294                conf = mddev->private;
7295
7296        if (IS_ERR(conf))
7297                return PTR_ERR(conf);
7298
7299        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7300                if (!journal_dev) {
7301                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7302                                mdname(mddev));
7303                        mddev->ro = 1;
7304                        set_disk_ro(mddev->gendisk, 1);
7305                } else if (mddev->recovery_cp == MaxSector)
7306                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7307        }
7308
7309        conf->min_offset_diff = min_offset_diff;
7310        mddev->thread = conf->thread;
7311        conf->thread = NULL;
7312        mddev->private = conf;
7313
7314        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7315             i++) {
7316                rdev = conf->disks[i].rdev;
7317                if (!rdev && conf->disks[i].replacement) {
7318                        /* The replacement is all we have yet */
7319                        rdev = conf->disks[i].replacement;
7320                        conf->disks[i].replacement = NULL;
7321                        clear_bit(Replacement, &rdev->flags);
7322                        conf->disks[i].rdev = rdev;
7323                }
7324                if (!rdev)
7325                        continue;
7326                if (conf->disks[i].replacement &&
7327                    conf->reshape_progress != MaxSector) {
7328                        /* replacements and reshape simply do not mix. */
7329                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7330                        goto abort;
7331                }
7332                if (test_bit(In_sync, &rdev->flags)) {
7333                        working_disks++;
7334                        continue;
7335                }
7336                /* This disc is not fully in-sync.  However if it
7337                 * just stored parity (beyond the recovery_offset),
7338                 * when we don't need to be concerned about the
7339                 * array being dirty.
7340                 * When reshape goes 'backwards', we never have
7341                 * partially completed devices, so we only need
7342                 * to worry about reshape going forwards.
7343                 */
7344                /* Hack because v0.91 doesn't store recovery_offset properly. */
7345                if (mddev->major_version == 0 &&
7346                    mddev->minor_version > 90)
7347                        rdev->recovery_offset = reshape_offset;
7348
7349                if (rdev->recovery_offset < reshape_offset) {
7350                        /* We need to check old and new layout */
7351                        if (!only_parity(rdev->raid_disk,
7352                                         conf->algorithm,
7353                                         conf->raid_disks,
7354                                         conf->max_degraded))
7355                                continue;
7356                }
7357                if (!only_parity(rdev->raid_disk,
7358                                 conf->prev_algo,
7359                                 conf->previous_raid_disks,
7360                                 conf->max_degraded))
7361                        continue;
7362                dirty_parity_disks++;
7363        }
7364
7365        /*
7366         * 0 for a fully functional array, 1 or 2 for a degraded array.
7367         */
7368        mddev->degraded = raid5_calc_degraded(conf);
7369
7370        if (has_failed(conf)) {
7371                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7372                        mdname(mddev), mddev->degraded, conf->raid_disks);
7373                goto abort;
7374        }
7375
7376        /* device size must be a multiple of chunk size */
7377        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7378        mddev->resync_max_sectors = mddev->dev_sectors;
7379
7380        if (mddev->degraded > dirty_parity_disks &&
7381            mddev->recovery_cp != MaxSector) {
7382                if (test_bit(MD_HAS_PPL, &mddev->flags))
7383                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7384                                mdname(mddev));
7385                else if (mddev->ok_start_degraded)
7386                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7387                                mdname(mddev));
7388                else {
7389                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7390                                mdname(mddev));
7391                        goto abort;
7392                }
7393        }
7394
7395        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7396                mdname(mddev), conf->level,
7397                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7398                mddev->new_layout);
7399
7400        print_raid5_conf(conf);
7401
7402        if (conf->reshape_progress != MaxSector) {
7403                conf->reshape_safe = conf->reshape_progress;
7404                atomic_set(&conf->reshape_stripes, 0);
7405                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7406                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7407                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7408                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7409                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7410                                                        "reshape");
7411                if (!mddev->sync_thread)
7412                        goto abort;
7413        }
7414
7415        /* Ok, everything is just fine now */
7416        if (mddev->to_remove == &raid5_attrs_group)
7417                mddev->to_remove = NULL;
7418        else if (mddev->kobj.sd &&
7419            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7420                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7421                        mdname(mddev));
7422        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7423
7424        if (mddev->queue) {
7425                int chunk_size;
7426                /* read-ahead size must cover two whole stripes, which
7427                 * is 2 * (datadisks) * chunksize where 'n' is the
7428                 * number of raid devices
7429                 */
7430                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7431                int stripe = data_disks *
7432                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7433                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7434                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7435
7436                chunk_size = mddev->chunk_sectors << 9;
7437                blk_queue_io_min(mddev->queue, chunk_size);
7438                blk_queue_io_opt(mddev->queue, chunk_size *
7439                                 (conf->raid_disks - conf->max_degraded));
7440                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7441                /*
7442                 * We can only discard a whole stripe. It doesn't make sense to
7443                 * discard data disk but write parity disk
7444                 */
7445                stripe = stripe * PAGE_SIZE;
7446                /* Round up to power of 2, as discard handling
7447                 * currently assumes that */
7448                while ((stripe-1) & stripe)
7449                        stripe = (stripe | (stripe-1)) + 1;
7450                mddev->queue->limits.discard_alignment = stripe;
7451                mddev->queue->limits.discard_granularity = stripe;
7452
7453                blk_queue_max_write_same_sectors(mddev->queue, 0);
7454                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7455
7456                rdev_for_each(rdev, mddev) {
7457                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7458                                          rdev->data_offset << 9);
7459                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7460                                          rdev->new_data_offset << 9);
7461                }
7462
7463                /*
7464                 * zeroing is required, otherwise data
7465                 * could be lost. Consider a scenario: discard a stripe
7466                 * (the stripe could be inconsistent if
7467                 * discard_zeroes_data is 0); write one disk of the
7468                 * stripe (the stripe could be inconsistent again
7469                 * depending on which disks are used to calculate
7470                 * parity); the disk is broken; The stripe data of this
7471                 * disk is lost.
