linux/fs/btrfs/compression.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
  31
  32static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  33
  34const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  35{
  36        switch (type) {
  37        case BTRFS_COMPRESS_ZLIB:
  38        case BTRFS_COMPRESS_LZO:
  39        case BTRFS_COMPRESS_ZSTD:
  40        case BTRFS_COMPRESS_NONE:
  41                return btrfs_compress_types[type];
  42        }
  43
  44        return NULL;
  45}
  46
  47bool btrfs_compress_is_valid_type(const char *str, size_t len)
  48{
  49        int i;
  50
  51        for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  52                size_t comp_len = strlen(btrfs_compress_types[i]);
  53
  54                if (len < comp_len)
  55                        continue;
  56
  57                if (!strncmp(btrfs_compress_types[i], str, comp_len))
  58                        return true;
  59        }
  60        return false;
  61}
  62
  63static int btrfs_decompress_bio(struct compressed_bio *cb);
  64
  65static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  66                                      unsigned long disk_size)
  67{
  68        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  69
  70        return sizeof(struct compressed_bio) +
  71                (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
  72}
  73
  74static int check_compressed_csum(struct btrfs_inode *inode,
  75                                 struct compressed_bio *cb,
  76                                 u64 disk_start)
  77{
  78        struct btrfs_fs_info *fs_info = inode->root->fs_info;
  79        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
  80        const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  81        int ret;
  82        struct page *page;
  83        unsigned long i;
  84        char *kaddr;
  85        u8 csum[BTRFS_CSUM_SIZE];
  86        u8 *cb_sum = cb->sums;
  87
  88        if (inode->flags & BTRFS_INODE_NODATASUM)
  89                return 0;
  90
  91        shash->tfm = fs_info->csum_shash;
  92
  93        for (i = 0; i < cb->nr_pages; i++) {
  94                page = cb->compressed_pages[i];
  95
  96                crypto_shash_init(shash);
  97                kaddr = kmap_atomic(page);
  98                crypto_shash_update(shash, kaddr, PAGE_SIZE);
  99                kunmap_atomic(kaddr);
 100                crypto_shash_final(shash, (u8 *)&csum);
 101
 102                if (memcmp(&csum, cb_sum, csum_size)) {
 103                        btrfs_print_data_csum_error(inode, disk_start,
 104                                        csum, cb_sum, cb->mirror_num);
 105                        ret = -EIO;
 106                        goto fail;
 107                }
 108                cb_sum += csum_size;
 109
 110        }
 111        ret = 0;
 112fail:
 113        return ret;
 114}
 115
 116/* when we finish reading compressed pages from the disk, we
 117 * decompress them and then run the bio end_io routines on the
 118 * decompressed pages (in the inode address space).
 119 *
 120 * This allows the checksumming and other IO error handling routines
 121 * to work normally
 122 *
 123 * The compressed pages are freed here, and it must be run
 124 * in process context
 125 */
 126static void end_compressed_bio_read(struct bio *bio)
 127{
 128        struct compressed_bio *cb = bio->bi_private;
 129        struct inode *inode;
 130        struct page *page;
 131        unsigned long index;
 132        unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 133        int ret = 0;
 134
 135        if (bio->bi_status)
 136                cb->errors = 1;
 137
 138        /* if there are more bios still pending for this compressed
 139         * extent, just exit
 140         */
 141        if (!refcount_dec_and_test(&cb->pending_bios))
 142                goto out;
 143
 144        /*
 145         * Record the correct mirror_num in cb->orig_bio so that
 146         * read-repair can work properly.
 147         */
 148        ASSERT(btrfs_io_bio(cb->orig_bio));
 149        btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 150        cb->mirror_num = mirror;
 151
 152        /*
 153         * Some IO in this cb have failed, just skip checksum as there
 154         * is no way it could be correct.
 155         */
 156        if (cb->errors == 1)
 157                goto csum_failed;
 158
 159        inode = cb->inode;
 160        ret = check_compressed_csum(BTRFS_I(inode), cb,
 161                                    (u64)bio->bi_iter.bi_sector << 9);
 162        if (ret)
 163                goto csum_failed;
 164
 165        /* ok, we're the last bio for this extent, lets start
 166         * the decompression.
 167         */
 168        ret = btrfs_decompress_bio(cb);
 169
 170csum_failed:
 171        if (ret)
 172                cb->errors = 1;
 173
 174        /* release the compressed pages */
 175        index = 0;
 176        for (index = 0; index < cb->nr_pages; index++) {
 177                page = cb->compressed_pages[index];
 178                page->mapping = NULL;
 179                put_page(page);
 180        }
 181
 182        /* do io completion on the original bio */
 183        if (cb->errors) {
 184                bio_io_error(cb->orig_bio);
 185        } else {
 186                struct bio_vec *bvec;
 187                struct bvec_iter_all iter_all;
 188
 189                /*
 190                 * we have verified the checksum already, set page
 191                 * checked so the end_io handlers know about it
 192                 */
 193                ASSERT(!bio_flagged(bio, BIO_CLONED));
 194                bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 195                        SetPageChecked(bvec->bv_page);
 196
 197                bio_endio(cb->orig_bio);
 198        }
 199
 200        /* finally free the cb struct */
 201        kfree(cb->compressed_pages);
 202        kfree(cb);
 203out:
 204        bio_put(bio);
 205}
 206
 207/*
 208 * Clear the writeback bits on all of the file
 209 * pages for a compressed write
 210 */
 211static noinline void end_compressed_writeback(struct inode *inode,
 212                                              const struct compressed_bio *cb)
 213{
 214        unsigned long index = cb->start >> PAGE_SHIFT;
 215        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 216        struct page *pages[16];
 217        unsigned long nr_pages = end_index - index + 1;
 218        int i;
 219        int ret;
 220
 221        if (cb->errors)
 222                mapping_set_error(inode->i_mapping, -EIO);
 223
 224        while (nr_pages > 0) {
 225                ret = find_get_pages_contig(inode->i_mapping, index,
 226                                     min_t(unsigned long,
 227                                     nr_pages, ARRAY_SIZE(pages)), pages);
 228                if (ret == 0) {
 229                        nr_pages -= 1;
 230                        index += 1;
 231                        continue;
 232                }
 233                for (i = 0; i < ret; i++) {
 234                        if (cb->errors)
 235                                SetPageError(pages[i]);
 236                        end_page_writeback(pages[i]);
 237                        put_page(pages[i]);
 238                }
 239                nr_pages -= ret;
 240                index += ret;
 241        }
 242        /* the inode may be gone now */
 243}
 244
 245/*
 246 * do the cleanup once all the compressed pages hit the disk.
