linux/drivers/spi/spi-rspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_dma.h>
  25#include <linux/spi/spi.h>
  26#include <linux/spi/rspi.h>
  27
  28#define RSPI_SPCR               0x00    /* Control Register */
  29#define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
  30#define RSPI_SPPCR              0x02    /* Pin Control Register */
  31#define RSPI_SPSR               0x03    /* Status Register */
  32#define RSPI_SPDR               0x04    /* Data Register */
  33#define RSPI_SPSCR              0x08    /* Sequence Control Register */
  34#define RSPI_SPSSR              0x09    /* Sequence Status Register */
  35#define RSPI_SPBR               0x0a    /* Bit Rate Register */
  36#define RSPI_SPDCR              0x0b    /* Data Control Register */
  37#define RSPI_SPCKD              0x0c    /* Clock Delay Register */
  38#define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
  39#define RSPI_SPND               0x0e    /* Next-Access Delay Register */
  40#define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
  41#define RSPI_SPCMD0             0x10    /* Command Register 0 */
  42#define RSPI_SPCMD1             0x12    /* Command Register 1 */
  43#define RSPI_SPCMD2             0x14    /* Command Register 2 */
  44#define RSPI_SPCMD3             0x16    /* Command Register 3 */
  45#define RSPI_SPCMD4             0x18    /* Command Register 4 */
  46#define RSPI_SPCMD5             0x1a    /* Command Register 5 */
  47#define RSPI_SPCMD6             0x1c    /* Command Register 6 */
  48#define RSPI_SPCMD7             0x1e    /* Command Register 7 */
  49#define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
  50#define RSPI_NUM_SPCMD          8
  51#define RSPI_RZ_NUM_SPCMD       4
  52#define QSPI_NUM_SPCMD          4
  53
  54/* RSPI on RZ only */
  55#define RSPI_SPBFCR             0x20    /* Buffer Control Register */
  56#define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
  57
  58/* QSPI only */
  59#define QSPI_SPBFCR             0x18    /* Buffer Control Register */
  60#define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
  61#define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
  62#define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
  63#define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
  64#define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
  65#define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
  66
  67/* SPCR - Control Register */
  68#define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
  69#define SPCR_SPE                0x40    /* Function Enable */
  70#define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
  71#define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
  72#define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
  73#define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
  74/* RSPI on SH only */
  75#define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
  76#define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
  77/* QSPI on R-Car Gen2 only */
  78#define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
  79#define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
  80
  81/* SSLP - Slave Select Polarity Register */
  82#define SSLP_SSL1P              0x02    /* SSL1 Signal Polarity Setting */
  83#define SSLP_SSL0P              0x01    /* SSL0 Signal Polarity Setting */
  84
  85/* SPPCR - Pin Control Register */
  86#define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
  87#define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
  88#define SPPCR_SPOM              0x04
  89#define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
  90#define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
  91
  92#define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93#define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94
  95/* SPSR - Status Register */
  96#define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
  97#define SPSR_TEND               0x40    /* Transmit End */
  98#define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
  99#define SPSR_PERF               0x08    /* Parity Error Flag */
 100#define SPSR_MODF               0x04    /* Mode Fault Error Flag */
 101#define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
 102#define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
 103
 104/* SPSCR - Sequence Control Register */
 105#define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
 106
 107/* SPSSR - Sequence Status Register */
 108#define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
 109#define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
 110
 111/* SPDCR - Data Control Register */
 112#define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
 113#define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
 114#define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
 115#define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
 116#define SPDCR_SPLWORD           SPDCR_SPLW1
 117#define SPDCR_SPLBYTE           SPDCR_SPLW0
 118#define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
 119#define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
 120#define SPDCR_SLSEL1            0x08
 121#define SPDCR_SLSEL0            0x04
 122#define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
 123#define SPDCR_SPFC1             0x02
 124#define SPDCR_SPFC0             0x01
 125#define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
 126
 127/* SPCKD - Clock Delay Register */
 128#define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
 129
 130/* SSLND - Slave Select Negation Delay Register */
 131#define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
 132
 133/* SPND - Next-Access Delay Register */
 134#define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
 135
 136/* SPCR2 - Control Register 2 */
 137#define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
 138#define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
 139#define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
 140#define SPCR2_SPPE              0x01    /* Parity Enable */
 141
 142/* SPCMDn - Command Registers */
 143#define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
 144#define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
 145#define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
 146#define SPCMD_LSBF              0x1000  /* LSB First */
 147#define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
 148#define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
 149#define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
 150#define SPCMD_SPB_16BIT         0x0100
 151#define SPCMD_SPB_20BIT         0x0000
 152#define SPCMD_SPB_24BIT         0x0100
 153#define SPCMD_SPB_32BIT         0x0200
 154#define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
 155#define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
 156#define SPCMD_SPIMOD1           0x0040
 157#define SPCMD_SPIMOD0           0x0020
 158#define SPCMD_SPIMOD_SINGLE     0
 159#define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
 160#define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
 161#define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
