linux/drivers/video/fbdev/sa1100fb.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/video/sa1100fb.c
   3 *
   4 *  Copyright (C) 1999 Eric A. Thomas
   5 *   Based on acornfb.c Copyright (C) Russell King.
   6 *
   7 * This file is subject to the terms and conditions of the GNU General Public
   8 * License.  See the file COPYING in the main directory of this archive for
   9 * more details.
  10 *
  11 *              StrongARM 1100 LCD Controller Frame Buffer Driver
  12 *
  13 * Please direct your questions and comments on this driver to the following
  14 * email address:
  15 *
  16 *      linux-arm-kernel@lists.arm.linux.org.uk
  17 *
  18 * Clean patches should be sent to the ARM Linux Patch System.  Please see the
  19 * following web page for more information:
  20 *
  21 *      http://www.arm.linux.org.uk/developer/patches/info.shtml
  22 *
  23 * Thank you.
  24 *
  25 * Known problems:
  26 *      - With the Neponset plugged into an Assabet, LCD powerdown
  27 *        doesn't work (LCD stays powered up).  Therefore we shouldn't
  28 *        blank the screen.
  29 *      - We don't limit the CPU clock rate nor the mode selection
  30 *        according to the available SDRAM bandwidth.
  31 *
  32 * Other notes:
  33 *      - Linear grayscale palettes and the kernel.
  34 *        Such code does not belong in the kernel.  The kernel frame buffer
  35 *        drivers do not expect a linear colourmap, but a colourmap based on
  36 *        the VT100 standard mapping.
  37 *
  38 *        If your _userspace_ requires a linear colourmap, then the setup of
  39 *        such a colourmap belongs _in userspace_, not in the kernel.  Code
  40 *        to set the colourmap correctly from user space has been sent to
  41 *        David Neuer.  It's around 8 lines of C code, plus another 4 to
  42 *        detect if we are using grayscale.
  43 *
  44 *      - The following must never be specified in a panel definition:
  45 *           LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
  46 *
  47 *      - The following should be specified:
  48 *           either LCCR0_Color or LCCR0_Mono
  49 *           either LCCR0_Sngl or LCCR0_Dual
  50 *           either LCCR0_Act or LCCR0_Pas
  51 *           either LCCR3_OutEnH or LCCD3_OutEnL
  52 *           either LCCR3_PixRsEdg or LCCR3_PixFlEdg
  53 *           either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
  54 *
  55 * Code Status:
  56 * 1999/04/01:
  57 *      - Driver appears to be working for Brutus 320x200x8bpp mode.  Other
  58 *        resolutions are working, but only the 8bpp mode is supported.
  59 *        Changes need to be made to the palette encode and decode routines
  60 *        to support 4 and 16 bpp modes.  
  61 *        Driver is not designed to be a module.  The FrameBuffer is statically
  62 *        allocated since dynamic allocation of a 300k buffer cannot be 
  63 *        guaranteed. 
  64 *
  65 * 1999/06/17:
  66 *      - FrameBuffer memory is now allocated at run-time when the
  67 *        driver is initialized.    
  68 *
  69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
  70 *      - Big cleanup for dynamic selection of machine type at run time.
  71 *
  72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
  73 *      - Support for Bitsy aka Compaq iPAQ H3600 added.
  74 *
  75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
  76 *             Jeff Sutherland <jsutherland@accelent.com>
  77 *      - Resolved an issue caused by a change made to the Assabet's PLD 
  78 *        earlier this year which broke the framebuffer driver for newer 
  79 *        Phase 4 Assabets.  Some other parameters were changed to optimize
  80 *        for the Sharp display.
  81 *
  82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
  83 *      - XP860 support added
  84 *
  85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
  86 *      - Allows standard options to be passed on the kernel command line
  87 *        for most common passive displays.
  88 *
  89 * 2000/08/29:
  90 *      - s/save_flags_cli/local_irq_save/
  91 *      - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
  92 *
  93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
  94 *      - Updated LART stuff. Fixed some minor bugs.
  95 *
  96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
  97 *      - Pangolin support added
  98 *
  99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
 100 *      - Huw Webpanel support added
 101 *
 102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
 103 *      - Freebird add
 104 *
 105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 
 106 *             Cliff Brake <cbrake@accelent.com>
 107 *      - Added PM callback
 108 *
 109 * 2001/05/26: <rmk@arm.linux.org.uk>
 110 *      - Fix 16bpp so that (a) we use the right colours rather than some
 111 *        totally random colour depending on what was in page 0, and (b)
 112 *        we don't de-reference a NULL pointer.
 113 *      - remove duplicated implementation of consistent_alloc()
 114 *      - convert dma address types to dma_addr_t
 115 *      - remove unused 'montype' stuff
 116 *      - remove redundant zero inits of init_var after the initial
 117 *        memset.
 118 *      - remove allow_modeset (acornfb idea does not belong here)
 119 *
 120 * 2001/05/28: <rmk@arm.linux.org.uk>
 121 *      - massive cleanup - move machine dependent data into structures
 122 *      - I've left various #warnings in - if you see one, and know
 123 *        the hardware concerned, please get in contact with me.
 124 *
 125 * 2001/05/31: <rmk@arm.linux.org.uk>
 126 *      - Fix LCCR1 HSW value, fix all machine type specifications to
 127 *        keep values in line.  (Please check your machine type specs)
 128 *
 129 * 2001/06/10: <rmk@arm.linux.org.uk>
 130 *      - Fiddle with the LCD controller from task context only; mainly
 131 *        so that we can run with interrupts on, and sleep.
