linux/drivers/net/ethernet/sfc/rx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/socket.h>
   9#include <linux/in.h>
  10#include <linux/slab.h>
  11#include <linux/ip.h>
  12#include <linux/ipv6.h>
  13#include <linux/tcp.h>
  14#include <linux/udp.h>
  15#include <linux/prefetch.h>
  16#include <linux/moduleparam.h>
  17#include <linux/iommu.h>
  18#include <net/ip.h>
  19#include <net/checksum.h>
  20#include "net_driver.h"
  21#include "efx.h"
  22#include "filter.h"
  23#include "nic.h"
  24#include "selftest.h"
  25#include "workarounds.h"
  26
  27/* Preferred number of descriptors to fill at once */
  28#define EFX_RX_PREFERRED_BATCH 8U
  29
  30/* Number of RX buffers to recycle pages for.  When creating the RX page recycle
  31 * ring, this number is divided by the number of buffers per page to calculate
  32 * the number of pages to store in the RX page recycle ring.
  33 */
  34#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
  35#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
  36
  37/* Size of buffer allocated for skb header area. */
  38#define EFX_SKB_HEADERS  128u
  39
  40/* This is the percentage fill level below which new RX descriptors
  41 * will be added to the RX descriptor ring.
  42 */
  43static unsigned int rx_refill_threshold;
  44
  45/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
  46#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
  47                                      EFX_RX_USR_BUF_SIZE)
  48
  49/*
  50 * RX maximum head room required.
  51 *
  52 * This must be at least 1 to prevent overflow, plus one packet-worth
  53 * to allow pipelined receives.
  54 */
  55#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  56
  57static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
  58{
  59        return page_address(buf->page) + buf->page_offset;
  60}
  61
  62static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
  63{
  64#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
  65        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
  66#else
  67        const u8 *data = eh + efx->rx_packet_hash_offset;
  68        return (u32)data[0]       |
  69               (u32)data[1] << 8  |
  70               (u32)data[2] << 16 |
  71               (u32)data[3] << 24;
  72#endif
  73}
  74
  75static inline struct efx_rx_buffer *
  76efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
  77{
  78        if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
  79                return efx_rx_buffer(rx_queue, 0);
  80        else
  81                return rx_buf + 1;
  82}
  83
  84static inline void efx_sync_rx_buffer(struct efx_nic *efx,
  85                                      struct efx_rx_buffer *rx_buf,
  86                                      unsigned int len)
  87{
  88        dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
  89                                DMA_FROM_DEVICE);
  90}
  91
  92void efx_rx_config_page_split(struct efx_nic *efx)
  93{
  94        efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
  95                                      EFX_RX_BUF_ALIGNMENT);
  96        efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
  97                ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
  98                 efx->rx_page_buf_step);
  99        efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
 100                efx->rx_bufs_per_page;
 101        efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
 102                                               efx->rx_bufs_per_page);
 103}
 104
 105/* Check the RX page recycle ring for a page that can be reused. */
 106static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
 107{
 108        struct efx_nic *efx = rx_queue->efx;
 109        struct page *page;
 110        struct efx_rx_page_state *state;
 111        unsigned index;
 112
 113        index = rx_queue->page_remove & rx_queue->page_ptr_mask;
 114        page = rx_queue->page_ring[index];
 115        if (page == NULL)
 116                return NULL;
 117
 118        rx_queue->page_ring[index] = NULL;
 119        /* page_remove cannot exceed page_add. */
 120        if (rx_queue->page_remove != rx_queue->page_add)
 121                ++rx_queue->page_remove;
 122
 123        /* If page_count is 1 then we hold the only reference to this page. */
 124        if (page_count(page) == 1) {
 125                ++rx_queue->page_recycle_count;
 126                return page;
 127        } else {
 128                state = page_address(page);
 129                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 130                               PAGE_SIZE << efx->rx_buffer_order,
 131                               DMA_FROM_DEVICE);
 132                put_page(page);
 133                ++rx_queue->page_recycle_failed;
 134        }
 135
 136        return NULL;
 137}
 138
 139/**
 140 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
 141 *
 142 * @rx_queue:           Efx RX queue
 143 *
 144 * This allocates a batch of pages, maps them for DMA, and populates
 145 * struct efx_rx_buffers for each one. Return a negative error code or
 146 * 0 on success. If a single page can be used for multiple buffers,
 147 * then the page will either be inserted fully, or not at all.
