linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40                                                 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53        36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71        struct igb_adapter *adapter = hw->back;
  72        int i;
  73
  74        for (i = 10; i--;)
  75                array_wr32(E1000_VFTA, offset, value);
  76
  77        wrfl();
  78        adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90        u32 reg = 0;
  91        bool ext_mdio = false;
  92
  93        switch (hw->mac.type) {
  94        case e1000_82575:
  95        case e1000_82576:
  96                reg = rd32(E1000_MDIC);
  97                ext_mdio = !!(reg & E1000_MDIC_DEST);
  98                break;
  99        case e1000_82580:
 100        case e1000_i350:
 101        case e1000_i354:
 102        case e1000_i210:
 103        case e1000_i211:
 104                reg = rd32(E1000_MDICNFG);
 105                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106                break;
 107        default:
 108                break;
 109        }
 110        return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121        struct e1000_phy_info *phy = &hw->phy;
 122        s32 ret_val;
 123        u16 data;
 124        u8 port = 0;
 125
 126        /* Check the copper medium. */
 127        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128        if (ret_val)
 129                return ret_val;
 130
 131        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132        if (ret_val)
 133                return ret_val;
 134
 135        if (data & E1000_M88E1112_STATUS_LINK)
 136                port = E1000_MEDIA_PORT_COPPER;
 137
 138        /* Check the other medium. */
 139        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140        if (ret_val)
 141                return ret_val;
 142
 143        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144        if (ret_val)
 145                return ret_val;
 146
 147
 148        if (data & E1000_M88E1112_STATUS_LINK)
 149                port = E1000_MEDIA_PORT_OTHER;
 150
 151        /* Determine if a swap needs to happen. */
 152        if (port && (hw->dev_spec._82575.media_port != port)) {
 153                hw->dev_spec._82575.media_port = port;
 154                hw->dev_spec._82575.media_changed = true;
 155        }
 156
 157        if (port == E1000_MEDIA_PORT_COPPER) {
 158                /* reset page to 0 */
 159                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160                if (ret_val)
 161                        return ret_val;
 162                igb_check_for_link_82575(hw);
 163        } else {
 164                igb_check_for_link_82575(hw);
 165                /* reset page to 0 */
 166                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167                if (ret_val)
 168                        return ret_val;
 169        }
 170
 171        return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180        struct e1000_phy_info *phy = &hw->phy;
 181        s32 ret_val = 0;
 182        u32 ctrl_ext;
 183
 184        if (hw->phy.media_type != e1000_media_type_copper) {
 185                phy->type = e1000_phy_none;
 186                goto out;
 187        }
 188
 189        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190        phy->reset_delay_us     = 100;
 191
 192        ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194        if (igb_sgmii_active_82575(hw)) {
 195                phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196                ctrl_ext |= E1000_CTRL_I2C_ENA;
 197        } else {
 198                phy->ops.reset = igb_phy_hw_reset;
 199                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200        }
 201
 202        wr32(E1000_CTRL_EXT, ctrl_ext);
 203        igb_reset_mdicnfg_82580(hw);
 204
 205        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206                phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207                phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208        } else {
 209                switch (hw->mac.type) {
 210                case e1000_82580:
 211                case e1000_i350:
 212                case e1000_i354:
 213                case e1000_i210:
 214                case e1000_i211:
 215                        phy->ops.read_reg = igb_read_phy_reg_82580;
 216                        phy->ops.write_reg = igb_write_phy_reg_82580;
 217                        break;
 218                default:
 219                        phy->ops.read_reg = igb_read_phy_reg_igp;
 220                        phy->ops.write_reg = igb_write_phy_reg_igp;
 221                }
 222        }
 223
 224        /* set lan id */
 225        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 226                        E1000_STATUS_FUNC_SHIFT;
 227
 228        /* Set phy->phy_addr and phy->id. */
 229        ret_val = igb_get_phy_id_82575(hw);
 230        if (ret_val)
 231                return ret_val;
 232
 233        /* Verify phy id and set remaining function pointers */
 234        switch (phy->id) {
 235        case M88E1543_E_PHY_ID:
 236        case M88E1512_E_PHY_ID:
 237        case I347AT4_E_PHY_ID:
 238        case M88E1112_E_PHY_ID:
 239        case M88E1111_I_PHY_ID:
 240                phy->type               = e1000_phy_m88;
 241                phy->ops.check_polarity = igb_check_polarity_m88;
 242                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 243                if (phy->id != M88E1111_I_PHY_ID)
 244                        phy->ops.get_cable_length =
 245                                         igb_get_cable_length_m88_gen2;
 246                else
 247                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 248                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 249                /* Check if this PHY is configured for media swap. */
 250                if (phy->id == M88E1112_E_PHY_ID) {
 251                        u16 data;
 252
 253                        ret_val = phy->ops.write_reg(hw,
 254                                                     E1000_M88E1112_PAGE_ADDR,
 255                                                     2);
 256                        if (ret_val)
 257                                goto out;
 258
 259                        ret_val = phy->ops.read_reg(hw,
 260                                                    E1000_M88E1112_MAC_CTRL_1,
 261                                                    &data);
 262                        if (ret_val)
 263                                goto out;
 264
 265                        data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 266                               E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 267                        if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 268                            data == E1000_M88E1112_AUTO_COPPER_BASEX)
 269                                hw->mac.ops.check_for_link =
 270                                                igb_check_for_link_media_swap;
 271                }
 272                if (phy->id == M88E1512_E_PHY_ID) {
 273                        ret_val = igb_initialize_M88E1512_phy(hw);
 274                        if (ret_val)
 275                                goto out;
 276                }
 277                if (phy->id == M88E1543_E_PHY_ID) {
 278                        ret_val = igb_initialize_M88E1543_phy(hw);
 279                        if (ret_val)
 280                                goto out;
 281                }
 282                break;
 283        case IGP03E1000_E_PHY_ID:
 284                phy->type = e1000_phy_igp_3;
 285                phy->ops.get_phy_info = igb_get_phy_info_igp;
 286                phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 287                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 288                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 289                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 290                break;
 291        case I82580_I_PHY_ID:
 292        case I350_I_PHY_ID:
 293                phy->type = e1000_phy_82580;
 294                phy->ops.force_speed_duplex =
 295                                         igb_phy_force_speed_duplex_82580;
 296                phy->ops.get_cable_length = igb_get_cable_length_82580;
 297                phy->ops.get_phy_info = igb_get_phy_info_82580;
 298                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 299                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 300                break;
 301        case I210_I_PHY_ID:
 302                phy->type               = e1000_phy_i210;
 303                phy->ops.check_polarity = igb_check_polarity_m88;
 304                phy->ops.get_cfg_done   = igb_get_cfg_done_i210;
 305                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 306                phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 307                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 308                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 309                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 310                break;
 311        case BCM54616_E_PHY_ID:
 312                phy->type = e1000_phy_bcm54616;
 313                break;
 314        default:
 315                ret_val = -E1000_ERR_PHY;
 316                goto out;
 317        }
 318
 319out:
 320        return ret_val;
 321}
 322
 323/**
 324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 325 *  @hw: pointer to the HW structure
 326 **/
 327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 328{
 329        struct e1000_nvm_info *nvm = &hw->nvm;
 330        u32 eecd = rd32(E1000_EECD);
 331        u16 size;
 332
 333        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 334                     E1000_EECD_SIZE_EX_SHIFT);
 335
 336        /* Added to a constant, "size" becomes the left-shift value
 337         * for setting word_size.
 338         */
 339        size += NVM_WORD_SIZE_BASE_SHIFT;
 340
 341        /* Just in case size is out of range, cap it to the largest
 342         * EEPROM size supported
 343         */
 344        if (size > 15)
 345                size = 15;
 346
 347        nvm->word_size = BIT(size);
 348        nvm->opcode_bits = 8;
 349        nvm->delay_usec = 1;
 350
 351        switch (nvm->override) {
 352        case e1000_nvm_override_spi_large:
 353                nvm->page_size = 32;
 354                nvm->address_bits = 16;
 355                break;
 356        case e1000_nvm_override_spi_small:
 357                nvm->page_size = 8;
 358                nvm->address_bits = 8;
 359                break;
 360        default:
 361                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 362                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 363                                    16 : 8;
 364                break;
 365        }
 366        if (nvm->word_size == BIT(15))
 367                nvm->page_size = 128;
 368
 369        nvm->type = e1000_nvm_eeprom_spi;
 370
 371        /* NVM Function Pointers */
 372        nvm->ops.acquire = igb_acquire_nvm_82575;
 373        nvm->ops.release = igb_release_nvm_82575;
 374        nvm->ops.write = igb_write_nvm_spi;
 375        nvm->ops.validate = igb_validate_nvm_checksum;
 376        nvm->ops.update = igb_update_nvm_checksum;
 377        if (nvm->word_size < BIT(15))
 378                nvm->ops.read = igb_read_nvm_eerd;
 379        else
 380                nvm->ops.read = igb_read_nvm_spi;
 381
 382        /* override generic family function pointers for specific descendants */
 383        switch (hw->mac.type) {
 384        case e1000_82580:
 385                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 386                nvm->ops.update = igb_update_nvm_checksum_82580;
 387                break;
 388        case e1000_i354:
 389        case e1000_i350:
 390                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 391                nvm->ops.update = igb_update_nvm_checksum_i350;
 392                break;
 393        default:
 394                break;
 395        }
 396
 397        return 0;
 398}
 399
 400/**
 401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 402 *  @hw: pointer to the HW structure
 403 **/
 404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 405{
 406        struct e1000_mac_info *mac = &hw->mac;
 407        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 408
 409        /* Set mta register count */
 410        mac->mta_reg_count = 128;
 411        /* Set uta register count */
 412        mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 413        /* Set rar entry count */
 414        switch (mac->type) {
 415        case e1000_82576:
 416                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 417                break;
 418        case e1000_82580:
 419                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 420                break;
 421        case e1000_i350:
 422        case e1000_i354:
 423                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 424                break;
 425        default:
 426                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 427                break;
 428        }
 429        /* reset */
 430        if (mac->type >= e1000_82580)
 431                mac->ops.reset_hw = igb_reset_hw_82580;
 432        else
 433                mac->ops.reset_hw = igb_reset_hw_82575;
 434
 435        if (mac->type >= e1000_i210) {
 436                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 437                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 438
 439        } else {
 440                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 441                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 442        }
 443
 444        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 445                mac->ops.write_vfta = igb_write_vfta_i350;
 446        else
 447                mac->ops.write_vfta = igb_write_vfta;
 448
 449        /* Set if part includes ASF firmware */
 450        mac->asf_firmware_present = true;
 451        /* Set if manageability features are enabled. */
 452        mac->arc_subsystem_valid =
 453                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 454                        ? true : false;
 455        /* enable EEE on i350 parts and later parts */
 456        if (mac->type >= e1000_i350)
 457                dev_spec->eee_disable = false;
 458        else
 459                dev_spec->eee_disable = true;
 460        /* Allow a single clear of the SW semaphore on I210 and newer */
 461        if (mac->type >= e1000_i210)
 462                dev_spec->clear_semaphore_once = true;
 463        /* physical interface link setup */
 464        mac->ops.setup_physical_interface =
 465                (hw->phy.media_type == e1000_media_type_copper)
 466                        ? igb_setup_copper_link_82575
 467                        : igb_setup_serdes_link_82575;
 468
 469        if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 470                switch (hw->device_id) {
 471                /* feature not supported on these id's */
 472                case E1000_DEV_ID_DH89XXCC_SGMII:
 473                case E1000_DEV_ID_DH89XXCC_SERDES:
 474                case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 475                case E1000_DEV_ID_DH89XXCC_SFP:
 476                        break;
 477                default:
 478                        hw->dev_spec._82575.mas_capable = true;
 479                        break;
 480                }
 481        }
 482        return 0;
 483}
 484
 485/**
 486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  The media type is chosen based on SFP module.