7472                 *
7473                 * We only allow DISCARD if the sysadmin has confirmed that
7474                 * only safe devices are in use by setting a module parameter.
7475                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7476                 * requests, as that is required to be safe.
7477                 */
7478                if (devices_handle_discard_safely &&
7479                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7480                    mddev->queue->limits.discard_granularity >= stripe)
7481                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7482                                                mddev->queue);
7483                else
7484                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7485                                                mddev->queue);
7486
7487                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7488        }
7489
7490        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7491                goto abort;
7492
7493        return 0;
7494abort:
7495        md_unregister_thread(&mddev->thread);
7496        print_raid5_conf(conf);
7497        free_conf(conf);
7498        mddev->private = NULL;
7499        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7500        return -EIO;
7501}
7502
7503static void raid5_free(struct mddev *mddev, void *priv)
7504{
7505        struct r5conf *conf = priv;
7506
7507        free_conf(conf);
7508        mddev->to_remove = &raid5_attrs_group;
7509}
7510
7511static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7512{
7513        struct r5conf *conf = mddev->private;
7514        int i;
7515
7516        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7517                conf->chunk_sectors / 2, mddev->layout);
7518        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7519        rcu_read_lock();
7520        for (i = 0; i < conf->raid_disks; i++) {
7521                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7522                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7523        }
7524        rcu_read_unlock();
7525        seq_printf (seq, "]");
7526}
7527
7528static void print_raid5_conf (struct r5conf *conf)
7529{
7530        int i;
7531        struct disk_info *tmp;
7532
7533        pr_debug("RAID conf printout:\n");
7534        if (!conf) {
7535                pr_debug("(conf==NULL)\n");
7536                return;
7537        }
7538        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7539               conf->raid_disks,
7540               conf->raid_disks - conf->mddev->degraded);
7541
7542        for (i = 0; i < conf->raid_disks; i++) {
7543                char b[BDEVNAME_SIZE];
7544                tmp = conf->disks + i;
7545                if (tmp->rdev)
7546                        pr_debug(" disk %d, o:%d, dev:%s\n",
7547                               i, !test_bit(Faulty, &tmp->rdev->flags),
7548                               bdevname(tmp->rdev->bdev, b));
7549        }
7550}
7551
7552static int raid5_spare_active(struct mddev *mddev)
7553{
7554        int i;
7555        struct r5conf *conf = mddev->private;
7556        struct disk_info *tmp;
7557        int count = 0;
7558        unsigned long flags;
7559
7560        for (i = 0; i < conf->raid_disks; i++) {
7561                tmp = conf->disks + i;
7562                if (tmp->replacement
7563                    && tmp->replacement->recovery_offset == MaxSector
7564                    && !test_bit(Faulty, &tmp->replacement->flags)
7565                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7566                        /* Replacement has just become active. */
7567                        if (!tmp->rdev
7568                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7569                                count++;
7570                        if (tmp->rdev) {
7571                                /* Replaced device not technically faulty,
7572                                 * but we need to be sure it gets removed
7573                                 * and never re-added.
7574                                 */
7575                                set_bit(Faulty, &tmp->rdev->flags);
7576                                sysfs_notify_dirent_safe(
7577                                        tmp->rdev->sysfs_state);
7578                        }
7579                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7580                } else if (tmp->rdev
7581                    && tmp->rdev->recovery_offset == MaxSector
7582                    && !test_bit(Faulty, &tmp->rdev->flags)
7583                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7584                        count++;
7585                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7586                }
7587        }
7588        spin_lock_irqsave(&conf->device_lock, flags);
7589        mddev->degraded = raid5_calc_degraded(conf);
7590        spin_unlock_irqrestore(&conf->device_lock, flags);
7591        print_raid5_conf(conf);
7592        return count;
7593}
7594
7595static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7596{
7597        struct r5conf *conf = mddev->private;
7598        int err = 0;
7599        int number = rdev->raid_disk;
7600        struct md_rdev **rdevp;
7601        struct disk_info *p = conf->disks + number;
7602
7603        print_raid5_conf(conf);
7604        if (test_bit(Journal, &rdev->flags) && conf->log) {
7605                /*
7606                 * we can't wait pending write here, as this is called in
7607                 * raid5d, wait will deadlock.
7608                 * neilb: there is no locking about new writes here,
7609                 * so this cannot be safe.