 247 * This will clear writeback on the file pages and free the compressed
 248 * pages.
 249 *
 250 * This also calls the writeback end hooks for the file pages so that
 251 * metadata and checksums can be updated in the file.
 252 */
 253static void end_compressed_bio_write(struct bio *bio)
 254{
 255        struct compressed_bio *cb = bio->bi_private;
 256        struct inode *inode;
 257        struct page *page;
 258        unsigned long index;
 259
 260        if (bio->bi_status)
 261                cb->errors = 1;
 262
 263        /* if there are more bios still pending for this compressed
 264         * extent, just exit
 265         */
 266        if (!refcount_dec_and_test(&cb->pending_bios))
 267                goto out;
 268
 269        /* ok, we're the last bio for this extent, step one is to
 270         * call back into the FS and do all the end_io operations
 271         */
 272        inode = cb->inode;
 273        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 274        btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
 275                        cb->start, cb->start + cb->len - 1,
 276                        bio->bi_status == BLK_STS_OK);
 277        cb->compressed_pages[0]->mapping = NULL;
 278
 279        end_compressed_writeback(inode, cb);
 280        /* note, our inode could be gone now */
 281
 282        /*
 283         * release the compressed pages, these came from alloc_page and
 284         * are not attached to the inode at all
 285         */
 286        index = 0;
 287        for (index = 0; index < cb->nr_pages; index++) {
 288                page = cb->compressed_pages[index];
 289                page->mapping = NULL;
 290                put_page(page);
 291        }
 292
 293        /* finally free the cb struct */
 294        kfree(cb->compressed_pages);
 295        kfree(cb);
 296out:
 297        bio_put(bio);
 298}
 299
 300/*
 301 * worker function to build and submit bios for previously compressed pages.
 302 * The corresponding pages in the inode should be marked for writeback
 303 * and the compressed pages should have a reference on them for dropping
 304 * when the IO is complete.
 305 *
 306 * This also checksums the file bytes and gets things ready for
 307 * the end io hooks.
 308 */
 309blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
 310                                 unsigned long len, u64 disk_start,
 311                                 unsigned long compressed_len,
 312                                 struct page **compressed_pages,
 313                                 unsigned long nr_pages,
 314                                 unsigned int write_flags)
 315{
 316        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 317        struct bio *bio = NULL;
 318        struct compressed_bio *cb;
 319        unsigned long bytes_left;
 320        int pg_index = 0;
 321        struct page *page;
 322        u64 first_byte = disk_start;
 323        struct block_device *bdev;
 324        blk_status_t ret;
 325        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 326
 327        WARN_ON(!PAGE_ALIGNED(start));
 328        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 329        if (!cb)
 330                return BLK_STS_RESOURCE;
 331        refcount_set(&cb->pending_bios, 0);
 332        cb->errors = 0;
 333        cb->inode = inode;
 334        cb->start = start;
 335        cb->len = len;
 336        cb->mirror_num = 0;
 337        cb->compressed_pages = compressed_pages;
 338        cb->compressed_len = compressed_len;
 339        cb->orig_bio = NULL;
 340        cb->nr_pages = nr_pages;
 341
 342        bdev = fs_info->fs_devices->latest_bdev;
 343
 344        bio = btrfs_bio_alloc(first_byte);
 345        bio_set_dev(bio, bdev);
 346        bio->bi_opf = REQ_OP_WRITE | write_flags;
 347        bio->bi_private = cb;
 348        bio->bi_end_io = end_compressed_bio_write;
 349        refcount_set(&cb->pending_bios, 1);
 350
 351        /* create and submit bios for the compressed pages */
 352        bytes_left = compressed_len;
 353        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 354                int submit = 0;
 355
 356                page = compressed_pages[pg_index];
 357                page->mapping = inode->i_mapping;
 358                if (bio->bi_iter.bi_size)
 359                        submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 360                                                          0);
 361
 362                page->mapping = NULL;
 363                if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 364                    PAGE_SIZE) {
 365                        /*
 366                         * inc the count before we submit the bio so
 367                         * we know the end IO handler won't happen before
 368                         * we inc the count.  Otherwise, the cb might get
 369                         * freed before we're done setting it up
 370                         */
 371                        refcount_inc(&cb->pending_bios);
 372                        ret = btrfs_bio_wq_end_io(fs_info, bio,
 373                                                  BTRFS_WQ_ENDIO_DATA);
 374                        BUG_ON(ret); /* -ENOMEM */
 375
 376                        if (!skip_sum) {
 377                                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 378                                BUG_ON(ret); /* -ENOMEM */
 379                        }
 380
 381                        ret = btrfs_map_bio(fs_info, bio, 0, 1);
 382                        if (ret) {
 383                                bio->bi_status = ret;
 384                                bio_endio(bio);
 385                        }
 386
 387                        bio = btrfs_bio_alloc(first_byte);
 388                        bio_set_dev(bio, bdev);
 389                        bio->bi_opf = REQ_OP_WRITE | write_flags;
 390                        bio->bi_private = cb;
 391                        bio->bi_end_io = end_compressed_bio_write;
 392                        bio_add_page(bio, page, PAGE_SIZE, 0);
 393                }
 394                if (bytes_left < PAGE_SIZE) {
 395                        btrfs_info(fs_info,
 396                                        "bytes left %lu compress len %lu nr %lu",
 397                               bytes_left, cb->compressed_len, cb->nr_pages);
 398                }
 399                bytes_left -= PAGE_SIZE;
 400                first_byte += PAGE_SIZE;
 401                cond_resched();
 402        }
 403
 404        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 405        BUG_ON(ret); /* -ENOMEM */
 406
 407        if (!skip_sum) {
 408                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 409                BUG_ON(ret); /* -ENOMEM */
 410        }
 411
 412        ret = btrfs_map_bio(fs_info, bio, 0, 1);
 413        if (ret) {
 414                bio->bi_status = ret;
 415                bio_endio(bio);
 416        }
 417
 418        return 0;
 419}
 420
 421static u64 bio_end_offset(struct bio *bio)
 422{
 423        struct bio_vec *last = bio_last_bvec_all(bio);
 424
 425        return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 426}
 427
 428static noinline int add_ra_bio_pages(struct inode *inode,
 429                                     u64 compressed_end,
 430                                     struct compressed_bio *cb)
 431{
 432        unsigned long end_index;
 433        unsigned long pg_index;
 434        u64 last_offset;
 435        u64 isize = i_size_read(inode);
 436        int ret;
 437        struct page *page;
 438        unsigned long nr_pages = 0;
 439        struct extent_map *em;
 440        struct address_space *mapping = inode->i_mapping;
 441        struct extent_map_tree *em_tree;
 442        struct extent_io_tree *tree;
 443        u64 end;
 444        int misses = 0;
 445
 446        last_offset = bio_end_offset(cb->orig_bio);
 447        em_tree = &BTRFS_I(inode)->extent_tree;
 448        tree = &BTRFS_I(inode)->io_tree;
 449
 450        if (isize == 0)
 451                return 0;
 452
 453        end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 454
 455        while (last_offset < compressed_end) {
 456                pg_index = last_offset >> PAGE_SHIFT;
 457
 458                if (pg_index > end_index)
 459                        break;
 460
 461                page = xa_load(&mapping->i_pages, pg_index);
 462                if (page && !xa_is_value(page)) {
 463                        misses++;
 464                        if (misses > 4)
 465                                break;
 466                        goto next;
 467                }
 468
 469                page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 470                                                                 ~__GFP_FS));
 471                if (!page)
 472                        break;
 473
 474                if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 475                        put_page(page);
 476                        goto next;
 477                }
 478
 479                end = last_offset + PAGE_SIZE - 1;
 480                /*
 481                 * at this point, we have a locked page in the page cache
 482                 * for these bytes in the file.  But, we have to make
 483                 * sure they map to this compressed extent on disk.
