linux/drivers/net/ethernet/sfc/farch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/pci.h>
  12#include <linux/module.h>
  13#include <linux/seq_file.h>
  14#include <linux/crc32.h>
  15#include "net_driver.h"
  16#include "bitfield.h"
  17#include "efx.h"
  18#include "nic.h"
  19#include "farch_regs.h"
  20#include "sriov.h"
  21#include "siena_sriov.h"
  22#include "io.h"
  23#include "workarounds.h"
  24
  25/* Falcon-architecture (SFC9000-family) support */
  26
  27/**************************************************************************
  28 *
  29 * Configurable values
  30 *
  31 **************************************************************************
  32 */
  33
  34/* This is set to 16 for a good reason.  In summary, if larger than
  35 * 16, the descriptor cache holds more than a default socket
  36 * buffer's worth of packets (for UDP we can only have at most one
  37 * socket buffer's worth outstanding).  This combined with the fact
  38 * that we only get 1 TX event per descriptor cache means the NIC
  39 * goes idle.
  40 */
  41#define TX_DC_ENTRIES 16
  42#define TX_DC_ENTRIES_ORDER 1
  43
  44#define RX_DC_ENTRIES 64
  45#define RX_DC_ENTRIES_ORDER 3
  46
  47/* If EFX_MAX_INT_ERRORS internal errors occur within
  48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  49 * disable it.
  50 */
  51#define EFX_INT_ERROR_EXPIRE 3600
  52#define EFX_MAX_INT_ERRORS 5
  53
  54/* Depth of RX flush request fifo */
  55#define EFX_RX_FLUSH_COUNT 4
  56
  57/* Driver generated events */
  58#define _EFX_CHANNEL_MAGIC_TEST         0x000101
  59#define _EFX_CHANNEL_MAGIC_FILL         0x000102
  60#define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
  61#define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
  62
  63#define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  64#define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  65
  66#define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
  67        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  68#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  69        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
  70                           efx_rx_queue_index(_rx_queue))
  71#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  72        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
  73                           efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  75        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
  76                           (_tx_queue)->queue)
  77
  78static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  79
  80/**************************************************************************
  81 *
  82 * Hardware access
  83 *
  84 **************************************************************************/
  85
  86static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  87                                     unsigned int index)
  88{
  89        efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  90                        value, index);
  91}
  92
  93static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  94                                     const efx_oword_t *mask)
  95{
  96        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  97                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  98}
  99
 100int efx_farch_test_registers(struct efx_nic *efx,
 101                             const struct efx_farch_register_test *regs,
 102                             size_t n_regs)
 103{
 104        unsigned address = 0;
 105        int i, j;
 106        efx_oword_t mask, imask, original, reg, buf;
 107
 108        for (i = 0; i < n_regs; ++i) {
 109                address = regs[i].address;
 110                mask = imask = regs[i].mask;
 111                EFX_INVERT_OWORD(imask);
 112
 113                efx_reado(efx, &original, address);
 114
 115                /* bit sweep on and off */
 116                for (j = 0; j < 128; j++) {
 117                        if (!EFX_EXTRACT_OWORD32(mask, j, j))
 118                                continue;
 119
 120                        /* Test this testable bit can be set in isolation */
 121                        EFX_AND_OWORD(reg, original, mask);
 122                        EFX_SET_OWORD32(reg, j, j, 1);
 123
 124                        efx_writeo(efx, &reg, address);
 125                        efx_reado(efx, &buf, address);
 126
 127                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 128                                goto fail;
 129
 130                        /* Test this testable bit can be cleared in isolation */
 131                        EFX_OR_OWORD(reg, original, mask);
 132                        EFX_SET_OWORD32(reg, j, j, 0);
 133
 134                        efx_writeo(efx, &reg, address);
 135                        efx_reado(efx, &buf, address);
 136
 137                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 138                                goto fail;
 139                }
 140
 141                efx_writeo(efx, &original, address);
 142        }
 143
 144        return 0;
 145
 146fail:
 147        netif_err(efx, hw, efx->net_dev,
 148                  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 149                  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 150                  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 151        return -EIO;
 152}
 153
 154/**************************************************************************
 155 *
 156 * Special buffer handling
 157 * Special buffers are used for event queues and the TX and RX
 158 * descriptor rings.
 159 *
 160 *************************************************************************/
 161
 162/*
 163 * Initialise a special buffer
 164 *
 165 * This will define a buffer (previously allocated via
 166 * efx_alloc_special_buffer()) in the buffer table, allowing
 167 * it to be used for event queues, descriptor rings etc.
 168 */
 169static void
 170efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 171{
 172        efx_qword_t buf_desc;
 173        unsigned int index;
 174        dma_addr_t dma_addr;
 175        int i;
 176
 177        EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 178
 179        /* Write buffer descriptors to NIC */
 180        for (i = 0; i < buffer->entries; i++) {
 181                index = buffer->index + i;
 182                dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 183                netif_dbg(efx, probe, efx->net_dev,
 184                          "mapping special buffer %d at %llx\n",
 185                          index, (unsigned long long)dma_addr);
 186                EFX_POPULATE_QWORD_3(buf_desc,
 187                                     FRF_AZ_BUF_ADR_REGION, 0,
 188                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 189                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 190                efx_write_buf_tbl(efx, &buf_desc, index);
 191        }
 192}
 193
 194/* Unmaps a buffer and clears the buffer table entries */
 195static void
 196efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 197{
 198        efx_oword_t buf_tbl_upd;
 199        unsigned int start = buffer->index;
 200        unsigned int end = (buffer->index + buffer->entries - 1);
 201
 202        if (!buffer->entries)
 203                return;
 204
 205        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 206                  buffer->index, buffer->index + buffer->entries - 1);
 207
 208        EFX_POPULATE_OWORD_4(buf_tbl_upd,
 209                             FRF_AZ_BUF_UPD_CMD, 0,
 210                             FRF_AZ_BUF_CLR_CMD, 1,
 211                             FRF_AZ_BUF_CLR_END_ID, end,
 212                             FRF_AZ_BUF_CLR_START_ID, start);
 213        efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 214}
 215
 216/*
 217 * Allocate a new special buffer
 218 *
 219 * This allocates memory for a new buffer, clears it and allocates a
 220 * new buffer ID range.  It does not write into the buffer table.
 221 *
 222 * This call will allocate 4KB buffers, since 8KB buffers can't be
 223 * used for event queues and descriptor rings.
 224 */
 225static int efx_alloc_special_buffer(struct efx_nic *efx,
 226                                    struct efx_special_buffer *buffer,
 227                                    unsigned int len)
 228{
 229#ifdef CONFIG_SFC_SRIOV
 230        struct siena_nic_data *nic_data = efx->nic_data;
 231#endif
 232        len = ALIGN(len, EFX_BUF_SIZE);
 233
 234        if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 235                return -ENOMEM;
 236        buffer->entries = len / EFX_BUF_SIZE;
 237        BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 238
 239        /* Select new buffer ID */
 240        buffer->index = efx->next_buffer_table;
 241        efx->next_buffer_table += buffer->entries;
 242#ifdef CONFIG_SFC_SRIOV
 243        BUG_ON(efx_siena_sriov_enabled(efx) &&
 244               nic_data->vf_buftbl_base < efx->next_buffer_table);
 245#endif
 246
 247        netif_dbg(efx, probe, efx->net_dev,
 248                  "allocating special buffers %d-%d at %llx+%x "
 249                  "(virt %p phys %llx)\n", buffer->index,
 250                  buffer->index + buffer->entries - 1,
 251                  (u64)buffer->buf.dma_addr, len,
 252                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 253
 254        return 0;
 255}
 256
 257static void
 258efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 259{
 260        if (!buffer->buf.addr)
 261                return;
 262
 263        netif_dbg(efx, hw, efx->net_dev,
 264                  "deallocating special buffers %d-%d at %llx+%x "
 265                  "(virt %p phys %llx)\n", buffer->index,
 266                  buffer->index + buffer->entries - 1,
 267                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 268                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 269
 270        efx_nic_free_buffer(efx, &buffer->buf);
 271        buffer->entries = 0;
 272}
 273
 274/**************************************************************************
 275 *
 276 * TX path
 277 *
 278 **************************************************************************/
 279
 280/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 281static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 282{
 283        unsigned write_ptr;
 284        efx_dword_t reg;
 285
 286        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 287        EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 288        efx_writed_page(tx_queue->efx, &reg,
 289                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 290}
 291
 292/* Write pointer and first descriptor for TX descriptor ring */
 293static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 294                                          const efx_qword_t *txd)
 295{
 296        unsigned write_ptr;
 297        efx_oword_t reg;
 298
 299        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 300        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 301
 302        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 303        EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 304                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 305        reg.qword[0] = *txd;
 306        efx_writeo_page(tx_queue->efx, &reg,
 307                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 308}
 309
 310
 311/* For each entry inserted into the software descriptor ring, create a
 312 * descriptor in the hardware TX descriptor ring (in host memory), and
 313 * write a doorbell.