7610                 */
7611                if (atomic_read(&conf->active_stripes) ||
7612                    atomic_read(&conf->r5c_cached_full_stripes) ||
7613                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7614                        return -EBUSY;
7615                }
7616                log_exit(conf);
7617                return 0;
7618        }
7619        if (rdev == p->rdev)
7620                rdevp = &p->rdev;
7621        else if (rdev == p->replacement)
7622                rdevp = &p->replacement;
7623        else
7624                return 0;
7625
7626        if (number >= conf->raid_disks &&
7627            conf->reshape_progress == MaxSector)
7628                clear_bit(In_sync, &rdev->flags);
7629
7630        if (test_bit(In_sync, &rdev->flags) ||
7631            atomic_read(&rdev->nr_pending)) {
7632                err = -EBUSY;
7633                goto abort;
7634        }
7635        /* Only remove non-faulty devices if recovery
7636         * isn't possible.
7637         */
7638        if (!test_bit(Faulty, &rdev->flags) &&
7639            mddev->recovery_disabled != conf->recovery_disabled &&
7640            !has_failed(conf) &&
7641            (!p->replacement || p->replacement == rdev) &&
7642            number < conf->raid_disks) {
7643                err = -EBUSY;
7644                goto abort;
7645        }
7646        *rdevp = NULL;
7647        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7648                synchronize_rcu();
7649                if (atomic_read(&rdev->nr_pending)) {
7650                        /* lost the race, try later */
7651                        err = -EBUSY;
7652                        *rdevp = rdev;
7653                }
7654        }
7655        if (!err) {
7656                err = log_modify(conf, rdev, false);
7657                if (err)
7658                        goto abort;
7659        }
7660        if (p->replacement) {
7661                /* We must have just cleared 'rdev' */
7662                p->rdev = p->replacement;
7663                clear_bit(Replacement, &p->replacement->flags);
7664                smp_mb(); /* Make sure other CPUs may see both as identical
7665                           * but will never see neither - if they are careful
7666                           */
7667                p->replacement = NULL;
7668
7669                if (!err)
7670                        err = log_modify(conf, p->rdev, true);
7671        }
7672
7673        clear_bit(WantReplacement, &rdev->flags);
7674abort:
7675
7676        print_raid5_conf(conf);
7677        return err;
7678}
7679
7680static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7681{
7682        struct r5conf *conf = mddev->private;
7683        int ret, err = -EEXIST;
7684        int disk;
7685        struct disk_info *p;
7686        int first = 0;
7687        int last = conf->raid_disks - 1;
7688
7689        if (test_bit(Journal, &rdev->flags)) {
7690                if (conf->log)
7691                        return -EBUSY;
7692
7693                rdev->raid_disk = 0;
7694                /*
7695                 * The array is in readonly mode if journal is missing, so no
7696                 * write requests running. We should be safe
7697                 */
7698                ret = log_init(conf, rdev, false);
7699                if (ret)
7700                        return ret;
7701
7702                ret = r5l_start(conf->log);
7703                if (ret)
7704                        return ret;
7705
7706                return 0;
7707        }
7708        if (mddev->recovery_disabled == conf->recovery_disabled)
7709                return -EBUSY;
7710
7711        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7712                /* no point adding a device */
7713                return -EINVAL;
7714
7715        if (rdev->raid_disk >= 0)
7716                first = last = rdev->raid_disk;
7717
7718        /*
7719         * find the disk ... but prefer rdev->saved_raid_disk
7720         * if possible.
7721         */
7722        if (rdev->saved_raid_disk >= 0 &&
7723            rdev->saved_raid_disk >= first &&
7724            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7725                first = rdev->saved_raid_disk;
7726
7727        for (disk = first; disk <= last; disk++) {
7728                p = conf->disks + disk;
7729                if (p->rdev == NULL) {
7730                        clear_bit(In_sync, &rdev->flags);
7731                        rdev->raid_disk = disk;
7732                        if (rdev->saved_raid_disk != disk)
7733                                conf->fullsync = 1;
7734                        rcu_assign_pointer(p->rdev, rdev);
7735
7736                        err = log_modify(conf, rdev, true);
7737
7738                        goto out;
7739                }
7740        }
7741        for (disk = first; disk <= last; disk++) {
7742                p = conf->disks + disk;
7743                if (test_bit(WantReplacement, &p->rdev->flags) &&
7744                    p->replacement == NULL) {
7745                        clear_bit(In_sync, &rdev->flags);
7746                        set_bit(Replacement, &rdev->flags);
7747                        rdev->raid_disk = disk;
7748                        err = 0;
7749                        conf->fullsync = 1;
7750                        rcu_assign_pointer(p->replacement, rdev);
7751                        break;
7752                }
7753        }
7754out:
7755        print_raid5_conf(conf);
7756        return err;
7757}
7758
7759static int raid5_resize(struct mddev *mddev, sector_t sectors)
7760{
7761        /* no resync is happening, and there is enough space
7762         * on all devices, so we can resize.
7763         * We need to make sure resync covers any new space.
7764         * If the array is shrinking we should possibly wait until
7765         * any io in the removed space completes, but it hardly seems
7766         * worth it.
7767         */
7768        sector_t newsize;
7769        struct r5conf *conf = mddev->private;
7770
7771        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7772                return -EINVAL;
7773        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7774        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7775        if (mddev->external_size &&
7776            mddev->array_sectors > newsize)
7777                return -EINVAL;
7778        if (mddev->bitmap) {
7779                int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7780                if (ret)
7781                        return ret;
7782        }
7783        md_set_array_sectors(mddev, newsize);
7784        if (sectors > mddev->dev_sectors &&
7785            mddev->recovery_cp > mddev->dev_sectors) {
7786                mddev->recovery_cp = mddev->dev_sectors;
7787                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7788        }
7789        mddev->dev_sectors = sectors;
7790        mddev->resync_max_sectors = sectors;
7791        return 0;
7792}
7793
7794static int check_stripe_cache(struct mddev *mddev)
7795{
7796        /* Can only proceed if there are plenty of stripe_heads.