 162#define SPCMD_SSLA_MASK         0x0030  /* SSL Assert Signal Setting (RSPI) */
 163#define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
 164#define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
 165#define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
 166
 167/* SPBFCR - Buffer Control Register */
 168#define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
 169#define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
 170#define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
 171#define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
 172/* QSPI on R-Car Gen2 */
 173#define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
 174#define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
 175#define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
 176#define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
 177
 178#define QSPI_BUFFER_SIZE        32u
 179
 180struct rspi_data {
 181        void __iomem *addr;
 182        u32 max_speed_hz;
 183        struct spi_controller *ctlr;
 184        wait_queue_head_t wait;
 185        struct clk *clk;
 186        u16 spcmd;
 187        u8 spsr;
 188        u8 sppcr;
 189        int rx_irq, tx_irq;
 190        const struct spi_ops *ops;
 191
 192        unsigned dma_callbacked:1;
 193        unsigned byte_access:1;
 194};
 195
 196static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 197{
 198        iowrite8(data, rspi->addr + offset);
 199}
 200
 201static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 202{
 203        iowrite16(data, rspi->addr + offset);
 204}
 205
 206static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 207{
 208        iowrite32(data, rspi->addr + offset);
 209}
 210
 211static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 212{
 213        return ioread8(rspi->addr + offset);
 214}
 215
 216static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 217{
 218        return ioread16(rspi->addr + offset);
 219}
 220
 221static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 222{
 223        if (rspi->byte_access)
 224                rspi_write8(rspi, data, RSPI_SPDR);
 225        else /* 16 bit */
 226                rspi_write16(rspi, data, RSPI_SPDR);
 227}
 228
 229static u16 rspi_read_data(const struct rspi_data *rspi)
 230{
 231        if (rspi->byte_access)
 232                return rspi_read8(rspi, RSPI_SPDR);
 233        else /* 16 bit */
 234                return rspi_read16(rspi, RSPI_SPDR);
 235}
 236
 237/* optional functions */
 238struct spi_ops {
 239        int (*set_config_register)(struct rspi_data *rspi, int access_size);
 240        int (*transfer_one)(struct spi_controller *ctlr,
 241                            struct spi_device *spi, struct spi_transfer *xfer);
 242        u16 mode_bits;
 243        u16 flags;
 244        u16 fifo_size;
 245};
 246
 247/*
 248 * functions for RSPI on legacy SH
 249 */
 250static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 251{
 252        int spbr;
 253
 254        /* Sets output mode, MOSI signal, and (optionally) loopback */
 255        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 256
 257        /* Sets transfer bit rate */
 258        spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
 259                            2 * rspi->max_speed_hz) - 1;
 260        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 261
 262        /* Disable dummy transmission, set 16-bit word access, 1 frame */
 263        rspi_write8(rspi, 0, RSPI_SPDCR);
 264        rspi->byte_access = 0;
 265
 266        /* Sets RSPCK, SSL, next-access delay value */
 267        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 268        rspi_write8(rspi, 0x00, RSPI_SSLND);
 269        rspi_write8(rspi, 0x00, RSPI_SPND);
 270
 271        /* Sets parity, interrupt mask */
 272        rspi_write8(rspi, 0x00, RSPI_SPCR2);
 273
 274        /* Resets sequencer */
 275        rspi_write8(rspi, 0, RSPI_SPSCR);
 276        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 277        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 278
 279        /* Sets RSPI mode */
 280        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 281
 282        return 0;
 283}
 284
 285/*
 286 * functions for RSPI on RZ
 287 */
 288static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 289{
 290        int spbr;
 291        int div = 0;
 292        unsigned long clksrc;
 293
 294        /* Sets output mode, MOSI signal, and (optionally) loopback */
 295        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 296
 297        clksrc = clk_get_rate(rspi->clk);
 298        while (div < 3) {
 299                if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
 300                        break;
 301                div++;
 302                clksrc /= 2;
 303        }
 304
 305        /* Sets transfer bit rate */
 306        spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
 307        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 308        rspi->spcmd |= div << 2;
 309
 310        /* Disable dummy transmission, set byte access */
 311        rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 312        rspi->byte_access = 1;
 313
 314        /* Sets RSPCK, SSL, next-access delay value */
 315        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 316        rspi_write8(rspi, 0x00, RSPI_SSLND);
 317        rspi_write8(rspi, 0x00, RSPI_SPND);
 318
 319        /* Resets sequencer */
 320        rspi_write8(rspi, 0, RSPI_SPSCR);
 321        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 322        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 323
 324        /* Sets RSPI mode */
 325        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 326
 327        return 0;
 328}
 329
 330/*
 331 * functions for QSPI
 332 */
 333static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 334{
 335        int spbr;
 336
 337        /* Sets output mode, MOSI signal, and (optionally) loopback */
 338        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 339
 340        /* Sets transfer bit rate */
 341        spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
 342        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 343
 344        /* Disable dummy transmission, set byte access */
 345        rspi_write8(rspi, 0, RSPI_SPDCR);
 346        rspi->byte_access = 1;
 347
 348        /* Sets RSPCK, SSL, next-access delay value */
 349        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 350        rspi_write8(rspi, 0x00, RSPI_SSLND);
 351        rspi_write8(rspi, 0x00, RSPI_SPND);
 352
 353        /* Data Length Setting */
 354        if (access_size == 8)
 355                rspi->spcmd |= SPCMD_SPB_8BIT;
 356        else if (access_size == 16)
 357                rspi->spcmd |= SPCMD_SPB_16BIT;
 358        else
 359                rspi->spcmd |= SPCMD_SPB_32BIT;
 360
 361        rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 362
 363        /* Resets transfer data length */
 364        rspi_write32(rspi, 0, QSPI_SPBMUL0);
 365
 366        /* Resets transmit and receive buffer */