 490 *  compatibility flags retrieved from SFP ID EEPROM.
 491 **/
 492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 493{
 494        s32 ret_val = E1000_ERR_CONFIG;
 495        u32 ctrl_ext = 0;
 496        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 497        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 498        u8 tranceiver_type = 0;
 499        s32 timeout = 3;
 500
 501        /* Turn I2C interface ON and power on sfp cage */
 502        ctrl_ext = rd32(E1000_CTRL_EXT);
 503        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 504        wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 505
 506        wrfl();
 507
 508        /* Read SFP module data */
 509        while (timeout) {
 510                ret_val = igb_read_sfp_data_byte(hw,
 511                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 512                        &tranceiver_type);
 513                if (ret_val == 0)
 514                        break;
 515                msleep(100);
 516                timeout--;
 517        }
 518        if (ret_val != 0)
 519                goto out;
 520
 521        ret_val = igb_read_sfp_data_byte(hw,
 522                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 523                        (u8 *)eth_flags);
 524        if (ret_val != 0)
 525                goto out;
 526
 527        /* Check if there is some SFP module plugged and powered */
 528        if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 529            (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 530                dev_spec->module_plugged = true;
 531                if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 532                        hw->phy.media_type = e1000_media_type_internal_serdes;
 533                } else if (eth_flags->e100_base_fx) {
 534                        dev_spec->sgmii_active = true;
 535                        hw->phy.media_type = e1000_media_type_internal_serdes;
 536                } else if (eth_flags->e1000_base_t) {
 537                        dev_spec->sgmii_active = true;
 538                        hw->phy.media_type = e1000_media_type_copper;
 539                } else {
 540                        hw->phy.media_type = e1000_media_type_unknown;
 541                        hw_dbg("PHY module has not been recognized\n");
 542                        goto out;
 543                }
 544        } else {
 545                hw->phy.media_type = e1000_media_type_unknown;
 546        }
 547        ret_val = 0;
 548out:
 549        /* Restore I2C interface setting */
 550        wr32(E1000_CTRL_EXT, ctrl_ext);
 551        return ret_val;
 552}
 553
 554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 555{
 556        struct e1000_mac_info *mac = &hw->mac;
 557        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 558        s32 ret_val;
 559        u32 ctrl_ext = 0;
 560        u32 link_mode = 0;
 561
 562        switch (hw->device_id) {
 563        case E1000_DEV_ID_82575EB_COPPER:
 564        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 565        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 566                mac->type = e1000_82575;
 567                break;
 568        case E1000_DEV_ID_82576:
 569        case E1000_DEV_ID_82576_NS:
 570        case E1000_DEV_ID_82576_NS_SERDES:
 571        case E1000_DEV_ID_82576_FIBER:
 572        case E1000_DEV_ID_82576_SERDES:
 573        case E1000_DEV_ID_82576_QUAD_COPPER:
 574        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 575        case E1000_DEV_ID_82576_SERDES_QUAD:
 576                mac->type = e1000_82576;
 577                break;
 578        case E1000_DEV_ID_82580_COPPER:
 579        case E1000_DEV_ID_82580_FIBER:
 580        case E1000_DEV_ID_82580_QUAD_FIBER:
 581        case E1000_DEV_ID_82580_SERDES:
 582        case E1000_DEV_ID_82580_SGMII:
 583        case E1000_DEV_ID_82580_COPPER_DUAL:
 584        case E1000_DEV_ID_DH89XXCC_SGMII:
 585        case E1000_DEV_ID_DH89XXCC_SERDES:
 586        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 587        case E1000_DEV_ID_DH89XXCC_SFP:
 588                mac->type = e1000_82580;
 589                break;
 590        case E1000_DEV_ID_I350_COPPER:
 591        case E1000_DEV_ID_I350_FIBER:
 592        case E1000_DEV_ID_I350_SERDES:
 593        case E1000_DEV_ID_I350_SGMII:
 594                mac->type = e1000_i350;
 595                break;
 596        case E1000_DEV_ID_I210_COPPER:
 597        case E1000_DEV_ID_I210_FIBER:
 598        case E1000_DEV_ID_I210_SERDES:
 599        case E1000_DEV_ID_I210_SGMII:
 600        case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 601        case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 602                mac->type = e1000_i210;
 603                break;
 604        case E1000_DEV_ID_I211_COPPER:
 605                mac->type = e1000_i211;
 606                break;
 607        case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 608        case E1000_DEV_ID_I354_SGMII:
 609        case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 610                mac->type = e1000_i354;
 611                break;
 612        default:
 613                return -E1000_ERR_MAC_INIT;
 614        }
 615
 616        /* Set media type */
 617        /* The 82575 uses bits 22:23 for link mode. The mode can be changed
 618         * based on the EEPROM. We cannot rely upon device ID. There
 619         * is no distinguishable difference between fiber and internal
 620         * SerDes mode on the 82575. There can be an external PHY attached
 621         * on the SGMII interface. For this, we'll set sgmii_active to true.
 622         */
 623        hw->phy.media_type = e1000_media_type_copper;
 624        dev_spec->sgmii_active = false;
 625        dev_spec->module_plugged = false;
 626
 627        ctrl_ext = rd32(E1000_CTRL_EXT);
 628
 629        link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 630        switch (link_mode) {
 631        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 632                hw->phy.media_type = e1000_media_type_internal_serdes;
 633                break;
 634        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 635                /* Get phy control interface type set (MDIO vs. I2C)*/
 636                if (igb_sgmii_uses_mdio_82575(hw)) {
 637                        hw->phy.media_type = e1000_media_type_copper;
 638                        dev_spec->sgmii_active = true;
 639                        break;
 640                }
 641                /* fall through - for I2C based SGMII */
 642        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 643                /* read media type from SFP EEPROM */
 644                ret_val = igb_set_sfp_media_type_82575(hw);
 645                if ((ret_val != 0) ||
 646                    (hw->phy.media_type == e1000_media_type_unknown)) {
 647                        /* If media type was not identified then return media
 648                         * type defined by the CTRL_EXT settings.
 649                         */
 650                        hw->phy.media_type = e1000_media_type_internal_serdes;
 651
 652                        if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 653                                hw->phy.media_type = e1000_media_type_copper;
 654                                dev_spec->sgmii_active = true;
 655                        }
 656
 657                        break;
 658                }
 659
 660                /* do not change link mode for 100BaseFX */
 661                if (dev_spec->eth_flags.e100_base_fx)
 662                        break;
 663
 664                /* change current link mode setting */
 665                ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 666
 667                if (hw->phy.media_type == e1000_media_type_copper)
 668                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 669                else
 670                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 671
 672                wr32(E1000_CTRL_EXT, ctrl_ext);
 673
 674                break;
 675        default:
 676                break;
 677        }
 678
 679        /* mac initialization and operations */
 680        ret_val = igb_init_mac_params_82575(hw);
 681        if (ret_val)
 682                goto out;
 683
 684        /* NVM initialization */
 685        ret_val = igb_init_nvm_params_82575(hw);
 686        switch (hw->mac.type) {
 687        case e1000_i210:
 688        case e1000_i211:
 689                ret_val = igb_init_nvm_params_i210(hw);
 690                break;
 691        default:
 692                break;
 693        }
 694
 695        if (ret_val)
 696                goto out;
 697
 698        /* if part supports SR-IOV then initialize mailbox parameters */
 699        switch (mac->type) {
 700        case e1000_82576:
 701        case e1000_i350:
 702                igb_init_mbx_params_pf(hw);
 703                break;
 704        default:
 705                break;
 706        }
 707
 708        /* setup PHY parameters */
 709        ret_val = igb_init_phy_params_82575(hw);
 710
 711out:
 712        return ret_val;
 713}
 714
 715/**
 716 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 717 *  @hw: pointer to the HW structure
 718 *
 719 *  Acquire access rights to the correct PHY.  This is a
 720 *  function pointer entry point called by the api module.
 721 **/
 722static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 723{
 724        u16 mask = E1000_SWFW_PHY0_SM;
 725
 726        if (hw->bus.func == E1000_FUNC_1)
 727                mask = E1000_SWFW_PHY1_SM;
 728        else if (hw->bus.func == E1000_FUNC_2)
 729                mask = E1000_SWFW_PHY2_SM;
 730        else if (hw->bus.func == E1000_FUNC_3)
 731                mask = E1000_SWFW_PHY3_SM;
 732
 733        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 734}
 735
 736/**
 737 *  igb_release_phy_82575 - Release rights to access PHY
 738 *  @hw: pointer to the HW structure
 739 *
 740 *  A wrapper to release access rights to the correct PHY.  This is a
 741 *  function pointer entry point called by the api module.
 742 **/
 743static void igb_release_phy_82575(struct e1000_hw *hw)
 744{
 745        u16 mask = E1000_SWFW_PHY0_SM;
 746
 747        if (hw->bus.func == E1000_FUNC_1)
 748                mask = E1000_SWFW_PHY1_SM;
 749        else if (hw->bus.func == E1000_FUNC_2)
 750                mask = E1000_SWFW_PHY2_SM;
 751        else if (hw->bus.func == E1000_FUNC_3)
 752                mask = E1000_SWFW_PHY3_SM;
 753
 754        hw->mac.ops.release_swfw_sync(hw, mask);
 755}
 756
 757/**
 758 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 759 *  @hw: pointer to the HW structure
 760 *  @offset: register offset to be read
 761 *  @data: pointer to the read data
 762 *
 763 *  Reads the PHY register at offset using the serial gigabit media independent
 764 *  interface and stores the retrieved information in data.