7797         * We need a minimum of one full stripe,, and for sensible progress
7798         * it is best to have about 4 times that.
7799         * If we require 4 times, then the default 256 4K stripe_heads will
7800         * allow for chunk sizes up to 256K, which is probably OK.
7801         * If the chunk size is greater, user-space should request more
7802         * stripe_heads first.
7803         */
7804        struct r5conf *conf = mddev->private;
7805        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7806            > conf->min_nr_stripes ||
7807            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7808            > conf->min_nr_stripes) {
7809                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7810                        mdname(mddev),
7811                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7812                         / STRIPE_SIZE)*4);
7813                return 0;
7814        }
7815        return 1;
7816}
7817
7818static int check_reshape(struct mddev *mddev)
7819{
7820        struct r5conf *conf = mddev->private;
7821
7822        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7823                return -EINVAL;
7824        if (mddev->delta_disks == 0 &&
7825            mddev->new_layout == mddev->layout &&
7826            mddev->new_chunk_sectors == mddev->chunk_sectors)
7827                return 0; /* nothing to do */
7828        if (has_failed(conf))
7829                return -EINVAL;
7830        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7831                /* We might be able to shrink, but the devices must
7832                 * be made bigger first.
7833                 * For raid6, 4 is the minimum size.
7834                 * Otherwise 2 is the minimum
7835                 */
7836                int min = 2;
7837                if (mddev->level == 6)
7838                        min = 4;
7839                if (mddev->raid_disks + mddev->delta_disks < min)
7840                        return -EINVAL;
7841        }
7842
7843        if (!check_stripe_cache(mddev))
7844                return -ENOSPC;
7845
7846        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7847            mddev->delta_disks > 0)
7848                if (resize_chunks(conf,
7849                                  conf->previous_raid_disks
7850                                  + max(0, mddev->delta_disks),
7851                                  max(mddev->new_chunk_sectors,
7852                                      mddev->chunk_sectors)
7853                            ) < 0)
7854                        return -ENOMEM;
7855
7856        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7857                return 0; /* never bother to shrink */
7858        return resize_stripes(conf, (conf->previous_raid_disks
7859                                     + mddev->delta_disks));
7860}
7861
7862static int raid5_start_reshape(struct mddev *mddev)
7863{
7864        struct r5conf *conf = mddev->private;
7865        struct md_rdev *rdev;
7866        int spares = 0;
7867        unsigned long flags;
7868
7869        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7870                return -EBUSY;
7871
7872        if (!check_stripe_cache(mddev))
7873                return -ENOSPC;
7874
7875        if (has_failed(conf))
7876                return -EINVAL;
7877
7878        rdev_for_each(rdev, mddev) {
7879                if (!test_bit(In_sync, &rdev->flags)
7880                    && !test_bit(Faulty, &rdev->flags))
7881                        spares++;
7882        }
7883
7884        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7885                /* Not enough devices even to make a degraded array
7886                 * of that size
7887                 */
7888                return -EINVAL;
7889
7890        /* Refuse to reduce size of the array.  Any reductions in
7891         * array size must be through explicit setting of array_size
7892         * attribute.
7893         */
7894        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7895            < mddev->array_sectors) {
7896                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7897                        mdname(mddev));
7898                return -EINVAL;
7899        }
7900
7901        atomic_set(&conf->reshape_stripes, 0);
7902        spin_lock_irq(&conf->device_lock);
7903        write_seqcount_begin(&conf->gen_lock);
7904        conf->previous_raid_disks = conf->raid_disks;
7905        conf->raid_disks += mddev->delta_disks;
7906        conf->prev_chunk_sectors = conf->chunk_sectors;
7907        conf->chunk_sectors = mddev->new_chunk_sectors;
7908        conf->prev_algo = conf->algorithm;
7909        conf->algorithm = mddev->new_layout;
7910        conf->generation++;
7911        /* Code that selects data_offset needs to see the generation update
7912         * if reshape_progress has been set - so a memory barrier needed.
7913         */
7914        smp_mb();
7915        if (mddev->reshape_backwards)
7916                conf->reshape_progress = raid5_size(mddev, 0, 0);
7917        else
7918                conf->reshape_progress = 0;
7919        conf->reshape_safe = conf->reshape_progress;
7920        write_seqcount_end(&conf->gen_lock);
7921        spin_unlock_irq(&conf->device_lock);
7922
7923        /* Now make sure any requests that proceeded on the assumption
7924         * the reshape wasn't running - like Discard or Read - have
7925         * completed.
7926         */
7927        mddev_suspend(mddev);
7928        mddev_resume(mddev);
7929
7930        /* Add some new drives, as many as will fit.
7931         * We know there are enough to make the newly sized array work.
7932         * Don't add devices if we are reducing the number of
7933         * devices in the array.  This is because it is not possible
7934         * to correctly record the "partially reconstructed" state of
7935         * such devices during the reshape and confusion could result.