 314 */
 315void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 316{
 317        struct efx_tx_buffer *buffer;
 318        efx_qword_t *txd;
 319        unsigned write_ptr;
 320        unsigned old_write_count = tx_queue->write_count;
 321
 322        tx_queue->xmit_more_available = false;
 323        if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 324                return;
 325
 326        do {
 327                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 328                buffer = &tx_queue->buffer[write_ptr];
 329                txd = efx_tx_desc(tx_queue, write_ptr);
 330                ++tx_queue->write_count;
 331
 332                EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 333
 334                /* Create TX descriptor ring entry */
 335                BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 336                EFX_POPULATE_QWORD_4(*txd,
 337                                     FSF_AZ_TX_KER_CONT,
 338                                     buffer->flags & EFX_TX_BUF_CONT,
 339                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 340                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 341                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 342        } while (tx_queue->write_count != tx_queue->insert_count);
 343
 344        wmb(); /* Ensure descriptors are written before they are fetched */
 345
 346        if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 347                txd = efx_tx_desc(tx_queue,
 348                                  old_write_count & tx_queue->ptr_mask);
 349                efx_farch_push_tx_desc(tx_queue, txd);
 350                ++tx_queue->pushes;
 351        } else {
 352                efx_farch_notify_tx_desc(tx_queue);
 353        }
 354}
 355
 356unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 357                                    dma_addr_t dma_addr, unsigned int len)
 358{
 359        /* Don't cross 4K boundaries with descriptors. */
 360        unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 361
 362        len = min(limit, len);
 363
 364        return len;
 365}
 366
 367
 368/* Allocate hardware resources for a TX queue */
 369int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 370{
 371        struct efx_nic *efx = tx_queue->efx;
 372        unsigned entries;
 373
 374        entries = tx_queue->ptr_mask + 1;
 375        return efx_alloc_special_buffer(efx, &tx_queue->txd,
 376                                        entries * sizeof(efx_qword_t));
 377}
 378
 379void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 380{
 381        int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 382        struct efx_nic *efx = tx_queue->efx;
 383        efx_oword_t reg;
 384
 385        /* Pin TX descriptor ring */
 386        efx_init_special_buffer(efx, &tx_queue->txd);
 387
 388        /* Push TX descriptor ring to card */
 389        EFX_POPULATE_OWORD_10(reg,
 390                              FRF_AZ_TX_DESCQ_EN, 1,
 391                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 392                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 393                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 394                              FRF_AZ_TX_DESCQ_EVQ_ID,
 395                              tx_queue->channel->channel,
 396                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 397                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 398                              FRF_AZ_TX_DESCQ_SIZE,
 399                              __ffs(tx_queue->txd.entries),
 400                              FRF_AZ_TX_DESCQ_TYPE, 0,
 401                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 402
 403        EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 404        EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 405
 406        efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 407                         tx_queue->queue);
 408
 409        EFX_POPULATE_OWORD_1(reg,
 410                             FRF_BZ_TX_PACE,
 411                             (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 412                             FFE_BZ_TX_PACE_OFF :
 413                             FFE_BZ_TX_PACE_RESERVED);
 414        efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 415}
 416
 417static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 418{
 419        struct efx_nic *efx = tx_queue->efx;
 420        efx_oword_t tx_flush_descq;
 421
 422        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 423        atomic_set(&tx_queue->flush_outstanding, 1);
 424
 425        EFX_POPULATE_OWORD_2(tx_flush_descq,
 426                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 427                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 428        efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 429}
 430
 431void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 432{
 433        struct efx_nic *efx = tx_queue->efx;
 434        efx_oword_t tx_desc_ptr;
 435
 436        /* Remove TX descriptor ring from card */
 437        EFX_ZERO_OWORD(tx_desc_ptr);
 438        efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 439                         tx_queue->queue);
 440
 441        /* Unpin TX descriptor ring */
 442        efx_fini_special_buffer(efx, &tx_queue->txd);
 443}
 444
 445/* Free buffers backing TX queue */
 446void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 447{
 448        efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 449}
 450
 451/**************************************************************************
 452 *
 453 * RX path
 454 *
 455 **************************************************************************/
 456
 457/* This creates an entry in the RX descriptor queue */
 458static inline void
 459efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 460{
 461        struct efx_rx_buffer *rx_buf;
 462        efx_qword_t *rxd;
 463
 464        rxd = efx_rx_desc(rx_queue, index);
 465        rx_buf = efx_rx_buffer(rx_queue, index);
 466        EFX_POPULATE_QWORD_3(*rxd,
 467                             FSF_AZ_RX_KER_BUF_SIZE,
 468                             rx_buf->len -
 469                             rx_queue->efx->type->rx_buffer_padding,
 470                             FSF_AZ_RX_KER_BUF_REGION, 0,
 471                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 472}
 473
 474/* This writes to the RX_DESC_WPTR register for the specified receive
 475 * descriptor ring.
 476 */
 477void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 478{
 479        struct efx_nic *efx = rx_queue->efx;
 480        efx_dword_t reg;
 481        unsigned write_ptr;
 482
 483        while (rx_queue->notified_count != rx_queue->added_count) {
 484                efx_farch_build_rx_desc(
 485                        rx_queue,
 486                        rx_queue->notified_count & rx_queue->ptr_mask);
 487                ++rx_queue->notified_count;
 488        }
 489
 490        wmb();
 491        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 492        EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 493        efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 494                        efx_rx_queue_index(rx_queue));
 495}
 496
 497int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 498{
 499        struct efx_nic *efx = rx_queue->efx;
 500        unsigned entries;
 501
 502        entries = rx_queue->ptr_mask + 1;
 503        return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 504                                        entries * sizeof(efx_qword_t));
 505}
 506
 507void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 508{
 509        efx_oword_t rx_desc_ptr;
 510        struct efx_nic *efx = rx_queue->efx;
 511        bool jumbo_en;
 512
 513        /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 514        jumbo_en = efx->rx_scatter;
 515
 516        netif_dbg(efx, hw, efx->net_dev,
 517                  "RX queue %d ring in special buffers %d-%d\n",
 518                  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 519                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 520
 521        rx_queue->scatter_n = 0;
 522
 523        /* Pin RX descriptor ring */
 524        efx_init_special_buffer(efx, &rx_queue->rxd);
 525
 526        /* Push RX descriptor ring to card */
 527        EFX_POPULATE_OWORD_10(rx_desc_ptr,
 528                              FRF_AZ_RX_ISCSI_DDIG_EN, true,
 529                              FRF_AZ_RX_ISCSI_HDIG_EN, true,
 530                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 531                              FRF_AZ_RX_DESCQ_EVQ_ID,
 532                              efx_rx_queue_channel(rx_queue)->channel,
 533                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 534                              FRF_AZ_RX_DESCQ_LABEL,
 535                              efx_rx_queue_index(rx_queue),
 536                              FRF_AZ_RX_DESCQ_SIZE,
 537                              __ffs(rx_queue->rxd.entries),
 538                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 539                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 540                              FRF_AZ_RX_DESCQ_EN, 1);
 541        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 542                         efx_rx_queue_index(rx_queue));
 543}
 544
 545static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 546{
 547        struct efx_nic *efx = rx_queue->efx;
 548        efx_oword_t rx_flush_descq;
 549
 550        EFX_POPULATE_OWORD_2(rx_flush_descq,
 551                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 552                             FRF_AZ_RX_FLUSH_DESCQ,
 553                             efx_rx_queue_index(rx_queue));
 554        efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 555}
 556
 557void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 558{
 559        efx_oword_t rx_desc_ptr;
 560        struct efx_nic *efx = rx_queue->efx;
 561
 562        /* Remove RX descriptor ring from card */
 563        EFX_ZERO_OWORD(rx_desc_ptr);
 564        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 565                         efx_rx_queue_index(rx_queue));
 566
 567        /* Unpin RX descriptor ring */
 568        efx_fini_special_buffer(efx, &rx_queue->rxd);
 569}
 570
 571/* Free buffers backing RX queue */
 572void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 573{
 574        efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 575}
 576
 577/**************************************************************************
 578 *
 579 * Flush handling
 580 *
 581 **************************************************************************/
 582
 583/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 584 * or more RX flushes can be kicked off.
 585 */
 586static bool efx_farch_flush_wake(struct efx_nic *efx)
 587{
 588        /* Ensure that all updates are visible to efx_farch_flush_queues() */
 589        smp_mb();
 590
 591        return (atomic_read(&efx->active_queues) == 0 ||
 592                (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 593                 && atomic_read(&efx->rxq_flush_pending) > 0));
 594}
 595
 596static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 597{
 598        bool i = true;
 599        efx_oword_t txd_ptr_tbl;
 600        struct efx_channel *channel;
 601        struct efx_tx_queue *tx_queue;
 602
 603        efx_for_each_channel(channel, efx) {
 604                efx_for_each_channel_tx_queue(tx_queue, channel) {
 605                        efx_reado_table(efx, &txd_ptr_tbl,
 606                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 607                        if (EFX_OWORD_FIELD(txd_ptr_tbl,
 608                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 609                            EFX_OWORD_FIELD(txd_ptr_tbl,
 610                                            FRF_AZ_TX_DESCQ_EN)) {
 611                                netif_dbg(efx, hw, efx->net_dev,
 612                                          "flush did not complete on TXQ %d\n",
 613                                          tx_queue->queue);
 614                                i = false;
 615                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 616                                                  1, 0)) {
 617                                /* The flush is complete, but we didn't
 618                                 * receive a flush completion event
 619                                 */
 620                                netif_dbg(efx, hw, efx->net_dev,
 621                                          "flush complete on TXQ %d, so drain "
 622                                          "the queue\n", tx_queue->queue);
 623                                /* Don't need to increment active_queues as it
 624                                 * has already been incremented for the queues
 625                                 * which did not drain
 626                                 */
 627                                efx_farch_magic_event(channel,
 628                                                      EFX_CHANNEL_MAGIC_TX_DRAIN(
 629                                                              tx_queue));
 630                        }
 631                }
 632        }
 633
 634        return i;
 635}
 636
 637/* Flush all the transmit queues, and continue flushing receive queues until
 638 * they're all flushed. Wait for the DRAIN events to be received so that there
 639 * are no more RX and TX events left on any channel. */
 640static int efx_farch_do_flush(struct efx_nic *efx)
 641{
 642        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 643        struct efx_channel *channel;
 644        struct efx_rx_queue *rx_queue;
 645        struct efx_tx_queue *tx_queue;
 646        int rc = 0;
 647
 648        efx_for_each_channel(channel, efx) {
 649                efx_for_each_channel_tx_queue(tx_queue, channel) {
 650                        efx_farch_flush_tx_queue(tx_queue);
 651                }
 652                efx_for_each_channel_rx_queue(rx_queue, channel) {
 653                        rx_queue->flush_pending = true;
 654                        atomic_inc(&efx->rxq_flush_pending);
 655                }
 656        }
 657
 658        while (timeout && atomic_read(&efx->active_queues) > 0) {
 659                /* If SRIOV is enabled, then offload receive queue flushing to
 660                 * the firmware (though we will still have to poll for
 661                 * completion). If that fails, fall back to the old scheme.
 662                 */
 663                if (efx_siena_sriov_enabled(efx)) {
 664                        rc = efx_mcdi_flush_rxqs(efx);
 665                        if (!rc)
 666                                goto wait;
 667                }
 668
 669                /* The hardware supports four concurrent rx flushes, each of
 670                 * which may need to be retried if there is an outstanding
 671                 * descriptor fetch
 672                 */
 673                efx_for_each_channel(channel, efx) {
 674                        efx_for_each_channel_rx_queue(rx_queue, channel) {
 675                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 676                                    EFX_RX_FLUSH_COUNT)
 677                                        break;
 678
 679                                if (rx_queue->flush_pending) {
 680                                        rx_queue->flush_pending = false;
 681                                        atomic_dec(&efx->rxq_flush_pending);
 682                                        atomic_inc(&efx->rxq_flush_outstanding);
 683                                        efx_farch_flush_rx_queue(rx_queue);
 684                                }
 685                        }
 686                }
 687
 688        wait:
 689                timeout = wait_event_timeout(efx->flush_wq,
 690                                             efx_farch_flush_wake(efx),
 691                                             timeout);
 692        }
 693
 694        if (atomic_read(&efx->active_queues) &&
 695            !efx_check_tx_flush_complete(efx)) {
 696                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 697                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 698                          atomic_read(&efx->rxq_flush_outstanding),
 699                          atomic_read(&efx->rxq_flush_pending));
 700                rc = -ETIMEDOUT;
 701
 702                atomic_set(&efx->active_queues, 0);
 703                atomic_set(&efx->rxq_flush_pending, 0);
 704                atomic_set(&efx->rxq_flush_outstanding, 0);
 705        }
 706
 707        return rc;
 708}
 709
 710int efx_farch_fini_dmaq(struct efx_nic *efx)
 711{
 712        struct efx_channel *channel;
 713        struct efx_tx_queue *tx_queue;
 714        struct efx_rx_queue *rx_queue;
 715        int rc = 0;
 716
 717        /* Do not attempt to write to the NIC during EEH recovery */
 718        if (efx->state != STATE_RECOVERY) {
 719                /* Only perform flush if DMA is enabled */
 720                if (efx->pci_dev->is_busmaster) {
 721                        efx->type->prepare_flush(efx);
 722                        rc = efx_farch_do_flush(efx);
 723                        efx->type->finish_flush(efx);
 724                }
 725
 726                efx_for_each_channel(channel, efx) {
 727                        efx_for_each_channel_rx_queue(rx_queue, channel)
 728                                efx_farch_rx_fini(rx_queue);
 729                        efx_for_each_channel_tx_queue(tx_queue, channel)
 730                                efx_farch_tx_fini(tx_queue);
 731                }
 732        }
 733
 734        return rc;
 735}
 736
 737/* Reset queue and flush accounting after FLR
 738 *
 739 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 740 * mastering was disabled), in which case we don't receive (RXQ) flush
 741 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 742 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 743 * events were received, and we didn't go through efx_check_tx_flush_complete())
 744 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 745 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 746 * for batched flush requests; and the efx->active_queues gets messed up because
 747 * we keep incrementing for the newly initialised queues, but it never went to
 748 * zero previously.  Then we get a timeout every time we try to restart the
 749 * queues, as it doesn't go back to zero when we should be flushing the queues.