 484                 */
 485                set_page_extent_mapped(page);
 486                lock_extent(tree, last_offset, end);
 487                read_lock(&em_tree->lock);
 488                em = lookup_extent_mapping(em_tree, last_offset,
 489                                           PAGE_SIZE);
 490                read_unlock(&em_tree->lock);
 491
 492                if (!em || last_offset < em->start ||
 493                    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 494                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 495                        free_extent_map(em);
 496                        unlock_extent(tree, last_offset, end);
 497                        unlock_page(page);
 498                        put_page(page);
 499                        break;
 500                }
 501                free_extent_map(em);
 502
 503                if (page->index == end_index) {
 504                        char *userpage;
 505                        size_t zero_offset = offset_in_page(isize);
 506
 507                        if (zero_offset) {
 508                                int zeros;
 509                                zeros = PAGE_SIZE - zero_offset;
 510                                userpage = kmap_atomic(page);
 511                                memset(userpage + zero_offset, 0, zeros);
 512                                flush_dcache_page(page);
 513                                kunmap_atomic(userpage);
 514                        }
 515                }
 516
 517                ret = bio_add_page(cb->orig_bio, page,
 518                                   PAGE_SIZE, 0);
 519
 520                if (ret == PAGE_SIZE) {
 521                        nr_pages++;
 522                        put_page(page);
 523                } else {
 524                        unlock_extent(tree, last_offset, end);
 525                        unlock_page(page);
 526                        put_page(page);
 527                        break;
 528                }
 529next:
 530                last_offset += PAGE_SIZE;
 531        }
 532        return 0;
 533}
 534
 535/*
 536 * for a compressed read, the bio we get passed has all the inode pages
 537 * in it.  We don't actually do IO on those pages but allocate new ones
 538 * to hold the compressed pages on disk.
 539 *
 540 * bio->bi_iter.bi_sector points to the compressed extent on disk
 541 * bio->bi_io_vec points to all of the inode pages
 542 *
 543 * After the compressed pages are read, we copy the bytes into the
 544 * bio we were passed and then call the bio end_io calls
 545 */
 546blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 547                                 int mirror_num, unsigned long bio_flags)
 548{
 549        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 550        struct extent_map_tree *em_tree;
 551        struct compressed_bio *cb;
 552        unsigned long compressed_len;
 553        unsigned long nr_pages;
 554        unsigned long pg_index;
 555        struct page *page;
 556        struct block_device *bdev;
 557        struct bio *comp_bio;
 558        u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 559        u64 em_len;
 560        u64 em_start;
 561        struct extent_map *em;
 562        blk_status_t ret = BLK_STS_RESOURCE;
 563        int faili = 0;
 564        const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 565        u8 *sums;
 566
 567        em_tree = &BTRFS_I(inode)->extent_tree;
 568
 569        /* we need the actual starting offset of this extent in the file */
 570        read_lock(&em_tree->lock);
 571        em = lookup_extent_mapping(em_tree,
 572                                   page_offset(bio_first_page_all(bio)),
 573                                   PAGE_SIZE);
 574        read_unlock(&em_tree->lock);
 575        if (!em)
 576                return BLK_STS_IOERR;
 577
 578        compressed_len = em->block_len;
 579        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 580        if (!cb)
 581                goto out;
 582
 583        refcount_set(&cb->pending_bios, 0);
 584        cb->errors = 0;
 585        cb->inode = inode;
 586        cb->mirror_num = mirror_num;
 587        sums = cb->sums;
 588
 589        cb->start = em->orig_start;
 590        em_len = em->len;
 591        em_start = em->start;
 592
 593        free_extent_map(em);
 594        em = NULL;
 595
 596        cb->len = bio->bi_iter.bi_size;
 597        cb->compressed_len = compressed_len;
 598        cb->compress_type = extent_compress_type(bio_flags);
 599        cb->orig_bio = bio;
 600
 601        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 602        cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 603                                       GFP_NOFS);
 604        if (!cb->compressed_pages)
 605                goto fail1;
 606
 607        bdev = fs_info->fs_devices->latest_bdev;
 608
 609        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 610                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 611                                                              __GFP_HIGHMEM);
 612                if (!cb->compressed_pages[pg_index]) {
 613                        faili = pg_index - 1;
 614                        ret = BLK_STS_RESOURCE;
 615                        goto fail2;
 616                }
 617        }
 618        faili = nr_pages - 1;
 619        cb->nr_pages = nr_pages;
 620
 621        add_ra_bio_pages(inode, em_start + em_len, cb);
 622
 623        /* include any pages we added in add_ra-bio_pages */
 624        cb->len = bio->bi_iter.bi_size;
 625
 626        comp_bio = btrfs_bio_alloc(cur_disk_byte);
 627        bio_set_dev(comp_bio, bdev);
 628        comp_bio->bi_opf = REQ_OP_READ;
 629        comp_bio->bi_private = cb;
 630        comp_bio->bi_end_io = end_compressed_bio_read;
 631        refcount_set(&cb->pending_bios, 1);
 632
 633        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 634                int submit = 0;
 635
 636                page = cb->compressed_pages[pg_index];
 637                page->mapping = inode->i_mapping;
 638                page->index = em_start >> PAGE_SHIFT;
 639
 640                if (comp_bio->bi_iter.bi_size)
 641                        submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
 642                                                          comp_bio, 0);
 643
 644                page->mapping = NULL;
 645                if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 646                    PAGE_SIZE) {
 647                        unsigned int nr_sectors;
 648
 649                        ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 650                                                  BTRFS_WQ_ENDIO_DATA);
 651                        BUG_ON(ret); /* -ENOMEM */
 652
 653                        /*
 654                         * inc the count before we submit the bio so
 655                         * we know the end IO handler won't happen before
 656                         * we inc the count.  Otherwise, the cb might get
 657                         * freed before we're done setting it up
 658                         */
 659                        refcount_inc(&cb->pending_bios);
 660
 661                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 662                                ret = btrfs_lookup_bio_sums(inode, comp_bio,
 663                                                            sums);
