linux/fs/btrfs/send.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26
  27/*
  28 * A fs_path is a helper to dynamically build path names with unknown size.
  29 * It reallocates the internal buffer on demand.
  30 * It allows fast adding of path elements on the right side (normal path) and
  31 * fast adding to the left side (reversed path). A reversed path can also be
  32 * unreversed if needed.
  33 */
  34struct fs_path {
  35        union {
  36                struct {
  37                        char *start;
  38                        char *end;
  39
  40                        char *buf;
  41                        unsigned short buf_len:15;
  42                        unsigned short reversed:1;
  43                        char inline_buf[];
  44                };
  45                /*
  46                 * Average path length does not exceed 200 bytes, we'll have
  47                 * better packing in the slab and higher chance to satisfy
  48                 * a allocation later during send.
  49                 */
  50                char pad[256];
  51        };
  52};
  53#define FS_PATH_INLINE_SIZE \
  54        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  55
  56
  57/* reused for each extent */
  58struct clone_root {
  59        struct btrfs_root *root;
  60        u64 ino;
  61        u64 offset;
  62
  63        u64 found_refs;
  64};
  65
  66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  68
  69struct send_ctx {
  70        struct file *send_filp;
  71        loff_t send_off;
  72        char *send_buf;
  73        u32 send_size;
  74        u32 send_max_size;
  75        u64 total_send_size;
  76        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  77        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  78
  79        struct btrfs_root *send_root;
  80        struct btrfs_root *parent_root;
  81        struct clone_root *clone_roots;
  82        int clone_roots_cnt;
  83
  84        /* current state of the compare_tree call */
  85        struct btrfs_path *left_path;
  86        struct btrfs_path *right_path;
  87        struct btrfs_key *cmp_key;
  88
  89        /*
  90         * infos of the currently processed inode. In case of deleted inodes,
  91         * these are the values from the deleted inode.
  92         */
  93        u64 cur_ino;
  94        u64 cur_inode_gen;
  95        int cur_inode_new;
  96        int cur_inode_new_gen;
  97        int cur_inode_deleted;
  98        u64 cur_inode_size;
  99        u64 cur_inode_mode;
 100        u64 cur_inode_rdev;
 101        u64 cur_inode_last_extent;
 102        u64 cur_inode_next_write_offset;
 103        bool ignore_cur_inode;
 104
 105        u64 send_progress;
 106
 107        struct list_head new_refs;
 108        struct list_head deleted_refs;
 109
 110        struct radix_tree_root name_cache;
 111        struct list_head name_cache_list;
 112        int name_cache_size;
 113
 114        struct file_ra_state ra;
 115
 116        char *read_buf;
 117
 118        /*
 119         * We process inodes by their increasing order, so if before an
 120         * incremental send we reverse the parent/child relationship of
 121         * directories such that a directory with a lower inode number was
 122         * the parent of a directory with a higher inode number, and the one
 123         * becoming the new parent got renamed too, we can't rename/move the
 124         * directory with lower inode number when we finish processing it - we
 125         * must process the directory with higher inode number first, then
 126         * rename/move it and then rename/move the directory with lower inode
 127         * number. Example follows.
 128         *
 129         * Tree state when the first send was performed:
 130         *
 131         * .
 132         * |-- a                   (ino 257)
 133         *     |-- b               (ino 258)
 134         *         |
 135         *         |
 136         *         |-- c           (ino 259)
 137         *         |   |-- d       (ino 260)
 138         *         |
 139         *         |-- c2          (ino 261)
 140         *
 141         * Tree state when the second (incremental) send is performed:
 142         *
 143         * .
 144         * |-- a                   (ino 257)
 145         *     |-- b               (ino 258)
 146         *         |-- c2          (ino 261)
 147         *             |-- d2      (ino 260)
 148         *                 |-- cc  (ino 259)
 149         *
 150         * The sequence of steps that lead to the second state was:
 151         *
 152         * mv /a/b/c/d /a/b/c2/d2
 153         * mv /a/b/c /a/b/c2/d2/cc
 154         *
 155         * "c" has lower inode number, but we can't move it (2nd mv operation)
 156         * before we move "d", which has higher inode number.
 157         *
 158         * So we just memorize which move/rename operations must be performed
 159         * later when their respective parent is processed and moved/renamed.
 160         */
 161
 162        /* Indexed by parent directory inode number. */
 163        struct rb_root pending_dir_moves;
 164
 165        /*
 166         * Reverse index, indexed by the inode number of a directory that
 167         * is waiting for the move/rename of its immediate parent before its
 168         * own move/rename can be performed.
 169         */
 170        struct rb_root waiting_dir_moves;
 171
 172        /*
 173         * A directory that is going to be rm'ed might have a child directory
 174         * which is in the pending directory moves index above. In this case,
 175         * the directory can only be removed after the move/rename of its child
 176         * is performed. Example:
 177         *
 178         * Parent snapshot:
 179         *
 180         * .                        (ino 256)
 181         * |-- a/                   (ino 257)
 182         *     |-- b/               (ino 258)
 183         *         |-- c/           (ino 259)
 184         *         |   |-- x/       (ino 260)
 185         *         |
 186         *         |-- y/           (ino 261)
 187         *
 188         * Send snapshot:
 189         *
 190         * .                        (ino 256)
 191         * |-- a/                   (ino 257)
 192         *     |-- b/               (ino 258)
 193         *         |-- YY/          (ino 261)
 194         *              |-- x/      (ino 260)
 195         *
 196         * Sequence of steps that lead to the send snapshot:
 197         * rm -f /a/b/c/foo.txt
 198         * mv /a/b/y /a/b/YY
 199         * mv /a/b/c/x /a/b/YY
 200         * rmdir /a/b/c
 201         *
 202         * When the child is processed, its move/rename is delayed until its
 203         * parent is processed (as explained above), but all other operations
 204         * like update utimes, chown, chgrp, etc, are performed and the paths
 205         * that it uses for those operations must use the orphanized name of
 206         * its parent (the directory we're going to rm later), so we need to
 207         * memorize that name.
 208         *
 209         * Indexed by the inode number of the directory to be deleted.
 210         */
 211        struct rb_root orphan_dirs;
 212};
 213
 214struct pending_dir_move {
 215        struct rb_node node;
 216        struct list_head list;
 217        u64 parent_ino;
 218        u64 ino;
 219        u64 gen;
 220        struct list_head update_refs;
 221};
 222
 223struct waiting_dir_move {
 224        struct rb_node node;
 225        u64 ino;
 226        /*
 227         * There might be some directory that could not be removed because it
 228         * was waiting for this directory inode to be moved first. Therefore
 229         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 230         */
 231        u64 rmdir_ino;
 232        bool orphanized;
 233};
 234
 235struct orphan_dir_info {
 236        struct rb_node node;
 237        u64 ino;
 238        u64 gen;
 239        u64 last_dir_index_offset;
 240};
 241
 242struct name_cache_entry {
 243        struct list_head list;
 244        /*
 245         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 246         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 247         * more then one inum would fall into the same entry, we use radix_list
 248         * to store the additional entries. radix_list is also used to store
 249         * entries where two entries have the same inum but different
 250         * generations.
 251         */
 252        struct list_head radix_list;
 253        u64 ino;
 254        u64 gen;
 255        u64 parent_ino;
 256        u64 parent_gen;
 257        int ret;
 258        int need_later_update;
 259        int name_len;
 260        char name[];
 261};
 262
 263#define ADVANCE                                                 1
 264#define ADVANCE_ONLY_NEXT                                       -1
 265
 266enum btrfs_compare_tree_result {
 267        BTRFS_COMPARE_TREE_NEW,
 268        BTRFS_COMPARE_TREE_DELETED,
 269        BTRFS_COMPARE_TREE_CHANGED,
 270        BTRFS_COMPARE_TREE_SAME,
 271};
 272typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
 273                                  struct btrfs_path *right_path,
 274                                  struct btrfs_key *key,
 275                                  enum btrfs_compare_tree_result result,
 276                                  void *ctx);
 277
 278__cold
 279static void inconsistent_snapshot_error(struct send_ctx *sctx,
 280                                        enum btrfs_compare_tree_result result,
 281                                        const char *what)
 282{
 283        const char *result_string;
 284
 285        switch (result) {
 286        case BTRFS_COMPARE_TREE_NEW:
 287                result_string = "new";
 288                break;
 289        case BTRFS_COMPARE_TREE_DELETED:
 290                result_string = "deleted";
 291                break;
 292        case BTRFS_COMPARE_TREE_CHANGED:
 293                result_string = "updated";
 294                break;
 295        case BTRFS_COMPARE_TREE_SAME:
 296                ASSERT(0);
 297                result_string = "unchanged";
 298                break;
 299        default:
 300                ASSERT(0);
 301                result_string = "unexpected";
 302        }
 303
 304        btrfs_err(sctx->send_root->fs_info,
 305                  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 306                  result_string, what, sctx->cmp_key->objectid,
 307                  sctx->send_root->root_key.objectid,
 308                  (sctx->parent_root ?