 750 */
 751void efx_farch_finish_flr(struct efx_nic *efx)
 752{
 753        atomic_set(&efx->rxq_flush_pending, 0);
 754        atomic_set(&efx->rxq_flush_outstanding, 0);
 755        atomic_set(&efx->active_queues, 0);
 756}
 757
 758
 759/**************************************************************************
 760 *
 761 * Event queue processing
 762 * Event queues are processed by per-channel tasklets.
 763 *
 764 **************************************************************************/
 765
 766/* Update a channel's event queue's read pointer (RPTR) register
 767 *
 768 * This writes the EVQ_RPTR_REG register for the specified channel's
 769 * event queue.
 770 */
 771void efx_farch_ev_read_ack(struct efx_channel *channel)
 772{
 773        efx_dword_t reg;
 774        struct efx_nic *efx = channel->efx;
 775
 776        EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 777                             channel->eventq_read_ptr & channel->eventq_mask);
 778
 779        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 780         * of 4 bytes, but it is really 16 bytes just like later revisions.
 781         */
 782        efx_writed(efx, &reg,
 783                   efx->type->evq_rptr_tbl_base +
 784                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 785}
 786
 787/* Use HW to insert a SW defined event */
 788void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 789                              efx_qword_t *event)
 790{
 791        efx_oword_t drv_ev_reg;
 792
 793        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 794                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 795        drv_ev_reg.u32[0] = event->u32[0];
 796        drv_ev_reg.u32[1] = event->u32[1];
 797        drv_ev_reg.u32[2] = 0;
 798        drv_ev_reg.u32[3] = 0;
 799        EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 800        efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 801}
 802
 803static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 804{
 805        efx_qword_t event;
 806
 807        EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 808                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 809                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 810        efx_farch_generate_event(channel->efx, channel->channel, &event);
 811}
 812
 813/* Handle a transmit completion event
 814 *
 815 * The NIC batches TX completion events; the message we receive is of
 816 * the form "complete all TX events up to this index".
 817 */
 818static void
 819efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 820{
 821        unsigned int tx_ev_desc_ptr;
 822        unsigned int tx_ev_q_label;
 823        struct efx_tx_queue *tx_queue;
 824        struct efx_nic *efx = channel->efx;
 825
 826        if (unlikely(READ_ONCE(efx->reset_pending)))
 827                return;
 828
 829        if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 830                /* Transmit completion */
 831                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 832                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 833                tx_queue = efx_channel_get_tx_queue(
 834                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 835                efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 836        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 837                /* Rewrite the FIFO write pointer */
 838                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 839                tx_queue = efx_channel_get_tx_queue(
 840                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 841
 842                netif_tx_lock(efx->net_dev);
 843                efx_farch_notify_tx_desc(tx_queue);
 844                netif_tx_unlock(efx->net_dev);
 845        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 846                efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 847        } else {
 848                netif_err(efx, tx_err, efx->net_dev,
 849                          "channel %d unexpected TX event "
 850                          EFX_QWORD_FMT"\n", channel->channel,
 851                          EFX_QWORD_VAL(*event));
 852        }
 853}
 854
 855/* Detect errors included in the rx_evt_pkt_ok bit. */
 856static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 857                                      const efx_qword_t *event)
 858{
 859        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 860        struct efx_nic *efx = rx_queue->efx;
 861        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 862        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 863        bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 864        bool rx_ev_other_err, rx_ev_pause_frm;
 865        bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 866        unsigned rx_ev_pkt_type;
 867
 868        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 869        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 870        rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 871        rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 872        rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 873                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 874        rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 875                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 876        rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 877                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 878        rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 879        rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 880        rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 881
 882        /* Every error apart from tobe_disc and pause_frm */
 883        rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 884                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 885                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 886
 887        /* Count errors that are not in MAC stats.  Ignore expected
 888         * checksum errors during self-test. */
 889        if (rx_ev_frm_trunc)
 890                ++channel->n_rx_frm_trunc;
 891        else if (rx_ev_tobe_disc)
 892                ++channel->n_rx_tobe_disc;
 893        else if (!efx->loopback_selftest) {
 894                if (rx_ev_ip_hdr_chksum_err)
 895                        ++channel->n_rx_ip_hdr_chksum_err;
 896                else if (rx_ev_tcp_udp_chksum_err)
 897                        ++channel->n_rx_tcp_udp_chksum_err;
 898        }
 899
 900        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 901         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 902         * to a FIFO overflow.
 903         */
 904#ifdef DEBUG
 905        if (rx_ev_other_err && net_ratelimit()) {
 906                netif_dbg(efx, rx_err, efx->net_dev,
 907                          " RX queue %d unexpected RX event "
 908                          EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 909                          efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 910                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 911                          rx_ev_ip_hdr_chksum_err ?
 912                          " [IP_HDR_CHKSUM_ERR]" : "",
 913                          rx_ev_tcp_udp_chksum_err ?
 914                          " [TCP_UDP_CHKSUM_ERR]" : "",
 915                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 916                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 917                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 918                          rx_ev_pause_frm ? " [PAUSE]" : "");
 919        }
 920#endif
 921
 922        if (efx->net_dev->features & NETIF_F_RXALL)
 923                /* don't discard frame for CRC error */
 924                rx_ev_eth_crc_err = false;
 925
 926        /* The frame must be discarded if any of these are true. */
 927        return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 928                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 929                EFX_RX_PKT_DISCARD : 0;
 930}
 931
 932/* Handle receive events that are not in-order. Return true if this
 933 * can be handled as a partial packet discard, false if it's more
 934 * serious.
 935 */
 936static bool
 937efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 938{
 939        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 940        struct efx_nic *efx = rx_queue->efx;
 941        unsigned expected, dropped;
 942
 943        if (rx_queue->scatter_n &&
 944            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 945                      rx_queue->ptr_mask)) {
 946                ++channel->n_rx_nodesc_trunc;
 947                return true;
 948        }
 949
 950        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 951        dropped = (index - expected) & rx_queue->ptr_mask;
 952        netif_info(efx, rx_err, efx->net_dev,
 953                   "dropped %d events (index=%d expected=%d)\n",
 954                   dropped, index, expected);
 955
 956        efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 957        return false;
 958}
 959
 960/* Handle a packet received event
 961 *
 962 * The NIC gives a "discard" flag if it's a unicast packet with the
 963 * wrong destination address
 964 * Also "is multicast" and "matches multicast filter" flags can be used to
 965 * discard non-matching multicast packets.
 966 */
 967static void
 968efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 969{
 970        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 971        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 972        unsigned expected_ptr;
 973        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 974        u16 flags;
 975        struct efx_rx_queue *rx_queue;
 976        struct efx_nic *efx = channel->efx;
 977
 978        if (unlikely(READ_ONCE(efx->reset_pending)))
 979                return;
 980
 981        rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 982        rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 983        WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 984                channel->channel);
 985
 986        rx_queue = efx_channel_get_rx_queue(channel);
 987
 988        rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 989        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 990                        rx_queue->ptr_mask);
 991
 992        /* Check for partial drops and other errors */
 993        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 994            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 995                if (rx_ev_desc_ptr != expected_ptr &&
 996                    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
 997                        return;
 998
 999                /* Discard all pending fragments */
1000                if (rx_queue->scatter_n) {
1001                        efx_rx_packet(
1002                                rx_queue,
1003                                rx_queue->removed_count & rx_queue->ptr_mask,
1004                                rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1005                        rx_queue->removed_count += rx_queue->scatter_n;
1006                        rx_queue->scatter_n = 0;
1007                }
1008
1009                /* Return if there is no new fragment */
1010                if (rx_ev_desc_ptr != expected_ptr)
1011                        return;
1012
1013                /* Discard new fragment if not SOP */
1014                if (!rx_ev_sop) {
1015                        efx_rx_packet(
1016                                rx_queue,
1017                                rx_queue->removed_count & rx_queue->ptr_mask,
1018                                1, 0, EFX_RX_PKT_DISCARD);
1019                        ++rx_queue->removed_count;
1020                        return;
1021                }
1022        }
1023
1024        ++rx_queue->scatter_n;
1025        if (rx_ev_cont)
1026                return;
1027
1028        rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1029        rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1030        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1031
1032        if (likely(rx_ev_pkt_ok)) {
1033                /* If packet is marked as OK then we can rely on the
1034                 * hardware checksum and classification.
1035                 */
1036                flags = 0;
1037                switch (rx_ev_hdr_type) {
1038                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1039                        flags |= EFX_RX_PKT_TCP;
1040                        /* fall through */
1041                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1042                        flags |= EFX_RX_PKT_CSUMMED;
1043                        /* fall through */
1044                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1045                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1046                        break;
1047                }
1048        } else {
1049                flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1050        }
1051
1052        /* Detect multicast packets that didn't match the filter */
1053        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1054        if (rx_ev_mcast_pkt) {
1055                unsigned int rx_ev_mcast_hash_match =
1056                        EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1057
1058                if (unlikely(!rx_ev_mcast_hash_match)) {
1059                        ++channel->n_rx_mcast_mismatch;
1060                        flags |= EFX_RX_PKT_DISCARD;
1061                }
1062        }
1063
1064        channel->irq_mod_score += 2;
1065
1066        /* Handle received packet */
1067        efx_rx_packet(rx_queue,
1068                      rx_queue->removed_count & rx_queue->ptr_mask,
1069                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1070        rx_queue->removed_count += rx_queue->scatter_n;
1071        rx_queue->scatter_n = 0;
1072}
1073
1074/* If this flush done event corresponds to a &struct efx_tx_queue, then
1075 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1076 * of all transmit completions.
1077 */
1078static void
1079efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1080{
1081        struct efx_tx_queue *tx_queue;
1082        int qid;
1083
1084        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1085        if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1086                tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1087                                            qid % EFX_TXQ_TYPES);
1088                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1089                        efx_farch_magic_event(tx_queue->channel,
1090                                              EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1091                }
1092        }
1093}
1094
1095/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1096 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1097 * the RX queue back to the mask of RX queues in need of flushing.