 664                                BUG_ON(ret); /* -ENOMEM */
 665                        }
 666
 667                        nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 668                                                  fs_info->sectorsize);
 669                        sums += csum_size * nr_sectors;
 670
 671                        ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 672                        if (ret) {
 673                                comp_bio->bi_status = ret;
 674                                bio_endio(comp_bio);
 675                        }
 676
 677                        comp_bio = btrfs_bio_alloc(cur_disk_byte);
 678                        bio_set_dev(comp_bio, bdev);
 679                        comp_bio->bi_opf = REQ_OP_READ;
 680                        comp_bio->bi_private = cb;
 681                        comp_bio->bi_end_io = end_compressed_bio_read;
 682
 683                        bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 684                }
 685                cur_disk_byte += PAGE_SIZE;
 686        }
 687
 688        ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 689        BUG_ON(ret); /* -ENOMEM */
 690
 691        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 692                ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 693                BUG_ON(ret); /* -ENOMEM */
 694        }
 695
 696        ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 697        if (ret) {
 698                comp_bio->bi_status = ret;
 699                bio_endio(comp_bio);
 700        }
 701
 702        return 0;
 703
 704fail2:
 705        while (faili >= 0) {
 706                __free_page(cb->compressed_pages[faili]);
 707                faili--;
 708        }
 709
 710        kfree(cb->compressed_pages);
 711fail1:
 712        kfree(cb);
 713out:
 714        free_extent_map(em);
 715        return ret;
 716}
 717
 718/*
 719 * Heuristic uses systematic sampling to collect data from the input data
 720 * range, the logic can be tuned by the following constants:
 721 *
 722 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 723 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 724 */
 725#define SAMPLING_READ_SIZE      (16)
 726#define SAMPLING_INTERVAL       (256)
 727
 728/*
 729 * For statistical analysis of the input data we consider bytes that form a
 730 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 731 * many times the object appeared in the sample.
 732 */
 733#define BUCKET_SIZE             (256)
 734
 735/*
 736 * The size of the sample is based on a statistical sampling rule of thumb.
 737 * The common way is to perform sampling tests as long as the number of
 738 * elements in each cell is at least 5.
 739 *
 740 * Instead of 5, we choose 32 to obtain more accurate results.
 741 * If the data contain the maximum number of symbols, which is 256, we obtain a
 742 * sample size bound by 8192.
 743 *
 744 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 745 * from up to 512 locations.
 746 */
 747#define MAX_SAMPLE_SIZE         (BTRFS_MAX_UNCOMPRESSED *               \
 748                                 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 749
 750struct bucket_item {
 751        u32 count;
 752};
 753
 754struct heuristic_ws {
 755        /* Partial copy of input data */
 756        u8 *sample;
 757        u32 sample_size;
 758        /* Buckets store counters for each byte value */
 759        struct bucket_item *bucket;
 760        /* Sorting buffer */
 761        struct bucket_item *bucket_b;
 762        struct list_head list;
 763};
 764
 765static struct workspace_manager heuristic_wsm;
 766
 767static void heuristic_init_workspace_manager(void)
 768{
 769        btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
 770}
 771
 772static void heuristic_cleanup_workspace_manager(void)
 773{
 774        btrfs_cleanup_workspace_manager(&heuristic_wsm);
 775}
 776
 777static struct list_head *heuristic_get_workspace(unsigned int level)
 778{
 779        return btrfs_get_workspace(&heuristic_wsm, level);
 780}
 781
 782static void heuristic_put_workspace(struct list_head *ws)
 783{
 784        btrfs_put_workspace(&heuristic_wsm, ws);
 785}
 786
 787static void free_heuristic_ws(struct list_head *ws)
 788{
 789        struct heuristic_ws *workspace;
 790
 791        workspace = list_entry(ws, struct heuristic_ws, list);
 792
 793        kvfree(workspace->sample);
 794        kfree(workspace->bucket);
 795        kfree(workspace->bucket_b);
 796        kfree(workspace);
 797}
 798
 799static struct list_head *alloc_heuristic_ws(unsigned int level)
 800{
 801        struct heuristic_ws *ws;
 802
 803        ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 804        if (!ws)
 805                return ERR_PTR(-ENOMEM);
 806
 807        ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 808        if (!ws->sample)
 809                goto fail;
 810
 811        ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 812        if (!ws->bucket)
 813                goto fail;
 814
 815        ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 816        if (!ws->bucket_b)
 817                goto fail;
 818
 819        INIT_LIST_HEAD(&ws->list);
 820        return &ws->list;
 821fail:
 822        free_heuristic_ws(&ws->list);
 823        return ERR_PTR(-ENOMEM);
 824}
 825
 826const struct btrfs_compress_op btrfs_heuristic_compress = {
 827        .init_workspace_manager = heuristic_init_workspace_manager,
 828        .cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
 829        .get_workspace = heuristic_get_workspace,
 830        .put_workspace = heuristic_put_workspace,
 831        .alloc_workspace = alloc_heuristic_ws,
 832        .free_workspace = free_heuristic_ws,
 833};
 834
 835static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 836        /* The heuristic is represented as compression type 0 */
 837        &btrfs_heuristic_compress,
 838        &btrfs_zlib_compress,
 839        &btrfs_lzo_compress,
 840        &btrfs_zstd_compress,
 841};
 842
 843void btrfs_init_workspace_manager(struct workspace_manager *wsm,
 844                                  const struct btrfs_compress_op *ops)
 845{
 846        struct list_head *workspace;
 847
 848        wsm->ops = ops;
 849
 850        INIT_LIST_HEAD(&wsm->idle_ws);
 851        spin_lock_init(&wsm->ws_lock);
 852        atomic_set(&wsm->total_ws, 0);
 853        init_waitqueue_head(&wsm->ws_wait);
 854
 855        /*
 856         * Preallocate one workspace for each compression type so we can
 857         * guarantee forward progress in the worst case
 858         */
 859        workspace = wsm->ops->alloc_workspace(0);
 860        if (IS_ERR(workspace)) {
 861                pr_warn(
 862        "BTRFS: cannot preallocate compression workspace, will try later\n");
 863        } else {
 864                atomic_set(&wsm->total_ws, 1);
 865                wsm->free_ws = 1;
 866                list_add(workspace, &wsm->idle_ws);
 867        }
 868}
 869
 870void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
 871{
 872        struct list_head *ws;
 873
 874        while (!list_empty(&wsman->idle_ws)) {
 875                ws = wsman->idle_ws.next;
 876                list_del(ws);
 877                wsman->ops->free_workspace(ws);
 878                atomic_dec(&wsman->total_ws);
 879        }
 880}
 881
 882/*
 883 * This finds an available workspace or allocates a new one.