 148 */
 149static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
 150{
 151        struct efx_nic *efx = rx_queue->efx;
 152        struct efx_rx_buffer *rx_buf;
 153        struct page *page;
 154        unsigned int page_offset;
 155        struct efx_rx_page_state *state;
 156        dma_addr_t dma_addr;
 157        unsigned index, count;
 158
 159        count = 0;
 160        do {
 161                page = efx_reuse_page(rx_queue);
 162                if (page == NULL) {
 163                        page = alloc_pages(__GFP_COMP |
 164                                           (atomic ? GFP_ATOMIC : GFP_KERNEL),
 165                                           efx->rx_buffer_order);
 166                        if (unlikely(page == NULL))
 167                                return -ENOMEM;
 168                        dma_addr =
 169                                dma_map_page(&efx->pci_dev->dev, page, 0,
 170                                             PAGE_SIZE << efx->rx_buffer_order,
 171                                             DMA_FROM_DEVICE);
 172                        if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
 173                                                       dma_addr))) {
 174                                __free_pages(page, efx->rx_buffer_order);
 175                                return -EIO;
 176                        }
 177                        state = page_address(page);
 178                        state->dma_addr = dma_addr;
 179                } else {
 180                        state = page_address(page);
 181                        dma_addr = state->dma_addr;
 182                }
 183
 184                dma_addr += sizeof(struct efx_rx_page_state);
 185                page_offset = sizeof(struct efx_rx_page_state);
 186
 187                do {
 188                        index = rx_queue->added_count & rx_queue->ptr_mask;
 189                        rx_buf = efx_rx_buffer(rx_queue, index);
 190                        rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
 191                        rx_buf->page = page;
 192                        rx_buf->page_offset = page_offset + efx->rx_ip_align;
 193                        rx_buf->len = efx->rx_dma_len;
 194                        rx_buf->flags = 0;
 195                        ++rx_queue->added_count;
 196                        get_page(page);
 197                        dma_addr += efx->rx_page_buf_step;
 198                        page_offset += efx->rx_page_buf_step;
 199                } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
 200
 201                rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
 202        } while (++count < efx->rx_pages_per_batch);
 203
 204        return 0;
 205}
 206
 207/* Unmap a DMA-mapped page.  This function is only called for the final RX
 208 * buffer in a page.
 209 */
 210static void efx_unmap_rx_buffer(struct efx_nic *efx,
 211                                struct efx_rx_buffer *rx_buf)
 212{
 213        struct page *page = rx_buf->page;
 214
 215        if (page) {
 216                struct efx_rx_page_state *state = page_address(page);
 217                dma_unmap_page(&efx->pci_dev->dev,
 218                               state->dma_addr,
 219                               PAGE_SIZE << efx->rx_buffer_order,
 220                               DMA_FROM_DEVICE);
 221        }
 222}
 223
 224static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
 225                                struct efx_rx_buffer *rx_buf,
 226                                unsigned int num_bufs)
 227{
 228        do {
 229                if (rx_buf->page) {
 230                        put_page(rx_buf->page);
 231                        rx_buf->page = NULL;
 232                }
 233                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 234        } while (--num_bufs);
 235}
 236
 237/* Attempt to recycle the page if there is an RX recycle ring; the page can
 238 * only be added if this is the final RX buffer, to prevent pages being used in
 239 * the descriptor ring and appearing in the recycle ring simultaneously.
 240 */
 241static void efx_recycle_rx_page(struct efx_channel *channel,
 242                                struct efx_rx_buffer *rx_buf)
 243{
 244        struct page *page = rx_buf->page;
 245        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 246        struct efx_nic *efx = rx_queue->efx;
 247        unsigned index;
 248
 249        /* Only recycle the page after processing the final buffer. */
 250        if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
 251                return;
 252
 253        index = rx_queue->page_add & rx_queue->page_ptr_mask;
 254        if (rx_queue->page_ring[index] == NULL) {
 255                unsigned read_index = rx_queue->page_remove &
 256                        rx_queue->page_ptr_mask;
 257
 258                /* The next slot in the recycle ring is available, but
 259                 * increment page_remove if the read pointer currently
 260                 * points here.