 765 **/
 766static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 767                                          u16 *data)
 768{
 769        s32 ret_val = -E1000_ERR_PARAM;
 770
 771        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 772                hw_dbg("PHY Address %u is out of range\n", offset);
 773                goto out;
 774        }
 775
 776        ret_val = hw->phy.ops.acquire(hw);
 777        if (ret_val)
 778                goto out;
 779
 780        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 781
 782        hw->phy.ops.release(hw);
 783
 784out:
 785        return ret_val;
 786}
 787
 788/**
 789 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 790 *  @hw: pointer to the HW structure
 791 *  @offset: register offset to write to
 792 *  @data: data to write at register offset
 793 *
 794 *  Writes the data to PHY register at the offset using the serial gigabit
 795 *  media independent interface.
 796 **/
 797static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 798                                           u16 data)
 799{
 800        s32 ret_val = -E1000_ERR_PARAM;
 801
 802
 803        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 804                hw_dbg("PHY Address %d is out of range\n", offset);
 805                goto out;
 806        }
 807
 808        ret_val = hw->phy.ops.acquire(hw);
 809        if (ret_val)
 810                goto out;
 811
 812        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 813
 814        hw->phy.ops.release(hw);
 815
 816out:
 817        return ret_val;
 818}
 819
 820/**
 821 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 822 *  @hw: pointer to the HW structure
 823 *
 824 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 825 *  sgmi interface.
 826 **/
 827static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 828{
 829        struct e1000_phy_info *phy = &hw->phy;
 830        s32  ret_val = 0;
 831        u16 phy_id;
 832        u32 ctrl_ext;
 833        u32 mdic;
 834
 835        /* Extra read required for some PHY's on i354 */
 836        if (hw->mac.type == e1000_i354)
 837                igb_get_phy_id(hw);
 838
 839        /* For SGMII PHYs, we try the list of possible addresses until
 840         * we find one that works.  For non-SGMII PHYs
 841         * (e.g. integrated copper PHYs), an address of 1 should
 842         * work.  The result of this function should mean phy->phy_addr
 843         * and phy->id are set correctly.
 844         */
 845        if (!(igb_sgmii_active_82575(hw))) {
 846                phy->addr = 1;
 847                ret_val = igb_get_phy_id(hw);
 848                goto out;
 849        }
 850
 851        if (igb_sgmii_uses_mdio_82575(hw)) {
 852                switch (hw->mac.type) {
 853                case e1000_82575:
 854                case e1000_82576:
 855                        mdic = rd32(E1000_MDIC);
 856                        mdic &= E1000_MDIC_PHY_MASK;
 857                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 858                        break;
 859                case e1000_82580:
 860                case e1000_i350:
 861                case e1000_i354:
 862                case e1000_i210:
 863                case e1000_i211:
 864                        mdic = rd32(E1000_MDICNFG);
 865                        mdic &= E1000_MDICNFG_PHY_MASK;
 866                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 867                        break;
 868                default:
 869                        ret_val = -E1000_ERR_PHY;
 870                        goto out;
 871                }
 872                ret_val = igb_get_phy_id(hw);
 873                goto out;
 874        }
 875
 876        /* Power on sgmii phy if it is disabled */
 877        ctrl_ext = rd32(E1000_CTRL_EXT);
 878        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 879        wrfl();
 880        msleep(300);
 881
 882        /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 883         * Therefore, we need to test 1-7
 884         */
 885        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 886                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 887                if (ret_val == 0) {
 888                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 889                               phy_id, phy->addr);
 890                        /* At the time of this writing, The M88 part is
 891                         * the only supported SGMII PHY product.
 892                         */
 893                        if (phy_id == M88_VENDOR)
 894                                break;
 895                } else {
 896                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 897                }
 898        }
 899
 900        /* A valid PHY type couldn't be found. */
 901        if (phy->addr == 8) {
 902                phy->addr = 0;
 903                ret_val = -E1000_ERR_PHY;
 904                goto out;
 905        } else {
 906                ret_val = igb_get_phy_id(hw);
 907        }
 908
 909        /* restore previous sfp cage power state */
 910        wr32(E1000_CTRL_EXT, ctrl_ext);
 911
 912out:
 913        return ret_val;
 914}
 915
 916/**
 917 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 918 *  @hw: pointer to the HW structure
 919 *
 920 *  Resets the PHY using the serial gigabit media independent interface.
 921 **/
 922static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 923{
 924        struct e1000_phy_info *phy = &hw->phy;
 925        s32 ret_val;
 926
 927        /* This isn't a true "hard" reset, but is the only reset
 928         * available to us at this time.
 929         */
 930
 931        hw_dbg("Soft resetting SGMII attached PHY...\n");
 932
 933        /* SFP documentation requires the following to configure the SPF module
 934         * to work on SGMII.  No further documentation is given.
 935         */
 936        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 937        if (ret_val)
 938                goto out;
 939
 940        ret_val = igb_phy_sw_reset(hw);
 941        if (ret_val)
 942                goto out;
 943
 944        if (phy->id == M88E1512_E_PHY_ID)
 945                ret_val = igb_initialize_M88E1512_phy(hw);
 946        if (phy->id == M88E1543_E_PHY_ID)
 947                ret_val = igb_initialize_M88E1543_phy(hw);
 948out:
 949        return ret_val;
 950}
 951
 952/**
 953 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 954 *  @hw: pointer to the HW structure
 955 *  @active: true to enable LPLU, false to disable
 956 *
 957 *  Sets the LPLU D0 state according to the active flag.  When
 958 *  activating LPLU this function also disables smart speed
 959 *  and vice versa.  LPLU will not be activated unless the
 960 *  device autonegotiation advertisement meets standards of
 961 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 962 *  This is a function pointer entry point only called by
 963 *  PHY setup routines.
 964 **/
 965static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 966{
 967        struct e1000_phy_info *phy = &hw->phy;
 968        s32 ret_val;
 969        u16 data;
 970
 971        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 972        if (ret_val)
 973                goto out;
 974
 975        if (active) {
 976                data |= IGP02E1000_PM_D0_LPLU;
 977                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 978                                                 data);
 979                if (ret_val)
 980                        goto out;
 981
 982                /* When LPLU is enabled, we should disable SmartSpeed */
 983                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 984                                                &data);
 985                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 986                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 987                                                 data);
 988                if (ret_val)
 989                        goto out;
 990        } else {
 991                data &= ~IGP02E1000_PM_D0_LPLU;
 992                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 993                                                 data);
 994                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 995                 * during Dx states where the power conservation is most
 996                 * important.  During driver activity we should enable
 997                 * SmartSpeed, so performance is maintained.
 998                 */
 999                if (phy->smart_speed == e1000_smart_speed_on) {
1000                        ret_val = phy->ops.read_reg(hw,
1001                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1002                        if (ret_val)
1003                                goto out;
1004
1005                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1006                        ret_val = phy->ops.write_reg(hw,
1007                                        IGP01E1000_PHY_PORT_CONFIG, data);
1008                        if (ret_val)
1009                                goto out;
1010                } else if (phy->smart_speed == e1000_smart_speed_off) {
1011                        ret_val = phy->ops.read_reg(hw,
1012                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1013                        if (ret_val)
1014                                goto out;
1015
1016                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1017                        ret_val = phy->ops.write_reg(hw,
1018                                        IGP01E1000_PHY_PORT_CONFIG, data);
1019                        if (ret_val)
1020                                goto out;
1021                }
1022        }
1023
1024out:
1025        return ret_val;
1026}
1027
1028/**
1029 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1030 *  @hw: pointer to the HW structure
1031 *  @active: true to enable LPLU, false to disable
1032 *
1033 *  Sets the LPLU D0 state according to the active flag.  When
1034 *  activating LPLU this function also disables smart speed
1035 *  and vice versa.  LPLU will not be activated unless the
1036 *  device autonegotiation advertisement meets standards of
1037 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1038 *  This is a function pointer entry point only called by
1039 *  PHY setup routines.
1040 **/
1041static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1042{
1043        struct e1000_phy_info *phy = &hw->phy;
1044        u16 data;
1045
1046        data = rd32(E1000_82580_PHY_POWER_MGMT);
1047
1048        if (active) {
1049                data |= E1000_82580_PM_D0_LPLU;
1050
1051                /* When LPLU is enabled, we should disable SmartSpeed */
1052                data &= ~E1000_82580_PM_SPD;
1053        } else {
1054                data &= ~E1000_82580_PM_D0_LPLU;
1055
1056                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1057                 * during Dx states where the power conservation is most
1058                 * important.  During driver activity we should enable
1059                 * SmartSpeed, so performance is maintained.
1060                 */
1061                if (phy->smart_speed == e1000_smart_speed_on)
1062                        data |= E1000_82580_PM_SPD;
1063                else if (phy->smart_speed == e1000_smart_speed_off)
1064                        data &= ~E1000_82580_PM_SPD; }
1065
1066        wr32(E1000_82580_PHY_POWER_MGMT, data);
1067        return 0;
1068}
1069
1070/**
1071 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1072 *  @hw: pointer to the HW structure
1073 *  @active: boolean used to enable/disable lplu
1074 *
1075 *  Success returns 0, Failure returns 1
1076 *
1077 *  The low power link up (lplu) state is set to the power management level D3
1078 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1079 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1080 *  is used during Dx states where the power conservation is most important.
1081 *  During driver activity, SmartSpeed should be enabled so performance is
1082 *  maintained.
1083 **/
1084static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1085{
1086        struct e1000_phy_info *phy = &hw->phy;
1087        u16 data;
1088
1089        data = rd32(E1000_82580_PHY_POWER_MGMT);
1090
1091        if (!active) {
1092                data &= ~E1000_82580_PM_D3_LPLU;
1093                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1094                 * during Dx states where the power conservation is most
1095                 * important.  During driver activity we should enable
1096                 * SmartSpeed, so performance is maintained.