 132 *      - Convert #warnings into #errors.  No pain, no gain. ;)
 133 *
 134 * 2001/06/14: <rmk@arm.linux.org.uk>
 135 *      - Make the palette BPS value for 12bpp come out correctly.
 136 *      - Take notice of "greyscale" on any colour depth.
 137 *      - Make truecolor visuals use the RGB channel encoding information.
 138 *
 139 * 2001/07/02: <rmk@arm.linux.org.uk>
 140 *      - Fix colourmap problems.
 141 *
 142 * 2001/07/13: <abraham@2d3d.co.za>
 143 *      - Added support for the ICP LCD-Kit01 on LART. This LCD is
 144 *        manufactured by Prime View, model no V16C6448AB
 145 *
 146 * 2001/07/23: <rmk@arm.linux.org.uk>
 147 *      - Hand merge version from handhelds.org CVS tree.  See patch
 148 *        notes for 595/1 for more information.
 149 *      - Drop 12bpp (it's 16bpp with different colour register mappings).
 150 *      - This hardware can not do direct colour.  Therefore we don't
 151 *        support it.
 152 *
 153 * 2001/07/27: <rmk@arm.linux.org.uk>
 154 *      - Halve YRES on dual scan LCDs.
 155 *
 156 * 2001/08/22: <rmk@arm.linux.org.uk>
 157 *      - Add b/w iPAQ pixclock value.
 158 *
 159 * 2001/10/12: <rmk@arm.linux.org.uk>
 160 *      - Add patch 681/1 and clean up stork definitions.
 161 */
 162
 163#include <linux/module.h>
 164#include <linux/kernel.h>
 165#include <linux/sched.h>
 166#include <linux/errno.h>
 167#include <linux/string.h>
 168#include <linux/interrupt.h>
 169#include <linux/slab.h>
 170#include <linux/mm.h>
 171#include <linux/fb.h>
 172#include <linux/delay.h>
 173#include <linux/init.h>
 174#include <linux/ioport.h>
 175#include <linux/cpufreq.h>
 176#include <linux/gpio.h>
 177#include <linux/platform_device.h>
 178#include <linux/dma-mapping.h>
 179#include <linux/mutex.h>
 180#include <linux/io.h>
 181#include <linux/clk.h>
 182
 183#include <video/sa1100fb.h>
 184
 185#include <mach/hardware.h>
 186#include <asm/mach-types.h>
 187#include <mach/shannon.h>
 188
 189/*
 190 * Complain if VAR is out of range.
 191 */
 192#define DEBUG_VAR 1
 193
 194#include "sa1100fb.h"
 195
 196static const struct sa1100fb_rgb rgb_4 = {
 197        .red    = { .offset = 0,  .length = 4, },
 198        .green  = { .offset = 0,  .length = 4, },
 199        .blue   = { .offset = 0,  .length = 4, },
 200        .transp = { .offset = 0,  .length = 0, },
 201};
 202
 203static const struct sa1100fb_rgb rgb_8 = {
 204        .red    = { .offset = 0,  .length = 8, },
 205        .green  = { .offset = 0,  .length = 8, },
 206        .blue   = { .offset = 0,  .length = 8, },
 207        .transp = { .offset = 0,  .length = 0, },
 208};
 209
 210static const struct sa1100fb_rgb def_rgb_16 = {
 211        .red    = { .offset = 11, .length = 5, },
 212        .green  = { .offset = 5,  .length = 6, },
 213        .blue   = { .offset = 0,  .length = 5, },
 214        .transp = { .offset = 0,  .length = 0, },
 215};
 216
 217
 218
 219static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
 220static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
 221
 222static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
 223{
 224        unsigned long flags;
 225
 226        local_irq_save(flags);
 227        /*
 228         * We need to handle two requests being made at the same time.
 229         * There are two important cases:
 230         *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
 231         *     We must perform the unblanking, which will do our REENABLE for us.
 232         *  2. When we are blanking, but immediately unblank before we have
 233         *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
 234         */
 235        if (fbi->task_state == C_ENABLE && state == C_REENABLE)
 236                state = (u_int) -1;
 237        if (fbi->task_state == C_DISABLE && state == C_ENABLE)
 238                state = C_REENABLE;
 239
 240        if (state != (u_int)-1) {
 241                fbi->task_state = state;
 242                schedule_work(&fbi->task);
 243        }
 244        local_irq_restore(flags);
 245}
 246
 247static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
 248{
 249        chan &= 0xffff;
 250        chan >>= 16 - bf->length;
 251        return chan << bf->offset;
 252}
 253
 254/*
 255 * Convert bits-per-pixel to a hardware palette PBS value.
 256 */
 257static inline u_int palette_pbs(struct fb_var_screeninfo *var)
 258{
 259        int ret = 0;
 260        switch (var->bits_per_pixel) {
 261        case 4:  ret = 0 << 12; break;
 262        case 8:  ret = 1 << 12; break;
 263        case 16: ret = 2 << 12; break;
 264        }
 265        return ret;
 266}
 267
 268static int
 269sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
 270                       u_int trans, struct fb_info *info)
 271{
 272        struct sa1100fb_info *fbi =
 273                container_of(info, struct sa1100fb_info, fb);
 274        u_int val, ret = 1;
 275
 276        if (regno < fbi->palette_size) {
 277                val = ((red >> 4) & 0xf00);
 278                val |= ((green >> 8) & 0x0f0);
 279                val |= ((blue >> 12) & 0x00f);
 280
 281                if (regno == 0)
 282                        val |= palette_pbs(&fbi->fb.var);
 283
 284                fbi->palette_cpu[regno] = val;
 285                ret = 0;
 286        }
 287        return ret;
 288}
 289
 290static int
 291sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
 292                   u_int trans, struct fb_info *info)
 293{
 294        struct sa1100fb_info *fbi =
 295                container_of(info, struct sa1100fb_info, fb);
 296        unsigned int val;
 297        int ret = 1;
 298
 299        /*
 300         * If inverse mode was selected, invert all the colours
 301         * rather than the register number.  The register number
 302         * is what you poke into the framebuffer to produce the
 303         * colour you requested.