 367        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 368        /* Sets buffer to allow normal operation */
 369        rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 370
 371        /* Resets sequencer */
 372        rspi_write8(rspi, 0, RSPI_SPSCR);
 373        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 374
 375        /* Sets RSPI mode */
 376        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 377
 378        return 0;
 379}
 380
 381static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 382{
 383        u8 data;
 384
 385        data = rspi_read8(rspi, reg);
 386        data &= ~mask;
 387        data |= (val & mask);
 388        rspi_write8(rspi, data, reg);
 389}
 390
 391static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 392                                          unsigned int len)
 393{
 394        unsigned int n;
 395
 396        n = min(len, QSPI_BUFFER_SIZE);
 397
 398        if (len >= QSPI_BUFFER_SIZE) {
 399                /* sets triggering number to 32 bytes */
 400                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 401                             SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 402        } else {
 403                /* sets triggering number to 1 byte */
 404                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 405                             SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 406        }
 407
 408        return n;
 409}
 410
 411static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 412{
 413        unsigned int n;
 414
 415        n = min(len, QSPI_BUFFER_SIZE);
 416
 417        if (len >= QSPI_BUFFER_SIZE) {
 418                /* sets triggering number to 32 bytes */
 419                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 420                             SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 421        } else {
 422                /* sets triggering number to 1 byte */
 423                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 424                             SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 425        }
 426        return n;
 427}
 428
 429#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
 430
 431static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 432{
 433        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 434}
 435
 436static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 437{
 438        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 439}
 440
 441static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 442                                   u8 enable_bit)
 443{
 444        int ret;
 445
 446        rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 447        if (rspi->spsr & wait_mask)
 448                return 0;
 449
 450        rspi_enable_irq(rspi, enable_bit);
 451        ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 452        if (ret == 0 && !(rspi->spsr & wait_mask))
 453                return -ETIMEDOUT;
 454
 455        return 0;
 456}
 457
 458static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 459{
 460        return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 461}
 462
 463static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 464{
 465        return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 466}
 467
 468static int rspi_data_out(struct rspi_data *rspi, u8 data)
 469{
 470        int error = rspi_wait_for_tx_empty(rspi);
 471        if (error < 0) {
 472                dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 473                return error;
 474        }
 475        rspi_write_data(rspi, data);
 476        return 0;
 477}
 478
 479static int rspi_data_in(struct rspi_data *rspi)
 480{
 481        int error;
 482        u8 data;
 483
 484        error = rspi_wait_for_rx_full(rspi);
 485        if (error < 0) {
 486                dev_err(&rspi->ctlr->dev, "receive timeout\n");
 487                return error;
 488        }
 489        data = rspi_read_data(rspi);
 490        return data;
 491}
 492
 493static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 494                             unsigned int n)
 495{
 496        while (n-- > 0) {
 497                if (tx) {
 498                        int ret = rspi_data_out(rspi, *tx++);
 499                        if (ret < 0)
 500                                return ret;
 501                }
 502                if (rx) {
 503                        int ret = rspi_data_in(rspi);
 504                        if (ret < 0)
 505                                return ret;
 506                        *rx++ = ret;
 507                }
 508        }
 509
 510        return 0;
 511}
 512
 513static void rspi_dma_complete(void *arg)
 514{
 515        struct rspi_data *rspi = arg;
 516
 517        rspi->dma_callbacked = 1;
 518        wake_up_interruptible(&rspi->wait);
 519}
 520
 521static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 522                             struct sg_table *rx)
 523{
 524        struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 525        u8 irq_mask = 0;
 526        unsigned int other_irq = 0;
 527        dma_cookie_t cookie;
 528        int ret;
 529
 530        /* First prepare and submit the DMA request(s), as this may fail */
 531        if (rx) {
 532                desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 533                                        rx->nents, DMA_DEV_TO_MEM,
 534                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 535                if (!desc_rx) {
 536                        ret = -EAGAIN;
 537                        goto no_dma_rx;
 538                }
 539
 540                desc_rx->callback = rspi_dma_complete;
 541                desc_rx->callback_param = rspi;
 542                cookie = dmaengine_submit(desc_rx);
 543                if (dma_submit_error(cookie)) {
 544                        ret = cookie;
 545                        goto no_dma_rx;
 546                }
 547
 548                irq_mask |= SPCR_SPRIE;
 549        }
 550
 551        if (tx) {
 552                desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 553                                        tx->nents, DMA_MEM_TO_DEV,
 554                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 555                if (!desc_tx) {
 556                        ret = -EAGAIN;
 557                        goto no_dma_tx;
 558                }
 559
 560                if (rx) {
 561                        /* No callback */
 562                        desc_tx->callback = NULL;
 563                } else {
 564                        desc_tx->callback = rspi_dma_complete;
 565                        desc_tx->callback_param = rspi;
 566                }
 567                cookie = dmaengine_submit(desc_tx);
 568                if (dma_submit_error(cookie)) {
 569                        ret = cookie;
 570                        goto no_dma_tx;
 571                }
 572
 573                irq_mask |= SPCR_SPTIE;
 574        }
 575
 576        /*
 577         * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 578         * called. So, this driver disables the IRQ while DMA transfer.