1097                 */
1098                if (phy->smart_speed == e1000_smart_speed_on)
1099                        data |= E1000_82580_PM_SPD;
1100                else if (phy->smart_speed == e1000_smart_speed_off)
1101                        data &= ~E1000_82580_PM_SPD;
1102        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1103                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1104                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1105                data |= E1000_82580_PM_D3_LPLU;
1106                /* When LPLU is enabled, we should disable SmartSpeed */
1107                data &= ~E1000_82580_PM_SPD;
1108        }
1109
1110        wr32(E1000_82580_PHY_POWER_MGMT, data);
1111        return 0;
1112}
1113
1114/**
1115 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1116 *  @hw: pointer to the HW structure
1117 *
1118 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1119 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1120 *  Return successful if access grant bit set, else clear the request for
1121 *  EEPROM access and return -E1000_ERR_NVM (-1).
1122 **/
1123static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1124{
1125        s32 ret_val;
1126
1127        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1128        if (ret_val)
1129                goto out;
1130
1131        ret_val = igb_acquire_nvm(hw);
1132
1133        if (ret_val)
1134                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1135
1136out:
1137        return ret_val;
1138}
1139
1140/**
1141 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1142 *  @hw: pointer to the HW structure
1143 *
1144 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1145 *  then release the semaphores acquired.
1146 **/
1147static void igb_release_nvm_82575(struct e1000_hw *hw)
1148{
1149        igb_release_nvm(hw);
1150        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1151}
1152
1153/**
1154 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1155 *  @hw: pointer to the HW structure
1156 *  @mask: specifies which semaphore to acquire
1157 *
1158 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1159 *  will also specify which port we're acquiring the lock for.
1160 **/
1161static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1162{
1163        u32 swfw_sync;
1164        u32 swmask = mask;
1165        u32 fwmask = mask << 16;
1166        s32 ret_val = 0;
1167        s32 i = 0, timeout = 200;
1168
1169        while (i < timeout) {
1170                if (igb_get_hw_semaphore(hw)) {
1171                        ret_val = -E1000_ERR_SWFW_SYNC;
1172                        goto out;
1173                }
1174
1175                swfw_sync = rd32(E1000_SW_FW_SYNC);
1176                if (!(swfw_sync & (fwmask | swmask)))
1177                        break;
1178
1179                /* Firmware currently using resource (fwmask)
1180                 * or other software thread using resource (swmask)
1181                 */
1182                igb_put_hw_semaphore(hw);
1183                mdelay(5);
1184                i++;
1185        }
1186
1187        if (i == timeout) {
1188                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1189                ret_val = -E1000_ERR_SWFW_SYNC;
1190                goto out;
1191        }
1192
1193        swfw_sync |= swmask;
1194        wr32(E1000_SW_FW_SYNC, swfw_sync);
1195
1196        igb_put_hw_semaphore(hw);
1197
1198out:
1199        return ret_val;
1200}
1201
1202/**
1203 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1204 *  @hw: pointer to the HW structure
1205 *  @mask: specifies which semaphore to acquire
1206 *
1207 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1208 *  will also specify which port we're releasing the lock for.
1209 **/
1210static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1211{
1212        u32 swfw_sync;
1213
1214        while (igb_get_hw_semaphore(hw) != 0)
1215                ; /* Empty */
1216
1217        swfw_sync = rd32(E1000_SW_FW_SYNC);
1218        swfw_sync &= ~mask;
1219        wr32(E1000_SW_FW_SYNC, swfw_sync);
1220
1221        igb_put_hw_semaphore(hw);
1222}
1223
1224/**
1225 *  igb_get_cfg_done_82575 - Read config done bit
1226 *  @hw: pointer to the HW structure
1227 *
1228 *  Read the management control register for the config done bit for
1229 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1230 *  to read the config done bit, so an error is *ONLY* logged and returns
1231 *  0.  If we were to return with error, EEPROM-less silicon
1232 *  would not be able to be reset or change link.
1233 **/
1234static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1235{
1236        s32 timeout = PHY_CFG_TIMEOUT;
1237        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1238
1239        if (hw->bus.func == 1)
1240                mask = E1000_NVM_CFG_DONE_PORT_1;
1241        else if (hw->bus.func == E1000_FUNC_2)
1242                mask = E1000_NVM_CFG_DONE_PORT_2;
1243        else if (hw->bus.func == E1000_FUNC_3)
1244                mask = E1000_NVM_CFG_DONE_PORT_3;
1245
1246        while (timeout) {
1247                if (rd32(E1000_EEMNGCTL) & mask)
1248                        break;
1249                usleep_range(1000, 2000);
1250                timeout--;
1251        }
1252        if (!timeout)
1253                hw_dbg("MNG configuration cycle has not completed.\n");
1254
1255        /* If EEPROM is not marked present, init the PHY manually */
1256        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1257            (hw->phy.type == e1000_phy_igp_3))
1258                igb_phy_init_script_igp3(hw);
1259
1260        return 0;
1261}
1262
1263/**
1264 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1265 *  @hw: pointer to the HW structure
1266 *  @speed: stores the current speed
1267 *  @duplex: stores the current duplex
1268 *
1269 *  This is a wrapper function, if using the serial gigabit media independent
1270 *  interface, use PCS to retrieve the link speed and duplex information.
1271 *  Otherwise, use the generic function to get the link speed and duplex info.
1272 **/
1273static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1274                                        u16 *duplex)
1275{
1276        s32 ret_val;
1277
1278        if (hw->phy.media_type != e1000_media_type_copper)
1279                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1280                                                               duplex);
1281        else
1282                ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1283                                                                    duplex);
1284
1285        return ret_val;
1286}
1287
1288/**
1289 *  igb_check_for_link_82575 - Check for link
1290 *  @hw: pointer to the HW structure
1291 *
1292 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1293 *  use the generic interface for determining link.
1294 **/
1295static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1296{
1297        s32 ret_val;
1298        u16 speed, duplex;
1299
1300        if (hw->phy.media_type != e1000_media_type_copper) {
1301                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1302                                                             &duplex);
1303                /* Use this flag to determine if link needs to be checked or
1304                 * not.  If  we have link clear the flag so that we do not
1305                 * continue to check for link.
1306                 */
1307                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1308
1309                /* Configure Flow Control now that Auto-Neg has completed.
1310                 * First, we need to restore the desired flow control
1311                 * settings because we may have had to re-autoneg with a
1312                 * different link partner.
1313                 */
1314                ret_val = igb_config_fc_after_link_up(hw);
1315                if (ret_val)
1316                        hw_dbg("Error configuring flow control\n");
1317        } else {
1318                ret_val = igb_check_for_copper_link(hw);
1319        }
1320
1321        return ret_val;
1322}
1323
1324/**
1325 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1326 *  @hw: pointer to the HW structure
1327 **/
1328void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1329{
1330        u32 reg;
1331
1332
1333        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1334            !igb_sgmii_active_82575(hw))
1335                return;
1336
1337        /* Enable PCS to turn on link */
1338        reg = rd32(E1000_PCS_CFG0);
1339        reg |= E1000_PCS_CFG_PCS_EN;
1340        wr32(E1000_PCS_CFG0, reg);
1341
1342        /* Power up the laser */
1343        reg = rd32(E1000_CTRL_EXT);
1344        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1345        wr32(E1000_CTRL_EXT, reg);
1346
1347        /* flush the write to verify completion */
1348        wrfl();
1349        usleep_range(1000, 2000);
1350}
1351
1352/**
1353 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1354 *  @hw: pointer to the HW structure
1355 *  @speed: stores the current speed
1356 *  @duplex: stores the current duplex
1357 *
1358 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1359 *  duplex, then store the values in the pointers provided.
1360 **/
1361static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1362                                                u16 *duplex)
1363{
1364        struct e1000_mac_info *mac = &hw->mac;
1365        u32 pcs, status;
1366
1367        /* Set up defaults for the return values of this function */
1368        mac->serdes_has_link = false;
1369        *speed = 0;
1370        *duplex = 0;
1371
1372        /* Read the PCS Status register for link state. For non-copper mode,
1373         * the status register is not accurate. The PCS status register is
1374         * used instead.
1375         */
1376        pcs = rd32(E1000_PCS_LSTAT);
1377
1378        /* The link up bit determines when link is up on autoneg. The sync ok
1379         * gets set once both sides sync up and agree upon link. Stable link
1380         * can be determined by checking for both link up and link sync ok
1381         */
1382        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1383                mac->serdes_has_link = true;
1384
1385                /* Detect and store PCS speed */
1386                if (pcs & E1000_PCS_LSTS_SPEED_1000)
1387                        *speed = SPEED_1000;
1388                else if (pcs & E1000_PCS_LSTS_SPEED_100)
1389                        *speed = SPEED_100;
1390                else
1391                        *speed = SPEED_10;
1392
1393                /* Detect and store PCS duplex */
1394                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1395                        *duplex = FULL_DUPLEX;
1396                else
1397                        *duplex = HALF_DUPLEX;
1398
1399        /* Check if it is an I354 2.5Gb backplane connection. */
1400                if (mac->type == e1000_i354) {
1401                        status = rd32(E1000_STATUS);
1402                        if ((status & E1000_STATUS_2P5_SKU) &&
1403                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
1404                                *speed = SPEED_2500;
1405                                *duplex = FULL_DUPLEX;
1406                                hw_dbg("2500 Mbs, ");
1407                                hw_dbg("Full Duplex\n");
1408                        }
1409                }
1410
1411        }
1412
1413        return 0;
1414}
1415
1416/**
1417 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1418 *  @hw: pointer to the HW structure
1419 *
1420 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1421 *  when management pass thru is not enabled.
1422 **/
1423void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1424{
1425        u32 reg;
1426
1427        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1428            igb_sgmii_active_82575(hw))
1429                return;
1430
1431        if (!igb_enable_mng_pass_thru(hw)) {
1432                /* Disable PCS to turn off link */
1433                reg = rd32(E1000_PCS_CFG0);
1434                reg &= ~E1000_PCS_CFG_PCS_EN;
1435                wr32(E1000_PCS_CFG0, reg);
1436
1437                /* shutdown the laser */
1438                reg = rd32(E1000_CTRL_EXT);
1439                reg |= E1000_CTRL_EXT_SDP3_DATA;
1440                wr32(E1000_CTRL_EXT, reg);
1441
1442                /* flush the write to verify completion */
1443                wrfl();
1444                usleep_range(1000, 2000);
1445        }
1446}
1447
1448/**
1449 *  igb_reset_hw_82575 - Reset hardware
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  This resets the hardware into a known state.  This is a
1453 *  function pointer entry point called by the api module.
1454 **/
1455static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1456{
1457        u32 ctrl;
1458        s32 ret_val;
1459
1460        /* Prevent the PCI-E bus from sticking if there is no TLP connection
1461         * on the last TLP read/write transaction when MAC is reset.