 261                 */
 262                if (read_index == index)
 263                        ++rx_queue->page_remove;
 264                rx_queue->page_ring[index] = page;
 265                ++rx_queue->page_add;
 266                return;
 267        }
 268        ++rx_queue->page_recycle_full;
 269        efx_unmap_rx_buffer(efx, rx_buf);
 270        put_page(rx_buf->page);
 271}
 272
 273static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
 274                               struct efx_rx_buffer *rx_buf)
 275{
 276        /* Release the page reference we hold for the buffer. */
 277        if (rx_buf->page)
 278                put_page(rx_buf->page);
 279
 280        /* If this is the last buffer in a page, unmap and free it. */
 281        if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
 282                efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
 283                efx_free_rx_buffers(rx_queue, rx_buf, 1);
 284        }
 285        rx_buf->page = NULL;
 286}
 287
 288/* Recycle the pages that are used by buffers that have just been received. */
 289static void efx_recycle_rx_pages(struct efx_channel *channel,
 290                                 struct efx_rx_buffer *rx_buf,
 291                                 unsigned int n_frags)
 292{
 293        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 294
 295        do {
 296                efx_recycle_rx_page(channel, rx_buf);
 297                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 298        } while (--n_frags);
 299}
 300
 301static void efx_discard_rx_packet(struct efx_channel *channel,
 302                                  struct efx_rx_buffer *rx_buf,
 303                                  unsigned int n_frags)
 304{
 305        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 306
 307        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 308
 309        efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 310}
 311
 312/**
 313 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 314 * @rx_queue:           RX descriptor queue
 315 *
 316 * This will aim to fill the RX descriptor queue up to
 317 * @rx_queue->@max_fill. If there is insufficient atomic
 318 * memory to do so, a slow fill will be scheduled.
 319 *
 320 * The caller must provide serialisation (none is used here). In practise,
 321 * this means this function must run from the NAPI handler, or be called
 322 * when NAPI is disabled.
 323 */
 324void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
 325{
 326        struct efx_nic *efx = rx_queue->efx;
 327        unsigned int fill_level, batch_size;
 328        int space, rc = 0;
 329
 330        if (!rx_queue->refill_enabled)
 331                return;
 332
 333        /* Calculate current fill level, and exit if we don't need to fill */
 334        fill_level = (rx_queue->added_count - rx_queue->removed_count);
 335        EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
 336        if (fill_level >= rx_queue->fast_fill_trigger)
 337                goto out;
 338
 339        /* Record minimum fill level */
 340        if (unlikely(fill_level < rx_queue->min_fill)) {
 341                if (fill_level)
 342                        rx_queue->min_fill = fill_level;
 343        }
 344
 345        batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 346        space = rx_queue->max_fill - fill_level;
 347        EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
 348
 349        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 350                   "RX queue %d fast-filling descriptor ring from"
 351                   " level %d to level %d\n",
 352                   efx_rx_queue_index(rx_queue), fill_level,
 353                   rx_queue->max_fill);
 354
 355
 356        do {
 357                rc = efx_init_rx_buffers(rx_queue, atomic);
 358                if (unlikely(rc)) {
 359                        /* Ensure that we don't leave the rx queue empty */
 360                        efx_schedule_slow_fill(rx_queue);
 361                        goto out;
 362                }
 363        } while ((space -= batch_size) >= batch_size);
 364
 365        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 366                   "RX queue %d fast-filled descriptor ring "
 367                   "to level %d\n", efx_rx_queue_index(rx_queue),
 368                   rx_queue->added_count - rx_queue->removed_count);
 369
 370 out:
 371        if (rx_queue->notified_count != rx_queue->added_count)
 372                efx_nic_notify_rx_desc(rx_queue);
 373}
 374
 375void efx_rx_slow_fill(struct timer_list *t)
 376{
 377        struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
 378
 379        /* Post an event to cause NAPI to run and refill the queue */
 380        efx_nic_generate_fill_event(rx_queue);
 381        ++rx_queue->slow_fill_count;
 382}
 383
 384static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
 385                                     struct efx_rx_buffer *rx_buf,
 386                                     int len)
 387{
 388        struct efx_nic *efx = rx_queue->efx;
 389        unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
 390
 391        if (likely(len <= max_len))
 392                return;
 393
 394        /* The packet must be discarded, but this is only a fatal error
 395         * if the caller indicated it was
 396         */
 397        rx_buf->flags |= EFX_RX_PKT_DISCARD;
 398
 399        if (net_ratelimit())
 400                netif_err(efx, rx_err, efx->net_dev,
 401                          "RX queue %d overlength RX event (%#x > %#x)\n",
 402                          efx_rx_queue_index(rx_queue), len, max_len);
 403
 404        efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
 405}
 406
 407/* Pass a received packet up through GRO.  GRO can handle pages
 408 * regardless of checksum state and skbs with a good checksum.