 579         */
 580        if (tx)
 581                disable_irq(other_irq = rspi->tx_irq);
 582        if (rx && rspi->rx_irq != other_irq)
 583                disable_irq(rspi->rx_irq);
 584
 585        rspi_enable_irq(rspi, irq_mask);
 586        rspi->dma_callbacked = 0;
 587
 588        /* Now start DMA */
 589        if (rx)
 590                dma_async_issue_pending(rspi->ctlr->dma_rx);
 591        if (tx)
 592                dma_async_issue_pending(rspi->ctlr->dma_tx);
 593
 594        ret = wait_event_interruptible_timeout(rspi->wait,
 595                                               rspi->dma_callbacked, HZ);
 596        if (ret > 0 && rspi->dma_callbacked) {
 597                ret = 0;
 598        } else {
 599                if (!ret) {
 600                        dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 601                        ret = -ETIMEDOUT;
 602                }
 603                if (tx)
 604                        dmaengine_terminate_all(rspi->ctlr->dma_tx);
 605                if (rx)
 606                        dmaengine_terminate_all(rspi->ctlr->dma_rx);
 607        }
 608
 609        rspi_disable_irq(rspi, irq_mask);
 610
 611        if (tx)
 612                enable_irq(rspi->tx_irq);
 613        if (rx && rspi->rx_irq != other_irq)
 614                enable_irq(rspi->rx_irq);
 615
 616        return ret;
 617
 618no_dma_tx:
 619        if (rx)
 620                dmaengine_terminate_all(rspi->ctlr->dma_rx);
 621no_dma_rx:
 622        if (ret == -EAGAIN) {
 623                pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 624                             dev_driver_string(&rspi->ctlr->dev),
 625                             dev_name(&rspi->ctlr->dev));
 626        }
 627        return ret;
 628}
 629
 630static void rspi_receive_init(const struct rspi_data *rspi)
 631{
 632        u8 spsr;
 633
 634        spsr = rspi_read8(rspi, RSPI_SPSR);
 635        if (spsr & SPSR_SPRF)
 636                rspi_read_data(rspi);   /* dummy read */
 637        if (spsr & SPSR_OVRF)
 638                rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 639                            RSPI_SPSR);
 640}
 641
 642static void rspi_rz_receive_init(const struct rspi_data *rspi)
 643{
 644        rspi_receive_init(rspi);
 645        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 646        rspi_write8(rspi, 0, RSPI_SPBFCR);
 647}
 648
 649static void qspi_receive_init(const struct rspi_data *rspi)
 650{
 651        u8 spsr;
 652
 653        spsr = rspi_read8(rspi, RSPI_SPSR);
 654        if (spsr & SPSR_SPRF)
 655                rspi_read_data(rspi);   /* dummy read */
 656        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 657        rspi_write8(rspi, 0, QSPI_SPBFCR);
 658}
 659
 660static bool __rspi_can_dma(const struct rspi_data *rspi,
 661                           const struct spi_transfer *xfer)
 662{
 663        return xfer->len > rspi->ops->fifo_size;
 664}
 665
 666static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 667                         struct spi_transfer *xfer)
 668{
 669        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 670
 671        return __rspi_can_dma(rspi, xfer);
 672}
 673
 674static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 675                                         struct spi_transfer *xfer)
 676{
 677        if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 678                return -EAGAIN;
 679
 680        /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 681        return rspi_dma_transfer(rspi, &xfer->tx_sg,
 682                                xfer->rx_buf ? &xfer->rx_sg : NULL);
 683}
 684
 685static int rspi_common_transfer(struct rspi_data *rspi,
 686                                struct spi_transfer *xfer)
 687{
 688        int ret;
 689
 690        ret = rspi_dma_check_then_transfer(rspi, xfer);
 691        if (ret != -EAGAIN)
 692                return ret;
 693
 694        ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 695        if (ret < 0)
 696                return ret;
 697
 698        /* Wait for the last transmission */
 699        rspi_wait_for_tx_empty(rspi);
 700
 701        return 0;
 702}
 703
 704static int rspi_transfer_one(struct spi_controller *ctlr,
 705                             struct spi_device *spi, struct spi_transfer *xfer)
 706{
 707        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 708        u8 spcr;
 709
 710        spcr = rspi_read8(rspi, RSPI_SPCR);
 711        if (xfer->rx_buf) {
 712                rspi_receive_init(rspi);
 713                spcr &= ~SPCR_TXMD;
 714        } else {
 715                spcr |= SPCR_TXMD;
 716        }
 717        rspi_write8(rspi, spcr, RSPI_SPCR);
 718
 719        return rspi_common_transfer(rspi, xfer);
 720}
 721
 722static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 723                                struct spi_device *spi,
 724                                struct spi_transfer *xfer)
 725{
 726        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 727
 728        rspi_rz_receive_init(rspi);
 729
 730        return rspi_common_transfer(rspi, xfer);
 731}
 732
 733static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 734                                        u8 *rx, unsigned int len)
 735{
 736        unsigned int i, n;
 737        int ret;
 738
 739        while (len > 0) {
 740                n = qspi_set_send_trigger(rspi, len);
 741                qspi_set_receive_trigger(rspi, len);