7936         */
7937        if (mddev->delta_disks >= 0) {
7938                rdev_for_each(rdev, mddev)
7939                        if (rdev->raid_disk < 0 &&
7940                            !test_bit(Faulty, &rdev->flags)) {
7941                                if (raid5_add_disk(mddev, rdev) == 0) {
7942                                        if (rdev->raid_disk
7943                                            >= conf->previous_raid_disks)
7944                                                set_bit(In_sync, &rdev->flags);
7945                                        else
7946                                                rdev->recovery_offset = 0;
7947
7948                                        if (sysfs_link_rdev(mddev, rdev))
7949                                                /* Failure here is OK */;
7950                                }
7951                        } else if (rdev->raid_disk >= conf->previous_raid_disks
7952                                   && !test_bit(Faulty, &rdev->flags)) {
7953                                /* This is a spare that was manually added */
7954                                set_bit(In_sync, &rdev->flags);
7955                        }
7956
7957                /* When a reshape changes the number of devices,
7958                 * ->degraded is measured against the larger of the
7959                 * pre and post number of devices.
7960                 */
7961                spin_lock_irqsave(&conf->device_lock, flags);
7962                mddev->degraded = raid5_calc_degraded(conf);
7963                spin_unlock_irqrestore(&conf->device_lock, flags);
7964        }
7965        mddev->raid_disks = conf->raid_disks;
7966        mddev->reshape_position = conf->reshape_progress;
7967        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7968
7969        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7970        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7971        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7972        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7973        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7974        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7975                                                "reshape");
7976        if (!mddev->sync_thread) {
7977                mddev->recovery = 0;
7978                spin_lock_irq(&conf->device_lock);
7979                write_seqcount_begin(&conf->gen_lock);
7980                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7981                mddev->new_chunk_sectors =
7982                        conf->chunk_sectors = conf->prev_chunk_sectors;
7983                mddev->new_layout = conf->algorithm = conf->prev_algo;
7984                rdev_for_each(rdev, mddev)
7985                        rdev->new_data_offset = rdev->data_offset;
7986                smp_wmb();
7987                conf->generation --;
7988                conf->reshape_progress = MaxSector;
7989                mddev->reshape_position = MaxSector;
7990                write_seqcount_end(&conf->gen_lock);
7991                spin_unlock_irq(&conf->device_lock);
7992                return -EAGAIN;
7993        }
7994        conf->reshape_checkpoint = jiffies;
7995        md_wakeup_thread(mddev->sync_thread);
7996        md_new_event(mddev);
7997        return 0;
7998}
7999
8000/* This is called from the reshape thread and should make any
8001 * changes needed in 'conf'
8002 */
8003static void end_reshape(struct r5conf *conf)
8004{
8005
8006        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8007                struct md_rdev *rdev;
8008
8009                spin_lock_irq(&conf->device_lock);
8010                conf->previous_raid_disks = conf->raid_disks;
8011                md_finish_reshape(conf->mddev);
8012                smp_wmb();
8013                conf->reshape_progress = MaxSector;
8014                conf->mddev->reshape_position = MaxSector;
8015                rdev_for_each(rdev, conf->mddev)
8016                        if (rdev->raid_disk >= 0 &&
8017                            !test_bit(Journal, &rdev->flags) &&
8018                            !test_bit(In_sync, &rdev->flags))
8019                                rdev->recovery_offset = MaxSector;
8020                spin_unlock_irq(&conf->device_lock);
8021                wake_up(&conf->wait_for_overlap);
8022
8023                /* read-ahead size must cover two whole stripes, which is
8024                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8025                 */
8026                if (conf->mddev->queue) {
8027                        int data_disks = conf->raid_disks - conf->max_degraded;
8028                        int stripe = data_disks * ((conf->chunk_sectors << 9)
8029                                                   / PAGE_SIZE);
8030                        if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8031                                conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8032                }
8033        }
8034}
8035
8036/* This is called from the raid5d thread with mddev_lock held.
8037 * It makes config changes to the device.
8038 */
8039static void raid5_finish_reshape(struct mddev *mddev)
8040{
8041        struct r5conf *conf = mddev->private;
8042
8043        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8044
8045                if (mddev->delta_disks <= 0) {
8046                        int d;
8047                        spin_lock_irq(&conf->device_lock);
8048                        mddev->degraded = raid5_calc_degraded(conf);
8049                        spin_unlock_irq(&conf->device_lock);
8050                        for (d = conf->raid_disks ;
8051                             d < conf->raid_disks - mddev->delta_disks;
8052                             d++) {
8053                                struct md_rdev *rdev = conf->disks[d].rdev;
8054                                if (rdev)
8055                                        clear_bit(In_sync, &rdev->flags);
8056                                rdev = conf->disks[d].replacement;
8057                                if (rdev)
8058                                        clear_bit(In_sync, &rdev->flags);
8059                        }
8060                }
8061                mddev->layout = conf->algorithm;
8062                mddev->chunk_sectors = conf->chunk_sectors;
8063                mddev->reshape_position = MaxSector;
8064                mddev->delta_disks = 0;
8065                mddev->reshape_backwards = 0;
8066        }
8067}
8068
8069static void raid5_quiesce(struct mddev *mddev, int quiesce)
8070{
8071        struct r5conf *conf = mddev->private;
8072
8073        if (quiesce) {
8074                /* stop all writes */
8075                lock_all_device_hash_locks_irq(conf);
8076                /* '2' tells resync/reshape to pause so that all
8077                 * active stripes can drain
8078                 */
8079                r5c_flush_cache(conf, INT_MAX);