 309                   sctx->parent_root->root_key.objectid : 0));
 310}
 311
 312static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 313
 314static struct waiting_dir_move *
 315get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 316
 317static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 318
 319static int need_send_hole(struct send_ctx *sctx)
 320{
 321        return (sctx->parent_root && !sctx->cur_inode_new &&
 322                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 323                S_ISREG(sctx->cur_inode_mode));
 324}
 325
 326static void fs_path_reset(struct fs_path *p)
 327{
 328        if (p->reversed) {
 329                p->start = p->buf + p->buf_len - 1;
 330                p->end = p->start;
 331                *p->start = 0;
 332        } else {
 333                p->start = p->buf;
 334                p->end = p->start;
 335                *p->start = 0;
 336        }
 337}
 338
 339static struct fs_path *fs_path_alloc(void)
 340{
 341        struct fs_path *p;
 342
 343        p = kmalloc(sizeof(*p), GFP_KERNEL);
 344        if (!p)
 345                return NULL;
 346        p->reversed = 0;
 347        p->buf = p->inline_buf;
 348        p->buf_len = FS_PATH_INLINE_SIZE;
 349        fs_path_reset(p);
 350        return p;
 351}
 352
 353static struct fs_path *fs_path_alloc_reversed(void)
 354{
 355        struct fs_path *p;
 356
 357        p = fs_path_alloc();
 358        if (!p)
 359                return NULL;
 360        p->reversed = 1;
 361        fs_path_reset(p);
 362        return p;
 363}
 364
 365static void fs_path_free(struct fs_path *p)
 366{
 367        if (!p)
 368                return;
 369        if (p->buf != p->inline_buf)
 370                kfree(p->buf);
 371        kfree(p);
 372}
 373
 374static int fs_path_len(struct fs_path *p)
 375{
 376        return p->end - p->start;
 377}
 378
 379static int fs_path_ensure_buf(struct fs_path *p, int len)
 380{
 381        char *tmp_buf;
 382        int path_len;
 383        int old_buf_len;
 384
 385        len++;
 386
 387        if (p->buf_len >= len)
 388                return 0;
 389
 390        if (len > PATH_MAX) {
 391                WARN_ON(1);
 392                return -ENOMEM;
 393        }
 394
 395        path_len = p->end - p->start;
 396        old_buf_len = p->buf_len;
 397
 398        /*
 399         * First time the inline_buf does not suffice
 400         */
 401        if (p->buf == p->inline_buf) {
 402                tmp_buf = kmalloc(len, GFP_KERNEL);
 403                if (tmp_buf)
 404                        memcpy(tmp_buf, p->buf, old_buf_len);
 405        } else {
 406                tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 407        }
 408        if (!tmp_buf)
 409                return -ENOMEM;
 410        p->buf = tmp_buf;
 411        /*
 412         * The real size of the buffer is bigger, this will let the fast path
 413         * happen most of the time
 414         */
 415        p->buf_len = ksize(p->buf);
 416
 417        if (p->reversed) {
 418                tmp_buf = p->buf + old_buf_len - path_len - 1;
 419                p->end = p->buf + p->buf_len - 1;
 420                p->start = p->end - path_len;
 421                memmove(p->start, tmp_buf, path_len + 1);
 422        } else {
 423                p->start = p->buf;
 424                p->end = p->start + path_len;
 425        }
 426        return 0;
 427}
 428
 429static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 430                                   char **prepared)
 431{
 432        int ret;
 433        int new_len;
 434
 435        new_len = p->end - p->start + name_len;
 436        if (p->start != p->end)
 437                new_len++;
 438        ret = fs_path_ensure_buf(p, new_len);
 439        if (ret < 0)
 440                goto out;
 441
 442        if (p->reversed) {
 443                if (p->start != p->end)
 444                        *--p->start = '/';
 445                p->start -= name_len;
 446                *prepared = p->start;
 447        } else {
 448                if (p->start != p->end)
 449                        *p->end++ = '/';
 450                *prepared = p->end;
 451                p->end += name_len;
 452                *p->end = 0;
 453        }
 454
 455out:
 456        return ret;
 457}
 458
 459static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 460{
 461        int ret;
 462        char *prepared;
 463
 464        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 465        if (ret < 0)
 466                goto out;
 467        memcpy(prepared, name, name_len);
 468
 469out:
 470        return ret;
 471}
 472
 473static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 474{
 475        int ret;
 476        char *prepared;
 477
 478        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 479        if (ret < 0)
 480                goto out;
 481        memcpy(prepared, p2->start, p2->end - p2->start);
 482
 483out:
 484        return ret;
 485}
 486
 487static int fs_path_add_from_extent_buffer(struct fs_path *p,
 488                                          struct extent_buffer *eb,
 489                                          unsigned long off, int len)
 490{
 491        int ret;
 492        char *prepared;
 493
 494        ret = fs_path_prepare_for_add(p, len, &prepared);
 495        if (ret < 0)
 496                goto out;
 497
 498        read_extent_buffer(eb, prepared, off, len);
 499
 500out:
 501        return ret;
 502}
 503
 504static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 505{
 506        int ret;
 507
 508        p->reversed = from->reversed;
 509        fs_path_reset(p);
 510
 511        ret = fs_path_add_path(p, from);
 512
 513        return ret;
 514}
 515
 516
 517static void fs_path_unreverse(struct fs_path *p)
 518{
 519        char *tmp;
 520        int len;
 521
 522        if (!p->reversed)
 523                return;
 524
 525        tmp = p->start;
 526        len = p->end - p->start;
 527        p->start = p->buf;
 528        p->end = p->start + len;
 529        memmove(p->start, tmp, len + 1);
 530        p->reversed = 0;
 531}
 532
 533static struct btrfs_path *alloc_path_for_send(void)
 534{
 535        struct btrfs_path *path;
 536
 537        path = btrfs_alloc_path();
 538        if (!path)
 539                return NULL;
 540        path->search_commit_root = 1;
 541        path->skip_locking = 1;
 542        path->need_commit_sem = 1;
 543        return path;
 544}
 545
 546static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 547{
 548        int ret;
 549        u32 pos = 0;
 550
 551        while (pos < len) {
 552                ret = kernel_write(filp, buf + pos, len - pos, off);
 553                /* TODO handle that correctly */
 554                /*if (ret == -ERESTARTSYS) {
 555                        continue;
 556                }*/
 557                if (ret < 0)
 558                        return ret;
 559                if (ret == 0) {
 560                        return -EIO;
 561                }
 562                pos += ret;
 563        }
 564
 565        return 0;
 566}
 567
 568static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 569{
 570        struct btrfs_tlv_header *hdr;
 571        int total_len = sizeof(*hdr) + len;
 572        int left = sctx->send_max_size - sctx->send_size;
 573
 574        if (unlikely(left < total_len))
 575                return -EOVERFLOW;
 576
 577        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 578        hdr->tlv_type = cpu_to_le16(attr);
 579        hdr->tlv_len = cpu_to_le16(len);
 580        memcpy(hdr + 1, data, len);
 581        sctx->send_size += total_len;
 582
 583        return 0;
 584}
 585
 586#define TLV_PUT_DEFINE_INT(bits) \
 587        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 588                        u##bits attr, u##bits value)                    \
 589        {                                                               \
 590                __le##bits __tmp = cpu_to_le##bits(value);              \
 591                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 592        }
 593
 594TLV_PUT_DEFINE_INT(64)
 595
 596static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 597                          const char *str, int len)
 598{
 599        if (len == -1)
 600                len = strlen(str);
 601        return tlv_put(sctx, attr, str, len);
 602}
 603
 604static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 605                        const u8 *uuid)
 606{
 607        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 608}
 609
 610static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 611                                  struct extent_buffer *eb,
 612                                  struct btrfs_timespec *ts)
 613{
 614        struct btrfs_timespec bts;
 615        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 616        return tlv_put(sctx, attr, &bts, sizeof(bts));
 617}
 618
 619
 620#define TLV_PUT(sctx, attrtype, data, attrlen) \
 621        do { \
 622                ret = tlv_put(sctx, attrtype, data, attrlen); \
 623                if (ret < 0) \
 624                        goto tlv_put_failure; \
 625        } while (0)
 626
 627#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 628        do { \
 629                ret = tlv_put_u##bits(sctx, attrtype, value); \
 630                if (ret < 0) \
 631                        goto tlv_put_failure; \
 632        } while (0)
 633
 634#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 635#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 636#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 637#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 638#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 639        do { \
 640                ret = tlv_put_string(sctx, attrtype, str, len); \
 641                if (ret < 0) \
 642                        goto tlv_put_failure; \
 643        } while (0)
 644#define TLV_PUT_PATH(sctx, attrtype, p) \
 645        do { \
 646                ret = tlv_put_string(sctx, attrtype, p->start, \
 647                        p->end - p->start); \
 648                if (ret < 0) \
 649                        goto tlv_put_failure; \
 650        } while(0)
 651#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 652        do { \
 653                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 654                if (ret < 0) \
 655                        goto tlv_put_failure; \
 656        } while (0)
 657#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 658        do { \
 659                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 660                if (ret < 0) \
 661                        goto tlv_put_failure; \
 662        } while (0)
 663
 664static int send_header(struct send_ctx *sctx)
 665{
 666        struct btrfs_stream_header hdr;
 667
 668        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 669        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 670
 671        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 672                                        &sctx->send_off);
 673}
 674
 675/*
 676 * For each command/item we want to send to userspace, we call this function.