1098 */
1099static void
1100efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1101{
1102        struct efx_channel *channel;
1103        struct efx_rx_queue *rx_queue;
1104        int qid;
1105        bool failed;
1106
1107        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1108        failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1109        if (qid >= efx->n_channels)
1110                return;
1111        channel = efx_get_channel(efx, qid);
1112        if (!efx_channel_has_rx_queue(channel))
1113                return;
1114        rx_queue = efx_channel_get_rx_queue(channel);
1115
1116        if (failed) {
1117                netif_info(efx, hw, efx->net_dev,
1118                           "RXQ %d flush retry\n", qid);
1119                rx_queue->flush_pending = true;
1120                atomic_inc(&efx->rxq_flush_pending);
1121        } else {
1122                efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1123                                      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1124        }
1125        atomic_dec(&efx->rxq_flush_outstanding);
1126        if (efx_farch_flush_wake(efx))
1127                wake_up(&efx->flush_wq);
1128}
1129
1130static void
1131efx_farch_handle_drain_event(struct efx_channel *channel)
1132{
1133        struct efx_nic *efx = channel->efx;
1134
1135        WARN_ON(atomic_read(&efx->active_queues) == 0);
1136        atomic_dec(&efx->active_queues);
1137        if (efx_farch_flush_wake(efx))
1138                wake_up(&efx->flush_wq);
1139}
1140
1141static void efx_farch_handle_generated_event(struct efx_channel *channel,
1142                                             efx_qword_t *event)
1143{
1144        struct efx_nic *efx = channel->efx;
1145        struct efx_rx_queue *rx_queue =
1146                efx_channel_has_rx_queue(channel) ?
1147                efx_channel_get_rx_queue(channel) : NULL;
1148        unsigned magic, code;
1149
1150        magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1151        code = _EFX_CHANNEL_MAGIC_CODE(magic);
1152
1153        if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1154                channel->event_test_cpu = raw_smp_processor_id();
1155        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1156                /* The queue must be empty, so we won't receive any rx
1157                 * events, so efx_process_channel() won't refill the
1158                 * queue. Refill it here */
1159                efx_fast_push_rx_descriptors(rx_queue, true);
1160        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1161                efx_farch_handle_drain_event(channel);
1162        } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1163                efx_farch_handle_drain_event(channel);
1164        } else {
1165                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1166                          "generated event "EFX_QWORD_FMT"\n",
1167                          channel->channel, EFX_QWORD_VAL(*event));
1168        }
1169}
1170
1171static void
1172efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1173{
1174        struct efx_nic *efx = channel->efx;
1175        unsigned int ev_sub_code;
1176        unsigned int ev_sub_data;
1177
1178        ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1179        ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1180
1181        switch (ev_sub_code) {
1182        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1183                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1184                           channel->channel, ev_sub_data);
1185                efx_farch_handle_tx_flush_done(efx, event);
1186#ifdef CONFIG_SFC_SRIOV
1187                efx_siena_sriov_tx_flush_done(efx, event);
1188#endif
1189                break;
1190        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1191                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1192                           channel->channel, ev_sub_data);
1193                efx_farch_handle_rx_flush_done(efx, event);
1194#ifdef CONFIG_SFC_SRIOV
1195                efx_siena_sriov_rx_flush_done(efx, event);
1196#endif
1197                break;
1198        case FSE_AZ_EVQ_INIT_DONE_EV:
1199                netif_dbg(efx, hw, efx->net_dev,
1200                          "channel %d EVQ %d initialised\n",
1201                          channel->channel, ev_sub_data);
1202                break;
1203        case FSE_AZ_SRM_UPD_DONE_EV:
1204                netif_vdbg(efx, hw, efx->net_dev,
1205                           "channel %d SRAM update done\n", channel->channel);
1206                break;
1207        case FSE_AZ_WAKE_UP_EV:
1208                netif_vdbg(efx, hw, efx->net_dev,
1209                           "channel %d RXQ %d wakeup event\n",
1210                           channel->channel, ev_sub_data);
1211                break;
1212        case FSE_AZ_TIMER_EV:
1213                netif_vdbg(efx, hw, efx->net_dev,
1214                           "channel %d RX queue %d timer expired\n",
1215                           channel->channel, ev_sub_data);
1216                break;
1217        case FSE_AA_RX_RECOVER_EV:
1218                netif_err(efx, rx_err, efx->net_dev,
1219                          "channel %d seen DRIVER RX_RESET event. "
1220                        "Resetting.\n", channel->channel);
1221                atomic_inc(&efx->rx_reset);
1222                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1223                break;
1224        case FSE_BZ_RX_DSC_ERROR_EV:
1225                if (ev_sub_data < EFX_VI_BASE) {
1226                        netif_err(efx, rx_err, efx->net_dev,
1227                                  "RX DMA Q %d reports descriptor fetch error."
1228                                  " RX Q %d is disabled.\n", ev_sub_data,
1229                                  ev_sub_data);
1230                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231                }
1232#ifdef CONFIG_SFC_SRIOV
1233                else
1234                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1235#endif
1236                break;
1237        case FSE_BZ_TX_DSC_ERROR_EV:
1238                if (ev_sub_data < EFX_VI_BASE) {
1239                        netif_err(efx, tx_err, efx->net_dev,
1240                                  "TX DMA Q %d reports descriptor fetch error."
1241                                  " TX Q %d is disabled.\n", ev_sub_data,
1242                                  ev_sub_data);
1243                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1244                }
1245#ifdef CONFIG_SFC_SRIOV
1246                else
1247                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1248#endif
1249                break;
1250        default:
1251                netif_vdbg(efx, hw, efx->net_dev,
1252                           "channel %d unknown driver event code %d "
1253                           "data %04x\n", channel->channel, ev_sub_code,
1254                           ev_sub_data);
1255                break;
1256        }
1257}
1258
1259int efx_farch_ev_process(struct efx_channel *channel, int budget)
1260{
1261        struct efx_nic *efx = channel->efx;
1262        unsigned int read_ptr;
1263        efx_qword_t event, *p_event;
1264        int ev_code;
1265        int spent = 0;
1266
1267        if (budget <= 0)
1268                return spent;
1269
1270        read_ptr = channel->eventq_read_ptr;
1271
1272        for (;;) {
1273                p_event = efx_event(channel, read_ptr);
1274                event = *p_event;
1275
1276                if (!efx_event_present(&event))
1277                        /* End of events */
1278                        break;
1279
1280                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1281                           "channel %d event is "EFX_QWORD_FMT"\n",
1282                           channel->channel, EFX_QWORD_VAL(event));
1283
1284                /* Clear this event by marking it all ones */
1285                EFX_SET_QWORD(*p_event);
1286
1287                ++read_ptr;
1288
1289                ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1290
1291                switch (ev_code) {
1292                case FSE_AZ_EV_CODE_RX_EV:
1293                        efx_farch_handle_rx_event(channel, &event);
1294                        if (++spent == budget)
1295                                goto out;
1296                        break;
1297                case FSE_AZ_EV_CODE_TX_EV:
1298                        efx_farch_handle_tx_event(channel, &event);
1299                        break;
1300                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1301                        efx_farch_handle_generated_event(channel, &event);
1302                        break;
1303                case FSE_AZ_EV_CODE_DRIVER_EV:
1304                        efx_farch_handle_driver_event(channel, &event);
1305                        break;
1306#ifdef CONFIG_SFC_SRIOV
1307                case FSE_CZ_EV_CODE_USER_EV:
1308                        efx_siena_sriov_event(channel, &event);
1309                        break;
1310#endif
1311                case FSE_CZ_EV_CODE_MCDI_EV:
1312                        efx_mcdi_process_event(channel, &event);
1313                        break;
1314                case FSE_AZ_EV_CODE_GLOBAL_EV:
1315                        if (efx->type->handle_global_event &&
1316                            efx->type->handle_global_event(channel, &event))
1317                                break;
1318                        /* else fall through */
1319                default:
1320                        netif_err(channel->efx, hw, channel->efx->net_dev,
1321                                  "channel %d unknown event type %d (data "
1322                                  EFX_QWORD_FMT ")\n", channel->channel,
1323                                  ev_code, EFX_QWORD_VAL(event));
1324                }
1325        }
1326
1327out:
1328        channel->eventq_read_ptr = read_ptr;
1329        return spent;
1330}
1331
1332/* Allocate buffer table entries for event queue */
1333int efx_farch_ev_probe(struct efx_channel *channel)
1334{
1335        struct efx_nic *efx = channel->efx;
1336        unsigned entries;
1337
1338        entries = channel->eventq_mask + 1;
1339        return efx_alloc_special_buffer(efx, &channel->eventq,
1340                                        entries * sizeof(efx_qword_t));
1341}
1342
1343int efx_farch_ev_init(struct efx_channel *channel)
1344{
1345        efx_oword_t reg;
1346        struct efx_nic *efx = channel->efx;
1347
1348        netif_dbg(efx, hw, efx->net_dev,
1349                  "channel %d event queue in special buffers %d-%d\n",
1350                  channel->channel, channel->eventq.index,
1351                  channel->eventq.index + channel->eventq.entries - 1);
1352
1353        EFX_POPULATE_OWORD_3(reg,
1354                             FRF_CZ_TIMER_Q_EN, 1,
1355                             FRF_CZ_HOST_NOTIFY_MODE, 0,
1356                             FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1357        efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1358
1359        /* Pin event queue buffer */
1360        efx_init_special_buffer(efx, &channel->eventq);
1361
1362        /* Fill event queue with all ones (i.e. empty events) */
1363        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1364
1365        /* Push event queue to card */
1366        EFX_POPULATE_OWORD_3(reg,
1367                             FRF_AZ_EVQ_EN, 1,
1368                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1369                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1370        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371                         channel->channel);
1372
1373        return 0;
1374}
1375
1376void efx_farch_ev_fini(struct efx_channel *channel)
1377{
1378        efx_oword_t reg;
1379        struct efx_nic *efx = channel->efx;
1380
1381        /* Remove event queue from card */
1382        EFX_ZERO_OWORD(reg);
1383        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1384                         channel->channel);
1385        efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1386
1387        /* Unpin event queue */
1388        efx_fini_special_buffer(efx, &channel->eventq);
1389}
1390
1391/* Free buffers backing event queue */
1392void efx_farch_ev_remove(struct efx_channel *channel)
1393{
1394        efx_free_special_buffer(channel->efx, &channel->eventq);
1395}
1396
1397
1398void efx_farch_ev_test_generate(struct efx_channel *channel)
1399{
1400        efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1401}
1402
1403void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1404{
1405        efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1406                              EFX_CHANNEL_MAGIC_FILL(rx_queue));
1407}
1408
1409/**************************************************************************
1410 *
1411 * Hardware interrupts
1412 * The hardware interrupt handler does very little work; all the event
1413 * queue processing is carried out by per-channel tasklets.
1414 *
1415 **************************************************************************/
1416
1417/* Enable/disable/generate interrupts */
1418static inline void efx_farch_interrupts(struct efx_nic *efx,
1419                                      bool enabled, bool force)
1420{
1421        efx_oword_t int_en_reg_ker;
1422
1423        EFX_POPULATE_OWORD_3(int_en_reg_ker,
1424                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1425                             FRF_AZ_KER_INT_KER, force,
1426                             FRF_AZ_DRV_INT_EN_KER, enabled);
1427        efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1428}
1429
1430void efx_farch_irq_enable_master(struct efx_nic *efx)
1431{
1432        EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1433        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1434
1435        efx_farch_interrupts(efx, true, false);
1436}
1437
1438void efx_farch_irq_disable_master(struct efx_nic *efx)
1439{
1440        /* Disable interrupts */
1441        efx_farch_interrupts(efx, false, false);
1442}
1443
1444/* Generate a test interrupt
1445 * Interrupt must already have been enabled, otherwise nasty things
1446 * may happen.