 742                ret = rspi_wait_for_tx_empty(rspi);
 743                if (ret < 0) {
 744                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 745                        return ret;
 746                }
 747                for (i = 0; i < n; i++)
 748                        rspi_write_data(rspi, *tx++);
 749
 750                ret = rspi_wait_for_rx_full(rspi);
 751                if (ret < 0) {
 752                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 753                        return ret;
 754                }
 755                for (i = 0; i < n; i++)
 756                        *rx++ = rspi_read_data(rspi);
 757
 758                len -= n;
 759        }
 760
 761        return 0;
 762}
 763
 764static int qspi_transfer_out_in(struct rspi_data *rspi,
 765                                struct spi_transfer *xfer)
 766{
 767        int ret;
 768
 769        qspi_receive_init(rspi);
 770
 771        ret = rspi_dma_check_then_transfer(rspi, xfer);
 772        if (ret != -EAGAIN)
 773                return ret;
 774
 775        return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 776                                            xfer->rx_buf, xfer->len);
 777}
 778
 779static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 780{
 781        const u8 *tx = xfer->tx_buf;
 782        unsigned int n = xfer->len;
 783        unsigned int i, len;
 784        int ret;
 785
 786        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 787                ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 788                if (ret != -EAGAIN)
 789                        return ret;
 790        }
 791
 792        while (n > 0) {
 793                len = qspi_set_send_trigger(rspi, n);
 794                ret = rspi_wait_for_tx_empty(rspi);
 795                if (ret < 0) {
 796                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 797                        return ret;
 798                }
 799                for (i = 0; i < len; i++)
 800                        rspi_write_data(rspi, *tx++);
 801
 802                n -= len;
 803        }
 804
 805        /* Wait for the last transmission */
 806        rspi_wait_for_tx_empty(rspi);
 807
 808        return 0;
 809}
 810
 811static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 812{
 813        u8 *rx = xfer->rx_buf;
 814        unsigned int n = xfer->len;
 815        unsigned int i, len;
 816        int ret;
 817
 818        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 819                int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 820                if (ret != -EAGAIN)
 821                        return ret;
 822        }
 823
 824        while (n > 0) {
 825                len = qspi_set_receive_trigger(rspi, n);
 826                ret = rspi_wait_for_rx_full(rspi);
 827                if (ret < 0) {
 828                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 829                        return ret;
 830                }
 831                for (i = 0; i < len; i++)
 832                        *rx++ = rspi_read_data(rspi);
 833
 834                n -= len;
 835        }
 836
 837        return 0;
 838}
 839
 840static int qspi_transfer_one(struct spi_controller *ctlr,
 841                             struct spi_device *spi, struct spi_transfer *xfer)
 842{
 843        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 844
 845        if (spi->mode & SPI_LOOP) {
 846                return qspi_transfer_out_in(rspi, xfer);
 847        } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 848                /* Quad or Dual SPI Write */
 849                return qspi_transfer_out(rspi, xfer);
 850        } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 851                /* Quad or Dual SPI Read */
 852                return qspi_transfer_in(rspi, xfer);
 853        } else {
 854                /* Single SPI Transfer */
 855                return qspi_transfer_out_in(rspi, xfer);
 856        }
 857}
 858
 859static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 860{
 861        if (xfer->tx_buf)
 862                switch (xfer->tx_nbits) {
 863                case SPI_NBITS_QUAD:
 864                        return SPCMD_SPIMOD_QUAD;
 865                case SPI_NBITS_DUAL:
 866                        return SPCMD_SPIMOD_DUAL;
 867                default:
 868                        return 0;
 869                }
 870        if (xfer->rx_buf)
 871                switch (xfer->rx_nbits) {
 872                case SPI_NBITS_QUAD:
 873                        return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 874                case SPI_NBITS_DUAL:
 875                        return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 876                default:
 877                        return 0;
 878                }
 879
 880        return 0;
 881}
 882
 883static int qspi_setup_sequencer(struct rspi_data *rspi,
 884                                const struct spi_message *msg)
 885{
 886        const struct spi_transfer *xfer;
 887        unsigned int i = 0, len = 0;
 888        u16 current_mode = 0xffff, mode;
 889
 890        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 891                mode = qspi_transfer_mode(xfer);
 892                if (mode == current_mode) {
 893                        len += xfer->len;
 894                        continue;
 895                }
 896
 897                /* Transfer mode change */
 898                if (i) {