 884 * If it's not possible to allocate a new one, waits until there's one.
 885 * Preallocation makes a forward progress guarantees and we do not return
 886 * errors.
 887 */
 888struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
 889                                      unsigned int level)
 890{
 891        struct list_head *workspace;
 892        int cpus = num_online_cpus();
 893        unsigned nofs_flag;
 894        struct list_head *idle_ws;
 895        spinlock_t *ws_lock;
 896        atomic_t *total_ws;
 897        wait_queue_head_t *ws_wait;
 898        int *free_ws;
 899
 900        idle_ws  = &wsm->idle_ws;
 901        ws_lock  = &wsm->ws_lock;
 902        total_ws = &wsm->total_ws;
 903        ws_wait  = &wsm->ws_wait;
 904        free_ws  = &wsm->free_ws;
 905
 906again:
 907        spin_lock(ws_lock);
 908        if (!list_empty(idle_ws)) {
 909                workspace = idle_ws->next;
 910                list_del(workspace);
 911                (*free_ws)--;
 912                spin_unlock(ws_lock);
 913                return workspace;
 914
 915        }
 916        if (atomic_read(total_ws) > cpus) {
 917                DEFINE_WAIT(wait);
 918
 919                spin_unlock(ws_lock);
 920                prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 921                if (atomic_read(total_ws) > cpus && !*free_ws)
 922                        schedule();
 923                finish_wait(ws_wait, &wait);
 924                goto again;
 925        }
 926        atomic_inc(total_ws);
 927        spin_unlock(ws_lock);
 928
 929        /*
 930         * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 931         * to turn it off here because we might get called from the restricted
 932         * context of btrfs_compress_bio/btrfs_compress_pages
 933         */
 934        nofs_flag = memalloc_nofs_save();
 935        workspace = wsm->ops->alloc_workspace(level);
 936        memalloc_nofs_restore(nofs_flag);
 937
 938        if (IS_ERR(workspace)) {
 939                atomic_dec(total_ws);
 940                wake_up(ws_wait);
 941
 942                /*
 943                 * Do not return the error but go back to waiting. There's a
 944                 * workspace preallocated for each type and the compression
 945                 * time is bounded so we get to a workspace eventually. This
 946                 * makes our caller's life easier.
 947                 *
 948                 * To prevent silent and low-probability deadlocks (when the
 949                 * initial preallocation fails), check if there are any
 950                 * workspaces at all.
 951                 */
 952                if (atomic_read(total_ws) == 0) {
 953                        static DEFINE_RATELIMIT_STATE(_rs,
 954                                        /* once per minute */ 60 * HZ,
 955                                        /* no burst */ 1);
 956
 957                        if (__ratelimit(&_rs)) {
 958                                pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 959                        }
 960                }
 961                goto again;
 962        }
 963        return workspace;
 964}
 965
 966static struct list_head *get_workspace(int type, int level)
 967{
 968        return btrfs_compress_op[type]->get_workspace(level);
 969}
 970
 971/*
 972 * put a workspace struct back on the list or free it if we have enough
 973 * idle ones sitting around
 974 */
 975void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
 976{
 977        struct list_head *idle_ws;
 978        spinlock_t *ws_lock;
 979        atomic_t *total_ws;
 980        wait_queue_head_t *ws_wait;
 981        int *free_ws;
 982
 983        idle_ws  = &wsm->idle_ws;
 984        ws_lock  = &wsm->ws_lock;
 985        total_ws = &wsm->total_ws;
 986        ws_wait  = &wsm->ws_wait;
 987        free_ws  = &wsm->free_ws;
 988
 989        spin_lock(ws_lock);
 990        if (*free_ws <= num_online_cpus()) {
 991                list_add(ws, idle_ws);
 992                (*free_ws)++;
 993                spin_unlock(ws_lock);
 994                goto wake;
 995        }
 996        spin_unlock(ws_lock);
 997
 998        wsm->ops->free_workspace(ws);
 999        atomic_dec(total_ws);
1000wake:
1001        cond_wake_up(ws_wait);
1002}
1003
1004static void put_workspace(int type, struct list_head *ws)
1005{
1006        return btrfs_compress_op[type]->put_workspace(ws);
1007}
1008
1009/*
1010 * Given an address space and start and length, compress the bytes into @pages
1011 * that are allocated on demand.