1462         */
1463        ret_val = igb_disable_pcie_master(hw);
1464        if (ret_val)
1465                hw_dbg("PCI-E Master disable polling has failed.\n");
1466
1467        /* set the completion timeout for interface */
1468        ret_val = igb_set_pcie_completion_timeout(hw);
1469        if (ret_val)
1470                hw_dbg("PCI-E Set completion timeout has failed.\n");
1471
1472        hw_dbg("Masking off all interrupts\n");
1473        wr32(E1000_IMC, 0xffffffff);
1474
1475        wr32(E1000_RCTL, 0);
1476        wr32(E1000_TCTL, E1000_TCTL_PSP);
1477        wrfl();
1478
1479        usleep_range(10000, 20000);
1480
1481        ctrl = rd32(E1000_CTRL);
1482
1483        hw_dbg("Issuing a global reset to MAC\n");
1484        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1485
1486        ret_val = igb_get_auto_rd_done(hw);
1487        if (ret_val) {
1488                /* When auto config read does not complete, do not
1489                 * return with an error. This can happen in situations
1490                 * where there is no eeprom and prevents getting link.
1491                 */
1492                hw_dbg("Auto Read Done did not complete\n");
1493        }
1494
1495        /* If EEPROM is not present, run manual init scripts */
1496        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1497                igb_reset_init_script_82575(hw);
1498
1499        /* Clear any pending interrupt events. */
1500        wr32(E1000_IMC, 0xffffffff);
1501        rd32(E1000_ICR);
1502
1503        /* Install any alternate MAC address into RAR0 */
1504        ret_val = igb_check_alt_mac_addr(hw);
1505
1506        return ret_val;
1507}
1508
1509/**
1510 *  igb_init_hw_82575 - Initialize hardware
1511 *  @hw: pointer to the HW structure
1512 *
1513 *  This inits the hardware readying it for operation.
1514 **/
1515static s32 igb_init_hw_82575(struct e1000_hw *hw)
1516{
1517        struct e1000_mac_info *mac = &hw->mac;
1518        s32 ret_val;
1519        u16 i, rar_count = mac->rar_entry_count;
1520
1521        if ((hw->mac.type >= e1000_i210) &&
1522            !(igb_get_flash_presence_i210(hw))) {
1523                ret_val = igb_pll_workaround_i210(hw);
1524                if (ret_val)
1525                        return ret_val;
1526        }
1527
1528        /* Initialize identification LED */
1529        ret_val = igb_id_led_init(hw);
1530        if (ret_val) {
1531                hw_dbg("Error initializing identification LED\n");
1532                /* This is not fatal and we should not stop init due to this */
1533        }
1534
1535        /* Disabling VLAN filtering */
1536        hw_dbg("Initializing the IEEE VLAN\n");
1537        igb_clear_vfta(hw);
1538
1539        /* Setup the receive address */
1540        igb_init_rx_addrs(hw, rar_count);
1541
1542        /* Zero out the Multicast HASH table */
1543        hw_dbg("Zeroing the MTA\n");
1544        for (i = 0; i < mac->mta_reg_count; i++)
1545                array_wr32(E1000_MTA, i, 0);
1546
1547        /* Zero out the Unicast HASH table */
1548        hw_dbg("Zeroing the UTA\n");
1549        for (i = 0; i < mac->uta_reg_count; i++)
1550                array_wr32(E1000_UTA, i, 0);
1551
1552        /* Setup link and flow control */
1553        ret_val = igb_setup_link(hw);
1554
1555        /* Clear all of the statistics registers (clear on read).  It is
1556         * important that we do this after we have tried to establish link
1557         * because the symbol error count will increment wildly if there
1558         * is no link.
1559         */
1560        igb_clear_hw_cntrs_82575(hw);
1561        return ret_val;
1562}
1563
1564/**
1565 *  igb_setup_copper_link_82575 - Configure copper link settings
1566 *  @hw: pointer to the HW structure
1567 *
1568 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1569 *  for link, once link is established calls to configure collision distance
1570 *  and flow control are called.
1571 **/
1572static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1573{
1574        u32 ctrl;
1575        s32  ret_val;
1576        u32 phpm_reg;
1577
1578        ctrl = rd32(E1000_CTRL);
1579        ctrl |= E1000_CTRL_SLU;
1580        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1581        wr32(E1000_CTRL, ctrl);
1582
1583        /* Clear Go Link Disconnect bit on supported devices */
1584        switch (hw->mac.type) {
1585        case e1000_82580:
1586        case e1000_i350:
1587        case e1000_i210:
1588        case e1000_i211:
1589                phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1590                phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1591                wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1592                break;
1593        default:
1594                break;
1595        }
1596
1597        ret_val = igb_setup_serdes_link_82575(hw);
1598        if (ret_val)
1599                goto out;
1600
1601        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1602                /* allow time for SFP cage time to power up phy */
1603                msleep(300);
1604
1605                ret_val = hw->phy.ops.reset(hw);
1606                if (ret_val) {
1607                        hw_dbg("Error resetting the PHY.\n");
1608                        goto out;
1609                }
1610        }
1611        switch (hw->phy.type) {
1612        case e1000_phy_i210:
1613        case e1000_phy_m88:
1614                switch (hw->phy.id) {
1615                case I347AT4_E_PHY_ID:
1616                case M88E1112_E_PHY_ID:
1617                case M88E1543_E_PHY_ID:
1618                case M88E1512_E_PHY_ID:
1619                case I210_I_PHY_ID:
1620                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1621                        break;
1622                default:
1623                        ret_val = igb_copper_link_setup_m88(hw);
1624                        break;
1625                }
1626                break;
1627        case e1000_phy_igp_3:
1628                ret_val = igb_copper_link_setup_igp(hw);
1629                break;
1630        case e1000_phy_82580:
1631                ret_val = igb_copper_link_setup_82580(hw);
1632                break;
1633        case e1000_phy_bcm54616:
1634                ret_val = 0;
1635                break;
1636        default:
1637                ret_val = -E1000_ERR_PHY;
1638                break;
1639        }
1640
1641        if (ret_val)
1642                goto out;
1643
1644        ret_val = igb_setup_copper_link(hw);
1645out:
1646        return ret_val;
1647}
1648
1649/**
1650 *  igb_setup_serdes_link_82575 - Setup link for serdes
1651 *  @hw: pointer to the HW structure
1652 *
1653 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1654 *  used on copper connections where the serialized gigabit media independent
1655 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1656 *  for auto-negotiation or forces speed/duplex.
1657 **/
1658static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1659{
1660        u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1661        bool pcs_autoneg;
1662        s32 ret_val = 0;
1663        u16 data;
1664
1665        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1666            !igb_sgmii_active_82575(hw))
1667                return ret_val;
1668
1669
1670        /* On the 82575, SerDes loopback mode persists until it is
1671         * explicitly turned off or a power cycle is performed.  A read to
1672         * the register does not indicate its status.  Therefore, we ensure
1673         * loopback mode is disabled during initialization.
1674         */
1675        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1676
1677        /* power on the sfp cage if present and turn on I2C */
1678        ctrl_ext = rd32(E1000_CTRL_EXT);
1679        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1680        ctrl_ext |= E1000_CTRL_I2C_ENA;
1681        wr32(E1000_CTRL_EXT, ctrl_ext);
1682
1683        ctrl_reg = rd32(E1000_CTRL);
1684        ctrl_reg |= E1000_CTRL_SLU;
1685
1686        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1687                /* set both sw defined pins */
1688                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1689
1690                /* Set switch control to serdes energy detect */
1691                reg = rd32(E1000_CONNSW);
1692                reg |= E1000_CONNSW_ENRGSRC;
1693                wr32(E1000_CONNSW, reg);
1694        }
1695
1696        reg = rd32(E1000_PCS_LCTL);
1697
1698        /* default pcs_autoneg to the same setting as mac autoneg */
1699        pcs_autoneg = hw->mac.autoneg;
1700
1701        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1702        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1703                /* sgmii mode lets the phy handle forcing speed/duplex */
1704                pcs_autoneg = true;
1705                /* autoneg time out should be disabled for SGMII mode */
1706                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1707                break;
1708        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1709                /* disable PCS autoneg and support parallel detect only */
1710                pcs_autoneg = false;
1711                /* fall through */
1712        default:
1713                if (hw->mac.type == e1000_82575 ||
1714                    hw->mac.type == e1000_82576) {
1715                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1716                        if (ret_val) {
1717                                hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1718                                return ret_val;
1719                        }
1720
1721                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1722                                pcs_autoneg = false;
1723                }
1724
1725                /* non-SGMII modes only supports a speed of 1000/Full for the
1726                 * link so it is best to just force the MAC and let the pcs
1727                 * link either autoneg or be forced to 1000/Full
1728                 */
1729                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1730                                E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1731
1732                /* set speed of 1000/Full if speed/duplex is forced */
1733                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1734                break;
1735        }
1736
1737        wr32(E1000_CTRL, ctrl_reg);
1738
1739        /* New SerDes mode allows for forcing speed or autonegotiating speed
1740         * at 1gb. Autoneg should be default set by most drivers. This is the
1741         * mode that will be compatible with older link partners and switches.
1742         * However, both are supported by the hardware and some drivers/tools.
1743         */
1744        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1745                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1746
1747        if (pcs_autoneg) {
1748                /* Set PCS register for autoneg */
1749                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1750                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1751
1752                /* Disable force flow control for autoneg */
1753                reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1754
1755                /* Configure flow control advertisement for autoneg */
1756                anadv_reg = rd32(E1000_PCS_ANADV);
1757                anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1758                switch (hw->fc.requested_mode) {
1759                case e1000_fc_full:
1760                case e1000_fc_rx_pause:
1761                        anadv_reg |= E1000_TXCW_ASM_DIR;
1762                        anadv_reg |= E1000_TXCW_PAUSE;
1763                        break;
1764                case e1000_fc_tx_pause:
1765                        anadv_reg |= E1000_TXCW_ASM_DIR;
1766                        break;
1767                default:
1768                        break;
1769                }
1770                wr32(E1000_PCS_ANADV, anadv_reg);
1771
1772                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1773        } else {
1774                /* Set PCS register for forced link */
1775                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1776
1777                /* Force flow control for forced link */
1778                reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1779
1780                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1781        }
1782
1783        wr32(E1000_PCS_LCTL, reg);
1784
1785        if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1786                igb_force_mac_fc(hw);
1787
1788        return ret_val;
1789}
1790
1791/**
1792 *  igb_sgmii_active_82575 - Return sgmii state
1793 *  @hw: pointer to the HW structure
1794 *
1795 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1796 *  which can be enabled for use in the embedded applications.  Simply
1797 *  return the current state of the sgmii interface.