 899                        /* Set transfer data length of previous transfer */
 900                        rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 901                }
 902
 903                if (i >= QSPI_NUM_SPCMD) {
 904                        dev_err(&msg->spi->dev,
 905                                "Too many different transfer modes");
 906                        return -EINVAL;
 907                }
 908
 909                /* Program transfer mode for this transfer */
 910                rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 911                current_mode = mode;
 912                len = xfer->len;
 913                i++;
 914        }
 915        if (i) {
 916                /* Set final transfer data length and sequence length */
 917                rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 918                rspi_write8(rspi, i - 1, RSPI_SPSCR);
 919        }
 920
 921        return 0;
 922}
 923
 924static int rspi_prepare_message(struct spi_controller *ctlr,
 925                                struct spi_message *msg)
 926{
 927        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 928        struct spi_device *spi = msg->spi;
 929        int ret;
 930
 931        rspi->max_speed_hz = spi->max_speed_hz;
 932
 933        rspi->spcmd = SPCMD_SSLKP;
 934        if (spi->mode & SPI_CPOL)
 935                rspi->spcmd |= SPCMD_CPOL;
 936        if (spi->mode & SPI_CPHA)
 937                rspi->spcmd |= SPCMD_CPHA;
 938
 939        /* CMOS output mode and MOSI signal from previous transfer */
 940        rspi->sppcr = 0;
 941        if (spi->mode & SPI_LOOP)
 942                rspi->sppcr |= SPPCR_SPLP;
 943
 944        set_config_register(rspi, 8);
 945
 946        if (msg->spi->mode &
 947            (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 948                /* Setup sequencer for messages with multiple transfer modes */
 949                ret = qspi_setup_sequencer(rspi, msg);
 950                if (ret < 0)
 951                        return ret;
 952        }
 953
 954        /* Enable SPI function in master mode */
 955        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 956        return 0;
 957}
 958
 959static int rspi_unprepare_message(struct spi_controller *ctlr,
 960                                  struct spi_message *msg)
 961{
 962        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 963
 964        /* Disable SPI function */
 965        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 966
 967        /* Reset sequencer for Single SPI Transfers */
 968        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 969        rspi_write8(rspi, 0, RSPI_SPSCR);
 970        return 0;
 971}
 972
 973static irqreturn_t rspi_irq_mux(int irq, void *_sr)
 974{
 975        struct rspi_data *rspi = _sr;
 976        u8 spsr;
 977        irqreturn_t ret = IRQ_NONE;
 978        u8 disable_irq = 0;
 979
 980        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
 981        if (spsr & SPSR_SPRF)
 982                disable_irq |= SPCR_SPRIE;
 983        if (spsr & SPSR_SPTEF)
 984                disable_irq |= SPCR_SPTIE;
 985
 986        if (disable_irq) {
 987                ret = IRQ_HANDLED;
 988                rspi_disable_irq(rspi, disable_irq);
 989                wake_up(&rspi->wait);
 990        }
 991
 992        return ret;
 993}
 994
 995static irqreturn_t rspi_irq_rx(int irq, void *_sr)
 996{
 997        struct rspi_data *rspi = _sr;
 998        u8 spsr;
 999
1000        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1001        if (spsr & SPSR_SPRF) {
1002                rspi_disable_irq(rspi, SPCR_SPRIE);
1003                wake_up(&rspi->wait);
1004                return IRQ_HANDLED;
1005        }
1006
1007        return 0;
1008}
1009
1010static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1011{
1012        struct rspi_data *rspi = _sr;
1013        u8 spsr;
1014
1015        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1016        if (spsr & SPSR_SPTEF) {
1017                rspi_disable_irq(rspi, SPCR_SPTIE);
1018                wake_up(&rspi->wait);
1019                return IRQ_HANDLED;
1020        }
1021
1022        return 0;
1023}
1024
1025static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1026                                              enum dma_transfer_direction dir,
1027                                              unsigned int id,
1028                                              dma_addr_t port_addr)
1029{
1030        dma_cap_mask_t mask;
1031        struct dma_chan *chan;
1032        struct dma_slave_config cfg;
1033        int ret;
1034
1035        dma_cap_zero(mask);
1036        dma_cap_set(DMA_SLAVE, mask);
1037
1038        chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1039                                (void *)(unsigned long)id, dev,
1040                                dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1041        if (!chan) {
1042                dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1043                return NULL;
1044        }
1045
1046        memset(&cfg, 0, sizeof(cfg));
1047        cfg.direction = dir;
1048        if (dir == DMA_MEM_TO_DEV) {
1049                cfg.dst_addr = port_addr;
1050                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1051        } else {
1052                cfg.src_addr = port_addr;
1053                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1054        }