 304         */
 305        if (fbi->inf->cmap_inverse) {
 306                red   = 0xffff - red;
 307                green = 0xffff - green;
 308                blue  = 0xffff - blue;
 309        }
 310
 311        /*
 312         * If greyscale is true, then we convert the RGB value
 313         * to greyscale no mater what visual we are using.
 314         */
 315        if (fbi->fb.var.grayscale)
 316                red = green = blue = (19595 * red + 38470 * green +
 317                                        7471 * blue) >> 16;
 318
 319        switch (fbi->fb.fix.visual) {
 320        case FB_VISUAL_TRUECOLOR:
 321                /*
 322                 * 12 or 16-bit True Colour.  We encode the RGB value
 323                 * according to the RGB bitfield information.
 324                 */
 325                if (regno < 16) {
 326                        val  = chan_to_field(red, &fbi->fb.var.red);
 327                        val |= chan_to_field(green, &fbi->fb.var.green);
 328                        val |= chan_to_field(blue, &fbi->fb.var.blue);
 329
 330                        fbi->pseudo_palette[regno] = val;
 331                        ret = 0;
 332                }
 333                break;
 334
 335        case FB_VISUAL_STATIC_PSEUDOCOLOR:
 336        case FB_VISUAL_PSEUDOCOLOR:
 337                ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
 338                break;
 339        }
 340
 341        return ret;
 342}
 343
 344#ifdef CONFIG_CPU_FREQ
 345/*
 346 *  sa1100fb_display_dma_period()
 347 *    Calculate the minimum period (in picoseconds) between two DMA
 348 *    requests for the LCD controller.  If we hit this, it means we're
 349 *    doing nothing but LCD DMA.
 350 */
 351static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
 352{
 353        /*
 354         * Period = pixclock * bits_per_byte * bytes_per_transfer
 355         *              / memory_bits_per_pixel;
 356         */
 357        return var->pixclock * 8 * 16 / var->bits_per_pixel;
 358}
 359#endif
 360
 361/*
 362 *  sa1100fb_check_var():
 363 *    Round up in the following order: bits_per_pixel, xres,
 364 *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
 365 *    bitfields, horizontal timing, vertical timing.
 366 */
 367static int
 368sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
 369{
 370        struct sa1100fb_info *fbi =
 371                container_of(info, struct sa1100fb_info, fb);
 372        int rgbidx;
 373
 374        if (var->xres < MIN_XRES)
 375                var->xres = MIN_XRES;
 376        if (var->yres < MIN_YRES)
 377                var->yres = MIN_YRES;
 378        if (var->xres > fbi->inf->xres)
 379                var->xres = fbi->inf->xres;
 380        if (var->yres > fbi->inf->yres)
 381                var->yres = fbi->inf->yres;
 382        var->xres_virtual = max(var->xres_virtual, var->xres);
 383        var->yres_virtual = max(var->yres_virtual, var->yres);
 384
 385        dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
 386        switch (var->bits_per_pixel) {
 387        case 4:
 388                rgbidx = RGB_4;
 389                break;
 390        case 8:
 391                rgbidx = RGB_8;
 392                break;
 393        case 16:
 394                rgbidx = RGB_16;
 395                break;
 396        default:
 397                return -EINVAL;
 398        }
 399
 400        /*
 401         * Copy the RGB parameters for this display
 402         * from the machine specific parameters.
 403         */
 404        var->red    = fbi->rgb[rgbidx]->red;
 405        var->green  = fbi->rgb[rgbidx]->green;
 406        var->blue   = fbi->rgb[rgbidx]->blue;
 407        var->transp = fbi->rgb[rgbidx]->transp;
 408
 409        dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
 410                var->red.length, var->green.length, var->blue.length,
 411                var->transp.length);
 412
 413        dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
 414                var->red.offset, var->green.offset, var->blue.offset,
 415                var->transp.offset);
 416
 417#ifdef CONFIG_CPU_FREQ
 418        dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
 419                sa1100fb_display_dma_period(var),
 420                clk_get_rate(fbi->clk) / 1000);
 421#endif
 422
 423        return 0;
 424}
 425
 426static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
 427{
 428        if (fbi->inf->set_visual)
 429                fbi->inf->set_visual(visual);
 430}
 431
 432/*
 433 * sa1100fb_set_par():
 434 *      Set the user defined part of the display for the specified console
 435 */
 436static int sa1100fb_set_par(struct fb_info *info)
 437{
 438        struct sa1100fb_info *fbi =
 439                container_of(info, struct sa1100fb_info, fb);
 440        struct fb_var_screeninfo *var = &info->var;
 441        unsigned long palette_mem_size;
 442
 443        dev_dbg(fbi->dev, "set_par\n");
 444
 445        if (var->bits_per_pixel == 16)
 446                fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
 447        else if (!fbi->inf->cmap_static)
 448                fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
 449        else {
 450                /*
 451                 * Some people have weird ideas about wanting static
 452                 * pseudocolor maps.  I suspect their user space
 453                 * applications are broken.