1447 */
1448int efx_farch_irq_test_generate(struct efx_nic *efx)
1449{
1450        efx_farch_interrupts(efx, true, true);
1451        return 0;
1452}
1453
1454/* Process a fatal interrupt
1455 * Disable bus mastering ASAP and schedule a reset
1456 */
1457irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1458{
1459        efx_oword_t *int_ker = efx->irq_status.addr;
1460        efx_oword_t fatal_intr;
1461        int error, mem_perr;
1462
1463        efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1464        error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1465
1466        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1467                  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1468                  EFX_OWORD_VAL(fatal_intr),
1469                  error ? "disabling bus mastering" : "no recognised error");
1470
1471        /* If this is a memory parity error dump which blocks are offending */
1472        mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1473                    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1474        if (mem_perr) {
1475                efx_oword_t reg;
1476                efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1477                netif_err(efx, hw, efx->net_dev,
1478                          "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1479                          EFX_OWORD_VAL(reg));
1480        }
1481
1482        /* Disable both devices */
1483        pci_clear_master(efx->pci_dev);
1484        efx_farch_irq_disable_master(efx);
1485
1486        /* Count errors and reset or disable the NIC accordingly */
1487        if (efx->int_error_count == 0 ||
1488            time_after(jiffies, efx->int_error_expire)) {
1489                efx->int_error_count = 0;
1490                efx->int_error_expire =
1491                        jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1492        }
1493        if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1494                netif_err(efx, hw, efx->net_dev,
1495                          "SYSTEM ERROR - reset scheduled\n");
1496                efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1497        } else {
1498                netif_err(efx, hw, efx->net_dev,
1499                          "SYSTEM ERROR - max number of errors seen."
1500                          "NIC will be disabled\n");
1501                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1502        }
1503
1504        return IRQ_HANDLED;
1505}
1506
1507/* Handle a legacy interrupt
1508 * Acknowledges the interrupt and schedule event queue processing.
1509 */
1510irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1511{
1512        struct efx_nic *efx = dev_id;
1513        bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1514        efx_oword_t *int_ker = efx->irq_status.addr;
1515        irqreturn_t result = IRQ_NONE;
1516        struct efx_channel *channel;
1517        efx_dword_t reg;
1518        u32 queues;
1519        int syserr;
1520
1521        /* Read the ISR which also ACKs the interrupts */
1522        efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1523        queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1524
1525        /* Legacy interrupts are disabled too late by the EEH kernel
1526         * code. Disable them earlier.
1527         * If an EEH error occurred, the read will have returned all ones.
1528         */
1529        if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1530            !efx->eeh_disabled_legacy_irq) {
1531                disable_irq_nosync(efx->legacy_irq);
1532                efx->eeh_disabled_legacy_irq = true;
1533        }
1534
1535        /* Handle non-event-queue sources */
1536        if (queues & (1U << efx->irq_level) && soft_enabled) {
1537                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1538                if (unlikely(syserr))
1539                        return efx_farch_fatal_interrupt(efx);
1540                efx->last_irq_cpu = raw_smp_processor_id();
1541        }
1542
1543        if (queues != 0) {
1544                efx->irq_zero_count = 0;
1545
1546                /* Schedule processing of any interrupting queues */
1547                if (likely(soft_enabled)) {
1548                        efx_for_each_channel(channel, efx) {
1549                                if (queues & 1)
1550                                        efx_schedule_channel_irq(channel);
1551                                queues >>= 1;
1552                        }
1553                }
1554                result = IRQ_HANDLED;
1555
1556        } else {
1557                efx_qword_t *event;
1558
1559                /* Legacy ISR read can return zero once (SF bug 15783) */
1560
1561                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1562                 * because this might be a shared interrupt. */
1563                if (efx->irq_zero_count++ == 0)
1564                        result = IRQ_HANDLED;
1565
1566                /* Ensure we schedule or rearm all event queues */
1567                if (likely(soft_enabled)) {
1568                        efx_for_each_channel(channel, efx) {
1569                                event = efx_event(channel,
1570                                                  channel->eventq_read_ptr);
1571                                if (efx_event_present(event))
1572                                        efx_schedule_channel_irq(channel);
1573                                else
1574                                        efx_farch_ev_read_ack(channel);
1575                        }
1576                }
1577        }
1578
1579        if (result == IRQ_HANDLED)
1580                netif_vdbg(efx, intr, efx->net_dev,
1581                           "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1582                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1583
1584        return result;
1585}
1586
1587/* Handle an MSI interrupt
1588 *
1589 * Handle an MSI hardware interrupt.  This routine schedules event
1590 * queue processing.  No interrupt acknowledgement cycle is necessary.
1591 * Also, we never need to check that the interrupt is for us, since
1592 * MSI interrupts cannot be shared.
1593 */
1594irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1595{
1596        struct efx_msi_context *context = dev_id;
1597        struct efx_nic *efx = context->efx;
1598        efx_oword_t *int_ker = efx->irq_status.addr;
1599        int syserr;
1600
1601        netif_vdbg(efx, intr, efx->net_dev,
1602                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1603                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1604
1605        if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1606                return IRQ_HANDLED;
1607
1608        /* Handle non-event-queue sources */
1609        if (context->index == efx->irq_level) {
1610                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1611                if (unlikely(syserr))
1612                        return efx_farch_fatal_interrupt(efx);
1613                efx->last_irq_cpu = raw_smp_processor_id();
1614        }
1615
1616        /* Schedule processing of the channel */
1617        efx_schedule_channel_irq(efx->channel[context->index]);
1618
1619        return IRQ_HANDLED;
1620}
1621
1622/* Setup RSS indirection table.
1623 * This maps from the hash value of the packet to RXQ
1624 */
1625void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1626{
1627        size_t i = 0;
1628        efx_dword_t dword;
1629
1630        BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1631                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1632
1633        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1634                EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1635                                     efx->rss_context.rx_indir_table[i]);
1636                efx_writed(efx, &dword,
1637                           FR_BZ_RX_INDIRECTION_TBL +
1638                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1639        }
1640}
1641
1642void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1643{
1644        size_t i = 0;
1645        efx_dword_t dword;
1646
1647        BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1648                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1649
1650        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1651                efx_readd(efx, &dword,
1652                           FR_BZ_RX_INDIRECTION_TBL +
1653                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1654                efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1655        }
1656}
1657
1658/* Looks at available SRAM resources and works out how many queues we
1659 * can support, and where things like descriptor caches should live.
1660 *
1661 * SRAM is split up as follows:
1662 * 0                          buftbl entries for channels
1663 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1664 * efx->rx_dc_base            RX descriptor caches
1665 * efx->tx_dc_base            TX descriptor caches
1666 */
1667void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1668{
1669        unsigned vi_count, buftbl_min, total_tx_channels;
1670
1671#ifdef CONFIG_SFC_SRIOV
1672        struct siena_nic_data *nic_data = efx->nic_data;
1673#endif
1674
1675        total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1676        /* Account for the buffer table entries backing the datapath channels
1677         * and the descriptor caches for those channels.
1678         */
1679        buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1680                       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1681                       efx->n_channels * EFX_MAX_EVQ_SIZE)
1682                      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1683        vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1684
1685#ifdef CONFIG_SFC_SRIOV
1686        if (efx->type->sriov_wanted) {
1687                if (efx->type->sriov_wanted(efx)) {
1688                        unsigned vi_dc_entries, buftbl_free;
1689                        unsigned entries_per_vf, vf_limit;
1690
1691                        nic_data->vf_buftbl_base = buftbl_min;
1692
1693                        vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694                        vi_count = max(vi_count, EFX_VI_BASE);
1695                        buftbl_free = (sram_lim_qw - buftbl_min -
1696                                       vi_count * vi_dc_entries);
1697
1698                        entries_per_vf = ((vi_dc_entries +
1699                                           EFX_VF_BUFTBL_PER_VI) *
1700                                          efx_vf_size(efx));
1701                        vf_limit = min(buftbl_free / entries_per_vf,
1702                                       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1703
1704                        if (efx->vf_count > vf_limit) {
1705                                netif_err(efx, probe, efx->net_dev,
1706                                          "Reducing VF count from from %d to %d\n",
1707                                          efx->vf_count, vf_limit);
1708                                efx->vf_count = vf_limit;
1709                        }
1710                        vi_count += efx->vf_count * efx_vf_size(efx);
1711                }
1712        }
1713#endif
1714
1715        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717}
1718
1719u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720{
1721        efx_oword_t altera_build;
1722        efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723        return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724}
1725
1726void efx_farch_init_common(struct efx_nic *efx)
1727{
1728        efx_oword_t temp;
1729
1730        /* Set positions of descriptor caches in SRAM. */
1731        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732        efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734        efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735
1736        /* Set TX descriptor cache size. */
1737        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738        EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739        efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740
1741        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1742         * this allows most efficient prefetching.
1743         */
1744        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746        efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748        efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749
1750        /* Program INT_KER address */
1751        EFX_POPULATE_OWORD_2(temp,
1752                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1753                             EFX_INT_MODE_USE_MSI(efx),
1754                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755        efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756
1757        if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758                /* Use an interrupt level unused by event queues */
1759                efx->irq_level = 0x1f;
1760        else
1761                /* Use a valid MSI-X vector */
1762                efx->irq_level = 0;
1763
1764        /* Enable all the genuinely fatal interrupts.  (They are still
1765         * masked by the overall interrupt mask, controlled by
1766         * falcon_interrupts()).
1767         *
1768         * Note: All other fatal interrupts are enabled
1769         */
1770        EFX_POPULATE_OWORD_3(temp,
1771                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774        EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1775        EFX_INVERT_OWORD(temp);
1776        efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1777
1778        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1779         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1780         */
1781        efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1782        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1783        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1784        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1785        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1786        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1787        /* Enable SW_EV to inherit in char driver - assume harmless here */
1788        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1789        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1790        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1791        /* Disable hardware watchdog which can misfire */
1792        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1793        /* Squash TX of packets of 16 bytes or less */
1794        EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795        efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796
1797        EFX_POPULATE_OWORD_4(temp,
1798                             /* Default values */
1799                             FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1800                             FRF_BZ_TX_PACE_SB_AF, 0xb,
1801                             FRF_BZ_TX_PACE_FB_BASE, 0,
1802                             /* Allow large pace values in the fast bin. */
1803                             FRF_BZ_TX_PACE_BIN_TH,
1804                             FFE_BZ_TX_PACE_RESERVED);
1805        efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1806}
1807
1808/**************************************************************************
1809 *
1810 * Filter tables
1811 *
1812 **************************************************************************
1813 */
1814
1815/* "Fudge factors" - difference between programmed value and actual depth.
1816 * Due to pipelined implementation we need to program H/W with a value that
1817 * is larger than the hop limit we want.
1818 */
1819#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1820#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1821
1822/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1823 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1824 * table is full.