 677 */
 678static int begin_cmd(struct send_ctx *sctx, int cmd)
 679{
 680        struct btrfs_cmd_header *hdr;
 681
 682        if (WARN_ON(!sctx->send_buf))
 683                return -EINVAL;
 684
 685        BUG_ON(sctx->send_size);
 686
 687        sctx->send_size += sizeof(*hdr);
 688        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 689        hdr->cmd = cpu_to_le16(cmd);
 690
 691        return 0;
 692}
 693
 694static int send_cmd(struct send_ctx *sctx)
 695{
 696        int ret;
 697        struct btrfs_cmd_header *hdr;
 698        u32 crc;
 699
 700        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 701        hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 702        hdr->crc = 0;
 703
 704        crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 705        hdr->crc = cpu_to_le32(crc);
 706
 707        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 708                                        &sctx->send_off);
 709
 710        sctx->total_send_size += sctx->send_size;
 711        sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 712        sctx->send_size = 0;
 713
 714        return ret;
 715}
 716
 717/*
 718 * Sends a move instruction to user space
 719 */
 720static int send_rename(struct send_ctx *sctx,
 721                     struct fs_path *from, struct fs_path *to)
 722{
 723        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 724        int ret;
 725
 726        btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 727
 728        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 729        if (ret < 0)
 730                goto out;
 731
 732        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 733        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 734
 735        ret = send_cmd(sctx);
 736
 737tlv_put_failure:
 738out:
 739        return ret;
 740}
 741
 742/*
 743 * Sends a link instruction to user space
 744 */
 745static int send_link(struct send_ctx *sctx,
 746                     struct fs_path *path, struct fs_path *lnk)
 747{
 748        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 749        int ret;
 750
 751        btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 752
 753        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 754        if (ret < 0)
 755                goto out;
 756
 757        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 758        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 759
 760        ret = send_cmd(sctx);
 761
 762tlv_put_failure:
 763out:
 764        return ret;
 765}
 766
 767/*
 768 * Sends an unlink instruction to user space
 769 */
 770static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 771{
 772        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 773        int ret;
 774
 775        btrfs_debug(fs_info, "send_unlink %s", path->start);
 776
 777        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 778        if (ret < 0)
 779                goto out;
 780
 781        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 782
 783        ret = send_cmd(sctx);
 784
 785tlv_put_failure:
 786out:
 787        return ret;
 788}
 789
 790/*
 791 * Sends a rmdir instruction to user space
 792 */
 793static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 794{
 795        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 796        int ret;
 797
 798        btrfs_debug(fs_info, "send_rmdir %s", path->start);
 799
 800        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 801        if (ret < 0)
 802                goto out;
 803
 804        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 805
 806        ret = send_cmd(sctx);
 807
 808tlv_put_failure:
 809out:
 810        return ret;
 811}
 812
 813/*
 814 * Helper function to retrieve some fields from an inode item.
 815 */
 816static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 817                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 818                          u64 *gid, u64 *rdev)
 819{
 820        int ret;
 821        struct btrfs_inode_item *ii;
 822        struct btrfs_key key;
 823
 824        key.objectid = ino;
 825        key.type = BTRFS_INODE_ITEM_KEY;
 826        key.offset = 0;
 827        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 828        if (ret) {
 829                if (ret > 0)
 830                        ret = -ENOENT;
 831                return ret;
 832        }
 833
 834        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 835                        struct btrfs_inode_item);
 836        if (size)
 837                *size = btrfs_inode_size(path->nodes[0], ii);
 838        if (gen)
 839                *gen = btrfs_inode_generation(path->nodes[0], ii);
 840        if (mode)
 841                *mode = btrfs_inode_mode(path->nodes[0], ii);
 842        if (uid)
 843                *uid = btrfs_inode_uid(path->nodes[0], ii);
 844        if (gid)
 845                *gid = btrfs_inode_gid(path->nodes[0], ii);
 846        if (rdev)
 847                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 848
 849        return ret;
 850}
 851
 852static int get_inode_info(struct btrfs_root *root,
 853                          u64 ino, u64 *size, u64 *gen,
 854                          u64 *mode, u64 *uid, u64 *gid,
 855                          u64 *rdev)
 856{
 857        struct btrfs_path *path;
 858        int ret;
 859
 860        path = alloc_path_for_send();
 861        if (!path)
 862                return -ENOMEM;
 863        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 864                               rdev);
 865        btrfs_free_path(path);
 866        return ret;
 867}
 868
 869typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 870                                   struct fs_path *p,
 871                                   void *ctx);
 872
 873/*
 874 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 875 * btrfs_inode_extref.
 876 * The iterate callback may return a non zero value to stop iteration. This can
 877 * be a negative value for error codes or 1 to simply stop it.
 878 *
 879 * path must point to the INODE_REF or INODE_EXTREF when called.
 880 */
 881static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 882                             struct btrfs_key *found_key, int resolve,
 883                             iterate_inode_ref_t iterate, void *ctx)
 884{
 885        struct extent_buffer *eb = path->nodes[0];
 886        struct btrfs_item *item;
 887        struct btrfs_inode_ref *iref;
 888        struct btrfs_inode_extref *extref;
 889        struct btrfs_path *tmp_path;
 890        struct fs_path *p;
 891        u32 cur = 0;
 892        u32 total;
 893        int slot = path->slots[0];
 894        u32 name_len;
 895        char *start;
 896        int ret = 0;
 897        int num = 0;
 898        int index;
 899        u64 dir;
 900        unsigned long name_off;
 901        unsigned long elem_size;
 902        unsigned long ptr;
 903
 904        p = fs_path_alloc_reversed();
 905        if (!p)
 906                return -ENOMEM;
 907
 908        tmp_path = alloc_path_for_send();
 909        if (!tmp_path) {
 910                fs_path_free(p);
 911                return -ENOMEM;
 912        }
 913
 914
 915        if (found_key->type == BTRFS_INODE_REF_KEY) {
 916                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 917                                                    struct btrfs_inode_ref);
 918                item = btrfs_item_nr(slot);
 919                total = btrfs_item_size(eb, item);
 920                elem_size = sizeof(*iref);
 921        } else {
 922                ptr = btrfs_item_ptr_offset(eb, slot);
 923                total = btrfs_item_size_nr(eb, slot);
 924                elem_size = sizeof(*extref);
 925        }
 926
 927        while (cur < total) {
 928                fs_path_reset(p);
 929
 930                if (found_key->type == BTRFS_INODE_REF_KEY) {
 931                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 932                        name_len = btrfs_inode_ref_name_len(eb, iref);
 933                        name_off = (unsigned long)(iref + 1);
 934                        index = btrfs_inode_ref_index(eb, iref);
 935                        dir = found_key->offset;
 936                } else {
 937                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 938                        name_len = btrfs_inode_extref_name_len(eb, extref);
 939                        name_off = (unsigned long)&extref->name;
 940                        index = btrfs_inode_extref_index(eb, extref);
 941                        dir = btrfs_inode_extref_parent(eb, extref);
 942                }
 943
 944                if (resolve) {
 945                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 946                                                  name_off, eb, dir,
 947                                                  p->buf, p->buf_len);
 948                        if (IS_ERR(start)) {
 949                                ret = PTR_ERR(start);
 950                                goto out;
 951                        }
 952                        if (start < p->buf) {
 953                                /* overflow , try again with larger buffer */
 954                                ret = fs_path_ensure_buf(p,
 955                                                p->buf_len + p->buf - start);
 956                                if (ret < 0)
 957                                        goto out;
 958                                start = btrfs_ref_to_path(root, tmp_path,
 959                                                          name_len, name_off,
 960                                                          eb, dir,
 961                                                          p->buf, p->buf_len);
 962                                if (IS_ERR(start)) {
 963                                        ret = PTR_ERR(start);
 964                                        goto out;
 965                                }
 966                                BUG_ON(start < p->buf);
 967                        }
 968                        p->start = start;
 969                } else {
 970                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 971                                                             name_len);
 972                        if (ret < 0)
 973                                goto out;
 974                }
 975
 976                cur += elem_size + name_len;
 977                ret = iterate(num, dir, index, p, ctx);
 978                if (ret)
 979                        goto out;
 980                num++;
 981        }
 982
 983out:
 984        btrfs_free_path(tmp_path);
 985        fs_path_free(p);
 986        return ret;
 987}
 988
 989typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 990                                  const char *name, int name_len,
 991                                  const char *data, int data_len,
 992                                  u8 type, void *ctx);
 993
 994/*
 995 * Helper function to iterate the entries in ONE btrfs_dir_item.