 454                 */
 455                fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
 456        }
 457
 458        fbi->fb.fix.line_length = var->xres_virtual *
 459                                  var->bits_per_pixel / 8;
 460        fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
 461
 462        palette_mem_size = fbi->palette_size * sizeof(u16);
 463
 464        dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
 465
 466        fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
 467        fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
 468
 469        /*
 470         * Set (any) board control register to handle new color depth
 471         */
 472        sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
 473        sa1100fb_activate_var(var, fbi);
 474
 475        return 0;
 476}
 477
 478#if 0
 479static int
 480sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
 481                  struct fb_info *info)
 482{
 483        struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
 484
 485        /*
 486         * Make sure the user isn't doing something stupid.
 487         */
 488        if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
 489                return -EINVAL;
 490
 491        return gen_set_cmap(cmap, kspc, con, info);
 492}
 493#endif
 494
 495/*
 496 * Formal definition of the VESA spec:
 497 *  On
 498 *      This refers to the state of the display when it is in full operation
 499 *  Stand-By
 500 *      This defines an optional operating state of minimal power reduction with
 501 *      the shortest recovery time
 502 *  Suspend
 503 *      This refers to a level of power management in which substantial power
 504 *      reduction is achieved by the display.  The display can have a longer 
 505 *      recovery time from this state than from the Stand-by state
 506 *  Off
 507 *      This indicates that the display is consuming the lowest level of power
 508 *      and is non-operational. Recovery from this state may optionally require
 509 *      the user to manually power on the monitor
 510 *
 511 *  Now, the fbdev driver adds an additional state, (blank), where they
 512 *  turn off the video (maybe by colormap tricks), but don't mess with the
 513 *  video itself: think of it semantically between on and Stand-By.
 514 *
 515 *  So here's what we should do in our fbdev blank routine:
 516 *
 517 *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
 518 *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
 519 *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
 520 *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
 521 *
 522 *  This will match the matrox implementation.
 523 */
 524/*
 525 * sa1100fb_blank():
 526 *      Blank the display by setting all palette values to zero.  Note, the 
 527 *      12 and 16 bpp modes don't really use the palette, so this will not
 528 *      blank the display in all modes.  
 529 */
 530static int sa1100fb_blank(int blank, struct fb_info *info)
 531{
 532        struct sa1100fb_info *fbi =
 533                container_of(info, struct sa1100fb_info, fb);
 534        int i;
 535
 536        dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
 537
 538        switch (blank) {
 539        case FB_BLANK_POWERDOWN:
 540        case FB_BLANK_VSYNC_SUSPEND:
 541        case FB_BLANK_HSYNC_SUSPEND:
 542        case FB_BLANK_NORMAL:
 543                if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
 544                    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
 545                        for (i = 0; i < fbi->palette_size; i++)
 546                                sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
 547                sa1100fb_schedule_work(fbi, C_DISABLE);
 548                break;
 549
 550        case FB_BLANK_UNBLANK:
 551                if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
 552                    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
 553                        fb_set_cmap(&fbi->fb.cmap, info);
 554                sa1100fb_schedule_work(fbi, C_ENABLE);
 555        }
 556        return 0;
 557}
 558
 559static int sa1100fb_mmap(struct fb_info *info,
 560                         struct vm_area_struct *vma)
 561{
 562        struct sa1100fb_info *fbi =
 563                container_of(info, struct sa1100fb_info, fb);
 564        unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
 565
 566        if (off < info->fix.smem_len) {
 567                vma->vm_pgoff += 1; /* skip over the palette */
 568                return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
 569                                   fbi->map_size);
 570        }
 571
 572        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 573
 574        return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
 575}
 576
 577static struct fb_ops sa1100fb_ops = {
 578        .owner          = THIS_MODULE,
 579        .fb_check_var   = sa1100fb_check_var,
 580        .fb_set_par     = sa1100fb_set_par,
 581//      .fb_set_cmap    = sa1100fb_set_cmap,
 582        .fb_setcolreg   = sa1100fb_setcolreg,
 583        .fb_fillrect    = cfb_fillrect,
 584        .fb_copyarea    = cfb_copyarea,
 585        .fb_imageblit   = cfb_imageblit,
 586        .fb_blank       = sa1100fb_blank,
 587        .fb_mmap        = sa1100fb_mmap,
 588};
 589
 590/*
 591 * Calculate the PCD value from the clock rate (in picoseconds).
 592 * We take account of the PPCR clock setting.
 593 */
 594static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
 595                unsigned int pixclock)
 596{
 597        unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
 598
 599        pcd *= pixclock;
 600        pcd /= 10000000;
 601
 602        return pcd + 1; /* make up for integer math truncations */
 603}
 604
 605/*
 606 * sa1100fb_activate_var():
 607 *      Configures LCD Controller based on entries in var parameter.  Settings are      
 608 *      only written to the controller if changes were made.  