1825 */
1826#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1827
1828/* Don't try very hard to find space for performance hints, as this is
1829 * counter-productive. */
1830#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1831
1832enum efx_farch_filter_type {
1833        EFX_FARCH_FILTER_TCP_FULL = 0,
1834        EFX_FARCH_FILTER_TCP_WILD,
1835        EFX_FARCH_FILTER_UDP_FULL,
1836        EFX_FARCH_FILTER_UDP_WILD,
1837        EFX_FARCH_FILTER_MAC_FULL = 4,
1838        EFX_FARCH_FILTER_MAC_WILD,
1839        EFX_FARCH_FILTER_UC_DEF = 8,
1840        EFX_FARCH_FILTER_MC_DEF,
1841        EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1842};
1843
1844enum efx_farch_filter_table_id {
1845        EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1846        EFX_FARCH_FILTER_TABLE_RX_MAC,
1847        EFX_FARCH_FILTER_TABLE_RX_DEF,
1848        EFX_FARCH_FILTER_TABLE_TX_MAC,
1849        EFX_FARCH_FILTER_TABLE_COUNT,
1850};
1851
1852enum efx_farch_filter_index {
1853        EFX_FARCH_FILTER_INDEX_UC_DEF,
1854        EFX_FARCH_FILTER_INDEX_MC_DEF,
1855        EFX_FARCH_FILTER_SIZE_RX_DEF,
1856};
1857
1858struct efx_farch_filter_spec {
1859        u8      type:4;
1860        u8      priority:4;
1861        u8      flags;
1862        u16     dmaq_id;
1863        u32     data[3];
1864};
1865
1866struct efx_farch_filter_table {
1867        enum efx_farch_filter_table_id id;
1868        u32             offset;         /* address of table relative to BAR */
1869        unsigned        size;           /* number of entries */
1870        unsigned        step;           /* step between entries */
1871        unsigned        used;           /* number currently used */
1872        unsigned long   *used_bitmap;
1873        struct efx_farch_filter_spec *spec;
1874        unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1875};
1876
1877struct efx_farch_filter_state {
1878        struct rw_semaphore lock; /* Protects table contents */
1879        struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1880};
1881
1882static void
1883efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1884                                   struct efx_farch_filter_table *table,
1885                                   unsigned int filter_idx);
1886
1887/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1888 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1889static u16 efx_farch_filter_hash(u32 key)
1890{
1891        u16 tmp;
1892
1893        /* First 16 rounds */
1894        tmp = 0x1fff ^ key >> 16;
1895        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1896        tmp = tmp ^ tmp >> 9;
1897        /* Last 16 rounds */
1898        tmp = tmp ^ tmp << 13 ^ key;
1899        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900        return tmp ^ tmp >> 9;
1901}
1902
1903/* To allow for hash collisions, filter search continues at these
1904 * increments from the first possible entry selected by the hash. */
1905static u16 efx_farch_filter_increment(u32 key)
1906{
1907        return key * 2 - 1;
1908}
1909
1910static enum efx_farch_filter_table_id
1911efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1912{
1913        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1914                     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1915        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916                     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1917        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918                     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1919        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920                     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1921        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1922                     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1923        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924                     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1925        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1926                     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1927        return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1928}
1929
1930static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1931{
1932        struct efx_farch_filter_state *state = efx->filter_state;
1933        struct efx_farch_filter_table *table;
1934        efx_oword_t filter_ctl;
1935
1936        efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937
1938        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1939        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1940                            table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1941                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1942        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1943                            table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1944                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1945        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1946                            table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1947                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1948        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1949                            table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1950                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1951
1952        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1953        if (table->size) {
1954                EFX_SET_OWORD_FIELD(
1955                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1956                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1957                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958                EFX_SET_OWORD_FIELD(
1959                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1960                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1961                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962        }
1963
1964        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1965        if (table->size) {
1966                EFX_SET_OWORD_FIELD(
1967                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1968                        table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1969                EFX_SET_OWORD_FIELD(
1970                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1971                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1972                           EFX_FILTER_FLAG_RX_RSS));
1973                EFX_SET_OWORD_FIELD(
1974                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1975                        table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1976                EFX_SET_OWORD_FIELD(
1977                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1978                        !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1979                           EFX_FILTER_FLAG_RX_RSS));
1980
1981                /* There is a single bit to enable RX scatter for all
1982                 * unmatched packets.  Only set it if scatter is
1983                 * enabled in both filter specs.
1984                 */
1985                EFX_SET_OWORD_FIELD(
1986                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1987                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1988                           table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1989                           EFX_FILTER_FLAG_RX_SCATTER));
1990        } else {
1991                /* We don't expose 'default' filters because unmatched
1992                 * packets always go to the queue number found in the
1993                 * RSS table.  But we still need to set the RX scatter
1994                 * bit here.
1995                 */
1996                EFX_SET_OWORD_FIELD(
1997                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1998                        efx->rx_scatter);
1999        }
2000
2001        efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2002}
2003
2004static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2005{
2006        struct efx_farch_filter_state *state = efx->filter_state;
2007        struct efx_farch_filter_table *table;
2008        efx_oword_t tx_cfg;
2009
2010        efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2011
2012        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2013        if (table->size) {
2014                EFX_SET_OWORD_FIELD(
2015                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2016                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2017                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2018                EFX_SET_OWORD_FIELD(
2019                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2020                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2021                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2022        }
2023
2024        efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2025}
2026
2027static int
2028efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2029                               const struct efx_filter_spec *gen_spec)
2030{
2031        bool is_full = false;
2032
2033        if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2034                return -EINVAL;
2035
2036        spec->priority = gen_spec->priority;
2037        spec->flags = gen_spec->flags;
2038        spec->dmaq_id = gen_spec->dmaq_id;
2039
2040        switch (gen_spec->match_flags) {
2041        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2042              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2043              EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2044                is_full = true;
2045                /* fall through */
2046        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2048                __be32 rhost, host1, host2;
2049                __be16 rport, port1, port2;
2050
2051                EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2052
2053                if (gen_spec->ether_type != htons(ETH_P_IP))
2054                        return -EPROTONOSUPPORT;
2055                if (gen_spec->loc_port == 0 ||
2056                    (is_full && gen_spec->rem_port == 0))
2057                        return -EADDRNOTAVAIL;
2058                switch (gen_spec->ip_proto) {
2059                case IPPROTO_TCP:
2060                        spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2061                                      EFX_FARCH_FILTER_TCP_WILD);
2062                        break;
2063                case IPPROTO_UDP:
2064                        spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2065                                      EFX_FARCH_FILTER_UDP_WILD);
2066                        break;
2067                default:
2068                        return -EPROTONOSUPPORT;
2069                }
2070
2071                /* Filter is constructed in terms of source and destination,
2072                 * with the odd wrinkle that the ports are swapped in a UDP
2073                 * wildcard filter.  We need to convert from local and remote
2074                 * (= zero for wildcard) addresses.
2075                 */
2076                rhost = is_full ? gen_spec->rem_host[0] : 0;
2077                rport = is_full ? gen_spec->rem_port : 0;
2078                host1 = rhost;
2079                host2 = gen_spec->loc_host[0];
2080                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2081                        port1 = gen_spec->loc_port;
2082                        port2 = rport;
2083                } else {
2084                        port1 = rport;
2085                        port2 = gen_spec->loc_port;
2086                }
2087                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2088                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2089                spec->data[2] = ntohl(host2);
2090
2091                break;
2092        }
2093
2094        case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2095                is_full = true;
2096                /* fall through */
2097        case EFX_FILTER_MATCH_LOC_MAC:
2098                spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2099                              EFX_FARCH_FILTER_MAC_WILD);
2100                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2101                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2102                                 gen_spec->loc_mac[3] << 16 |
2103                                 gen_spec->loc_mac[4] << 8 |
2104                                 gen_spec->loc_mac[5]);
2105                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2106                                 gen_spec->loc_mac[1]);
2107                break;
2108
2109        case EFX_FILTER_MATCH_LOC_MAC_IG:
2110                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2111                              EFX_FARCH_FILTER_MC_DEF :
2112                              EFX_FARCH_FILTER_UC_DEF);
2113                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2114                break;
2115
2116        default:
2117                return -EPROTONOSUPPORT;
2118        }
2119
2120        return 0;
2121}
2122
2123static void
2124efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2125                             const struct efx_farch_filter_spec *spec)
2126{
2127        bool is_full = false;
2128
2129        /* *gen_spec should be completely initialised, to be consistent
2130         * with efx_filter_init_{rx,tx}() and in case we want to copy
2131         * it back to userland.
2132         */
2133        memset(gen_spec, 0, sizeof(*gen_spec));
2134
2135        gen_spec->priority = spec->priority;
2136        gen_spec->flags = spec->flags;
2137        gen_spec->dmaq_id = spec->dmaq_id;
2138
2139        switch (spec->type) {
2140        case EFX_FARCH_FILTER_TCP_FULL:
2141        case EFX_FARCH_FILTER_UDP_FULL:
2142                is_full = true;
2143                /* fall through */
2144        case EFX_FARCH_FILTER_TCP_WILD:
2145        case EFX_FARCH_FILTER_UDP_WILD: {
2146                __be32 host1, host2;
2147                __be16 port1, port2;
2148
2149                gen_spec->match_flags =
2150                        EFX_FILTER_MATCH_ETHER_TYPE |
2151                        EFX_FILTER_MATCH_IP_PROTO |
2152                        EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2153                if (is_full)
2154                        gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2155                                                  EFX_FILTER_MATCH_REM_PORT);
2156                gen_spec->ether_type = htons(ETH_P_IP);
2157                gen_spec->ip_proto =
2158                        (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2159                         spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2160                        IPPROTO_TCP : IPPROTO_UDP;
2161
2162                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2163                port1 = htons(spec->data[0]);
2164                host2 = htonl(spec->data[2]);
2165                port2 = htons(spec->data[1] >> 16);
2166                if (spec->flags & EFX_FILTER_FLAG_TX) {
2167                        gen_spec->loc_host[0] = host1;
2168                        gen_spec->rem_host[0] = host2;
2169                } else {
2170                        gen_spec->loc_host[0] = host2;
2171                        gen_spec->rem_host[0] = host1;
2172                }
2173                if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2174                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2175                        gen_spec->loc_port = port1;
2176                        gen_spec->rem_port = port2;
2177                } else {
2178                        gen_spec->loc_port = port2;
2179                        gen_spec->rem_port = port1;
2180                }
2181
2182                break;
2183        }
2184
2185        case EFX_FARCH_FILTER_MAC_FULL:
2186                is_full = true;
2187                /* fall through */
2188        case EFX_FARCH_FILTER_MAC_WILD:
2189                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2190                if (is_full)
2191                        gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2192                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2193                gen_spec->loc_mac[1] = spec->data[2];
2194                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2195                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2196                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2197                gen_spec->loc_mac[5] = spec->data[1];
2198                gen_spec->outer_vid = htons(spec->data[0]);
2199                break;
2200
2201        case EFX_FARCH_FILTER_UC_DEF:
2202        case EFX_FARCH_FILTER_MC_DEF:
2203                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2204                gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2205                break;
2206
2207        default:
2208                WARN_ON(1);
2209                break;
2210        }
2211}
2212
2213static void
2214efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2215                              struct efx_farch_filter_spec *spec)
2216{
2217        /* If there's only one channel then disable RSS for non VF
2218         * traffic, thereby allowing VFs to use RSS when the PF can't.