 996 * The iterate callback may return a non zero value to stop iteration. This can
 997 * be a negative value for error codes or 1 to simply stop it.
 998 *
 999 * path must point to the dir item when called.
1000 */
1001static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1002                            iterate_dir_item_t iterate, void *ctx)
1003{
1004        int ret = 0;
1005        struct extent_buffer *eb;
1006        struct btrfs_item *item;
1007        struct btrfs_dir_item *di;
1008        struct btrfs_key di_key;
1009        char *buf = NULL;
1010        int buf_len;
1011        u32 name_len;
1012        u32 data_len;
1013        u32 cur;
1014        u32 len;
1015        u32 total;
1016        int slot;
1017        int num;
1018        u8 type;
1019
1020        /*
1021         * Start with a small buffer (1 page). If later we end up needing more
1022         * space, which can happen for xattrs on a fs with a leaf size greater
1023         * then the page size, attempt to increase the buffer. Typically xattr
1024         * values are small.
1025         */
1026        buf_len = PATH_MAX;
1027        buf = kmalloc(buf_len, GFP_KERNEL);
1028        if (!buf) {
1029                ret = -ENOMEM;
1030                goto out;
1031        }
1032
1033        eb = path->nodes[0];
1034        slot = path->slots[0];
1035        item = btrfs_item_nr(slot);
1036        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1037        cur = 0;
1038        len = 0;
1039        total = btrfs_item_size(eb, item);
1040
1041        num = 0;
1042        while (cur < total) {
1043                name_len = btrfs_dir_name_len(eb, di);
1044                data_len = btrfs_dir_data_len(eb, di);
1045                type = btrfs_dir_type(eb, di);
1046                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1047
1048                if (type == BTRFS_FT_XATTR) {
1049                        if (name_len > XATTR_NAME_MAX) {
1050                                ret = -ENAMETOOLONG;
1051                                goto out;
1052                        }
1053                        if (name_len + data_len >
1054                                        BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1055                                ret = -E2BIG;
1056                                goto out;
1057                        }
1058                } else {
1059                        /*
1060                         * Path too long
1061                         */
1062                        if (name_len + data_len > PATH_MAX) {
1063                                ret = -ENAMETOOLONG;
1064                                goto out;
1065                        }
1066                }
1067
1068                if (name_len + data_len > buf_len) {
1069                        buf_len = name_len + data_len;
1070                        if (is_vmalloc_addr(buf)) {
1071                                vfree(buf);
1072                                buf = NULL;
1073                        } else {
1074                                char *tmp = krealloc(buf, buf_len,
1075                                                GFP_KERNEL | __GFP_NOWARN);
1076
1077                                if (!tmp)
1078                                        kfree(buf);
1079                                buf = tmp;
1080                        }
1081                        if (!buf) {
1082                                buf = kvmalloc(buf_len, GFP_KERNEL);
1083                                if (!buf) {
1084                                        ret = -ENOMEM;
1085                                        goto out;
1086                                }
1087                        }
1088                }
1089
1090                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091                                name_len + data_len);
1092
1093                len = sizeof(*di) + name_len + data_len;
1094                di = (struct btrfs_dir_item *)((char *)di + len);
1095                cur += len;
1096
1097                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098                                data_len, type, ctx);
1099                if (ret < 0)
1100                        goto out;
1101                if (ret) {
1102                        ret = 0;
1103                        goto out;
1104                }
1105
1106                num++;
1107        }
1108
1109out:
1110        kvfree(buf);
1111        return ret;
1112}
1113
1114static int __copy_first_ref(int num, u64 dir, int index,
1115                            struct fs_path *p, void *ctx)
1116{
1117        int ret;
1118        struct fs_path *pt = ctx;
1119
1120        ret = fs_path_copy(pt, p);
1121        if (ret < 0)
1122                return ret;
1123
1124        /* we want the first only */
1125        return 1;
1126}
1127
1128/*
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1131 */
1132static int get_inode_path(struct btrfs_root *root,
1133                          u64 ino, struct fs_path *path)
1134{
1135        int ret;
1136        struct btrfs_key key, found_key;
1137        struct btrfs_path *p;
1138
1139        p = alloc_path_for_send();
1140        if (!p)
1141                return -ENOMEM;
1142
1143        fs_path_reset(path);
1144
1145        key.objectid = ino;
1146        key.type = BTRFS_INODE_REF_KEY;
1147        key.offset = 0;
1148
1149        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150        if (ret < 0)
1151                goto out;
1152        if (ret) {
1153                ret = 1;
1154                goto out;
1155        }
1156        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157        if (found_key.objectid != ino ||
1158            (found_key.type != BTRFS_INODE_REF_KEY &&
1159             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160                ret = -ENOENT;
1161                goto out;
1162        }
1163
1164        ret = iterate_inode_ref(root, p, &found_key, 1,
1165                                __copy_first_ref, path);
1166        if (ret < 0)
1167                goto out;
1168        ret = 0;
1169
1170out:
1171        btrfs_free_path(p);
1172        return ret;
1173}
1174
1175struct backref_ctx {
1176        struct send_ctx *sctx;
1177
1178        /* number of total found references */
1179        u64 found;
1180
1181        /*
1182         * used for clones found in send_root. clones found behind cur_objectid
1183         * and cur_offset are not considered as allowed clones.
1184         */
1185        u64 cur_objectid;
1186        u64 cur_offset;
1187
1188        /* may be truncated in case it's the last extent in a file */
1189        u64 extent_len;
1190
1191        /* data offset in the file extent item */
1192        u64 data_offset;
1193
1194        /* Just to check for bugs in backref resolving */
1195        int found_itself;
1196};
1197
1198static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1199{
1200        u64 root = (u64)(uintptr_t)key;
1201        struct clone_root *cr = (struct clone_root *)elt;
1202
1203        if (root < cr->root->root_key.objectid)
1204                return -1;
1205        if (root > cr->root->root_key.objectid)
1206                return 1;
1207        return 0;
1208}
1209
1210static int __clone_root_cmp_sort(const void *e1, const void *e2)
1211{
1212        struct clone_root *cr1 = (struct clone_root *)e1;
1213        struct clone_root *cr2 = (struct clone_root *)e2;
1214
1215        if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216                return -1;
1217        if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218                return 1;
1219        return 0;
1220}
1221
1222/*
1223 * Called for every backref that is found for the current extent.
1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225 */
1226static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1227{
1228        struct backref_ctx *bctx = ctx_;
1229        struct clone_root *found;
1230
1231        /* First check if the root is in the list of accepted clone sources */
1232        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233                        bctx->sctx->clone_roots_cnt,
1234                        sizeof(struct clone_root),
1235                        __clone_root_cmp_bsearch);
1236        if (!found)
1237                return 0;
1238
1239        if (found->root == bctx->sctx->send_root &&
1240            ino == bctx->cur_objectid &&
1241            offset == bctx->cur_offset) {
1242                bctx->found_itself = 1;
1243        }
1244
1245        /*
1246         * Make sure we don't consider clones from send_root that are
1247         * behind the current inode/offset.
1248         */
1249        if (found->root == bctx->sctx->send_root) {
1250                /*
1251                 * TODO for the moment we don't accept clones from the inode
1252                 * that is currently send. We may change this when
1253                 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1254                 * file.
1255                 */
1256                if (ino >= bctx->cur_objectid)
1257                        return 0;
1258        }
1259
1260        bctx->found++;
1261        found->found_refs++;
1262        if (ino < found->ino) {
1263                found->ino = ino;
1264                found->offset = offset;
1265        } else if (found->ino == ino) {
1266                /*
1267                 * same extent found more then once in the same file.
1268                 */
1269                if (found->offset > offset + bctx->extent_len)
1270                        found->offset = offset;
1271        }
1272
1273        return 0;
1274}
1275
1276/*
1277 * Given an inode, offset and extent item, it finds a good clone for a clone
1278 * instruction. Returns -ENOENT when none could be found. The function makes
1279 * sure that the returned clone is usable at the point where sending is at the
1280 * moment. This means, that no clones are accepted which lie behind the current
1281 * inode+offset.
1282 *
1283 * path must point to the extent item when called.