1012 *
1013 * @type_level is encoded algorithm and level, where level 0 means whatever
1014 * default the algorithm chooses and is opaque here;
1015 * - compression algo are 0-3
1016 * - the level are bits 4-7
1017 *
1018 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1019 * and returns number of actually allocated pages
1020 *
1021 * @total_in is used to return the number of bytes actually read.  It
1022 * may be smaller than the input length if we had to exit early because we
1023 * ran out of room in the pages array or because we cross the
1024 * max_out threshold.
1025 *
1026 * @total_out is an in/out parameter, must be set to the input length and will
1027 * be also used to return the total number of compressed bytes
1028 *
1029 * @max_out tells us the max number of bytes that we're allowed to
1030 * stuff into pages
1031 */
1032int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1033                         u64 start, struct page **pages,
1034                         unsigned long *out_pages,
1035                         unsigned long *total_in,
1036                         unsigned long *total_out)
1037{
1038        int type = btrfs_compress_type(type_level);
1039        int level = btrfs_compress_level(type_level);
1040        struct list_head *workspace;
1041        int ret;
1042
1043        level = btrfs_compress_set_level(type, level);
1044        workspace = get_workspace(type, level);
1045        ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1046                                                      start, pages,
1047                                                      out_pages,
1048                                                      total_in, total_out);
1049        put_workspace(type, workspace);
1050        return ret;
1051}
1052
1053/*
1054 * pages_in is an array of pages with compressed data.
1055 *
1056 * disk_start is the starting logical offset of this array in the file
1057 *
1058 * orig_bio contains the pages from the file that we want to decompress into
1059 *
1060 * srclen is the number of bytes in pages_in
1061 *
1062 * The basic idea is that we have a bio that was created by readpages.
1063 * The pages in the bio are for the uncompressed data, and they may not
1064 * be contiguous.  They all correspond to the range of bytes covered by
1065 * the compressed extent.
1066 */
1067static int btrfs_decompress_bio(struct compressed_bio *cb)
1068{
1069        struct list_head *workspace;
1070        int ret;
1071        int type = cb->compress_type;
1072
1073        workspace = get_workspace(type, 0);
1074        ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1075        put_workspace(type, workspace);
1076
1077        return ret;
1078}
1079
1080/*
1081 * a less complex decompression routine.  Our compressed data fits in a
1082 * single page, and we want to read a single page out of it.
1083 * start_byte tells us the offset into the compressed data we're interested in
1084 */
1085int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1086                     unsigned long start_byte, size_t srclen, size_t destlen)
1087{
1088        struct list_head *workspace;
1089        int ret;
1090
1091        workspace = get_workspace(type, 0);
1092        ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1093                                                  dest_page, start_byte,
1094                                                  srclen, destlen);
1095        put_workspace(type, workspace);
1096
1097        return ret;
1098}
1099
1100void __init btrfs_init_compress(void)
1101{
1102        int i;
1103
1104        for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1105                btrfs_compress_op[i]->init_workspace_manager();
1106}
1107
1108void __cold btrfs_exit_compress(void)
1109{
1110        int i;
1111
1112        for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1113                btrfs_compress_op[i]->cleanup_workspace_manager();
1114}
1115
1116/*
1117 * Copy uncompressed data from working buffer to pages.
1118 *
1119 * buf_start is the byte offset we're of the start of our workspace buffer.
1120 *
1121 * total_out is the last byte of the buffer
1122 */
1123int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1124                              unsigned long total_out, u64 disk_start,
1125                              struct bio *bio)
1126{
1127        unsigned long buf_offset;
1128        unsigned long current_buf_start;
1129        unsigned long start_byte;
1130        unsigned long prev_start_byte;
1131        unsigned long working_bytes = total_out - buf_start;
1132        unsigned long bytes;
1133        char *kaddr;
1134        struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1135
1136        /*
1137         * start byte is the first byte of the page we're currently
1138         * copying into relative to the start of the compressed data.
1139         */
1140        start_byte = page_offset(bvec.bv_page) - disk_start;
1141
1142        /* we haven't yet hit data corresponding to this page */
1143        if (total_out <= start_byte)
1144                return 1;
1145
1146        /*
1147         * the start of the data we care about is offset into
1148         * the middle of our working buffer
1149         */
1150        if (total_out > start_byte && buf_start < start_byte) {
1151                buf_offset = start_byte - buf_start;
1152                working_bytes -= buf_offset;
1153        } else {
1154                buf_offset = 0;
1155        }
1156        current_buf_start = buf_start;
1157
1158        /* copy bytes from the working buffer into the pages */
1159        while (working_bytes > 0) {
1160                bytes = min_t(unsigned long, bvec.bv_len,
1161                                PAGE_SIZE - buf_offset);
1162                bytes = min(bytes, working_bytes);
1163
1164                kaddr = kmap_atomic(bvec.bv_page);
1165                memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1166                kunmap_atomic(kaddr);
1167                flush_dcache_page(bvec.bv_page);
1168
1169                buf_offset += bytes;
1170                working_bytes -= bytes;
1171                current_buf_start += bytes;
1172
1173                /* check if we need to pick another page */
1174                bio_advance(bio, bytes);
1175                if (!bio->bi_iter.bi_size)
1176                        return 0;
1177                bvec = bio_iter_iovec(bio, bio->bi_iter);
1178                prev_start_byte = start_byte;
1179                start_byte = page_offset(bvec.bv_page) - disk_start;
1180
1181                /*
1182                 * We need to make sure we're only adjusting
1183                 * our offset into compression working buffer when
1184                 * we're switching pages.  Otherwise we can incorrectly
1185                 * keep copying when we were actually done.
1186                 */
1187                if (start_byte != prev_start_byte) {
1188                        /*
1189                         * make sure our new page is covered by this
1190                         * working buffer
1191                         */
1192                        if (total_out <= start_byte)
1193                                return 1;
1194
1195                        /*
1196                         * the next page in the biovec might not be adjacent
1197                         * to the last page, but it might still be found
1198                         * inside this working buffer. bump our offset pointer
1199                         */
1200                        if (total_out > start_byte &&
1201                            current_buf_start < start_byte) {
1202                                buf_offset = start_byte - buf_start;
1203                                working_bytes = total_out - start_byte;
1204                                current_buf_start = buf_start + buf_offset;
1205                        }
1206                }
1207        }
1208
1209        return 1;
1210}
1211
1212/*
1213 * Shannon Entropy calculation
1214 *
1215 * Pure byte distribution analysis fails to determine compressibility of data.