 409 */
 410static void
 411efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
 412                  unsigned int n_frags, u8 *eh)
 413{
 414        struct napi_struct *napi = &channel->napi_str;
 415        struct efx_nic *efx = channel->efx;
 416        struct sk_buff *skb;
 417
 418        skb = napi_get_frags(napi);
 419        if (unlikely(!skb)) {
 420                struct efx_rx_queue *rx_queue;
 421
 422                rx_queue = efx_channel_get_rx_queue(channel);
 423                efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 424                return;
 425        }
 426
 427        if (efx->net_dev->features & NETIF_F_RXHASH)
 428                skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
 429                             PKT_HASH_TYPE_L3);
 430        skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
 431                          CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
 432        skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
 433
 434        for (;;) {
 435                skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 436                                   rx_buf->page, rx_buf->page_offset,
 437                                   rx_buf->len);
 438                rx_buf->page = NULL;
 439                skb->len += rx_buf->len;
 440                if (skb_shinfo(skb)->nr_frags == n_frags)
 441                        break;
 442
 443                rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 444        }
 445
 446        skb->data_len = skb->len;
 447        skb->truesize += n_frags * efx->rx_buffer_truesize;
 448
 449        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 450
 451        napi_gro_frags(napi);
 452}
 453
 454/* Allocate and construct an SKB around page fragments */
 455static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
 456                                     struct efx_rx_buffer *rx_buf,
 457                                     unsigned int n_frags,
 458                                     u8 *eh, int hdr_len)
 459{
 460        struct efx_nic *efx = channel->efx;
 461        struct sk_buff *skb;
 462
 463        /* Allocate an SKB to store the headers */
 464        skb = netdev_alloc_skb(efx->net_dev,
 465                               efx->rx_ip_align + efx->rx_prefix_size +
 466                               hdr_len);
 467        if (unlikely(skb == NULL)) {
 468                atomic_inc(&efx->n_rx_noskb_drops);
 469                return NULL;
 470        }
 471
 472        EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len);
 473
 474        memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
 475               efx->rx_prefix_size + hdr_len);
 476        skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
 477        __skb_put(skb, hdr_len);
 478
 479        /* Append the remaining page(s) onto the frag list */
 480        if (rx_buf->len > hdr_len) {
 481                rx_buf->page_offset += hdr_len;
 482                rx_buf->len -= hdr_len;
 483
 484                for (;;) {
 485                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 486                                           rx_buf->page, rx_buf->page_offset,
 487                                           rx_buf->len);
 488                        rx_buf->page = NULL;
 489                        skb->len += rx_buf->len;
 490                        skb->data_len += rx_buf->len;
 491                        if (skb_shinfo(skb)->nr_frags == n_frags)
 492                                break;
 493
 494                        rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 495                }
 496        } else {
 497                __free_pages(rx_buf->page, efx->rx_buffer_order);
 498                rx_buf->page = NULL;
 499                n_frags = 0;
 500        }
 501
 502        skb->truesize += n_frags * efx->rx_buffer_truesize;
 503
 504        /* Move past the ethernet header */
 505        skb->protocol = eth_type_trans(skb, efx->net_dev);
 506
 507        skb_mark_napi_id(skb, &channel->napi_str);
 508
 509        return skb;
 510}
 511
 512void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
 513                   unsigned int n_frags, unsigned int len, u16 flags)
 514{
 515        struct efx_nic *efx = rx_queue->efx;
 516        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 517        struct efx_rx_buffer *rx_buf;
 518
 519        rx_queue->rx_packets++;
 520
 521        rx_buf = efx_rx_buffer(rx_queue, index);
 522        rx_buf->flags |= flags;
 523
 524        /* Validate the number of fragments and completed length */
 525        if (n_frags == 1) {
 526                if (!(flags & EFX_RX_PKT_PREFIX_LEN))
 527                        efx_rx_packet__check_len(rx_queue, rx_buf, len);
 528        } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
 529                   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
 530                   unlikely(len > n_frags * efx->rx_dma_len) ||
 531                   unlikely(!efx->rx_scatter)) {
 532                /* If this isn't an explicit discard request, either
 533                 * the hardware or the driver is broken.