2219         */
2220        spec->priority = EFX_FILTER_PRI_AUTO;
2221        spec->flags = (EFX_FILTER_FLAG_RX |
2222                       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2223                       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2224        spec->dmaq_id = 0;
2225}
2226
2227/* Build a filter entry and return its n-tuple key. */
2228static u32 efx_farch_filter_build(efx_oword_t *filter,
2229                                  struct efx_farch_filter_spec *spec)
2230{
2231        u32 data3;
2232
2233        switch (efx_farch_filter_spec_table_id(spec)) {
2234        case EFX_FARCH_FILTER_TABLE_RX_IP: {
2235                bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2236                               spec->type == EFX_FARCH_FILTER_UDP_WILD);
2237                EFX_POPULATE_OWORD_7(
2238                        *filter,
2239                        FRF_BZ_RSS_EN,
2240                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2241                        FRF_BZ_SCATTER_EN,
2242                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2243                        FRF_BZ_TCP_UDP, is_udp,
2244                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2245                        EFX_DWORD_2, spec->data[2],
2246                        EFX_DWORD_1, spec->data[1],
2247                        EFX_DWORD_0, spec->data[0]);
2248                data3 = is_udp;
2249                break;
2250        }
2251
2252        case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2253                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2254                EFX_POPULATE_OWORD_7(
2255                        *filter,
2256                        FRF_CZ_RMFT_RSS_EN,
2257                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2258                        FRF_CZ_RMFT_SCATTER_EN,
2259                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2260                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2261                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2262                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2263                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2264                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2265                data3 = is_wild;
2266                break;
2267        }
2268
2269        case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2270                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2271                EFX_POPULATE_OWORD_5(*filter,
2272                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2273                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2274                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2275                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2276                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2277                data3 = is_wild | spec->dmaq_id << 1;
2278                break;
2279        }
2280
2281        default:
2282                BUG();
2283        }
2284
2285        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2286}
2287
2288static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2289                                   const struct efx_farch_filter_spec *right)
2290{
2291        if (left->type != right->type ||
2292            memcmp(left->data, right->data, sizeof(left->data)))
2293                return false;
2294
2295        if (left->flags & EFX_FILTER_FLAG_TX &&
2296            left->dmaq_id != right->dmaq_id)
2297                return false;
2298
2299        return true;
2300}
2301
2302/*
2303 * Construct/deconstruct external filter IDs.  At least the RX filter
2304 * IDs must be ordered by matching priority, for RX NFC semantics.
2305 *
2306 * Deconstruction needs to be robust against invalid IDs so that
2307 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2308 * accept user-provided IDs.
2309 */
2310
2311#define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2312
2313static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2314        [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2315        [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2316        [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2317        [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2318        [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2319        [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2320        [EFX_FARCH_FILTER_UC_DEF]       = 4,
2321        [EFX_FARCH_FILTER_MC_DEF]       = 4,
2322};
2323
2324static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2325        EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2326        EFX_FARCH_FILTER_TABLE_RX_IP,
2327        EFX_FARCH_FILTER_TABLE_RX_MAC,
2328        EFX_FARCH_FILTER_TABLE_RX_MAC,
2329        EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2330        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2331        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2332};
2333
2334#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2335#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2336
2337static inline u32
2338efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2339                         unsigned int index)
2340{
2341        unsigned int range;
2342
2343        range = efx_farch_filter_type_match_pri[spec->type];
2344        if (!(spec->flags & EFX_FILTER_FLAG_RX))
2345                range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2346
2347        return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2348}
2349
2350static inline enum efx_farch_filter_table_id
2351efx_farch_filter_id_table_id(u32 id)
2352{
2353        unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2354
2355        if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2356                return efx_farch_filter_range_table[range];
2357        else
2358                return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2359}
2360
2361static inline unsigned int efx_farch_filter_id_index(u32 id)
2362{
2363        return id & EFX_FARCH_FILTER_INDEX_MASK;
2364}
2365
2366u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2367{
2368        struct efx_farch_filter_state *state = efx->filter_state;
2369        unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2370        enum efx_farch_filter_table_id table_id;
2371
2372        do {
2373                table_id = efx_farch_filter_range_table[range];
2374                if (state->table[table_id].size != 0)
2375                        return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2376                                state->table[table_id].size;
2377        } while (range--);
2378
2379        return 0;
2380}
2381
2382s32 efx_farch_filter_insert(struct efx_nic *efx,
2383                            struct efx_filter_spec *gen_spec,
2384                            bool replace_equal)
2385{
2386        struct efx_farch_filter_state *state = efx->filter_state;
2387        struct efx_farch_filter_table *table;
2388        struct efx_farch_filter_spec spec;
2389        efx_oword_t filter;
2390        int rep_index, ins_index;
2391        unsigned int depth = 0;
2392        int rc;
2393
2394        rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2395        if (rc)
2396                return rc;
2397
2398        down_write(&state->lock);
2399
2400        table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2401        if (table->size == 0) {
2402                rc = -EINVAL;
2403                goto out_unlock;
2404        }
2405
2406        netif_vdbg(efx, hw, efx->net_dev,
2407                   "%s: type %d search_limit=%d", __func__, spec.type,
2408                   table->search_limit[spec.type]);
2409
2410        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2411                /* One filter spec per type */
2412                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2413                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2414                             EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2415                rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2416                ins_index = rep_index;
2417        } else {
2418                /* Search concurrently for
2419                 * (1) a filter to be replaced (rep_index): any filter
2420                 *     with the same match values, up to the current
2421                 *     search depth for this type, and
2422                 * (2) the insertion point (ins_index): (1) or any
2423                 *     free slot before it or up to the maximum search
2424                 *     depth for this priority
2425                 * We fail if we cannot find (2).
2426                 *
2427                 * We can stop once either
2428                 * (a) we find (1), in which case we have definitely
2429                 *     found (2) as well; or
2430                 * (b) we have searched exhaustively for (1), and have
2431                 *     either found (2) or searched exhaustively for it
2432                 */
2433                u32 key = efx_farch_filter_build(&filter, &spec);
2434                unsigned int hash = efx_farch_filter_hash(key);
2435                unsigned int incr = efx_farch_filter_increment(key);
2436                unsigned int max_rep_depth = table->search_limit[spec.type];
2437                unsigned int max_ins_depth =
2438                        spec.priority <= EFX_FILTER_PRI_HINT ?
2439                        EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2440                        EFX_FARCH_FILTER_CTL_SRCH_MAX;
2441                unsigned int i = hash & (table->size - 1);
2442
2443                ins_index = -1;
2444                depth = 1;
2445
2446                for (;;) {
2447                        if (!test_bit(i, table->used_bitmap)) {
2448                                if (ins_index < 0)
2449                                        ins_index = i;
2450                        } else if (efx_farch_filter_equal(&spec,
2451                                                          &table->spec[i])) {
2452                                /* Case (a) */
2453                                if (ins_index < 0)
2454                                        ins_index = i;
2455                                rep_index = i;
2456                                break;
2457                        }
2458
2459                        if (depth >= max_rep_depth &&
2460                            (ins_index >= 0 || depth >= max_ins_depth)) {
2461                                /* Case (b) */
2462                                if (ins_index < 0) {
2463                                        rc = -EBUSY;
2464                                        goto out_unlock;
2465                                }
2466                                rep_index = -1;
2467                                break;
2468                        }
2469
2470                        i = (i + incr) & (table->size - 1);
2471                        ++depth;
2472                }
2473        }
2474
2475        /* If we found a filter to be replaced, check whether we
2476         * should do so
2477         */
2478        if (rep_index >= 0) {
2479                struct efx_farch_filter_spec *saved_spec =
2480                        &table->spec[rep_index];
2481
2482                if (spec.priority == saved_spec->priority && !replace_equal) {
2483                        rc = -EEXIST;
2484                        goto out_unlock;
2485                }
2486                if (spec.priority < saved_spec->priority) {
2487                        rc = -EPERM;
2488                        goto out_unlock;
2489                }
2490                if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2491                    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2492                        spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2493        }
2494
2495        /* Insert the filter */
2496        if (ins_index != rep_index) {
2497                __set_bit(ins_index, table->used_bitmap);
2498                ++table->used;
2499        }
2500        table->spec[ins_index] = spec;
2501
2502        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2503                efx_farch_filter_push_rx_config(efx);
2504        } else {
2505                if (table->search_limit[spec.type] < depth) {
2506                        table->search_limit[spec.type] = depth;
2507                        if (spec.flags & EFX_FILTER_FLAG_TX)
2508                                efx_farch_filter_push_tx_limits(efx);
2509                        else
2510                                efx_farch_filter_push_rx_config(efx);
2511                }
2512
2513                efx_writeo(efx, &filter,
2514                           table->offset + table->step * ins_index);
2515
2516                /* If we were able to replace a filter by inserting
2517                 * at a lower depth, clear the replaced filter
2518                 */
2519                if (ins_index != rep_index && rep_index >= 0)
2520                        efx_farch_filter_table_clear_entry(efx, table,
2521                                                           rep_index);
2522        }
2523
2524        netif_vdbg(efx, hw, efx->net_dev,
2525                   "%s: filter type %d index %d rxq %u set",
2526                   __func__, spec.type, ins_index, spec.dmaq_id);
2527        rc = efx_farch_filter_make_id(&spec, ins_index);
2528
2529out_unlock:
2530        up_write(&state->lock);
2531        return rc;
2532}
2533
2534static void
2535efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2536                                   struct efx_farch_filter_table *table,
2537                                   unsigned int filter_idx)
2538{
2539        static efx_oword_t filter;
2540
2541        EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2542        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2543
2544        __clear_bit(filter_idx, table->used_bitmap);
2545        --table->used;
2546        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2547
2548        efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2549
2550        /* If this filter required a greater search depth than
2551         * any other, the search limit for its type can now be
2552         * decreased.  However, it is hard to determine that
2553         * unless the table has become completely empty - in
2554         * which case, all its search limits can be set to 0.