1798 **/
1799static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1800{
1801        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1802        return dev_spec->sgmii_active;
1803}
1804
1805/**
1806 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  Inits recommended HW defaults after a reset when there is no EEPROM
1810 *  detected. This is only for the 82575.
1811 **/
1812static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1813{
1814        if (hw->mac.type == e1000_82575) {
1815                hw_dbg("Running reset init script for 82575\n");
1816                /* SerDes configuration via SERDESCTRL */
1817                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1818                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1819                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1820                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1821
1822                /* CCM configuration via CCMCTL register */
1823                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1824                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1825
1826                /* PCIe lanes configuration */
1827                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1828                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1829                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1830                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1831
1832                /* PCIe PLL Configuration */
1833                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1834                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1835                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1836        }
1837
1838        return 0;
1839}
1840
1841/**
1842 *  igb_read_mac_addr_82575 - Read device MAC address
1843 *  @hw: pointer to the HW structure
1844 **/
1845static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1846{
1847        s32 ret_val = 0;
1848
1849        /* If there's an alternate MAC address place it in RAR0
1850         * so that it will override the Si installed default perm
1851         * address.
1852         */
1853        ret_val = igb_check_alt_mac_addr(hw);
1854        if (ret_val)
1855                goto out;
1856
1857        ret_val = igb_read_mac_addr(hw);
1858
1859out:
1860        return ret_val;
1861}
1862
1863/**
1864 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1865 * @hw: pointer to the HW structure
1866 *
1867 * In the case of a PHY power down to save power, or to turn off link during a
1868 * driver unload, or wake on lan is not enabled, remove the link.
1869 **/
1870void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1871{
1872        /* If the management interface is not enabled, then power down */
1873        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1874                igb_power_down_phy_copper(hw);
1875}
1876
1877/**
1878 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1879 *  @hw: pointer to the HW structure
1880 *
1881 *  Clears the hardware counters by reading the counter registers.
1882 **/
1883static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1884{
1885        igb_clear_hw_cntrs_base(hw);
1886
1887        rd32(E1000_PRC64);
1888        rd32(E1000_PRC127);
1889        rd32(E1000_PRC255);
1890        rd32(E1000_PRC511);
1891        rd32(E1000_PRC1023);
1892        rd32(E1000_PRC1522);
1893        rd32(E1000_PTC64);
1894        rd32(E1000_PTC127);
1895        rd32(E1000_PTC255);
1896        rd32(E1000_PTC511);
1897        rd32(E1000_PTC1023);
1898        rd32(E1000_PTC1522);
1899
1900        rd32(E1000_ALGNERRC);
1901        rd32(E1000_RXERRC);
1902        rd32(E1000_TNCRS);
1903        rd32(E1000_CEXTERR);
1904        rd32(E1000_TSCTC);
1905        rd32(E1000_TSCTFC);
1906
1907        rd32(E1000_MGTPRC);
1908        rd32(E1000_MGTPDC);
1909        rd32(E1000_MGTPTC);
1910
1911        rd32(E1000_IAC);
1912        rd32(E1000_ICRXOC);
1913
1914        rd32(E1000_ICRXPTC);
1915        rd32(E1000_ICRXATC);
1916        rd32(E1000_ICTXPTC);
1917        rd32(E1000_ICTXATC);
1918        rd32(E1000_ICTXQEC);
1919        rd32(E1000_ICTXQMTC);
1920        rd32(E1000_ICRXDMTC);
1921
1922        rd32(E1000_CBTMPC);
1923        rd32(E1000_HTDPMC);
1924        rd32(E1000_CBRMPC);
1925        rd32(E1000_RPTHC);
1926        rd32(E1000_HGPTC);
1927        rd32(E1000_HTCBDPC);
1928        rd32(E1000_HGORCL);
1929        rd32(E1000_HGORCH);
1930        rd32(E1000_HGOTCL);
1931        rd32(E1000_HGOTCH);
1932        rd32(E1000_LENERRS);
1933
1934        /* This register should not be read in copper configurations */
1935        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1936            igb_sgmii_active_82575(hw))
1937                rd32(E1000_SCVPC);
1938}
1939
1940/**
1941 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1942 *  @hw: pointer to the HW structure
1943 *
1944 *  After rx enable if manageability is enabled then there is likely some
1945 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1946 *  function clears the fifos and flushes any packets that came in as rx was
1947 *  being enabled.
1948 **/
1949void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1950{
1951        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1952        int i, ms_wait;
1953
1954        /* disable IPv6 options as per hardware errata */
1955        rfctl = rd32(E1000_RFCTL);
1956        rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1957        wr32(E1000_RFCTL, rfctl);
1958
1959        if (hw->mac.type != e1000_82575 ||
1960            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1961                return;
1962
1963        /* Disable all RX queues */
1964        for (i = 0; i < 4; i++) {
1965                rxdctl[i] = rd32(E1000_RXDCTL(i));
1966                wr32(E1000_RXDCTL(i),
1967                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1968        }
1969        /* Poll all queues to verify they have shut down */
1970        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1971                usleep_range(1000, 2000);
1972                rx_enabled = 0;
1973                for (i = 0; i < 4; i++)
1974                        rx_enabled |= rd32(E1000_RXDCTL(i));
1975                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1976                        break;
1977        }
1978
1979        if (ms_wait == 10)
1980                hw_dbg("Queue disable timed out after 10ms\n");
1981
1982        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1983         * incoming packets are rejected.  Set enable and wait 2ms so that
1984         * any packet that was coming in as RCTL.EN was set is flushed
1985         */
1986        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1987
1988        rlpml = rd32(E1000_RLPML);
1989        wr32(E1000_RLPML, 0);
1990
1991        rctl = rd32(E1000_RCTL);
1992        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1993        temp_rctl |= E1000_RCTL_LPE;
1994
1995        wr32(E1000_RCTL, temp_rctl);
1996        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1997        wrfl();
1998        usleep_range(2000, 3000);
1999
2000        /* Enable RX queues that were previously enabled and restore our
2001         * previous state
2002         */
2003        for (i = 0; i < 4; i++)
2004                wr32(E1000_RXDCTL(i), rxdctl[i]);
2005        wr32(E1000_RCTL, rctl);
2006        wrfl();
2007
2008        wr32(E1000_RLPML, rlpml);
2009        wr32(E1000_RFCTL, rfctl);
2010
2011        /* Flush receive errors generated by workaround */
2012        rd32(E1000_ROC);
2013        rd32(E1000_RNBC);
2014        rd32(E1000_MPC);
2015}
2016
2017/**
2018 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2019 *  @hw: pointer to the HW structure
2020 *
2021 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2022 *  however the hardware default for these parts is 500us to 1ms which is less
2023 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2024 *  increase the value to either 10ms to 200ms for capability version 1 config,
2025 *  or 16ms to 55ms for version 2.
2026 **/
2027static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2028{
2029        u32 gcr = rd32(E1000_GCR);
2030        s32 ret_val = 0;
2031        u16 pcie_devctl2;
2032
2033        /* only take action if timeout value is defaulted to 0 */
2034        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2035                goto out;
2036
2037        /* if capabilities version is type 1 we can write the
2038         * timeout of 10ms to 200ms through the GCR register
2039         */
2040        if (!(gcr & E1000_GCR_CAP_VER2)) {
2041                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2042                goto out;
2043        }
2044
2045        /* for version 2 capabilities we need to write the config space
2046         * directly in order to set the completion timeout value for
2047         * 16ms to 55ms
2048         */
2049        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2050                                        &pcie_devctl2);
2051        if (ret_val)
2052                goto out;
2053
2054        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2055
2056        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2057                                         &pcie_devctl2);
2058out:
2059        /* disable completion timeout resend */
2060        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2061
2062        wr32(E1000_GCR, gcr);
2063        return ret_val;
2064}
2065
2066/**
2067 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2068 *  @hw: pointer to the hardware struct
2069 *  @enable: state to enter, either enabled or disabled
2070 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2071 *
2072 *  enables/disables L2 switch anti-spoofing functionality.
2073 **/
2074void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2075{
2076        u32 reg_val, reg_offset;
2077
2078        switch (hw->mac.type) {
2079        case e1000_82576:
2080                reg_offset = E1000_DTXSWC;
2081                break;
2082        case e1000_i350:
2083        case e1000_i354:
2084                reg_offset = E1000_TXSWC;
2085                break;
2086        default:
2087                return;
2088        }
2089
2090        reg_val = rd32(reg_offset);
2091        if (enable) {
2092                reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2093                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2094                /* The PF can spoof - it has to in order to
2095                 * support emulation mode NICs
2096                 */
2097                reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2098        } else {
2099                reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2100                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2101        }
2102        wr32(reg_offset, reg_val);
2103}
2104
2105/**
2106 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2107 *  @hw: pointer to the hardware struct
2108 *  @enable: state to enter, either enabled or disabled
2109 *
2110 *  enables/disables L2 switch loopback functionality.
2111 **/
2112void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2113{
2114        u32 dtxswc;
2115
2116        switch (hw->mac.type) {
2117        case e1000_82576:
2118                dtxswc = rd32(E1000_DTXSWC);
2119                if (enable)
2120                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2121                else
2122                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2123                wr32(E1000_DTXSWC, dtxswc);
2124                break;
2125        case e1000_i354:
2126        case e1000_i350:
2127                dtxswc = rd32(E1000_TXSWC);
2128                if (enable)
2129                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2130                else
2131                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2132                wr32(E1000_TXSWC, dtxswc);
2133                break;
2134        default:
2135                /* Currently no other hardware supports loopback */
2136                break;
2137        }
2138
2139}
2140
2141/**
2142 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2143 *  @hw: pointer to the hardware struct
2144 *  @enable: state to enter, either enabled or disabled
2145 *
2146 *  enables/disables replication of packets across multiple pools.
2147 **/
2148void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2149{
2150        u32 vt_ctl = rd32(E1000_VT_CTL);
2151
2152        if (enable)
2153                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2154        else
2155                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2156
2157        wr32(E1000_VT_CTL, vt_ctl);
2158}
2159
2160/**
2161 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2162 *  @hw: pointer to the HW structure
2163 *  @offset: register offset to be read
2164 *  @data: pointer to the read data
2165 *
2166 *  Reads the MDI control register in the PHY at offset and stores the
2167 *  information read to data.