 534                 */
 535                WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
 536                rx_buf->flags |= EFX_RX_PKT_DISCARD;
 537        }
 538
 539        netif_vdbg(efx, rx_status, efx->net_dev,
 540                   "RX queue %d received ids %x-%x len %d %s%s\n",
 541                   efx_rx_queue_index(rx_queue), index,
 542                   (index + n_frags - 1) & rx_queue->ptr_mask, len,
 543                   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
 544                   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
 545
 546        /* Discard packet, if instructed to do so.  Process the
 547         * previous receive first.
 548         */
 549        if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
 550                efx_rx_flush_packet(channel);
 551                efx_discard_rx_packet(channel, rx_buf, n_frags);
 552                return;
 553        }
 554
 555        if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
 556                rx_buf->len = len;
 557
 558        /* Release and/or sync the DMA mapping - assumes all RX buffers
 559         * consumed in-order per RX queue.
 560         */
 561        efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
 562
 563        /* Prefetch nice and early so data will (hopefully) be in cache by
 564         * the time we look at it.
 565         */
 566        prefetch(efx_rx_buf_va(rx_buf));
 567
 568        rx_buf->page_offset += efx->rx_prefix_size;
 569        rx_buf->len -= efx->rx_prefix_size;
 570
 571        if (n_frags > 1) {
 572                /* Release/sync DMA mapping for additional fragments.
 573                 * Fix length for last fragment.
 574                 */
 575                unsigned int tail_frags = n_frags - 1;
 576
 577                for (;;) {
 578                        rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 579                        if (--tail_frags == 0)
 580                                break;
 581                        efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
 582                }
 583                rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
 584                efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
 585        }
 586
 587        /* All fragments have been DMA-synced, so recycle pages. */
 588        rx_buf = efx_rx_buffer(rx_queue, index);
 589        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 590
 591        /* Pipeline receives so that we give time for packet headers to be
 592         * prefetched into cache.
 593         */
 594        efx_rx_flush_packet(channel);
 595        channel->rx_pkt_n_frags = n_frags;
 596        channel->rx_pkt_index = index;
 597}
 598
 599static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
 600                           struct efx_rx_buffer *rx_buf,
 601                           unsigned int n_frags)
 602{
 603        struct sk_buff *skb;
 604        u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
 605
 606        skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
 607        if (unlikely(skb == NULL)) {
 608                struct efx_rx_queue *rx_queue;
 609
 610                rx_queue = efx_channel_get_rx_queue(channel);
 611                efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 612                return;
 613        }
 614        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 615
 616        /* Set the SKB flags */
 617        skb_checksum_none_assert(skb);
 618        if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) {
 619                skb->ip_summed = CHECKSUM_UNNECESSARY;
 620                skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
 621        }
 622
 623        efx_rx_skb_attach_timestamp(channel, skb);
 624
 625        if (channel->type->receive_skb)
 626                if (channel->type->receive_skb(channel, skb))
 627                        return;
 628
 629        /* Pass the packet up */
 630        if (channel->rx_list != NULL)
 631                /* Add to list, will pass up later */
 632                list_add_tail(&skb->list, channel->rx_list);
 633        else
 634                /* No list, so pass it up now */
 635                netif_receive_skb(skb);
 636}
 637
 638/* Handle a received packet.  Second half: Touches packet payload. */
 639void __efx_rx_packet(struct efx_channel *channel)
 640{
 641        struct efx_nic *efx = channel->efx;
 642        struct efx_rx_buffer *rx_buf =
 643                efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
 644        u8 *eh = efx_rx_buf_va(rx_buf);
 645
 646        /* Read length from the prefix if necessary.  This already
 647         * excludes the length of the prefix itself.