1284 */
1285static int find_extent_clone(struct send_ctx *sctx,
1286                             struct btrfs_path *path,
1287                             u64 ino, u64 data_offset,
1288                             u64 ino_size,
1289                             struct clone_root **found)
1290{
1291        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1292        int ret;
1293        int extent_type;
1294        u64 logical;
1295        u64 disk_byte;
1296        u64 num_bytes;
1297        u64 extent_item_pos;
1298        u64 flags = 0;
1299        struct btrfs_file_extent_item *fi;
1300        struct extent_buffer *eb = path->nodes[0];
1301        struct backref_ctx *backref_ctx = NULL;
1302        struct clone_root *cur_clone_root;
1303        struct btrfs_key found_key;
1304        struct btrfs_path *tmp_path;
1305        int compressed;
1306        u32 i;
1307
1308        tmp_path = alloc_path_for_send();
1309        if (!tmp_path)
1310                return -ENOMEM;
1311
1312        /* We only use this path under the commit sem */
1313        tmp_path->need_commit_sem = 0;
1314
1315        backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1316        if (!backref_ctx) {
1317                ret = -ENOMEM;
1318                goto out;
1319        }
1320
1321        if (data_offset >= ino_size) {
1322                /*
1323                 * There may be extents that lie behind the file's size.
1324                 * I at least had this in combination with snapshotting while
1325                 * writing large files.
1326                 */
1327                ret = 0;
1328                goto out;
1329        }
1330
1331        fi = btrfs_item_ptr(eb, path->slots[0],
1332                        struct btrfs_file_extent_item);
1333        extent_type = btrfs_file_extent_type(eb, fi);
1334        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1335                ret = -ENOENT;
1336                goto out;
1337        }
1338        compressed = btrfs_file_extent_compression(eb, fi);
1339
1340        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1341        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1342        if (disk_byte == 0) {
1343                ret = -ENOENT;
1344                goto out;
1345        }
1346        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1347
1348        down_read(&fs_info->commit_root_sem);
1349        ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1350                                  &found_key, &flags);
1351        up_read(&fs_info->commit_root_sem);
1352        btrfs_release_path(tmp_path);
1353
1354        if (ret < 0)
1355                goto out;
1356        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1357                ret = -EIO;
1358                goto out;
1359        }
1360
1361        /*
1362         * Setup the clone roots.
1363         */
1364        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1365                cur_clone_root = sctx->clone_roots + i;
1366                cur_clone_root->ino = (u64)-1;
1367                cur_clone_root->offset = 0;
1368                cur_clone_root->found_refs = 0;
1369        }
1370
1371        backref_ctx->sctx = sctx;
1372        backref_ctx->found = 0;
1373        backref_ctx->cur_objectid = ino;
1374        backref_ctx->cur_offset = data_offset;
1375        backref_ctx->found_itself = 0;
1376        backref_ctx->extent_len = num_bytes;
1377        /*
1378         * For non-compressed extents iterate_extent_inodes() gives us extent
1379         * offsets that already take into account the data offset, but not for
1380         * compressed extents, since the offset is logical and not relative to
1381         * the physical extent locations. We must take this into account to
1382         * avoid sending clone offsets that go beyond the source file's size,
1383         * which would result in the clone ioctl failing with -EINVAL on the
1384         * receiving end.
1385         */
1386        if (compressed == BTRFS_COMPRESS_NONE)
1387                backref_ctx->data_offset = 0;
1388        else
1389                backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1390
1391        /*
1392         * The last extent of a file may be too large due to page alignment.
1393         * We need to adjust extent_len in this case so that the checks in
1394         * __iterate_backrefs work.
1395         */
1396        if (data_offset + num_bytes >= ino_size)
1397                backref_ctx->extent_len = ino_size - data_offset;
1398
1399        /*
1400         * Now collect all backrefs.
1401         */
1402        if (compressed == BTRFS_COMPRESS_NONE)
1403                extent_item_pos = logical - found_key.objectid;
1404        else
1405                extent_item_pos = 0;
1406        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1407                                    extent_item_pos, 1, __iterate_backrefs,
1408                                    backref_ctx, false);
1409
1410        if (ret < 0)
1411                goto out;
1412
1413        if (!backref_ctx->found_itself) {
1414                /* found a bug in backref code? */
1415                ret = -EIO;
1416                btrfs_err(fs_info,
1417                          "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1418                          ino, data_offset, disk_byte, found_key.objectid);
1419                goto out;
1420        }
1421
1422        btrfs_debug(fs_info,
1423                    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1424                    data_offset, ino, num_bytes, logical);
1425
1426        if (!backref_ctx->found)
1427                btrfs_debug(fs_info, "no clones found");
1428
1429        cur_clone_root = NULL;
1430        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1431                if (sctx->clone_roots[i].found_refs) {
1432                        if (!cur_clone_root)
1433                                cur_clone_root = sctx->clone_roots + i;
1434                        else if (sctx->clone_roots[i].root == sctx->send_root)
1435                                /* prefer clones from send_root over others */
1436                                cur_clone_root = sctx->clone_roots + i;
1437                }
1438
1439        }
1440
1441        if (cur_clone_root) {
1442                *found = cur_clone_root;
1443                ret = 0;
1444        } else {
1445                ret = -ENOENT;
1446        }
1447
1448out:
1449        btrfs_free_path(tmp_path);
1450        kfree(backref_ctx);
1451        return ret;
1452}
1453
1454static int read_symlink(struct btrfs_root *root,
1455                        u64 ino,
1456                        struct fs_path *dest)
1457{
1458        int ret;
1459        struct btrfs_path *path;
1460        struct btrfs_key key;
1461        struct btrfs_file_extent_item *ei;
1462        u8 type;
1463        u8 compression;
1464        unsigned long off;
1465        int len;
1466
1467        path = alloc_path_for_send();
1468        if (!path)
1469                return -ENOMEM;
1470
1471        key.objectid = ino;
1472        key.type = BTRFS_EXTENT_DATA_KEY;
1473        key.offset = 0;
1474        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1475        if (ret < 0)
1476                goto out;
1477        if (ret) {
1478                /*
1479                 * An empty symlink inode. Can happen in rare error paths when
1480                 * creating a symlink (transaction committed before the inode
1481                 * eviction handler removed the symlink inode items and a crash
1482                 * happened in between or the subvol was snapshoted in between).
1483                 * Print an informative message to dmesg/syslog so that the user
1484                 * can delete the symlink.
1485                 */
1486                btrfs_err(root->fs_info,
1487                          "Found empty symlink inode %llu at root %llu",
1488                          ino, root->root_key.objectid);
1489                ret = -EIO;
1490                goto out;
1491        }
1492
1493        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1494                        struct btrfs_file_extent_item);
1495        type = btrfs_file_extent_type(path->nodes[0], ei);
1496        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1497        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1498        BUG_ON(compression);
1499
1500        off = btrfs_file_extent_inline_start(ei);
1501        len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1502
1503        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1504
1505out:
1506        btrfs_free_path(path);
1507        return ret;
1508}
1509
1510/*
1511 * Helper function to generate a file name that is unique in the root of
1512 * send_root and parent_root. This is used to generate names for orphan inodes.