8080                conf->quiesce = 2;
8081                wait_event_cmd(conf->wait_for_quiescent,
8082                                    atomic_read(&conf->active_stripes) == 0 &&
8083                                    atomic_read(&conf->active_aligned_reads) == 0,
8084                                    unlock_all_device_hash_locks_irq(conf),
8085                                    lock_all_device_hash_locks_irq(conf));
8086                conf->quiesce = 1;
8087                unlock_all_device_hash_locks_irq(conf);
8088                /* allow reshape to continue */
8089                wake_up(&conf->wait_for_overlap);
8090        } else {
8091                /* re-enable writes */
8092                lock_all_device_hash_locks_irq(conf);
8093                conf->quiesce = 0;
8094                wake_up(&conf->wait_for_quiescent);
8095                wake_up(&conf->wait_for_overlap);
8096                unlock_all_device_hash_locks_irq(conf);
8097        }
8098        log_quiesce(conf, quiesce);
8099}
8100
8101static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8102{
8103        struct r0conf *raid0_conf = mddev->private;
8104        sector_t sectors;
8105
8106        /* for raid0 takeover only one zone is supported */
8107        if (raid0_conf->nr_strip_zones > 1) {
8108                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8109                        mdname(mddev));
8110                return ERR_PTR(-EINVAL);
8111        }
8112
8113        sectors = raid0_conf->strip_zone[0].zone_end;
8114        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8115        mddev->dev_sectors = sectors;
8116        mddev->new_level = level;
8117        mddev->new_layout = ALGORITHM_PARITY_N;
8118        mddev->new_chunk_sectors = mddev->chunk_sectors;
8119        mddev->raid_disks += 1;
8120        mddev->delta_disks = 1;
8121        /* make sure it will be not marked as dirty */
8122        mddev->recovery_cp = MaxSector;
8123
8124        return setup_conf(mddev);
8125}
8126
8127static void *raid5_takeover_raid1(struct mddev *mddev)
8128{
8129        int chunksect;
8130        void *ret;
8131
8132        if (mddev->raid_disks != 2 ||
8133            mddev->degraded > 1)
8134                return ERR_PTR(-EINVAL);
8135
8136        /* Should check if there are write-behind devices? */
8137
8138        chunksect = 64*2; /* 64K by default */
8139
8140        /* The array must be an exact multiple of chunksize */
8141        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8142                chunksect >>= 1;
8143
8144        if ((chunksect<<9) < STRIPE_SIZE)
8145                /* array size does not allow a suitable chunk size */
8146                return ERR_PTR(-EINVAL);
8147
8148        mddev->new_level = 5;
8149        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8150        mddev->new_chunk_sectors = chunksect;
8151
8152        ret = setup_conf(mddev);
8153        if (!IS_ERR(ret))
8154                mddev_clear_unsupported_flags(mddev,
8155                        UNSUPPORTED_MDDEV_FLAGS);
8156        return ret;
8157}
8158
8159static void *raid5_takeover_raid6(struct mddev *mddev)
8160{
8161        int new_layout;
8162
8163        switch (mddev->layout) {
8164        case ALGORITHM_LEFT_ASYMMETRIC_6:
8165                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8166                break;
8167        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8168                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8169                break;
8170        case ALGORITHM_LEFT_SYMMETRIC_6:
8171                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8172                break;
8173        case ALGORITHM_RIGHT_SYMMETRIC_6:
8174                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8175                break;
8176        case ALGORITHM_PARITY_0_6:
8177                new_layout = ALGORITHM_PARITY_0;
8178                break;
8179        case ALGORITHM_PARITY_N:
8180                new_layout = ALGORITHM_PARITY_N;
8181                break;
8182        default:
8183                return ERR_PTR(-EINVAL);
8184        }
8185        mddev->new_level = 5;
8186        mddev->new_layout = new_layout;
8187        mddev->delta_disks = -1;
8188        mddev->raid_disks -= 1;
8189        return setup_conf(mddev);
8190}
8191
8192static int raid5_check_reshape(struct mddev *mddev)
8193{
8194        /* For a 2-drive array, the layout and chunk size can be changed
8195         * immediately as not restriping is needed.
8196         * For larger arrays we record the new value - after validation
8197         * to be used by a reshape pass.
8198         */
8199        struct r5conf *conf = mddev->private;
8200        int new_chunk = mddev->new_chunk_sectors;
8201
8202        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8203                return -EINVAL;
8204        if (new_chunk > 0) {
8205                if (!is_power_of_2(new_chunk))
8206                        return -EINVAL;
8207                if (new_chunk < (PAGE_SIZE>>9))
8208                        return -EINVAL;
8209                if (mddev->array_sectors & (new_chunk-1))
8210                        /* not factor of array size */
8211                        return -EINVAL;
8212        }
8213
8214        /* They look valid */
8215
8216        if (mddev->raid_disks == 2) {
8217                /* can make the change immediately */
8218                if (mddev->new_layout >= 0) {
8219                        conf->algorithm = mddev->new_layout;
8220                        mddev->layout = mddev->new_layout;
8221                }
8222                if (new_chunk > 0) {
8223                        conf->chunk_sectors = new_chunk ;
8224                        mddev->chunk_sectors = new_chunk;
8225                }
8226                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8227                md_wakeup_thread(mddev->thread);
8228        }
8229        return check_reshape(mddev);
8230}
8231
8232static int raid6_check_reshape(struct mddev *mddev)
8233{
8234        int new_chunk = mddev->new_chunk_sectors;
8235
8236        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8237                return -EINVAL;
8238        if (new_chunk > 0) {
8239                if (!is_power_of_2(new_chunk))
8240                        return -EINVAL;
8241                if (new_chunk < (PAGE_SIZE >> 9))
8242                        return -EINVAL;
8243                if (mddev->array_sectors & (new_chunk-1))
8244                        /* not factor of array size */
8245                        return -EINVAL;
8246        }
8247
8248        /* They look valid */
8249        return check_reshape(mddev);
8250}
8251
8252static void *raid5_takeover(struct mddev *mddev)
8253{
8254        /* raid5 can take over:
8255         *  raid0 - if there is only one strip zone - make it a raid4 layout
8256         *  raid1 - if there are two drives.  We need to know the chunk size
8257         *  raid4 - trivial - just use a raid4 layout.