 648         */
 649        if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
 650                rx_buf->len = le16_to_cpup((__le16 *)
 651                                           (eh + efx->rx_packet_len_offset));
 652
 653        /* If we're in loopback test, then pass the packet directly to the
 654         * loopback layer, and free the rx_buf here
 655         */
 656        if (unlikely(efx->loopback_selftest)) {
 657                struct efx_rx_queue *rx_queue;
 658
 659                efx_loopback_rx_packet(efx, eh, rx_buf->len);
 660                rx_queue = efx_channel_get_rx_queue(channel);
 661                efx_free_rx_buffers(rx_queue, rx_buf,
 662                                    channel->rx_pkt_n_frags);
 663                goto out;
 664        }
 665
 666        if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
 667                rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
 668
 669        if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
 670                efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
 671        else
 672                efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
 673out:
 674        channel->rx_pkt_n_frags = 0;
 675}
 676
 677int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
 678{
 679        struct efx_nic *efx = rx_queue->efx;
 680        unsigned int entries;
 681        int rc;
 682
 683        /* Create the smallest power-of-two aligned ring */
 684        entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
 685        EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 686        rx_queue->ptr_mask = entries - 1;
 687
 688        netif_dbg(efx, probe, efx->net_dev,
 689                  "creating RX queue %d size %#x mask %#x\n",
 690                  efx_rx_queue_index(rx_queue), efx->rxq_entries,
 691                  rx_queue->ptr_mask);
 692
 693        /* Allocate RX buffers */
 694        rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
 695                                   GFP_KERNEL);
 696        if (!rx_queue->buffer)
 697                return -ENOMEM;
 698
 699        rc = efx_nic_probe_rx(rx_queue);
 700        if (rc) {
 701                kfree(rx_queue->buffer);
 702                rx_queue->buffer = NULL;
 703        }
 704
 705        return rc;
 706}
 707
 708static void efx_init_rx_recycle_ring(struct efx_nic *efx,
 709                                     struct efx_rx_queue *rx_queue)
 710{
 711        unsigned int bufs_in_recycle_ring, page_ring_size;
 712
 713        /* Set the RX recycle ring size */
 714#ifdef CONFIG_PPC64
 715        bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 716#else
 717        if (iommu_present(&pci_bus_type))
 718                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 719        else
 720                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
 721#endif /* CONFIG_PPC64 */
 722
 723        page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
 724                                            efx->rx_bufs_per_page);
 725        rx_queue->page_ring = kcalloc(page_ring_size,
 726                                      sizeof(*rx_queue->page_ring), GFP_KERNEL);
 727        rx_queue->page_ptr_mask = page_ring_size - 1;
 728}
 729
 730void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
 731{
 732        struct efx_nic *efx = rx_queue->efx;
 733        unsigned int max_fill, trigger, max_trigger;
 734
 735        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 736                  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
 737
 738        /* Initialise ptr fields */
 739        rx_queue->added_count = 0;
 740        rx_queue->notified_count = 0;
 741        rx_queue->removed_count = 0;
 742        rx_queue->min_fill = -1U;
 743        efx_init_rx_recycle_ring(efx, rx_queue);
 744
 745        rx_queue->page_remove = 0;
 746        rx_queue->page_add = rx_queue->page_ptr_mask + 1;
 747        rx_queue->page_recycle_count = 0;
 748        rx_queue->page_recycle_failed = 0;
 749        rx_queue->page_recycle_full = 0;
 750
 751        /* Initialise limit fields */
 752        max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
 753        max_trigger =
 754                max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 755        if (rx_refill_threshold != 0) {
 756                trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
 757                if (trigger > max_trigger)
 758                        trigger = max_trigger;
 759        } else {
 760                trigger = max_trigger;
 761        }
 762
 763        rx_queue->max_fill = max_fill;
 764        rx_queue->fast_fill_trigger = trigger;
 765        rx_queue->refill_enabled = true;
 766
 767        /* Set up RX descriptor ring */
 768        efx_nic_init_rx(rx_queue);
 769}
 770
 771void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
 772{
 773        int i;
 774        struct efx_nic *efx = rx_queue->efx;
 775        struct efx_rx_buffer *rx_buf;
 776
 777        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 778                  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
 779
 780        del_timer_sync(&rx_queue->slow_fill);
 781
 782        /* Release RX buffers from the current read ptr to the write ptr */
 783        if (rx_queue->buffer) {
 784                for (i = rx_queue->removed_count; i < rx_queue->added_count;
 785                     i++) {
 786                        unsigned index = i & rx_queue->ptr_mask;
 787                        rx_buf = efx_rx_buffer(rx_queue, index);
 788                        efx_fini_rx_buffer(rx_queue, rx_buf);
 789                }
 790        }
 791
 792        /* Unmap and release the pages in the recycle ring. Remove the ring. */