 609 */
 610static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
 611{
 612        struct sa1100fb_lcd_reg new_regs;
 613        u_int half_screen_size, yres, pcd;
 614        u_long flags;
 615
 616        dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
 617
 618        dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
 619                var->xres, var->hsync_len,
 620                var->left_margin, var->right_margin);
 621        dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
 622                var->yres, var->vsync_len,
 623                var->upper_margin, var->lower_margin);
 624
 625#if DEBUG_VAR
 626        if (var->xres < 16        || var->xres > 1024)
 627                dev_err(fbi->dev, "%s: invalid xres %d\n",
 628                        fbi->fb.fix.id, var->xres);
 629        if (var->hsync_len < 1    || var->hsync_len > 64)
 630                dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
 631                        fbi->fb.fix.id, var->hsync_len);
 632        if (var->left_margin < 1  || var->left_margin > 255)
 633                dev_err(fbi->dev, "%s: invalid left_margin %d\n",
 634                        fbi->fb.fix.id, var->left_margin);
 635        if (var->right_margin < 1 || var->right_margin > 255)
 636                dev_err(fbi->dev, "%s: invalid right_margin %d\n",
 637                        fbi->fb.fix.id, var->right_margin);
 638        if (var->yres < 1         || var->yres > 1024)
 639                dev_err(fbi->dev, "%s: invalid yres %d\n",
 640                        fbi->fb.fix.id, var->yres);
 641        if (var->vsync_len < 1    || var->vsync_len > 64)
 642                dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
 643                        fbi->fb.fix.id, var->vsync_len);
 644        if (var->upper_margin < 0 || var->upper_margin > 255)
 645                dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
 646                        fbi->fb.fix.id, var->upper_margin);
 647        if (var->lower_margin < 0 || var->lower_margin > 255)
 648                dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
 649                        fbi->fb.fix.id, var->lower_margin);
 650#endif
 651
 652        new_regs.lccr0 = fbi->inf->lccr0 |
 653                LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
 654                LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
 655
 656        new_regs.lccr1 =
 657                LCCR1_DisWdth(var->xres) +
 658                LCCR1_HorSnchWdth(var->hsync_len) +
 659                LCCR1_BegLnDel(var->left_margin) +
 660                LCCR1_EndLnDel(var->right_margin);
 661
 662        /*
 663         * If we have a dual scan LCD, then we need to halve
 664         * the YRES parameter.
 665         */
 666        yres = var->yres;
 667        if (fbi->inf->lccr0 & LCCR0_Dual)
 668                yres /= 2;
 669
 670        new_regs.lccr2 =
 671                LCCR2_DisHght(yres) +
 672                LCCR2_VrtSnchWdth(var->vsync_len) +
 673                LCCR2_BegFrmDel(var->upper_margin) +
 674                LCCR2_EndFrmDel(var->lower_margin);
 675
 676        pcd = get_pcd(fbi, var->pixclock);
 677        new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
 678                (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
 679                (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
 680
 681        dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
 682        dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
 683        dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
 684        dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
 685
 686        half_screen_size = var->bits_per_pixel;
 687        half_screen_size = half_screen_size * var->xres * var->yres / 16;
 688
 689        /* Update shadow copy atomically */
 690        local_irq_save(flags);
 691        fbi->dbar1 = fbi->palette_dma;
 692        fbi->dbar2 = fbi->screen_dma + half_screen_size;
 693
 694        fbi->reg_lccr0 = new_regs.lccr0;
 695        fbi->reg_lccr1 = new_regs.lccr1;
 696        fbi->reg_lccr2 = new_regs.lccr2;
 697        fbi->reg_lccr3 = new_regs.lccr3;
 698        local_irq_restore(flags);
 699
 700        /*
 701         * Only update the registers if the controller is enabled
 702         * and something has changed.
 703         */
 704        if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
 705            readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
 706            readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
 707            readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
 708            readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
 709            readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
 710                sa1100fb_schedule_work(fbi, C_REENABLE);
 711
 712        return 0;
 713}
 714
 715/*
 716 * NOTE!  The following functions are purely helpers for set_ctrlr_state.
 717 * Do not call them directly; set_ctrlr_state does the correct serialisation
 718 * to ensure that things happen in the right way 100% of time time.
 719 *      -- rmk
 720 */
 721static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
 722{
 723        dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
 724
 725        if (fbi->inf->backlight_power)
 726                fbi->inf->backlight_power(on);
 727}
 728
 729static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
 730{
 731        dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
 732
 733        if (fbi->inf->lcd_power)
 734                fbi->inf->lcd_power(on);
 735}
 736
 737static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
 738{
 739        u_int mask = 0;
 740
 741        /*
 742         * Enable GPIO<9:2> for LCD use if:
 743         *  1. Active display, or
 744         *  2. Color Dual Passive display
 745         *
 746         * see table 11.8 on page 11-27 in the SA1100 manual
 747         *   -- Erik.
 748         *
 749         * SA1110 spec update nr. 25 says we can and should
 750         * clear LDD15 to 12 for 4 or 8bpp modes with active
 751         * panels.  
 752         */
 753        if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
 754            (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
 755                mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
 756
 757                if (fbi->fb.var.bits_per_pixel > 8 ||
 758                    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
 759                        mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
 760
 761        }
 762
 763        if (mask) {
 764                unsigned long flags;
 765
 766                /*
 767                 * SA-1100 requires the GPIO direction register set
 768                 * appropriately for the alternate function.  Hence
 769                 * we set it here via bitmask rather than excessive
 770                 * fiddling via the GPIO subsystem - and even then
 771                 * we'll still have to deal with GAFR.