8258         *  raid6 - Providing it is a *_6 layout
8259         */
8260        if (mddev->level == 0)
8261                return raid45_takeover_raid0(mddev, 5);
8262        if (mddev->level == 1)
8263                return raid5_takeover_raid1(mddev);
8264        if (mddev->level == 4) {
8265                mddev->new_layout = ALGORITHM_PARITY_N;
8266                mddev->new_level = 5;
8267                return setup_conf(mddev);
8268        }
8269        if (mddev->level == 6)
8270                return raid5_takeover_raid6(mddev);
8271
8272        return ERR_PTR(-EINVAL);
8273}
8274
8275static void *raid4_takeover(struct mddev *mddev)
8276{
8277        /* raid4 can take over:
8278         *  raid0 - if there is only one strip zone
8279         *  raid5 - if layout is right
8280         */
8281        if (mddev->level == 0)
8282                return raid45_takeover_raid0(mddev, 4);
8283        if (mddev->level == 5 &&
8284            mddev->layout == ALGORITHM_PARITY_N) {
8285                mddev->new_layout = 0;
8286                mddev->new_level = 4;
8287                return setup_conf(mddev);
8288        }
8289        return ERR_PTR(-EINVAL);
8290}
8291
8292static struct md_personality raid5_personality;
8293
8294static void *raid6_takeover(struct mddev *mddev)
8295{
8296        /* Currently can only take over a raid5.  We map the
8297         * personality to an equivalent raid6 personality
8298         * with the Q block at the end.
8299         */
8300        int new_layout;
8301
8302        if (mddev->pers != &raid5_personality)
8303                return ERR_PTR(-EINVAL);
8304        if (mddev->degraded > 1)
8305                return ERR_PTR(-EINVAL);
8306        if (mddev->raid_disks > 253)
8307                return ERR_PTR(-EINVAL);
8308        if (mddev->raid_disks < 3)
8309                return ERR_PTR(-EINVAL);
8310
8311        switch (mddev->layout) {
8312        case ALGORITHM_LEFT_ASYMMETRIC:
8313                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8314                break;
8315        case ALGORITHM_RIGHT_ASYMMETRIC:
8316                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8317                break;
8318        case ALGORITHM_LEFT_SYMMETRIC:
8319                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8320                break;
8321        case ALGORITHM_RIGHT_SYMMETRIC:
8322                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8323                break;
8324        case ALGORITHM_PARITY_0:
8325                new_layout = ALGORITHM_PARITY_0_6;
8326                break;
8327        case ALGORITHM_PARITY_N:
8328                new_layout = ALGORITHM_PARITY_N;
8329                break;
8330        default:
8331                return ERR_PTR(-EINVAL);
8332        }
8333        mddev->new_level = 6;
8334        mddev->new_layout = new_layout;
8335        mddev->delta_disks = 1;
8336        mddev->raid_disks += 1;
8337        return setup_conf(mddev);
8338}
8339
8340static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8341{
8342        struct r5conf *conf;
8343        int err;
8344
8345        err = mddev_lock(mddev);
8346        if (err)
8347                return err;
8348        conf = mddev->private;
8349        if (!conf) {
8350                mddev_unlock(mddev);
8351                return -ENODEV;
8352        }
8353
8354        if (strncmp(buf, "ppl", 3) == 0) {
8355                /* ppl only works with RAID 5 */
8356                if (!raid5_has_ppl(conf) && conf->level == 5) {
8357                        err = log_init(conf, NULL, true);
8358                        if (!err) {
8359                                err = resize_stripes(conf, conf->pool_size);
8360                                if (err)
8361                                        log_exit(conf);
8362                        }
8363                } else
8364                        err = -EINVAL;
8365        } else if (strncmp(buf, "resync", 6) == 0) {
8366                if (raid5_has_ppl(conf)) {
8367                        mddev_suspend(mddev);
8368                        log_exit(conf);
8369                        mddev_resume(mddev);
8370                        err = resize_stripes(conf, conf->pool_size);
8371                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8372                           r5l_log_disk_error(conf)) {
8373                        bool journal_dev_exists = false;
8374                        struct md_rdev *rdev;
8375
8376                        rdev_for_each(rdev, mddev)
8377                                if (test_bit(Journal, &rdev->flags)) {
8378                                        journal_dev_exists = true;
8379                                        break;
8380                                }
8381
8382                        if (!journal_dev_exists) {
8383                                mddev_suspend(mddev);
8384                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8385                                mddev_resume(mddev);
8386                        } else  /* need remove journal device first */
8387                                err = -EBUSY;
8388                } else
8389                        err = -EINVAL;
8390        } else {
8391                err = -EINVAL;
8392        }
8393