1055
1056        ret = dmaengine_slave_config(chan, &cfg);
1057        if (ret) {
1058                dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1059                dma_release_channel(chan);
1060                return NULL;
1061        }
1062
1063        return chan;
1064}
1065
1066static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1067                            const struct resource *res)
1068{
1069        const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1070        unsigned int dma_tx_id, dma_rx_id;
1071
1072        if (dev->of_node) {
1073                /* In the OF case we will get the slave IDs from the DT */
1074                dma_tx_id = 0;
1075                dma_rx_id = 0;
1076        } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1077                dma_tx_id = rspi_pd->dma_tx_id;
1078                dma_rx_id = rspi_pd->dma_rx_id;
1079        } else {
1080                /* The driver assumes no error. */
1081                return 0;
1082        }
1083
1084        ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1085                                             res->start + RSPI_SPDR);
1086        if (!ctlr->dma_tx)
1087                return -ENODEV;
1088
1089        ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1090                                             res->start + RSPI_SPDR);
1091        if (!ctlr->dma_rx) {
1092                dma_release_channel(ctlr->dma_tx);
1093                ctlr->dma_tx = NULL;
1094                return -ENODEV;
1095        }
1096
1097        ctlr->can_dma = rspi_can_dma;
1098        dev_info(dev, "DMA available");
1099        return 0;
1100}
1101
1102static void rspi_release_dma(struct spi_controller *ctlr)
1103{
1104        if (ctlr->dma_tx)
1105                dma_release_channel(ctlr->dma_tx);
1106        if (ctlr->dma_rx)
1107                dma_release_channel(ctlr->dma_rx);
1108}
1109
1110static int rspi_remove(struct platform_device *pdev)
1111{
1112        struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
1114        rspi_release_dma(rspi->ctlr);
1115        pm_runtime_disable(&pdev->dev);
1116
1117        return 0;
1118}
1119
1120static const struct spi_ops rspi_ops = {
1121        .set_config_register =  rspi_set_config_register,
1122        .transfer_one =         rspi_transfer_one,
1123        .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124        .flags =                SPI_CONTROLLER_MUST_TX,
1125        .fifo_size =            8,
1126};
1127
1128static const struct spi_ops rspi_rz_ops = {
1129        .set_config_register =  rspi_rz_set_config_register,
1130        .transfer_one =         rspi_rz_transfer_one,
1131        .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1132        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1133        .fifo_size =            8,      /* 8 for TX, 32 for RX */
1134};
1135
1136static const struct spi_ops qspi_ops = {
1137        .set_config_register =  qspi_set_config_register,
1138        .transfer_one =         qspi_transfer_one,
1139        .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP |
1140                                SPI_TX_DUAL | SPI_TX_QUAD |
1141                                SPI_RX_DUAL | SPI_RX_QUAD,
1142        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1143        .fifo_size =            32,
1144};
1145
1146#ifdef CONFIG_OF
1147static const struct of_device_id rspi_of_match[] = {
1148        /* RSPI on legacy SH */
1149        { .compatible = "renesas,rspi", .data = &rspi_ops },
1150        /* RSPI on RZ/A1H */
1151        { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1152        /* QSPI on R-Car Gen2 */
1153        { .compatible = "renesas,qspi", .data = &qspi_ops },
1154        { /* sentinel */ }
1155};
1156
1157MODULE_DEVICE_TABLE(of, rspi_of_match);
1158
1159static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1160{
1161        u32 num_cs;
1162        int error;
1163
1164        /* Parse DT properties */
1165        error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1166        if (error) {
1167                dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1168                return error;
1169        }
1170
1171        ctlr->num_chipselect = num_cs;
1172        return 0;
1173}
1174#else
1175#define rspi_of_match   NULL
1176static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1177{
1178        return -EINVAL;
1179}
1180#endif /* CONFIG_OF */
1181
1182static int rspi_request_irq(struct device *dev, unsigned int irq,
1183                            irq_handler_t handler, const char *suffix,
1184                            void *dev_id)
1185{
1186        const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1187                                          dev_name(dev), suffix);
1188        if (!name)
1189                return -ENOMEM;
1190
1191        return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1192}
1193
1194static int rspi_probe(struct platform_device *pdev)
1195{
1196        struct resource *res;
1197        struct spi_controller *ctlr;
1198        struct rspi_data *rspi;
1199        int ret;
1200        const struct rspi_plat_data *rspi_pd;
1201        const struct spi_ops *ops;
1202
1203        ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1204        if (ctlr == NULL)
1205                return -ENOMEM;
1206
1207        ops = of_device_get_match_data(&pdev->dev);
1208        if (ops) {
1209                ret = rspi_parse_dt(&pdev->dev, ctlr);