 772                 */
 773                local_irq_save(flags);
 774                GPDR |= mask;
 775                GAFR |= mask;
 776                local_irq_restore(flags);
 777        }
 778}
 779
 780static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
 781{
 782        dev_dbg(fbi->dev, "Enabling LCD controller\n");
 783
 784        /*
 785         * Make sure the mode bits are present in the first palette entry
 786         */
 787        fbi->palette_cpu[0] &= 0xcfff;
 788        fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
 789
 790        /* enable LCD controller clock */
 791        clk_prepare_enable(fbi->clk);
 792
 793        /* Sequence from 11.7.10 */
 794        writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
 795        writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
 796        writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
 797        writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
 798        writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
 799        writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
 800        writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
 801
 802        if (machine_is_shannon())
 803                gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
 804
 805        dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
 806        dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
 807        dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
 808        dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
 809        dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
 810        dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
 811}
 812
 813static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
 814{
 815        DECLARE_WAITQUEUE(wait, current);
 816        u32 lccr0;
 817
 818        dev_dbg(fbi->dev, "Disabling LCD controller\n");
 819
 820        if (machine_is_shannon())
 821                gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
 822
 823        set_current_state(TASK_UNINTERRUPTIBLE);
 824        add_wait_queue(&fbi->ctrlr_wait, &wait);
 825
 826        /* Clear LCD Status Register */
 827        writel_relaxed(~0, fbi->base + LCSR);
 828
 829        lccr0 = readl_relaxed(fbi->base + LCCR0);
 830        lccr0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
 831        writel_relaxed(lccr0, fbi->base + LCCR0);
 832        lccr0 &= ~LCCR0_LEN;    /* Disable LCD Controller */
 833        writel_relaxed(lccr0, fbi->base + LCCR0);
 834
 835        schedule_timeout(20 * HZ / 1000);
 836        remove_wait_queue(&fbi->ctrlr_wait, &wait);
 837
 838        /* disable LCD controller clock */
 839        clk_disable_unprepare(fbi->clk);
 840}
 841
 842/*
 843 *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
 844 */
 845static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
 846{
 847        struct sa1100fb_info *fbi = dev_id;
 848        unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
 849
 850        if (lcsr & LCSR_LDD) {
 851                u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
 852                writel_relaxed(lccr0, fbi->base + LCCR0);
 853                wake_up(&fbi->ctrlr_wait);
 854        }
 855
 856        writel_relaxed(lcsr, fbi->base + LCSR);
 857        return IRQ_HANDLED;
 858}
 859
 860/*
 861 * This function must be called from task context only, since it will
 862 * sleep when disabling the LCD controller, or if we get two contending
 863 * processes trying to alter state.
 864 */
 865static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
 866{
 867        u_int old_state;
 868
 869        mutex_lock(&fbi->ctrlr_lock);
 870
 871        old_state = fbi->state;
 872
 873        /*
 874         * Hack around fbcon initialisation.
 875         */
 876        if (old_state == C_STARTUP && state == C_REENABLE)
 877                state = C_ENABLE;
 878
 879        switch (state) {
 880        case C_DISABLE_CLKCHANGE:
 881                /*
 882                 * Disable controller for clock change.  If the
 883                 * controller is already disabled, then do nothing.
 884                 */
 885                if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
 886                        fbi->state = state;
 887                        sa1100fb_disable_controller(fbi);
 888                }
 889                break;
 890
 891        case C_DISABLE_PM:
 892        case C_DISABLE:
 893                /*
 894                 * Disable controller
 895                 */
 896                if (old_state != C_DISABLE) {
 897                        fbi->state = state;
 898
 899                        __sa1100fb_backlight_power(fbi, 0);
 900                        if (old_state != C_DISABLE_CLKCHANGE)
 901                                sa1100fb_disable_controller(fbi);
 902                        __sa1100fb_lcd_power(fbi, 0);
 903                }
 904                break;
 905
 906        case C_ENABLE_CLKCHANGE:
 907                /*
 908                 * Enable the controller after clock change.  Only
 909                 * do this if we were disabled for the clock change.
 910                 */
 911                if (old_state == C_DISABLE_CLKCHANGE) {
 912                        fbi->state = C_ENABLE;
 913                        sa1100fb_enable_controller(fbi);
 914                }
 915                break;
 916
 917        case C_REENABLE:
 918                /*
 919                 * Re-enable the controller only if it was already
 920                 * enabled.  This is so we reprogram the control
 921                 * registers.
 922                 */
 923                if (old_state == C_ENABLE) {
 924                        sa1100fb_disable_controller(fbi);
 925                        sa1100fb_setup_gpio(fbi);
 926                        sa1100fb_enable_controller(fbi);
 927                }
 928                break;
 929
 930        case C_ENABLE_PM:
 931                /*
 932                 * Re-enable the controller after PM.  This is not
 933                 * perfect - think about the case where we were doing
 934                 * a clock change, and we suspended half-way through.
 935                 */
 936                if (old_state != C_DISABLE_PM)
 937                        break;
 938                /* fall through */
 939
 940        case C_ENABLE:
 941                /*
 942                 * Power up the LCD screen, enable controller, and
 943                 * turn on the backlight.
 944                 */
 945                if (old_state != C_ENABLE) {
 946                        fbi->state = C_ENABLE;
 947                        sa1100fb_setup_gpio(fbi);
 948                        __sa1100fb_lcd_power(fbi, 1);
 949                        sa1100fb_enable_controller(fbi);
 950                        __sa1100fb_backlight_power(fbi, 1);
 951                }
 952                break;
 953        }
 954        mutex_unlock(&fbi->ctrlr_lock);
 955}
 956
 957/*
 958 * Our LCD controller task (which is called when we blank or unblank)
 959 * via keventd.