1216 * Try calculating entropy to estimate the average minimum number of bits
1217 * needed to encode the sampled data.
1218 *
1219 * For convenience, return the percentage of needed bits, instead of amount of
1220 * bits directly.
1221 *
1222 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1223 *                          and can be compressible with high probability
1224 *
1225 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1226 *
1227 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1228 */
1229#define ENTROPY_LVL_ACEPTABLE           (65)
1230#define ENTROPY_LVL_HIGH                (80)
1231
1232/*
1233 * For increasead precision in shannon_entropy calculation,
1234 * let's do pow(n, M) to save more digits after comma:
1235 *
1236 * - maximum int bit length is 64
1237 * - ilog2(MAX_SAMPLE_SIZE)     -> 13
1238 * - 13 * 4 = 52 < 64           -> M = 4
1239 *
1240 * So use pow(n, 4).
1241 */
1242static inline u32 ilog2_w(u64 n)
1243{
1244        return ilog2(n * n * n * n);
1245}
1246
1247static u32 shannon_entropy(struct heuristic_ws *ws)
1248{
1249        const u32 entropy_max = 8 * ilog2_w(2);
1250        u32 entropy_sum = 0;
1251        u32 p, p_base, sz_base;
1252        u32 i;
1253
1254        sz_base = ilog2_w(ws->sample_size);
1255        for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1256                p = ws->bucket[i].count;
1257                p_base = ilog2_w(p);
1258                entropy_sum += p * (sz_base - p_base);
1259        }
1260
1261        entropy_sum /= ws->sample_size;
1262        return entropy_sum * 100 / entropy_max;
1263}
1264
1265#define RADIX_BASE              4U
1266#define COUNTERS_SIZE           (1U << RADIX_BASE)
1267
1268static u8 get4bits(u64 num, int shift) {
1269        u8 low4bits;
1270
1271        num >>= shift;
1272        /* Reverse order */
1273        low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1274        return low4bits;
1275}
1276
1277/*
1278 * Use 4 bits as radix base
1279 * Use 16 u32 counters for calculating new position in buf array
1280 *
1281 * @array     - array that will be sorted
1282 * @array_buf - buffer array to store sorting results
1283 *              must be equal in size to @array
1284 * @num       - array size
1285 */
1286static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1287                       int num)
1288{
1289        u64 max_num;
1290        u64 buf_num;
1291        u32 counters[COUNTERS_SIZE];
1292        u32 new_addr;
1293        u32 addr;
1294        int bitlen;
1295        int shift;
1296        int i;
1297
1298        /*
1299         * Try avoid useless loop iterations for small numbers stored in big
1300         * counters.  Example: 48 33 4 ... in 64bit array
1301         */
1302        max_num = array[0].count;
1303        for (i = 1; i < num; i++) {
1304                buf_num = array[i].count;
1305                if (buf_num > max_num)
1306                        max_num = buf_num;
1307        }
1308
1309        buf_num = ilog2(max_num);
1310        bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1311
1312        shift = 0;
1313        while (shift < bitlen) {
1314                memset(counters, 0, sizeof(counters));
1315
1316                for (i = 0; i < num; i++) {
1317                        buf_num = array[i].count;
1318                        addr = get4bits(buf_num, shift);
1319                        counters[addr]++;
1320                }
1321
1322                for (i = 1; i < COUNTERS_SIZE; i++)
1323                        counters[i] += counters[i - 1];
1324
1325                for (i = num - 1; i >= 0; i--) {
1326                        buf_num = array[i].count;
1327                        addr = get4bits(buf_num, shift);
1328                        counters[addr]--;
1329                        new_addr = counters[addr];
1330                        array_buf[new_addr] = array[i];
1331                }
1332
1333                shift += RADIX_BASE;
1334
1335                /*
1336                 * Normal radix expects to move data from a temporary array, to
1337                 * the main one.  But that requires some CPU time. Avoid that
1338                 * by doing another sort iteration to original array instead of
1339                 * memcpy()
1340                 */
1341                memset(counters, 0, sizeof(counters));
1342
1343                for (i = 0; i < num; i ++) {
1344                        buf_num = array_buf[i].count;
1345                        addr = get4bits(buf_num, shift);
1346                        counters[addr]++;
1347                }
1348
1349                for (i = 1; i < COUNTERS_SIZE; i++)
1350                        counters[i] += counters[i - 1];
1351
1352                for (i = num - 1; i >= 0; i--) {
1353                        buf_num = array_buf[i].count;
1354                        addr = get4bits(buf_num, shift);
1355                        counters[addr]--;
1356                        new_addr = counters[addr];
1357                        array[new_addr] = array_buf[i];
1358                }
1359
1360                shift += RADIX_BASE;
1361        }
1362}
1363
1364/*
1365 * Size of the core byte set - how many bytes cover 90% of the sample
1366 *
1367 * There are several types of structured binary data that use nearly all byte
1368 * values. The distribution can be uniform and counts in all buckets will be
1369 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1370 *
1371 * Other possibility is normal (Gaussian) distribution, where the data could
1372 * be potentially compressible, but we have to take a few more steps to decide
1373 * how much.
1374 *
1375 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1376 *                       compression algo can easy fix that
1377 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1378 *                       probability is not compressible
1379 */
1380#define BYTE_CORE_SET_LOW               (64)
1381#define BYTE_CORE_SET_HIGH              (200)
1382
1383static int byte_core_set_size(struct heuristic_ws *ws)
1384{
1385        u32 i;
1386        u32 coreset_sum = 0;
1387        const u32 core_set_threshold = ws->sample_size * 90 / 100;
1388        struct bucket_item *bucket = ws->bucket;
1389
1390        /* Sort in reverse order */
1391        radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1392
1393        for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1394                coreset_sum += bucket[i].count;
1395
1396        if (coreset_sum > core_set_threshold)
1397                return i;
1398
1399        for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1400                coreset_sum += bucket[i].count;
1401                if (coreset_sum > core_set_threshold)
1402                        break;
1403        }
1404
1405        return i;
1406}
1407
1408/*
1409 * Count byte values in buckets.
1410 * This heuristic can detect textual data (configs, xml, json, html, etc).
1411 * Because in most text-like data byte set is restricted to limited number of
1412 * possible characters, and that restriction in most cases makes data easy to
1413 * compress.