1210                if (ret)
1211                        goto error1;
1212        } else {
1213                ops = (struct spi_ops *)pdev->id_entry->driver_data;
1214                rspi_pd = dev_get_platdata(&pdev->dev);
1215                if (rspi_pd && rspi_pd->num_chipselect)
1216                        ctlr->num_chipselect = rspi_pd->num_chipselect;
1217                else
1218                        ctlr->num_chipselect = 2; /* default */
1219        }
1220
1221        /* ops parameter check */
1222        if (!ops->set_config_register) {
1223                dev_err(&pdev->dev, "there is no set_config_register\n");
1224                ret = -ENODEV;
1225                goto error1;
1226        }
1227
1228        rspi = spi_controller_get_devdata(ctlr);
1229        platform_set_drvdata(pdev, rspi);
1230        rspi->ops = ops;
1231        rspi->ctlr = ctlr;
1232
1233        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1234        rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1235        if (IS_ERR(rspi->addr)) {
1236                ret = PTR_ERR(rspi->addr);
1237                goto error1;
1238        }
1239
1240        rspi->clk = devm_clk_get(&pdev->dev, NULL);
1241        if (IS_ERR(rspi->clk)) {
1242                dev_err(&pdev->dev, "cannot get clock\n");
1243                ret = PTR_ERR(rspi->clk);
1244                goto error1;
1245        }
1246
1247        pm_runtime_enable(&pdev->dev);
1248
1249        init_waitqueue_head(&rspi->wait);
1250
1251        ctlr->bus_num = pdev->id;
1252        ctlr->auto_runtime_pm = true;
1253        ctlr->transfer_one = ops->transfer_one;
1254        ctlr->prepare_message = rspi_prepare_message;
1255        ctlr->unprepare_message = rspi_unprepare_message;
1256        ctlr->mode_bits = ops->mode_bits;
1257        ctlr->flags = ops->flags;
1258        ctlr->dev.of_node = pdev->dev.of_node;
1259
1260        ret = platform_get_irq_byname(pdev, "rx");
1261        if (ret < 0) {
1262                ret = platform_get_irq_byname(pdev, "mux");
1263                if (ret < 0)
1264                        ret = platform_get_irq(pdev, 0);
1265                if (ret >= 0)
1266                        rspi->rx_irq = rspi->tx_irq = ret;
1267        } else {
1268                rspi->rx_irq = ret;
1269                ret = platform_get_irq_byname(pdev, "tx");
1270                if (ret >= 0)
1271                        rspi->tx_irq = ret;
1272        }
1273        if (ret < 0) {
1274                dev_err(&pdev->dev, "platform_get_irq error\n");
1275                goto error2;
1276        }
1277
1278        if (rspi->rx_irq == rspi->tx_irq) {
1279                /* Single multiplexed interrupt */
1280                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1281                                       "mux", rspi);
1282        } else {
1283                /* Multi-interrupt mode, only SPRI and SPTI are used */
1284                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1285                                       "rx", rspi);
1286                if (!ret)
1287                        ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1288                                               rspi_irq_tx, "tx", rspi);
1289        }
1290        if (ret < 0) {
1291                dev_err(&pdev->dev, "request_irq error\n");
1292                goto error2;
1293        }
1294
1295        ret = rspi_request_dma(&pdev->dev, ctlr, res);
1296        if (ret < 0)
1297                dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1298
1299        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1300        if (ret < 0) {
1301                dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1302                goto error3;
1303        }
1304
1305        dev_info(&pdev->dev, "probed\n");
1306
1307        return 0;
1308
1309error3:
1310        rspi_release_dma(ctlr);
1311error2:
1312        pm_runtime_disable(&pdev->dev);
1313error1:
1314        spi_controller_put(ctlr);
1315
1316        return ret;
1317}
1318
1319static const struct platform_device_id spi_driver_ids[] = {
1320        { "rspi",       (kernel_ulong_t)&rspi_ops },
1321        { "rspi-rz",    (kernel_ulong_t)&rspi_rz_ops },
1322        { "qspi",       (kernel_ulong_t)&qspi_ops },
1323        {},
1324};
1325
1326MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1327
1328#ifdef CONFIG_PM_SLEEP
1329static int rspi_suspend(struct device *dev)
1330{
1331        struct rspi_data *rspi = dev_get_drvdata(dev);
1332
1333        return spi_controller_suspend(rspi->ctlr);
1334}
1335
1336static int rspi_resume(struct device *dev)
1337{
1338        struct rspi_data *rspi = dev_get_drvdata(dev);
1339
1340        return spi_controller_resume(rspi->ctlr);
1341}
1342
1343static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1344#define DEV_PM_OPS      &rspi_pm_ops
1345#else
1346#define DEV_PM_OPS      NULL
1347#endif /* CONFIG_PM_SLEEP */
1348
1349static struct platform_driver rspi_driver = {
1350        .probe =        rspi_probe,
1351        .remove =       rspi_remove,
1352        .id_table =     spi_driver_ids,
1353        .driver         = {
1354                .name = "renesas_spi",
1355                .pm = DEV_PM_OPS,
1356                .of_match_table = of_match_ptr(rspi_of_match),
1357        },
1358};
1359module_platform_driver(rspi_driver);
1360
1361MODULE_DESCRIPTION("Renesas RSPI bus driver");
1362MODULE_LICENSE("GPL v2");
1363MODULE_AUTHOR("Yoshihiro Shimoda");
1364MODULE_ALIAS("platform:rspi");
1365