 793        for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
 794                struct page *page = rx_queue->page_ring[i];
 795                struct efx_rx_page_state *state;
 796
 797                if (page == NULL)
 798                        continue;
 799
 800                state = page_address(page);
 801                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 802                               PAGE_SIZE << efx->rx_buffer_order,
 803                               DMA_FROM_DEVICE);
 804                put_page(page);
 805        }
 806        kfree(rx_queue->page_ring);
 807        rx_queue->page_ring = NULL;
 808}
 809
 810void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
 811{
 812        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 813                  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
 814
 815        efx_nic_remove_rx(rx_queue);
 816
 817        kfree(rx_queue->buffer);
 818        rx_queue->buffer = NULL;
 819}
 820
 821
 822module_param(rx_refill_threshold, uint, 0444);
 823MODULE_PARM_DESC(rx_refill_threshold,
 824                 "RX descriptor ring refill threshold (%)");
 825
 826#ifdef CONFIG_RFS_ACCEL
 827
 828static void efx_filter_rfs_work(struct work_struct *data)
 829{
 830        struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
 831                                                              work);
 832        struct efx_nic *efx = netdev_priv(req->net_dev);
 833        struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
 834        int slot_idx = req - efx->rps_slot;
 835        struct efx_arfs_rule *rule;
 836        u16 arfs_id = 0;
 837        int rc;
 838
 839        rc = efx->type->filter_insert(efx, &req->spec, true);
 840        if (rc >= 0)
 841                rc %= efx->type->max_rx_ip_filters;
 842        if (efx->rps_hash_table) {
 843                spin_lock_bh(&efx->rps_hash_lock);
 844                rule = efx_rps_hash_find(efx, &req->spec);
 845                /* The rule might have already gone, if someone else's request
 846                 * for the same spec was already worked and then expired before
 847                 * we got around to our work.  In that case we have nothing
 848                 * tying us to an arfs_id, meaning that as soon as the filter
 849                 * is considered for expiry it will be removed.
 850                 */
 851                if (rule) {
 852                        if (rc < 0)
 853                                rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
 854                        else
 855                                rule->filter_id = rc;
 856                        arfs_id = rule->arfs_id;
 857                }
 858                spin_unlock_bh(&efx->rps_hash_lock);
 859        }
 860        if (rc >= 0) {
 861                /* Remember this so we can check whether to expire the filter
 862                 * later.
 863                 */
 864                mutex_lock(&efx->rps_mutex);
 865                channel->rps_flow_id[rc] = req->flow_id;
 866                ++channel->rfs_filters_added;
 867                mutex_unlock(&efx->rps_mutex);
 868
 869                if (req->spec.ether_type == htons(ETH_P_IP))
 870                        netif_info(efx, rx_status, efx->net_dev,
 871                                   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
 872                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 873                                   req->spec.rem_host, ntohs(req->spec.rem_port),
 874                                   req->spec.loc_host, ntohs(req->spec.loc_port),
 875                                   req->rxq_index, req->flow_id, rc, arfs_id);
 876                else
 877                        netif_info(efx, rx_status, efx->net_dev,
 878                                   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
 879                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 880                                   req->spec.rem_host, ntohs(req->spec.rem_port),
 881                                   req->spec.loc_host, ntohs(req->spec.loc_port),
 882                                   req->rxq_index, req->flow_id, rc, arfs_id);
 883        }
 884
 885        /* Release references */
 886        clear_bit(slot_idx, &efx->rps_slot_map);
 887        dev_put(req->net_dev);
 888}
 889
 890int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
 891                   u16 rxq_index, u32 flow_id)
 892{
 893        struct efx_nic *efx = netdev_priv(net_dev);
 894        struct efx_async_filter_insertion *req;
 895        struct efx_arfs_rule *rule;
 896        struct flow_keys fk;
 897        int slot_idx;
 898        bool new;
 899        int rc;
 900
 901        /* find a free slot */
 902        for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
 903                if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
 904                        break;
 905        if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
 906                return -EBUSY;
 907
 908        if (flow_id == RPS_FLOW_ID_INVALID) {
 909                rc = -EINVAL;
 910                goto out_clear;
 911        }
 912
 913        if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
 914                rc = -EPROTONOSUPPORT;
 915                goto out_clear;
 916        }
 917
 918        if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
 919                rc = -EPROTONOSUPPORT;
 920                goto out_clear;
 921        }
 922        if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
 923                rc = -EPROTONOSUPPORT;
 924                goto out_clear;
 925        }
 926
 927        req = efx->rps_slot + slot_idx;
 928        efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