1513 */
1514static int gen_unique_name(struct send_ctx *sctx,
1515                           u64 ino, u64 gen,
1516                           struct fs_path *dest)
1517{
1518        int ret = 0;
1519        struct btrfs_path *path;
1520        struct btrfs_dir_item *di;
1521        char tmp[64];
1522        int len;
1523        u64 idx = 0;
1524
1525        path = alloc_path_for_send();
1526        if (!path)
1527                return -ENOMEM;
1528
1529        while (1) {
1530                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1531                                ino, gen, idx);
1532                ASSERT(len < sizeof(tmp));
1533
1534                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1535                                path, BTRFS_FIRST_FREE_OBJECTID,
1536                                tmp, strlen(tmp), 0);
1537                btrfs_release_path(path);
1538                if (IS_ERR(di)) {
1539                        ret = PTR_ERR(di);
1540                        goto out;
1541                }
1542                if (di) {
1543                        /* not unique, try again */
1544                        idx++;
1545                        continue;
1546                }
1547
1548                if (!sctx->parent_root) {
1549                        /* unique */
1550                        ret = 0;
1551                        break;
1552                }
1553
1554                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1555                                path, BTRFS_FIRST_FREE_OBJECTID,
1556                                tmp, strlen(tmp), 0);
1557                btrfs_release_path(path);
1558                if (IS_ERR(di)) {
1559                        ret = PTR_ERR(di);
1560                        goto out;
1561                }
1562                if (di) {
1563                        /* not unique, try again */
1564                        idx++;
1565                        continue;
1566                }
1567                /* unique */
1568                break;
1569        }
1570
1571        ret = fs_path_add(dest, tmp, strlen(tmp));
1572
1573out:
1574        btrfs_free_path(path);
1575        return ret;
1576}
1577
1578enum inode_state {
1579        inode_state_no_change,
1580        inode_state_will_create,
1581        inode_state_did_create,
1582        inode_state_will_delete,
1583        inode_state_did_delete,
1584};
1585
1586static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1587{
1588        int ret;
1589        int left_ret;
1590        int right_ret;
1591        u64 left_gen;
1592        u64 right_gen;
1593
1594        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1595                        NULL, NULL);
1596        if (ret < 0 && ret != -ENOENT)
1597                goto out;
1598        left_ret = ret;
1599
1600        if (!sctx->parent_root) {
1601                right_ret = -ENOENT;
1602        } else {
1603                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1604                                NULL, NULL, NULL, NULL);
1605                if (ret < 0 && ret != -ENOENT)
1606                        goto out;
1607                right_ret = ret;
1608        }
1609
1610        if (!left_ret && !right_ret) {
1611                if (left_gen == gen && right_gen == gen) {
1612                        ret = inode_state_no_change;
1613                } else if (left_gen == gen) {
1614                        if (ino < sctx->send_progress)
1615                                ret = inode_state_did_create;
1616                        else
1617                                ret = inode_state_will_create;
1618                } else if (right_gen == gen) {
1619                        if (ino < sctx->send_progress)
1620                                ret = inode_state_did_delete;
1621                        else
1622                                ret = inode_state_will_delete;
1623                } else  {
1624                        ret = -ENOENT;
1625                }
1626        } else if (!left_ret) {
1627                if (left_gen == gen) {
1628                        if (ino < sctx->send_progress)
1629                                ret = inode_state_did_create;
1630                        else
1631                                ret = inode_state_will_create;
1632                } else {
1633                        ret = -ENOENT;
1634                }
1635        } else if (!right_ret) {
1636                if (right_gen == gen) {
1637                        if (ino < sctx->send_progress)
1638                                ret = inode_state_did_delete;
1639                        else
1640                                ret = inode_state_will_delete;
1641                } else {
1642                        ret = -ENOENT;
1643                }
1644        } else {
1645                ret = -ENOENT;
1646        }
1647
1648out:
1649        return ret;
1650}
1651
1652static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1653{
1654        int ret;
1655
1656        if (ino == BTRFS_FIRST_FREE_OBJECTID)
1657                return 1;
1658
1659        ret = get_cur_inode_state(sctx, ino, gen);
1660        if (ret < 0)
1661                goto out;
1662
1663        if (ret == inode_state_no_change ||
1664            ret == inode_state_did_create ||
1665            ret == inode_state_will_delete)
1666                ret = 1;
1667        else
1668                ret = 0;
1669
1670out:
1671        return ret;
1672}
1673
1674/*
1675 * Helper function to lookup a dir item in a dir.
1676 */
1677static int lookup_dir_item_inode(struct btrfs_root *root,
1678                                 u64 dir, const char *name, int name_len,
1679                                 u64 *found_inode,
1680                                 u8 *found_type)
1681{
1682        int ret = 0;
1683        struct btrfs_dir_item *di;
1684        struct btrfs_key key;
1685        struct btrfs_path *path;
1686
1687        path = alloc_path_for_send();
1688        if (!path)
1689                return -ENOMEM;
1690
1691        di = btrfs_lookup_dir_item(NULL, root, path,
1692                        dir, name, name_len, 0);
1693        if (IS_ERR_OR_NULL(di)) {
1694                ret = di ? PTR_ERR(di) : -ENOENT;
1695                goto out;
1696        }
1697        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1698        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1699                ret = -ENOENT;
1700                goto out;
1701        }
1702        *found_inode = key.objectid;
1703        *found_type = btrfs_dir_type(path->nodes[0], di);
1704
1705out:
1706        btrfs_free_path(path);
1707        return ret;
1708}
1709
1710/*
1711 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1712 * generation of the parent dir and the name of the dir entry.
1713 */
1714static int get_first_ref(struct btrfs_root *root, u64 ino,
1715                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1716{
1717        int ret;
1718        struct btrfs_key key;
1719        struct btrfs_key found_key;
1720        struct btrfs_path *path;
1721        int len;
1722        u64 parent_dir;
1723
1724        path = alloc_path_for_send();
1725        if (!path)
1726                return -ENOMEM;
1727
1728        key.objectid = ino;
1729        key.type = BTRFS_INODE_REF_KEY;
1730        key.offset = 0;
1731
1732        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1733        if (ret < 0)
1734                goto out;
1735        if (!ret)
1736                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1737                                path->slots[0]);
1738        if (ret || found_key.objectid != ino ||
1739            (found_key.type != BTRFS_INODE_REF_KEY &&
1740             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1741                ret = -ENOENT;
1742                goto out;
1743        }
1744
1745        if (found_key.type == BTRFS_INODE_REF_KEY) {
1746                struct btrfs_inode_ref *iref;
1747                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1748                                      struct btrfs_inode_ref);
1749                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1750                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1751                                                     (unsigned long)(iref + 1),
1752                                                     len);
1753                parent_dir = found_key.offset;
1754        } else {
1755                struct btrfs_inode_extref *extref;
1756                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757                                        struct btrfs_inode_extref);
1758                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1759                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1760                                        (unsigned long)&extref->name, len);
1761                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1762        }
1763        if (ret < 0)
1764                goto out;
1765        btrfs_release_path(path);
1766
1767        if (dir_gen) {
1768                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1769                                     NULL, NULL, NULL);
1770                if (ret < 0)
1771                        goto out;
1772        }
1773
1774        *dir = parent_dir;
1775
1776out:
1777        btrfs_free_path(path);
1778        return ret;
1779}
1780
1781static int is_first_ref(struct btrfs_root *root,
1782                        u64 ino, u64 dir,
1783                        const char *name, int name_len)
1784{
1785        int ret;
1786        struct fs_path *tmp_name;
1787        u64 tmp_dir;
1788
1789        tmp_name = fs_path_alloc();
1790        if (!tmp_name)
1791                return -ENOMEM;
1792
1793        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1794        if (ret < 0)
1795                goto out;
1796
1797        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1798                ret = 0;
1799                goto out;
1800        }
1801
1802        ret = !memcmp(tmp_name->start, name, name_len);
1803
1804out:
1805        fs_path_free(tmp_name);
1806        return ret;
1807}
1808
1809/*
1810 * Used by process_recorded_refs to determine if a new ref would overwrite an
1811 * already existing ref. In case it detects an overwrite, it returns the
1812 * inode/gen in who_ino/who_gen.
1813 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1814 * to make sure later references to the overwritten inode are possible.
1815 * Orphanizing is however only required for the first ref of an inode.
1816 * process_recorded_refs does an additional is_first_ref check to see if
1817 * orphanizing is really required.
1818 */
1819static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1820                              const char *name, int name_len,
1821                              u64 *who_ino, u64 *who_gen, u64 *who_mode)
1822{
1823        int ret = 0;
1824        u64 gen;
1825        u64 other_inode = 0;
1826        u8 other_type = 0;
1827
1828        if (!sctx->parent_root)
1829                goto out;
1830
1831        ret = is_inode_existent(sctx, dir, dir_gen);
1832        if (ret <= 0)
1833                goto out;
1834
1835        /*
1836         * If we have a parent root we need to verify that the parent dir was
1837         * not deleted and then re-created, if it was then we have no overwrite
1838         * and we can just unlink this entry.
1839         */
1840        if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1841                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1842                                     NULL, NULL, NULL);
1843                if (ret < 0 && ret != -ENOENT)
1844                        goto out;
1845                if (ret) {
1846                        ret = 0;
1847                        goto out;
1848                }
1849                if (gen != dir_gen)
1850                        goto out;
1851        }
1852
1853        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1854                        &other_inode, &other_type);
1855        if (ret < 0 && ret != -ENOENT)
1856                goto out;
1857        if (ret) {
1858                ret = 0;
1859                goto out;
1860        }
1861
1862        /*
1863         * Check if the overwritten ref was already processed. If yes, the ref
1864         * was already unlinked/moved, so we can safely assume that we will not
1865         * overwrite anything at this point in time.
1866         */
1867        if (other_inode > sctx->send_progress ||
1868            is_waiting_for_move(sctx, other_inode)) {
1869                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1870                                who_gen, who_mode, NULL, NULL, NULL);
1871                if (ret < 0)
1872                        goto out;
1873
1874                ret = 1;
1875                *who_ino = other_inode;
1876        } else {
1877                ret = 0;
1878        }
1879
1880out:
1881        return ret;
1882}
1883
1884/*
1885 * Checks if the ref was overwritten by an already processed inode. This is
1886 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1887 * thus the orphan name needs be used.
1888 * process_recorded_refs also uses it to avoid unlinking of refs that were
1889 * overwritten.