 960 */
 961static void sa1100fb_task(struct work_struct *w)
 962{
 963        struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
 964        u_int state = xchg(&fbi->task_state, -1);
 965
 966        set_ctrlr_state(fbi, state);
 967}
 968
 969#ifdef CONFIG_CPU_FREQ
 970/*
 971 * Calculate the minimum DMA period over all displays that we own.
 972 * This, together with the SDRAM bandwidth defines the slowest CPU
 973 * frequency that can be selected.
 974 */
 975static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
 976{
 977        /*
 978         * FIXME: we need to verify _all_ consoles.
 979         */
 980        return sa1100fb_display_dma_period(&fbi->fb.var);
 981}
 982
 983/*
 984 * CPU clock speed change handler.  We need to adjust the LCD timing
 985 * parameters when the CPU clock is adjusted by the power management
 986 * subsystem.
 987 */
 988static int
 989sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
 990                         void *data)
 991{
 992        struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
 993        u_int pcd;
 994
 995        switch (val) {
 996        case CPUFREQ_PRECHANGE:
 997                set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
 998                break;
 999
1000        case CPUFREQ_POSTCHANGE:
1001                pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1002                fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1003                set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1004                break;
1005        }
1006        return 0;
1007}
1008#endif
1009
1010#ifdef CONFIG_PM
1011/*
1012 * Power management hooks.  Note that we won't be called from IRQ context,
1013 * unlike the blank functions above, so we may sleep.
1014 */
1015static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1016{
1017        struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1018
1019        set_ctrlr_state(fbi, C_DISABLE_PM);
1020        return 0;
1021}
1022
1023static int sa1100fb_resume(struct platform_device *dev)
1024{
1025        struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1026
1027        set_ctrlr_state(fbi, C_ENABLE_PM);
1028        return 0;
1029}
1030#else
1031#define sa1100fb_suspend        NULL
1032#define sa1100fb_resume         NULL
1033#endif
1034
1035/*
1036 * sa1100fb_map_video_memory():
1037 *      Allocates the DRAM memory for the frame buffer.  This buffer is  
1038 *      remapped into a non-cached, non-buffered, memory region to  
1039 *      allow palette and pixel writes to occur without flushing the 
1040 *      cache.  Once this area is remapped, all virtual memory
1041 *      access to the video memory should occur at the new region.
1042 */
1043static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1044{
1045        /*
1046         * We reserve one page for the palette, plus the size
1047         * of the framebuffer.
1048         */
1049        fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1050        fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1051                                    GFP_KERNEL);
1052
1053        if (fbi->map_cpu) {
1054                fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1055                fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1056                /*
1057                 * FIXME: this is actually the wrong thing to place in
1058                 * smem_start.  But fbdev suffers from the problem that
1059                 * it needs an API which doesn't exist (in this case,
1060                 * dma_writecombine_mmap)
1061                 */
1062                fbi->fb.fix.smem_start = fbi->screen_dma;
1063        }
1064
1065        return fbi->map_cpu ? 0 : -ENOMEM;
1066}
1067
1068/* Fake monspecs to fill in fbinfo structure */
1069static struct fb_monspecs monspecs = {
1070        .hfmin  = 30000,
1071        .hfmax  = 70000,
1072        .vfmin  = 50,
1073        .vfmax  = 65,
1074};
1075
1076
1077static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1078{
1079        struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1080        struct sa1100fb_info *fbi;
1081        unsigned i;
1082
1083        fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL);
1084        if (!fbi)
1085                return NULL;
1086
1087        fbi->dev = dev;
1088
1089        strcpy(fbi->fb.fix.id, SA1100_NAME);
1090
1091        fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1092        fbi->fb.fix.type_aux    = 0;
1093        fbi->fb.fix.xpanstep    = 0;
1094        fbi->fb.fix.ypanstep    = 0;
1095        fbi->fb.fix.ywrapstep   = 0;
1096        fbi->fb.fix.accel       = FB_ACCEL_NONE;
1097
1098        fbi->fb.var.nonstd      = 0;
1099        fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1100        fbi->fb.var.height      = -1;
1101        fbi->fb.var.width       = -1;
1102        fbi->fb.var.accel_flags = 0;
1103        fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1104
1105        fbi->fb.fbops           = &sa1100fb_ops;
1106        fbi->fb.flags           = FBINFO_DEFAULT;
1107        fbi->fb.monspecs        = monspecs;
1108        fbi->fb.pseudo_palette  = fbi->pseudo_palette;
1109
1110        fbi->rgb[RGB_4]         = &rgb_4;
1111        fbi->rgb[RGB_8]         = &rgb_8;
1112        fbi->rgb[RGB_16]        = &def_rgb_16;
1113
1114        /*
1115         * People just don't seem to get this.  We don't support
1116         * anything but correct entries now, so panic if someone
1117         * does something stupid.