8394        if (!err)
8395                md_update_sb(mddev, 1);
8396
8397        mddev_unlock(mddev);
8398
8399        return err;
8400}
8401
8402static int raid5_start(struct mddev *mddev)
8403{
8404        struct r5conf *conf = mddev->private;
8405
8406        return r5l_start(conf->log);
8407}
8408
8409static struct md_personality raid6_personality =
8410{
8411        .name           = "raid6",
8412        .level          = 6,
8413        .owner          = THIS_MODULE,
8414        .make_request   = raid5_make_request,
8415        .run            = raid5_run,
8416        .start          = raid5_start,
8417        .free           = raid5_free,
8418        .status         = raid5_status,
8419        .error_handler  = raid5_error,
8420        .hot_add_disk   = raid5_add_disk,
8421        .hot_remove_disk= raid5_remove_disk,
8422        .spare_active   = raid5_spare_active,
8423        .sync_request   = raid5_sync_request,
8424        .resize         = raid5_resize,
8425        .size           = raid5_size,
8426        .check_reshape  = raid6_check_reshape,
8427        .start_reshape  = raid5_start_reshape,
8428        .finish_reshape = raid5_finish_reshape,
8429        .quiesce        = raid5_quiesce,
8430        .takeover       = raid6_takeover,
8431        .congested      = raid5_congested,
8432        .change_consistency_policy = raid5_change_consistency_policy,
8433};
8434static struct md_personality raid5_personality =
8435{
8436        .name           = "raid5",
8437        .level          = 5,
8438        .owner          = THIS_MODULE,
8439        .make_request   = raid5_make_request,
8440        .run            = raid5_run,
8441        .start          = raid5_start,
8442        .free           = raid5_free,
8443        .status         = raid5_status,
8444        .error_handler  = raid5_error,
8445        .hot_add_disk   = raid5_add_disk,
8446        .hot_remove_disk= raid5_remove_disk,
8447        .spare_active   = raid5_spare_active,
8448        .sync_request   = raid5_sync_request,
8449        .resize         = raid5_resize,
8450        .size           = raid5_size,
8451        .check_reshape  = raid5_check_reshape,
8452        .start_reshape  = raid5_start_reshape,
8453        .finish_reshape = raid5_finish_reshape,
8454        .quiesce        = raid5_quiesce,
8455        .takeover       = raid5_takeover,
8456        .congested      = raid5_congested,
8457        .change_consistency_policy = raid5_change_consistency_policy,
8458};
8459
8460static struct md_personality raid4_personality =
8461{
8462        .name           = "raid4",
8463        .level          = 4,
8464        .owner          = THIS_MODULE,
8465        .make_request   = raid5_make_request,
8466        .run            = raid5_run,
8467        .start          = raid5_start,
8468        .free           = raid5_free,
8469        .status         = raid5_status,
8470        .error_handler  = raid5_error,
8471        .hot_add_disk   = raid5_add_disk,
8472        .hot_remove_disk= raid5_remove_disk,
8473        .spare_active   = raid5_spare_active,
8474        .sync_request   = raid5_sync_request,
8475        .resize         = raid5_resize,
8476        .size           = raid5_size,
8477        .check_reshape  = raid5_check_reshape,
8478        .start_reshape  = raid5_start_reshape,
8479        .finish_reshape = raid5_finish_reshape,
8480        .quiesce        = raid5_quiesce,
8481        .takeover       = raid4_takeover,
8482        .congested      = raid5_congested,
8483        .change_consistency_policy = raid5_change_consistency_policy,
8484};
8485
8486static int __init raid5_init(void)
8487{
8488        int ret;
8489
8490        raid5_wq = alloc_workqueue("raid5wq",
8491                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8492        if (!raid5_wq)
8493                return -ENOMEM;
8494
8495        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8496                                      "md/raid5:prepare",
8497                                      raid456_cpu_up_prepare,
8498                                      raid456_cpu_dead);
8499        if (ret) {
8500                destroy_workqueue(raid5_wq);
8501                return ret;
8502        }
8503        register_md_personality(&raid6_personality);
8504        register_md_personality(&raid5_personality);
8505        register_md_personality(&raid4_personality);
8506        return 0;
8507}
8508
8509static void raid5_exit(void)
8510{
8511        unregister_md_personality(&raid6_personality);
8512        unregister_md_personality(&raid5_personality);
8513        unregister_md_personality(&raid4_personality);
8514        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8515        destroy_workqueue(raid5_wq);
8516}
8517
8518module_init(raid5_init);
8519module_exit(raid5_exit);
8520MODULE_LICENSE("GPL");
8521MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8522MODULE_ALIAS("md-personality-4"); /* RAID5 */
8523MODULE_ALIAS("md-raid5");
8524MODULE_ALIAS("md-raid4");
8525MODULE_ALIAS("md-level-5");
8526MODULE_ALIAS("md-level-4");
8527MODULE_ALIAS("md-personality-8"); /* RAID6 */
8528MODULE_ALIAS("md-raid6");
8529MODULE_ALIAS("md-level-6");
8530
8531/* This used to be two separate modules, they were: */
8532MODULE_ALIAS("raid5");
8533MODULE_ALIAS("raid6");
8534