1890 */
1891static int did_overwrite_ref(struct send_ctx *sctx,
1892                            u64 dir, u64 dir_gen,
1893                            u64 ino, u64 ino_gen,
1894                            const char *name, int name_len)
1895{
1896        int ret = 0;
1897        u64 gen;
1898        u64 ow_inode;
1899        u8 other_type;
1900
1901        if (!sctx->parent_root)
1902                goto out;
1903
1904        ret = is_inode_existent(sctx, dir, dir_gen);
1905        if (ret <= 0)
1906                goto out;
1907
1908        if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1909                ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1910                                     NULL, NULL, NULL);
1911                if (ret < 0 && ret != -ENOENT)
1912                        goto out;
1913                if (ret) {
1914                        ret = 0;
1915                        goto out;
1916                }
1917                if (gen != dir_gen)
1918                        goto out;
1919        }
1920
1921        /* check if the ref was overwritten by another ref */
1922        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1923                        &ow_inode, &other_type);
1924        if (ret < 0 && ret != -ENOENT)
1925                goto out;
1926        if (ret) {
1927                /* was never and will never be overwritten */
1928                ret = 0;
1929                goto out;
1930        }
1931
1932        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1933                        NULL, NULL);
1934        if (ret < 0)
1935                goto out;
1936
1937        if (ow_inode == ino && gen == ino_gen) {
1938                ret = 0;
1939                goto out;
1940        }
1941
1942        /*
1943         * We know that it is or will be overwritten. Check this now.
1944         * The current inode being processed might have been the one that caused
1945         * inode 'ino' to be orphanized, therefore check if ow_inode matches
1946         * the current inode being processed.
1947         */
1948        if ((ow_inode < sctx->send_progress) ||
1949            (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1950             gen == sctx->cur_inode_gen))
1951                ret = 1;
1952        else
1953                ret = 0;
1954
1955out:
1956        return ret;
1957}
1958
1959/*
1960 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1961 * that got overwritten. This is used by process_recorded_refs to determine
1962 * if it has to use the path as returned by get_cur_path or the orphan name.
1963 */
1964static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1965{
1966        int ret = 0;
1967        struct fs_path *name = NULL;
1968        u64 dir;
1969        u64 dir_gen;
1970
1971        if (!sctx->parent_root)
1972                goto out;
1973
1974        name = fs_path_alloc();
1975        if (!name)
1976                return -ENOMEM;
1977
1978        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1979        if (ret < 0)
1980                goto out;
1981
1982        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1983                        name->start, fs_path_len(name));
1984
1985out:
1986        fs_path_free(name);
1987        return ret;
1988}
1989
1990/*
1991 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1992 * so we need to do some special handling in case we have clashes. This function
1993 * takes care of this with the help of name_cache_entry::radix_list.
1994 * In case of error, nce is kfreed.
1995 */
1996static int name_cache_insert(struct send_ctx *sctx,
1997                             struct name_cache_entry *nce)
1998{
1999        int ret = 0;
2000        struct list_head *nce_head;
2001
2002        nce_head = radix_tree_lookup(&sctx->name_cache,
2003                        (unsigned long)nce->ino);
2004        if (!nce_head) {
2005                nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2006                if (!nce_head) {
2007                        kfree(nce);
2008                        return -ENOMEM;
2009                }
2010                INIT_LIST_HEAD(nce_head);
2011
2012                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2013                if (ret < 0) {
2014                        kfree(nce_head);
2015                        kfree(nce);
2016                        return ret;
2017                }
2018        }
2019        list_add_tail(&nce->radix_list, nce_head);
2020        list_add_tail(&nce->list, &sctx->name_cache_list);
2021        sctx->name_cache_size++;
2022
2023        return ret;
2024}
2025
2026static void name_cache_delete(struct send_ctx *sctx,
2027                              struct name_cache_entry *nce)
2028{
2029        struct list_head *nce_head;
2030
2031        nce_head = radix_tree_lookup(&sctx->name_cache,
2032                        (unsigned long)nce->ino);
2033        if (!nce_head) {
2034                btrfs_err(sctx->send_root->fs_info,
2035              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2036                        nce->ino, sctx->name_cache_size);
2037        }
2038
2039        list_del(&nce->radix_list);
2040        list_del(&nce->list);
2041        sctx->name_cache_size--;
2042
2043        /*
2044         * We may not get to the final release of nce_head if the lookup fails
2045         */
2046        if (nce_head && list_empty(nce_head)) {
2047                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2048                kfree(nce_head);
2049        }
2050}
2051
2052static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2053                                                    u64 ino, u64 gen)
2054{
2055        struct list_head *nce_head;
2056        struct name_cache_entry *cur;
2057
2058        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2059        if (!nce_head)
2060                return NULL;
2061
2062        list_for_each_entry(cur, nce_head, radix_list) {
2063                if (cur->ino == ino && cur->gen == gen)
2064                        return cur;
2065        }
2066        return NULL;
2067}
2068
2069/*
2070 * Removes the entry from the list and adds it back to the end. This marks the
2071 * entry as recently used so that name_cache_clean_unused does not remove it.
2072 */
2073static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2074{
2075        list_del(&nce->list);
2076        list_add_tail(&nce->list, &sctx->name_cache_list);
2077}
2078
2079/*
2080 * Remove some entries from the beginning of name_cache_list.
2081 */
2082static void name_cache_clean_unused(struct send_ctx *sctx)
2083{
2084        struct name_cache_entry *nce;
2085
2086        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2087                return;
2088
2089        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2090                nce = list_entry(sctx->name_cache_list.next,
2091                                struct name_cache_entry, list);
2092                name_cache_delete(sctx, nce);
2093                kfree(nce);
2094        }
2095}
2096
2097static void name_cache_free(struct send_ctx *sctx)
2098{
2099        struct name_cache_entry *nce;
2100
2101        while (!list_empty(&sctx->name_cache_list)) {
2102                nce = list_entry(sctx->name_cache_list.next,
2103                                struct name_cache_entry, list);
2104                name_cache_delete(sctx, nce);
2105                kfree(nce);
2106        }
2107}
2108
2109/*
2110 * Used by get_cur_path for each ref up to the root.
2111 * Returns 0 if it succeeded.
2112 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2113 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2114 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2115 * Returns <0 in case of error.
2116 */
2117static int __get_cur_name_and_parent(struct send_ctx *sctx,
2118                                     u64 ino, u64 gen,
2119                                     u64 *parent_ino,
2120                                     u64 *parent_gen,
2121                                     struct fs_path *dest)
2122{
2123        int ret;
2124        int nce_ret;
2125        struct name_cache_entry *nce = NULL;
2126
2127        /*
2128         * First check if we already did a call to this function with the same
2129         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2130         * return the cached result.
2131         */
2132        nce = name_cache_search(sctx, ino, gen);
2133        if (nce) {
2134                if (ino < sctx->send_progress && nce->need_later_update) {
2135                        name_cache_delete(sctx, nce);
2136                        kfree(nce);
2137                        nce = NULL;
2138                } else {
2139                        name_cache_used(sctx, nce);
2140                        *parent_ino = nce->parent_ino;
2141                        *parent_gen = nce->parent_gen;
2142                        ret = fs_path_add(dest, nce->name, nce->name_len);
2143                        if (ret < 0)
2144                                goto out;
2145                        ret = nce->ret;
2146                        goto out;
2147                }
2148        }
2149
2150        /*
2151         * If the inode is not existent yet, add the orphan name and return 1.
2152         * This should only happen for the parent dir that we determine in
2153         * __record_new_ref
2154         */
2155        ret = is_inode_existent(sctx, ino, gen);
2156        if (ret < 0)
2157                goto out;
2158
2159        if (!ret) {
2160                ret = gen_unique_name(sctx, ino, gen, dest);
2161                if (ret < 0)
2162                        goto out;
2163                ret = 1;
2164                goto out_cache;
2165        }
2166
2167        /*
2168         * Depending on whether the inode was already processed or not, use
2169         * send_root or parent_root for ref lookup.
2170         */
2171        if (ino < sctx->send_progress)
2172                ret = get_first_ref(sctx->send_root, ino,
2173                                    parent_ino, parent_gen, dest);
2174        else
2175                ret = get_first_ref(sctx->parent_root, ino,
2176                                    parent_ino, parent_gen, dest);
2177        if (ret < 0)
2178                goto out;
2179
2180        /*
2181         * Check if the ref was overwritten by an inode's ref that was processed
2182         * earlier. If yes, treat as orphan and return 1.
2183         */
2184        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2185                        dest->start, dest->end - dest->start);
2186        if (ret < 0)
2187                goto out;
2188        if (ret) {
2189                fs_path_reset(dest);
2190                ret = gen_unique_name(sctx, ino, gen, dest);
2191                if (ret < 0)
2192                        goto out;
2193                ret = 1;
2194        }
2195
2196out_cache:
2197        /*
2198         * Store the result of the lookup in the name cache.
2199         */
2200        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2201        if (!nce) {
2202                ret = -ENOMEM;
2203                goto out;
2204        }
2205
2206        nce->ino = ino;
2207        nce->gen = gen;
2208        nce->parent_ino = *parent_ino;
2209        nce->parent_gen = *parent_gen;
2210        nce->name_len = fs_path_len(dest);
2211        nce->ret = ret;
2212        strcpy(nce->name, dest->start);
2213
2214        if (ino < sctx->send_progress)
2215                nce->need_later_update = 0;
2216        else
2217                nce->need_later_update = 1;
2218
2219        nce_ret = name_cache_insert(sctx, nce);
2220        if (nce_ret < 0)
2221                ret = nce_ret;
2222        name_cache_clean_unused(sctx);
2223
2224out:
2225        return ret;
2226}
2227
2228/*
2229 * Magic happens here. This function returns the first ref to an inode as it
2230 * would look like while receiving the stream at this point in time.