1118         */
1119        if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1120            inf->pixclock == 0)
1121                panic("sa1100fb error: invalid LCCR3 fields set or zero "
1122                        "pixclock.");
1123
1124        fbi->fb.var.xres                = inf->xres;
1125        fbi->fb.var.xres_virtual        = inf->xres;
1126        fbi->fb.var.yres                = inf->yres;
1127        fbi->fb.var.yres_virtual        = inf->yres;
1128        fbi->fb.var.bits_per_pixel      = inf->bpp;
1129        fbi->fb.var.pixclock            = inf->pixclock;
1130        fbi->fb.var.hsync_len           = inf->hsync_len;
1131        fbi->fb.var.left_margin         = inf->left_margin;
1132        fbi->fb.var.right_margin        = inf->right_margin;
1133        fbi->fb.var.vsync_len           = inf->vsync_len;
1134        fbi->fb.var.upper_margin        = inf->upper_margin;
1135        fbi->fb.var.lower_margin        = inf->lower_margin;
1136        fbi->fb.var.sync                = inf->sync;
1137        fbi->fb.var.grayscale           = inf->cmap_greyscale;
1138        fbi->state                      = C_STARTUP;
1139        fbi->task_state                 = (u_char)-1;
1140        fbi->fb.fix.smem_len            = inf->xres * inf->yres *
1141                                          inf->bpp / 8;
1142        fbi->inf                        = inf;
1143
1144        /* Copy the RGB bitfield overrides */
1145        for (i = 0; i < NR_RGB; i++)
1146                if (inf->rgb[i])
1147                        fbi->rgb[i] = inf->rgb[i];
1148
1149        init_waitqueue_head(&fbi->ctrlr_wait);
1150        INIT_WORK(&fbi->task, sa1100fb_task);
1151        mutex_init(&fbi->ctrlr_lock);
1152
1153        return fbi;
1154}
1155
1156static int sa1100fb_probe(struct platform_device *pdev)
1157{
1158        struct sa1100fb_info *fbi;
1159        struct resource *res;
1160        int ret, irq;
1161
1162        if (!dev_get_platdata(&pdev->dev)) {
1163                dev_err(&pdev->dev, "no platform LCD data\n");
1164                return -EINVAL;
1165        }
1166
1167        irq = platform_get_irq(pdev, 0);
1168        if (irq < 0)
1169                return -EINVAL;
1170
1171        fbi = sa1100fb_init_fbinfo(&pdev->dev);
1172        if (!fbi)
1173                return -ENOMEM;
1174
1175        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176        fbi->base = devm_ioremap_resource(&pdev->dev, res);
1177        if (IS_ERR(fbi->base))
1178                return PTR_ERR(fbi->base);
1179
1180        fbi->clk = devm_clk_get(&pdev->dev, NULL);
1181        if (IS_ERR(fbi->clk))
1182                return PTR_ERR(fbi->clk);
1183
1184        ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0,
1185                               "LCD", fbi);
1186        if (ret) {
1187                dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1188                return ret;
1189        }
1190
1191        if (machine_is_shannon()) {
1192                ret = devm_gpio_request_one(&pdev->dev, SHANNON_GPIO_DISP_EN,
1193                        GPIOF_OUT_INIT_LOW, "display enable");
1194                if (ret)
1195                        return ret;
1196        }
1197
1198        /* Initialize video memory */
1199        ret = sa1100fb_map_video_memory(fbi);
1200        if (ret)
1201                return ret;
1202
1203        /*
1204         * This makes sure that our colour bitfield
1205         * descriptors are correctly initialised.
1206         */
1207        sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1208
1209        platform_set_drvdata(pdev, fbi);
1210
1211        ret = register_framebuffer(&fbi->fb);
1212        if (ret < 0) {
1213                dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu,
1214                            fbi->map_dma);
1215                return ret;
1216        }
1217
1218#ifdef CONFIG_CPU_FREQ
1219        fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1220        cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1221#endif
1222
1223        /* This driver cannot be unloaded at the moment */
1224        return 0;
1225}
1226
1227static struct platform_driver sa1100fb_driver = {
1228        .probe          = sa1100fb_probe,
1229        .suspend        = sa1100fb_suspend,
1230        .resume         = sa1100fb_resume,
1231        .driver         = {
1232                .name   = "sa11x0-fb",
1233        },
1234};
1235
1236int __init sa1100fb_init(void)
1237{
1238        if (fb_get_options("sa1100fb", NULL))
1239                return -ENODEV;
1240
1241        return platform_driver_register(&sa1100fb_driver);
1242}
1243
1244int __init sa1100fb_setup(char *options)
1245{
1246#if 0
1247        char *this_opt;
1248
1249        if (!options || !*options)
1250                return 0;
1251
1252        while ((this_opt = strsep(&options, ",")) != NULL) {
1253
1254                if (!strncmp(this_opt, "bpp:", 4))
1255                        current_par.max_bpp =
1256                            simple_strtoul(this_opt + 4, NULL, 0);
1257
1258                if (!strncmp(this_opt, "lccr0:", 6))
1259                        lcd_shadow.lccr0 =
1260                            simple_strtoul(this_opt + 6, NULL, 0);
1261                if (!strncmp(this_opt, "lccr1:", 6)) {
1262                        lcd_shadow.lccr1 =
1263                            simple_strtoul(this_opt + 6, NULL, 0);
1264                        current_par.max_xres =
1265                            (lcd_shadow.lccr1 & 0x3ff) + 16;
1266                }
1267                if (!strncmp(this_opt, "lccr2:", 6)) {
1268                        lcd_shadow.lccr2 =
1269                            simple_strtoul(this_opt + 6, NULL, 0);
1270                        current_par.max_yres =
1271                            (lcd_shadow.
1272                             lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1273                                                    lccr2 & 0x3ff) +
1274                                                   1) *
1275                            2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1276                }
1277                if (!strncmp(this_opt, "lccr3:", 6))
1278                        lcd_shadow.lccr3 =
1279                            simple_strtoul(this_opt + 6, NULL, 0);
1280        }
1281#endif
1282        return 0;
1283}
1284
1285module_init(sa1100fb_init);
1286MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1287MODULE_LICENSE("GPL");
1288