 929                           efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
 930                           rxq_index);
 931        req->spec.match_flags =
 932                EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
 933                EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
 934                EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
 935        req->spec.ether_type = fk.basic.n_proto;
 936        req->spec.ip_proto = fk.basic.ip_proto;
 937
 938        if (fk.basic.n_proto == htons(ETH_P_IP)) {
 939                req->spec.rem_host[0] = fk.addrs.v4addrs.src;
 940                req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
 941        } else {
 942                memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
 943                       sizeof(struct in6_addr));
 944                memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
 945                       sizeof(struct in6_addr));
 946        }
 947
 948        req->spec.rem_port = fk.ports.src;
 949        req->spec.loc_port = fk.ports.dst;
 950
 951        if (efx->rps_hash_table) {
 952                /* Add it to ARFS hash table */
 953                spin_lock(&efx->rps_hash_lock);
 954                rule = efx_rps_hash_add(efx, &req->spec, &new);
 955                if (!rule) {
 956                        rc = -ENOMEM;
 957                        goto out_unlock;
 958                }
 959                if (new)
 960                        rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
 961                rc = rule->arfs_id;
 962                /* Skip if existing or pending filter already does the right thing */
 963                if (!new && rule->rxq_index == rxq_index &&
 964                    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
 965                        goto out_unlock;
 966                rule->rxq_index = rxq_index;
 967                rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
 968                spin_unlock(&efx->rps_hash_lock);
 969        } else {
 970                /* Without an ARFS hash table, we just use arfs_id 0 for all
 971                 * filters.  This means if multiple flows hash to the same
 972                 * flow_id, all but the most recently touched will be eligible
 973                 * for expiry.
 974                 */
 975                rc = 0;
 976        }
 977
 978        /* Queue the request */
 979        dev_hold(req->net_dev = net_dev);
 980        INIT_WORK(&req->work, efx_filter_rfs_work);
 981        req->rxq_index = rxq_index;
 982        req->flow_id = flow_id;
 983        schedule_work(&req->work);
 984        return rc;
 985out_unlock:
 986        spin_unlock(&efx->rps_hash_lock);
 987out_clear:
 988        clear_bit(slot_idx, &efx->rps_slot_map);
 989        return rc;
 990}
 991
 992bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
 993{
 994        bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
 995        unsigned int channel_idx, index, size;
 996        u32 flow_id;
 997
 998        if (!mutex_trylock(&efx->rps_mutex))
 999                return false;
1000        expire_one = efx->type->filter_rfs_expire_one;
1001        channel_idx = efx->rps_expire_channel;
1002        index = efx->rps_expire_index;
1003        size = efx->type->max_rx_ip_filters;
1004        while (quota--) {
1005                struct efx_channel *channel = efx_get_channel(efx, channel_idx);
1006                flow_id = channel->rps_flow_id[index];
1007
1008                if (flow_id != RPS_FLOW_ID_INVALID &&
1009                    expire_one(efx, flow_id, index)) {
1010                        netif_info(efx, rx_status, efx->net_dev,
1011                                   "expired filter %d [queue %u flow %u]\n",
1012                                   index, channel_idx, flow_id);
1013                        channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1014                }
1015                if (++index == size) {
1016                        if (++channel_idx == efx->n_channels)
1017                                channel_idx = 0;
1018                        index = 0;
1019                }
1020        }
1021        efx->rps_expire_channel = channel_idx;
1022        efx->rps_expire_index = index;
1023
1024        mutex_unlock(&efx->rps_mutex);
1025        return true;
1026}
1027
1028#endif /* CONFIG_RFS_ACCEL */
1029
1030/**
1031 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
1032 * @spec: Specification to test
1033 *
1034 * Return: %true if the specification is a non-drop RX filter that
1035 * matches a local MAC address I/G bit value of 1 or matches a local
1036 * IPv4 or IPv6 address value in the respective multicast address
1037 * range.  Otherwise %false.
1038 */
1039bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
1040{
1041        if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
1042            spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
1043                return false;
1044
1045        if (spec->match_flags &
1046            (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
1047            is_multicast_ether_addr(spec->loc_mac))
1048                return true;
1049
1050        if ((spec->match_flags &
1051             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1052            (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1053                if (spec->ether_type == htons(ETH_P_IP) &&
1054                    ipv4_is_multicast(spec->loc_host[0]))
1055                        return true;
1056                if (spec->ether_type == htons(ETH_P_IPV6) &&
1057                    ((const u8 *)spec->loc_host)[0] == 0xff)
1058                        return true;
1059        }
1060
1061        return false;
1062}
1063