1414 *
1415 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1416 *      less - compressible
1417 *      more - need additional analysis
1418 */
1419#define BYTE_SET_THRESHOLD              (64)
1420
1421static u32 byte_set_size(const struct heuristic_ws *ws)
1422{
1423        u32 i;
1424        u32 byte_set_size = 0;
1425
1426        for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1427                if (ws->bucket[i].count > 0)
1428                        byte_set_size++;
1429        }
1430
1431        /*
1432         * Continue collecting count of byte values in buckets.  If the byte
1433         * set size is bigger then the threshold, it's pointless to continue,
1434         * the detection technique would fail for this type of data.
1435         */
1436        for (; i < BUCKET_SIZE; i++) {
1437                if (ws->bucket[i].count > 0) {
1438                        byte_set_size++;
1439                        if (byte_set_size > BYTE_SET_THRESHOLD)
1440                                return byte_set_size;
1441                }
1442        }
1443
1444        return byte_set_size;
1445}
1446
1447static bool sample_repeated_patterns(struct heuristic_ws *ws)
1448{
1449        const u32 half_of_sample = ws->sample_size / 2;
1450        const u8 *data = ws->sample;
1451
1452        return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1453}
1454
1455static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1456                                     struct heuristic_ws *ws)
1457{
1458        struct page *page;
1459        u64 index, index_end;
1460        u32 i, curr_sample_pos;
1461        u8 *in_data;
1462
1463        /*
1464         * Compression handles the input data by chunks of 128KiB
1465         * (defined by BTRFS_MAX_UNCOMPRESSED)
1466         *
1467         * We do the same for the heuristic and loop over the whole range.
1468         *
1469         * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1470         * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1471         */
1472        if (end - start > BTRFS_MAX_UNCOMPRESSED)
1473                end = start + BTRFS_MAX_UNCOMPRESSED;
1474
1475        index = start >> PAGE_SHIFT;
1476        index_end = end >> PAGE_SHIFT;
1477
1478        /* Don't miss unaligned end */
1479        if (!IS_ALIGNED(end, PAGE_SIZE))
1480                index_end++;
1481
1482        curr_sample_pos = 0;
1483        while (index < index_end) {
1484                page = find_get_page(inode->i_mapping, index);
1485                in_data = kmap(page);
1486                /* Handle case where the start is not aligned to PAGE_SIZE */
1487                i = start % PAGE_SIZE;
1488                while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1489                        /* Don't sample any garbage from the last page */
1490                        if (start > end - SAMPLING_READ_SIZE)
1491                                break;
1492                        memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1493                                        SAMPLING_READ_SIZE);
1494                        i += SAMPLING_INTERVAL;
1495                        start += SAMPLING_INTERVAL;
1496                        curr_sample_pos += SAMPLING_READ_SIZE;
1497                }
1498                kunmap(page);
1499                put_page(page);
1500
1501                index++;
1502        }
1503
1504        ws->sample_size = curr_sample_pos;
1505}
1506
1507/*
1508 * Compression heuristic.
1509 *
1510 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1511 * quickly (compared to direct compression) detect data characteristics
1512 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1513 * data.
1514 *
1515 * The following types of analysis can be performed:
1516 * - detect mostly zero data
1517 * - detect data with low "byte set" size (text, etc)
1518 * - detect data with low/high "core byte" set
1519 *
1520 * Return non-zero if the compression should be done, 0 otherwise.
1521 */
1522int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1523{
1524        struct list_head *ws_list = get_workspace(0, 0);
1525        struct heuristic_ws *ws;
1526        u32 i;
1527        u8 byte;
1528        int ret = 0;
1529
1530        ws = list_entry(ws_list, struct heuristic_ws, list);
1531
1532        heuristic_collect_sample(inode, start, end, ws);
1533
1534        if (sample_repeated_patterns(ws)) {
1535                ret = 1;
1536                goto out;
1537        }
1538
1539        memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1540
1541        for (i = 0; i < ws->sample_size; i++) {
1542                byte = ws->sample[i];
1543                ws->bucket[byte].count++;
1544        }
1545
1546        i = byte_set_size(ws);
1547        if (i < BYTE_SET_THRESHOLD) {
1548                ret = 2;
1549                goto out;
1550        }
1551
1552        i = byte_core_set_size(ws);
1553        if (i <= BYTE_CORE_SET_LOW) {
1554                ret = 3;
1555                goto out;
1556        }
1557
1558        if (i >= BYTE_CORE_SET_HIGH) {
1559                ret = 0;
1560                goto out;
1561        }
1562
1563        i = shannon_entropy(ws);
1564        if (i <= ENTROPY_LVL_ACEPTABLE) {
1565                ret = 4;
1566                goto out;
1567        }
1568
1569        /*
1570         * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1571         * needed to give green light to compression.
1572         *
1573         * For now just assume that compression at that level is not worth the
1574         * resources because:
1575         *
1576         * 1. it is possible to defrag the data later
1577         *
1578         * 2. the data would turn out to be hardly compressible, eg. 150 byte
1579         * values, every bucket has counter at level ~54. The heuristic would
1580         * be confused. This can happen when data have some internal repeated
1581         * patterns like "abbacbbc...". This can be detected by analyzing
1582         * pairs of bytes, which is too costly.
1583         */
1584        if (i < ENTROPY_LVL_HIGH) {
1585                ret = 5;
1586                goto out;
1587        } else {
1588                ret = 0;
1589                goto out;
1590        }
1591
1592out:
1593        put_workspace(0, ws_list);
1594        return ret;
1595}
1596
1597/*
1598 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1599 * level, unrecognized string will set the default level
1600 */
1601unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1602{
1603        unsigned int level = 0;
1604        int ret;
1605
1606        if (!type)
1607                return 0;
1608
1609        if (str[0] == ':') {
1610                ret = kstrtouint(str + 1, 10, &level);
1611                if (ret)
1612                        level = 0;
1613        }
1614
1615        level = btrfs_compress_set_level(type, level);
1616
1617        return level;
1618}
1619
1620/*
1621 * Adjust @level according to the limits of the compression algorithm or
1622 * fallback to default
1623 */
1624unsigned int btrfs_compress_set_level(int type, unsigned level)
1625{
1626        const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1627
1628        if (level == 0)
1629                level = ops->default_level;
1630        else
1631                level = min(level, ops->max_level);
1632
1633        return level;
1634}
1635