2168 **/
2169s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2170{
2171        s32 ret_val;
2172
2173        ret_val = hw->phy.ops.acquire(hw);
2174        if (ret_val)
2175                goto out;
2176
2177        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2178
2179        hw->phy.ops.release(hw);
2180
2181out:
2182        return ret_val;
2183}
2184
2185/**
2186 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2187 *  @hw: pointer to the HW structure
2188 *  @offset: register offset to write to
2189 *  @data: data to write to register at offset
2190 *
2191 *  Writes data to MDI control register in the PHY at offset.
2192 **/
2193s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2194{
2195        s32 ret_val;
2196
2197
2198        ret_val = hw->phy.ops.acquire(hw);
2199        if (ret_val)
2200                goto out;
2201
2202        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2203
2204        hw->phy.ops.release(hw);
2205
2206out:
2207        return ret_val;
2208}
2209
2210/**
2211 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2212 *  @hw: pointer to the HW structure
2213 *
2214 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2215 *  the values found in the EEPROM.  This addresses an issue in which these
2216 *  bits are not restored from EEPROM after reset.
2217 **/
2218static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2219{
2220        s32 ret_val = 0;
2221        u32 mdicnfg;
2222        u16 nvm_data = 0;
2223
2224        if (hw->mac.type != e1000_82580)
2225                goto out;
2226        if (!igb_sgmii_active_82575(hw))
2227                goto out;
2228
2229        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2230                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2231                                   &nvm_data);
2232        if (ret_val) {
2233                hw_dbg("NVM Read Error\n");
2234                goto out;
2235        }
2236
2237        mdicnfg = rd32(E1000_MDICNFG);
2238        if (nvm_data & NVM_WORD24_EXT_MDIO)
2239                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2240        if (nvm_data & NVM_WORD24_COM_MDIO)
2241                mdicnfg |= E1000_MDICNFG_COM_MDIO;
2242        wr32(E1000_MDICNFG, mdicnfg);
2243out:
2244        return ret_val;
2245}
2246
2247/**
2248 *  igb_reset_hw_82580 - Reset hardware
2249 *  @hw: pointer to the HW structure
2250 *
2251 *  This resets function or entire device (all ports, etc.)
2252 *  to a known state.
2253 **/
2254static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2255{
2256        s32 ret_val = 0;
2257        /* BH SW mailbox bit in SW_FW_SYNC */
2258        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2259        u32 ctrl;
2260        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2261
2262        hw->dev_spec._82575.global_device_reset = false;
2263
2264        /* due to hw errata, global device reset doesn't always
2265         * work on 82580
2266         */
2267        if (hw->mac.type == e1000_82580)
2268                global_device_reset = false;
2269
2270        /* Get current control state. */
2271        ctrl = rd32(E1000_CTRL);
2272
2273        /* Prevent the PCI-E bus from sticking if there is no TLP connection
2274         * on the last TLP read/write transaction when MAC is reset.
2275         */
2276        ret_val = igb_disable_pcie_master(hw);
2277        if (ret_val)
2278                hw_dbg("PCI-E Master disable polling has failed.\n");
2279
2280        hw_dbg("Masking off all interrupts\n");
2281        wr32(E1000_IMC, 0xffffffff);
2282        wr32(E1000_RCTL, 0);
2283        wr32(E1000_TCTL, E1000_TCTL_PSP);
2284        wrfl();
2285
2286        usleep_range(10000, 11000);
2287
2288        /* Determine whether or not a global dev reset is requested */
2289        if (global_device_reset &&
2290                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2291                        global_device_reset = false;
2292
2293        if (global_device_reset &&
2294                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2295                ctrl |= E1000_CTRL_DEV_RST;
2296        else
2297                ctrl |= E1000_CTRL_RST;
2298
2299        wr32(E1000_CTRL, ctrl);
2300        wrfl();
2301
2302        /* Add delay to insure DEV_RST has time to complete */
2303        if (global_device_reset)
2304                usleep_range(5000, 6000);
2305
2306        ret_val = igb_get_auto_rd_done(hw);
2307        if (ret_val) {
2308                /* When auto config read does not complete, do not
2309                 * return with an error. This can happen in situations
2310                 * where there is no eeprom and prevents getting link.
2311                 */
2312                hw_dbg("Auto Read Done did not complete\n");
2313        }
2314
2315        /* clear global device reset status bit */
2316        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2317
2318        /* Clear any pending interrupt events. */
2319        wr32(E1000_IMC, 0xffffffff);
2320        rd32(E1000_ICR);
2321
2322        ret_val = igb_reset_mdicnfg_82580(hw);
2323        if (ret_val)
2324                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2325
2326        /* Install any alternate MAC address into RAR0 */
2327        ret_val = igb_check_alt_mac_addr(hw);
2328
2329        /* Release semaphore */
2330        if (global_device_reset)
2331                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2332
2333        return ret_val;
2334}
2335
2336/**
2337 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2338 *  @data: data received by reading RXPBS register
2339 *
2340 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2341 *  This function converts the retrieved value into the correct table value
2342 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2343 *  0x0 36  72 144   1   2   4   8  16
2344 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2345 */
2346u16 igb_rxpbs_adjust_82580(u32 data)
2347{
2348        u16 ret_val = 0;
2349
2350        if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2351                ret_val = e1000_82580_rxpbs_table[data];
2352
2353        return ret_val;
2354}
2355
2356/**
2357 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2358 *  checksum
2359 *  @hw: pointer to the HW structure
2360 *  @offset: offset in words of the checksum protected region
2361 *
2362 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2363 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2364 **/
2365static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2366                                                 u16 offset)
2367{
2368        s32 ret_val = 0;
2369        u16 checksum = 0;
2370        u16 i, nvm_data;
2371
2372        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2373                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2374                if (ret_val) {
2375                        hw_dbg("NVM Read Error\n");
2376                        goto out;
2377                }
2378                checksum += nvm_data;
2379        }
2380
2381        if (checksum != (u16) NVM_SUM) {
2382                hw_dbg("NVM Checksum Invalid\n");
2383                ret_val = -E1000_ERR_NVM;
2384                goto out;
2385        }
2386
2387out:
2388        return ret_val;
2389}
2390
2391/**
2392 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2393 *  checksum
2394 *  @hw: pointer to the HW structure
2395 *  @offset: offset in words of the checksum protected region
2396 *
2397 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2398 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2399 *  value to the EEPROM.
2400 **/
2401static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2402{
2403        s32 ret_val;
2404        u16 checksum = 0;
2405        u16 i, nvm_data;
2406
2407        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2408                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2409                if (ret_val) {
2410                        hw_dbg("NVM Read Error while updating checksum.\n");
2411                        goto out;
2412                }
2413                checksum += nvm_data;
2414        }
2415        checksum = (u16) NVM_SUM - checksum;
2416        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2417                                &checksum);
2418        if (ret_val)
2419                hw_dbg("NVM Write Error while updating checksum.\n");
2420
2421out:
2422        return ret_val;
2423}
2424
2425/**
2426 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2427 *  @hw: pointer to the HW structure
2428 *
2429 *  Calculates the EEPROM section checksum by reading/adding each word of
2430 *  the EEPROM and then verifies that the sum of the EEPROM is
2431 *  equal to 0xBABA.
2432 **/
2433static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2434{
2435        s32 ret_val = 0;
2436        u16 eeprom_regions_count = 1;
2437        u16 j, nvm_data;
2438        u16 nvm_offset;
2439
2440        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2441        if (ret_val) {
2442                hw_dbg("NVM Read Error\n");
2443                goto out;
2444        }
2445
2446        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2447                /* if checksums compatibility bit is set validate checksums
2448                 * for all 4 ports.
2449                 */
2450                eeprom_regions_count = 4;
2451        }
2452
2453        for (j = 0; j < eeprom_regions_count; j++) {
2454                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2455                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2456                                                                nvm_offset);
2457                if (ret_val != 0)
2458                        goto out;
2459        }
2460
2461out:
2462        return ret_val;
2463}
2464
2465/**
2466 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2467 *  @hw: pointer to the HW structure
2468 *
2469 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2470 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2471 *  checksum and writes the value to the EEPROM.
2472 **/
2473static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2474{
2475        s32 ret_val;
2476        u16 j, nvm_data;
2477        u16 nvm_offset;
2478
2479        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2480        if (ret_val) {
2481                hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2482                goto out;
2483        }
2484
2485        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2486                /* set compatibility bit to validate checksums appropriately */
2487                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2488                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2489                                        &nvm_data);
2490                if (ret_val) {
2491                        hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2492                        goto out;
2493                }
2494        }
2495
2496        for (j = 0; j < 4; j++) {
2497                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2498                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2499                if (ret_val)
2500                        goto out;
2501        }
2502
2503out:
2504        return ret_val;
2505}
2506
2507/**
2508 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2509 *  @hw: pointer to the HW structure
2510 *
2511 *  Calculates the EEPROM section checksum by reading/adding each word of
2512 *  the EEPROM and then verifies that the sum of the EEPROM is
2513 *  equal to 0xBABA.
2514 **/
2515static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2516{
2517        s32 ret_val = 0;
2518        u16 j;
2519        u16 nvm_offset;
2520
2521        for (j = 0; j < 4; j++) {
2522                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2523                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2524                                                                nvm_offset);
2525                if (ret_val != 0)
2526                        goto out;
2527        }
2528
2529out:
2530        return ret_val;
2531}
2532
2533/**
2534 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2535 *  @hw: pointer to the HW structure
2536 *
2537 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2538 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2539 *  checksum and writes the value to the EEPROM.
2540 **/
2541static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2542{
2543        s32 ret_val = 0;
2544        u16 j;
2545        u16 nvm_offset;
2546
2547        for (j = 0; j < 4; j++) {
2548                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2549                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2550                if (ret_val != 0)
2551                        goto out;
2552        }
2553
2554out:
2555        return ret_val;
2556}
2557
2558/**
2559 *  __igb_access_emi_reg - Read/write EMI register
2560 *  @hw: pointer to the HW structure
2561 *  @addr: EMI address to program
2562 *  @data: pointer to value to read/write from/to the EMI address
2563 *  @read: boolean flag to indicate read or write
2564 **/
2565static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2566                                  u16 *data, bool read)
2567{
2568        s32 ret_val = 0;
2569
2570        ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2571        if (ret_val)
2572                return ret_val;
2573
2574        if (read)
2575                ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2576        else
2577                ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2578
2579        return ret_val;
2580}
2581
2582/**
2583 *  igb_read_emi_reg - Read Extended Management Interface register
2584 *  @hw: pointer to the HW structure
2585 *  @addr: EMI address to program
2586 *  @data: value to be read from the EMI address
2587 **/
2588s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2589{
2590        return __igb_access_emi_reg(hw, addr, data, true);
2591}
2592
2593/**
2594 *  igb_set_eee_i350 - Enable/disable EEE support
2595 *  @hw: pointer to the HW structure
2596 *  @adv1G: boolean flag enabling 1G EEE advertisement
2597 *  @adv100m: boolean flag enabling 100M EEE advertisement
2598 *
2599 *  Enable/disable EEE based on setting in dev_spec structure.