2555         */
2556        if (unlikely(table->used == 0)) {
2557                memset(table->search_limit, 0, sizeof(table->search_limit));
2558                if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2559                        efx_farch_filter_push_tx_limits(efx);
2560                else
2561                        efx_farch_filter_push_rx_config(efx);
2562        }
2563}
2564
2565static int efx_farch_filter_remove(struct efx_nic *efx,
2566                                   struct efx_farch_filter_table *table,
2567                                   unsigned int filter_idx,
2568                                   enum efx_filter_priority priority)
2569{
2570        struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2571
2572        if (!test_bit(filter_idx, table->used_bitmap) ||
2573            spec->priority != priority)
2574                return -ENOENT;
2575
2576        if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2577                efx_farch_filter_init_rx_auto(efx, spec);
2578                efx_farch_filter_push_rx_config(efx);
2579        } else {
2580                efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2581        }
2582
2583        return 0;
2584}
2585
2586int efx_farch_filter_remove_safe(struct efx_nic *efx,
2587                                 enum efx_filter_priority priority,
2588                                 u32 filter_id)
2589{
2590        struct efx_farch_filter_state *state = efx->filter_state;
2591        enum efx_farch_filter_table_id table_id;
2592        struct efx_farch_filter_table *table;
2593        unsigned int filter_idx;
2594        struct efx_farch_filter_spec *spec;
2595        int rc;
2596
2597        table_id = efx_farch_filter_id_table_id(filter_id);
2598        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2599                return -ENOENT;
2600        table = &state->table[table_id];
2601
2602        filter_idx = efx_farch_filter_id_index(filter_id);
2603        if (filter_idx >= table->size)
2604                return -ENOENT;
2605        down_write(&state->lock);
2606        spec = &table->spec[filter_idx];
2607
2608        rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2609        up_write(&state->lock);
2610
2611        return rc;
2612}
2613
2614int efx_farch_filter_get_safe(struct efx_nic *efx,
2615                              enum efx_filter_priority priority,
2616                              u32 filter_id, struct efx_filter_spec *spec_buf)
2617{
2618        struct efx_farch_filter_state *state = efx->filter_state;
2619        enum efx_farch_filter_table_id table_id;
2620        struct efx_farch_filter_table *table;
2621        struct efx_farch_filter_spec *spec;
2622        unsigned int filter_idx;
2623        int rc = -ENOENT;
2624
2625        down_read(&state->lock);
2626
2627        table_id = efx_farch_filter_id_table_id(filter_id);
2628        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2629                goto out_unlock;
2630        table = &state->table[table_id];
2631
2632        filter_idx = efx_farch_filter_id_index(filter_id);
2633        if (filter_idx >= table->size)
2634                goto out_unlock;
2635        spec = &table->spec[filter_idx];
2636
2637        if (test_bit(filter_idx, table->used_bitmap) &&
2638            spec->priority == priority) {
2639                efx_farch_filter_to_gen_spec(spec_buf, spec);
2640                rc = 0;
2641        }
2642
2643out_unlock:
2644        up_read(&state->lock);
2645        return rc;
2646}
2647
2648static void
2649efx_farch_filter_table_clear(struct efx_nic *efx,
2650                             enum efx_farch_filter_table_id table_id,
2651                             enum efx_filter_priority priority)
2652{
2653        struct efx_farch_filter_state *state = efx->filter_state;
2654        struct efx_farch_filter_table *table = &state->table[table_id];
2655        unsigned int filter_idx;
2656
2657        down_write(&state->lock);
2658        for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2659                if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2660                        efx_farch_filter_remove(efx, table,
2661                                                filter_idx, priority);
2662        }
2663        up_write(&state->lock);
2664}
2665
2666int efx_farch_filter_clear_rx(struct efx_nic *efx,
2667                               enum efx_filter_priority priority)
2668{
2669        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2670                                     priority);
2671        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2672                                     priority);
2673        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2674                                     priority);
2675        return 0;
2676}
2677
2678u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2679                                   enum efx_filter_priority priority)
2680{
2681        struct efx_farch_filter_state *state = efx->filter_state;
2682        enum efx_farch_filter_table_id table_id;
2683        struct efx_farch_filter_table *table;
2684        unsigned int filter_idx;
2685        u32 count = 0;
2686
2687        down_read(&state->lock);
2688
2689        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2690             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2691             table_id++) {
2692                table = &state->table[table_id];
2693                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694                        if (test_bit(filter_idx, table->used_bitmap) &&
2695                            table->spec[filter_idx].priority == priority)
2696                                ++count;
2697                }
2698        }
2699
2700        up_read(&state->lock);
2701
2702        return count;
2703}
2704
2705s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2706                                enum efx_filter_priority priority,
2707                                u32 *buf, u32 size)
2708{
2709        struct efx_farch_filter_state *state = efx->filter_state;
2710        enum efx_farch_filter_table_id table_id;
2711        struct efx_farch_filter_table *table;
2712        unsigned int filter_idx;
2713        s32 count = 0;
2714
2715        down_read(&state->lock);
2716
2717        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2718             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2719             table_id++) {
2720                table = &state->table[table_id];
2721                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2722                        if (test_bit(filter_idx, table->used_bitmap) &&
2723                            table->spec[filter_idx].priority == priority) {
2724                                if (count == size) {
2725                                        count = -EMSGSIZE;
2726                                        goto out;
2727                                }
2728                                buf[count++] = efx_farch_filter_make_id(
2729                                        &table->spec[filter_idx], filter_idx);
2730                        }
2731                }
2732        }
2733out:
2734        up_read(&state->lock);
2735
2736        return count;
2737}
2738
2739/* Restore filter stater after reset */
2740void efx_farch_filter_table_restore(struct efx_nic *efx)
2741{
2742        struct efx_farch_filter_state *state = efx->filter_state;
2743        enum efx_farch_filter_table_id table_id;
2744        struct efx_farch_filter_table *table;
2745        efx_oword_t filter;
2746        unsigned int filter_idx;
2747
2748        down_write(&state->lock);
2749
2750        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2751                table = &state->table[table_id];
2752
2753                /* Check whether this is a regular register table */
2754                if (table->step == 0)
2755                        continue;
2756
2757                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2758                        if (!test_bit(filter_idx, table->used_bitmap))
2759                                continue;
2760                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2761                        efx_writeo(efx, &filter,
2762                                   table->offset + table->step * filter_idx);
2763                }
2764        }
2765
2766        efx_farch_filter_push_rx_config(efx);
2767        efx_farch_filter_push_tx_limits(efx);
2768
2769        up_write(&state->lock);
2770}
2771
2772void efx_farch_filter_table_remove(struct efx_nic *efx)
2773{
2774        struct efx_farch_filter_state *state = efx->filter_state;
2775        enum efx_farch_filter_table_id table_id;
2776
2777        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778                kfree(state->table[table_id].used_bitmap);
2779                vfree(state->table[table_id].spec);
2780        }
2781        kfree(state);
2782}
2783
2784int efx_farch_filter_table_probe(struct efx_nic *efx)
2785{
2786        struct efx_farch_filter_state *state;
2787        struct efx_farch_filter_table *table;
2788        unsigned table_id;
2789
2790        state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2791        if (!state)
2792                return -ENOMEM;
2793        efx->filter_state = state;
2794        init_rwsem(&state->lock);
2795
2796        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2797        table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2798        table->offset = FR_BZ_RX_FILTER_TBL0;
2799        table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2800        table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2801
2802        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2803        table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2804        table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2805        table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2806        table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2807
2808        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2809        table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2810        table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2811
2812        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2813        table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2814        table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2815        table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2816        table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2817
2818        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2819                table = &state->table[table_id];
2820                if (table->size == 0)
2821                        continue;
2822                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2823                                             sizeof(unsigned long),
2824                                             GFP_KERNEL);
2825                if (!table->used_bitmap)
2826                        goto fail;
2827                table->spec = vzalloc(array_size(sizeof(*table->spec),
2828                                                 table->size));
2829                if (!table->spec)
2830                        goto fail;
2831        }
2832
2833        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834        if (table->size) {
2835                /* RX default filters must always exist */
2836                struct efx_farch_filter_spec *spec;
2837                unsigned i;
2838
2839                for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2840                        spec = &table->spec[i];
2841                        spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2842                        efx_farch_filter_init_rx_auto(efx, spec);
2843                        __set_bit(i, table->used_bitmap);
2844                }
2845        }
2846
2847        efx_farch_filter_push_rx_config(efx);
2848
2849        return 0;
2850
2851fail:
2852        efx_farch_filter_table_remove(efx);
2853        return -ENOMEM;
2854}
2855
2856/* Update scatter enable flags for filters pointing to our own RX queues */
2857void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2858{
2859        struct efx_farch_filter_state *state = efx->filter_state;
2860        enum efx_farch_filter_table_id table_id;
2861        struct efx_farch_filter_table *table;
2862        efx_oword_t filter;
2863        unsigned int filter_idx;
2864
2865        down_write(&state->lock);
2866
2867        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2868             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2869             table_id++) {
2870                table = &state->table[table_id];
2871
2872                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2873                        if (!test_bit(filter_idx, table->used_bitmap) ||
2874                            table->spec[filter_idx].dmaq_id >=
2875                            efx->n_rx_channels)
2876                                continue;
2877
2878                        if (efx->rx_scatter)
2879                                table->spec[filter_idx].flags |=
2880                                        EFX_FILTER_FLAG_RX_SCATTER;
2881                        else
2882                                table->spec[filter_idx].flags &=
2883                                        ~EFX_FILTER_FLAG_RX_SCATTER;
2884
2885                        if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2886                                /* Pushed by efx_farch_filter_push_rx_config() */
2887                                continue;
2888
2889                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2890                        efx_writeo(efx, &filter,
2891                                   table->offset + table->step * filter_idx);
2892                }
2893        }
2894
2895        efx_farch_filter_push_rx_config(efx);
2896
2897        up_write(&state->lock);
2898}
2899
2900#ifdef CONFIG_RFS_ACCEL
2901
2902bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2903                                     unsigned int index)
2904{
2905        struct efx_farch_filter_state *state = efx->filter_state;
2906        struct efx_farch_filter_table *table;
2907        bool ret = false, force = false;
2908        u16 arfs_id;
2909
2910        down_write(&state->lock);
2911        spin_lock_bh(&efx->rps_hash_lock);
2912        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2913        if (test_bit(index, table->used_bitmap) &&
2914            table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2915                struct efx_arfs_rule *rule = NULL;
2916                struct efx_filter_spec spec;
2917
2918                efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2919                if (!efx->rps_hash_table) {
2920                        /* In the absence of the table, we always returned 0 to
2921                         * ARFS, so use the same to query it.
2922                         */
2923                        arfs_id = 0;
2924                } else {
2925                        rule = efx_rps_hash_find(efx, &spec);
2926                        if (!rule) {
2927                                /* ARFS table doesn't know of this filter, remove it */
2928                                force = true;
2929                        } else {
2930                                arfs_id = rule->arfs_id;
2931                                if (!efx_rps_check_rule(rule, index, &force))
2932                                        goto out_unlock;
2933                        }
2934                }
2935                if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2936                                                 flow_id, arfs_id)) {
2937                        if (rule)
2938                                rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2939                        efx_rps_hash_del(efx, &spec);
2940                        efx_farch_filter_table_clear_entry(efx, table, index);
2941                        ret = true;
2942                }
2943        }
2944out_unlock:
2945        spin_unlock_bh(&efx->rps_hash_lock);
2946        up_write(&state->lock);
2947        return ret;
2948}
2949
2950#endif /* CONFIG_RFS_ACCEL */
2951
2952void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2953{
2954        struct net_device *net_dev = efx->net_dev;
2955        struct netdev_hw_addr *ha;
2956        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2957        u32 crc;
2958        int bit;
2959
2960        if (!efx_dev_registered(efx))
2961                return;
2962
2963        netif_addr_lock_bh(net_dev);
2964
2965        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2966
2967        /* Build multicast hash table */
2968        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2969                memset(mc_hash, 0xff, sizeof(*mc_hash));
2970        } else {
2971                memset(mc_hash, 0x00, sizeof(*mc_hash));
2972                netdev_for_each_mc_addr(ha, net_dev) {
2973                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2974                        bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2975                        __set_bit_le(bit, mc_hash);
2976                }
2977
2978                /* Broadcast packets go through the multicast hash filter.
2979                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2980                 * so we always add bit 0xff to the mask.
2981                 */
2982                __set_bit_le(0xff, mc_hash);
2983        }
2984
2985        netif_addr_unlock_bh(net_dev);
2986}
2987