2600 *
2601 **/
2602s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2603{
2604        u32 ipcnfg, eeer;
2605
2606        if ((hw->mac.type < e1000_i350) ||
2607            (hw->phy.media_type != e1000_media_type_copper))
2608                goto out;
2609        ipcnfg = rd32(E1000_IPCNFG);
2610        eeer = rd32(E1000_EEER);
2611
2612        /* enable or disable per user setting */
2613        if (!(hw->dev_spec._82575.eee_disable)) {
2614                u32 eee_su = rd32(E1000_EEE_SU);
2615
2616                if (adv100M)
2617                        ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2618                else
2619                        ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2620
2621                if (adv1G)
2622                        ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2623                else
2624                        ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2625
2626                eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2627                        E1000_EEER_LPI_FC);
2628
2629                /* This bit should not be set in normal operation. */
2630                if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2631                        hw_dbg("LPI Clock Stop Bit should not be set!\n");
2632
2633        } else {
2634                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2635                        E1000_IPCNFG_EEE_100M_AN);
2636                eeer &= ~(E1000_EEER_TX_LPI_EN |
2637                        E1000_EEER_RX_LPI_EN |
2638                        E1000_EEER_LPI_FC);
2639        }
2640        wr32(E1000_IPCNFG, ipcnfg);
2641        wr32(E1000_EEER, eeer);
2642        rd32(E1000_IPCNFG);
2643        rd32(E1000_EEER);
2644out:
2645
2646        return 0;
2647}
2648
2649/**
2650 *  igb_set_eee_i354 - Enable/disable EEE support
2651 *  @hw: pointer to the HW structure
2652 *  @adv1G: boolean flag enabling 1G EEE advertisement
2653 *  @adv100m: boolean flag enabling 100M EEE advertisement
2654 *
2655 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2656 *
2657 **/
2658s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2659{
2660        struct e1000_phy_info *phy = &hw->phy;
2661        s32 ret_val = 0;
2662        u16 phy_data;
2663
2664        if ((hw->phy.media_type != e1000_media_type_copper) ||
2665            ((phy->id != M88E1543_E_PHY_ID) &&
2666             (phy->id != M88E1512_E_PHY_ID)))
2667                goto out;
2668
2669        if (!hw->dev_spec._82575.eee_disable) {
2670                /* Switch to PHY page 18. */
2671                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2672                if (ret_val)
2673                        goto out;
2674
2675                ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676                                            &phy_data);
2677                if (ret_val)
2678                        goto out;
2679
2680                phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2681                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2682                                             phy_data);
2683                if (ret_val)
2684                        goto out;
2685
2686                /* Return the PHY to page 0. */
2687                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2688                if (ret_val)
2689                        goto out;
2690
2691                /* Turn on EEE advertisement. */
2692                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2693                                             E1000_EEE_ADV_DEV_I354,
2694                                             &phy_data);
2695                if (ret_val)
2696                        goto out;
2697
2698                if (adv100M)
2699                        phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2700                else
2701                        phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2702
2703                if (adv1G)
2704                        phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2705                else
2706                        phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2707
2708                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2709                                                E1000_EEE_ADV_DEV_I354,
2710                                                phy_data);
2711        } else {
2712                /* Turn off EEE advertisement. */
2713                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2714                                             E1000_EEE_ADV_DEV_I354,
2715                                             &phy_data);
2716                if (ret_val)
2717                        goto out;
2718
2719                phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2720                              E1000_EEE_ADV_1000_SUPPORTED);
2721                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722                                              E1000_EEE_ADV_DEV_I354,
2723                                              phy_data);
2724        }
2725
2726out:
2727        return ret_val;
2728}
2729
2730/**
2731 *  igb_get_eee_status_i354 - Get EEE status
2732 *  @hw: pointer to the HW structure
2733 *  @status: EEE status
2734 *
2735 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2736 *  been received.
2737 **/
2738s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2739{
2740        struct e1000_phy_info *phy = &hw->phy;
2741        s32 ret_val = 0;
2742        u16 phy_data;
2743
2744        /* Check if EEE is supported on this device. */
2745        if ((hw->phy.media_type != e1000_media_type_copper) ||
2746            ((phy->id != M88E1543_E_PHY_ID) &&
2747             (phy->id != M88E1512_E_PHY_ID)))
2748                goto out;
2749
2750        ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2751                                     E1000_PCS_STATUS_DEV_I354,
2752                                     &phy_data);
2753        if (ret_val)
2754                goto out;
2755
2756        *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2757                              E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2758
2759out:
2760        return ret_val;
2761}
2762
2763static const u8 e1000_emc_temp_data[4] = {
2764        E1000_EMC_INTERNAL_DATA,
2765        E1000_EMC_DIODE1_DATA,
2766        E1000_EMC_DIODE2_DATA,
2767        E1000_EMC_DIODE3_DATA
2768};
2769static const u8 e1000_emc_therm_limit[4] = {
2770        E1000_EMC_INTERNAL_THERM_LIMIT,
2771        E1000_EMC_DIODE1_THERM_LIMIT,
2772        E1000_EMC_DIODE2_THERM_LIMIT,
2773        E1000_EMC_DIODE3_THERM_LIMIT
2774};
2775
2776#ifdef CONFIG_IGB_HWMON
2777/**
2778 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2779 *  @hw: pointer to hardware structure
2780 *
2781 *  Updates the temperatures in mac.thermal_sensor_data
2782 **/
2783static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2784{
2785        u16 ets_offset;
2786        u16 ets_cfg;
2787        u16 ets_sensor;
2788        u8  num_sensors;
2789        u8  sensor_index;
2790        u8  sensor_location;
2791        u8  i;
2792        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2793
2794        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2795                return E1000_NOT_IMPLEMENTED;
2796
2797        data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2798
2799        /* Return the internal sensor only if ETS is unsupported */
2800        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2801        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2802                return 0;
2803
2804        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2805        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2806            != NVM_ETS_TYPE_EMC)
2807                return E1000_NOT_IMPLEMENTED;
2808
2809        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2810        if (num_sensors > E1000_MAX_SENSORS)
2811                num_sensors = E1000_MAX_SENSORS;
2812
2813        for (i = 1; i < num_sensors; i++) {
2814                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2815                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2816                                NVM_ETS_DATA_INDEX_SHIFT);
2817                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2818                                   NVM_ETS_DATA_LOC_SHIFT);
2819
2820                if (sensor_location != 0)
2821                        hw->phy.ops.read_i2c_byte(hw,
2822                                        e1000_emc_temp_data[sensor_index],
2823                                        E1000_I2C_THERMAL_SENSOR_ADDR,
2824                                        &data->sensor[i].temp);
2825        }
2826        return 0;
2827}
2828
2829/**
2830 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2831 *  @hw: pointer to hardware structure
2832 *
2833 *  Sets the thermal sensor thresholds according to the NVM map
2834 *  and save off the threshold and location values into mac.thermal_sensor_data
2835 **/
2836static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2837{
2838        u16 ets_offset;
2839        u16 ets_cfg;
2840        u16 ets_sensor;
2841        u8  low_thresh_delta;
2842        u8  num_sensors;
2843        u8  sensor_index;
2844        u8  sensor_location;
2845        u8  therm_limit;
2846        u8  i;
2847        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2848
2849        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2850                return E1000_NOT_IMPLEMENTED;
2851
2852        memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2853
2854        data->sensor[0].location = 0x1;
2855        data->sensor[0].caution_thresh =
2856                (rd32(E1000_THHIGHTC) & 0xFF);
2857        data->sensor[0].max_op_thresh =
2858                (rd32(E1000_THLOWTC) & 0xFF);
2859
2860        /* Return the internal sensor only if ETS is unsupported */
2861        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2862        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2863                return 0;
2864
2865        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2866        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2867            != NVM_ETS_TYPE_EMC)
2868                return E1000_NOT_IMPLEMENTED;
2869
2870        low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2871                            NVM_ETS_LTHRES_DELTA_SHIFT);
2872        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2873
2874        for (i = 1; i <= num_sensors; i++) {
2875                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2876                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2877                                NVM_ETS_DATA_INDEX_SHIFT);
2878                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2879                                   NVM_ETS_DATA_LOC_SHIFT);
2880                therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2881
2882                hw->phy.ops.write_i2c_byte(hw,
2883                        e1000_emc_therm_limit[sensor_index],
2884                        E1000_I2C_THERMAL_SENSOR_ADDR,
2885                        therm_limit);
2886
2887                if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2888                        data->sensor[i].location = sensor_location;
2889                        data->sensor[i].caution_thresh = therm_limit;
2890                        data->sensor[i].max_op_thresh = therm_limit -
2891                                                        low_thresh_delta;
2892                }
2893        }
2894        return 0;
2895}
2896
2897#endif
2898static struct e1000_mac_operations e1000_mac_ops_82575 = {
2899        .init_hw              = igb_init_hw_82575,
2900        .check_for_link       = igb_check_for_link_82575,
2901        .rar_set              = igb_rar_set,
2902        .read_mac_addr        = igb_read_mac_addr_82575,
2903        .get_speed_and_duplex = igb_get_link_up_info_82575,
2904#ifdef CONFIG_IGB_HWMON
2905        .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2906        .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2907#endif
2908};
2909
2910static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2911        .acquire              = igb_acquire_phy_82575,
2912        .get_cfg_done         = igb_get_cfg_done_82575,
2913        .release              = igb_release_phy_82575,
2914        .write_i2c_byte       = igb_write_i2c_byte,
2915        .read_i2c_byte        = igb_read_i2c_byte,
2916};
2917
2918static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2919        .acquire              = igb_acquire_nvm_82575,
2920        .read                 = igb_read_nvm_eerd,
2921        .release              = igb_release_nvm_82575,
2922        .write                = igb_write_nvm_spi,
2923};
2924
2925const struct e1000_info e1000_82575_info = {
2926        .get_invariants = igb_get_invariants_82575,
2927        .mac_ops = &e1000_mac_ops_82575,
2928        .phy_ops = &e1000_phy_ops_82575,
2929        .nvm_ops = &e1000_nvm_ops_82575,
2930};
2931
2932