2231 * We walk the path up to the root. For every inode in between, we check if it
2232 * was already processed/sent. If yes, we continue with the parent as found
2233 * in send_root. If not, we continue with the parent as found in parent_root.
2234 * If we encounter an inode that was deleted at this point in time, we use the
2235 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2236 * that were not created yet and overwritten inodes/refs.
2237 *
2238 * When do we have orphan inodes:
2239 * 1. When an inode is freshly created and thus no valid refs are available yet
2240 * 2. When a directory lost all it's refs (deleted) but still has dir items
2241 *    inside which were not processed yet (pending for move/delete). If anyone
2242 *    tried to get the path to the dir items, it would get a path inside that
2243 *    orphan directory.
2244 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2245 *    of an unprocessed inode. If in that case the first ref would be
2246 *    overwritten, the overwritten inode gets "orphanized". Later when we
2247 *    process this overwritten inode, it is restored at a new place by moving
2248 *    the orphan inode.
2249 *
2250 * sctx->send_progress tells this function at which point in time receiving
2251 * would be.
2252 */
2253static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2254                        struct fs_path *dest)
2255{
2256        int ret = 0;
2257        struct fs_path *name = NULL;
2258        u64 parent_inode = 0;
2259        u64 parent_gen = 0;
2260        int stop = 0;
2261
2262        name = fs_path_alloc();
2263        if (!name) {
2264                ret = -ENOMEM;
2265                goto out;
2266        }
2267
2268        dest->reversed = 1;
2269        fs_path_reset(dest);
2270
2271        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2272                struct waiting_dir_move *wdm;
2273
2274                fs_path_reset(name);
2275
2276                if (is_waiting_for_rm(sctx, ino)) {
2277                        ret = gen_unique_name(sctx, ino, gen, name);
2278                        if (ret < 0)
2279                                goto out;
2280                        ret = fs_path_add_path(dest, name);
2281                        break;
2282                }
2283
2284                wdm = get_waiting_dir_move(sctx, ino);
2285                if (wdm && wdm->orphanized) {
2286                        ret = gen_unique_name(sctx, ino, gen, name);
2287                        stop = 1;
2288                } else if (wdm) {
2289                        ret = get_first_ref(sctx->parent_root, ino,
2290                                            &parent_inode, &parent_gen, name);
2291                } else {
2292                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2293                                                        &parent_inode,
2294                                                        &parent_gen, name);
2295                        if (ret)
2296                                stop = 1;
2297                }
2298
2299                if (ret < 0)
2300                        goto out;
2301
2302                ret = fs_path_add_path(dest, name);
2303                if (ret < 0)
2304                        goto out;
2305
2306                ino = parent_inode;
2307                gen = parent_gen;
2308        }
2309
2310out:
2311        fs_path_free(name);
2312        if (!ret)
2313                fs_path_unreverse(dest);
2314        return ret;
2315}
2316
2317/*
2318 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2319 */
2320static int send_subvol_begin(struct send_ctx *sctx)
2321{
2322        int ret;
2323        struct btrfs_root *send_root = sctx->send_root;
2324        struct btrfs_root *parent_root = sctx->parent_root;
2325        struct btrfs_path *path;
2326        struct btrfs_key key;
2327        struct btrfs_root_ref *ref;
2328        struct extent_buffer *leaf;
2329        char *name = NULL;
2330        int namelen;
2331
2332        path = btrfs_alloc_path();
2333        if (!path)
2334                return -ENOMEM;
2335
2336        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2337        if (!name) {
2338                btrfs_free_path(path);
2339                return -ENOMEM;
2340        }
2341
2342        key.objectid = send_root->root_key.objectid;
2343        key.type = BTRFS_ROOT_BACKREF_KEY;
2344        key.offset = 0;
2345
2346        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2347                                &key, path, 1, 0);
2348        if (ret < 0)
2349                goto out;
2350        if (ret) {
2351                ret = -ENOENT;
2352                goto out;
2353        }
2354
2355        leaf = path->nodes[0];
2356        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2357        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2358            key.objectid != send_root->root_key.objectid) {
2359                ret = -ENOENT;
2360                goto out;
2361        }
2362        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2363        namelen = btrfs_root_ref_name_len(leaf, ref);
2364        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2365        btrfs_release_path(path);
2366
2367        if (parent_root) {
2368                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2369                if (ret < 0)
2370                        goto out;
2371        } else {
2372                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2373                if (ret < 0)
2374                        goto out;
2375        }
2376
2377        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2378
2379        if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2380                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2381                            sctx->send_root->root_item.received_uuid);
2382        else
2383                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384                            sctx->send_root->root_item.uuid);
2385
2386        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2387                    le64_to_cpu(sctx->send_root->root_item.ctransid));
2388        if (parent_root) {
2389                if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2390                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2391                                     parent_root->root_item.received_uuid);
2392                else
2393                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394                                     parent_root->root_item.uuid);
2395                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2396                            le64_to_cpu(sctx->parent_root->root_item.ctransid));
2397        }
2398
2399        ret = send_cmd(sctx);
2400
2401tlv_put_failure:
2402out:
2403        btrfs_free_path(path);
2404        kfree(name);
2405        return ret;
2406}
2407
2408static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2409{
2410        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2411        int ret = 0;
2412        struct fs_path *p;
2413
2414        btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2415
2416        p = fs_path_alloc();
2417        if (!p)
2418                return -ENOMEM;
2419
2420        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2421        if (ret < 0)
2422                goto out;
2423
2424        ret = get_cur_path(sctx, ino, gen, p);
2425        if (ret < 0)
2426                goto out;
2427        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2428        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2429
2430        ret = send_cmd(sctx);
2431
2432tlv_put_failure:
2433out:
2434        fs_path_free(p);
2435        return ret;
2436}
2437
2438static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2439{
2440        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2441        int ret = 0;
2442        struct fs_path *p;
2443
2444        btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2445
2446        p = fs_path_alloc();
2447        if (!p)
2448                return -ENOMEM;
2449
2450        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2451        if (ret < 0)
2452                goto out;
2453
2454        ret = get_cur_path(sctx, ino, gen, p);
2455        if (ret < 0)
2456                goto out;
2457        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2459
2460        ret = send_cmd(sctx);
2461
2462tlv_put_failure:
2463out:
2464        fs_path_free(p);
2465        return ret;
2466}
2467
2468static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2469{
2470        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2471        int ret = 0;
2472        struct fs_path *p;
2473
2474        btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2475                    ino, uid, gid);
2476
2477        p = fs_path_alloc();
2478        if (!p)
2479                return -ENOMEM;
2480
2481        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2482        if (ret < 0)
2483                goto out;
2484
2485        ret = get_cur_path(sctx, ino, gen, p);
2486        if (ret < 0)
2487                goto out;
2488        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2490        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2491
2492        ret = send_cmd(sctx);
2493
2494tlv_put_failure:
2495out:
2496        fs_path_free(p);
2497        return ret;
2498}
2499
2500static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2501{
2502        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503        int ret = 0;
2504        struct fs_path *p = NULL;
2505        struct btrfs_inode_item *ii;
2506        struct btrfs_path *path = NULL;
2507        struct extent_buffer *eb;
2508        struct btrfs_key key;
2509        int slot;
2510
2511        btrfs_debug(fs_info, "send_utimes %llu", ino);
2512
2513        p = fs_path_alloc();
2514        if (!p)
2515                return -ENOMEM;
2516
2517        path = alloc_path_for_send();
2518        if (!path) {
2519                ret = -ENOMEM;
2520                goto out;
2521        }
2522
2523        key.objectid = ino;
2524        key.type = BTRFS_INODE_ITEM_KEY;
2525        key.offset = 0;
2526        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2527        if (ret > 0)
2528                ret = -ENOENT;
2529        if (ret < 0)
2530                goto out;
2531
2532        eb = path->nodes[0];
2533        slot = path->slots[0];
2534        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2535
2536        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2537        if (ret < 0)
2538                goto out;
2539
2540        ret = get_cur_path(sctx, ino, gen, p);
2541        if (ret < 0)
2542                goto out;
2543        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2544        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2545        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2546        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2547        /* TODO Add otime support when the otime patches get into upstream */
2548
2549        ret = send_cmd(sctx);
2550
2551tlv_put_failure:
2552out:
2553        fs_path_free(p);
2554        btrfs_free_path(path);
2555        return ret;
2556}
2557
2558/*
2559 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2560 * a valid path yet because we did not process the refs yet. So, the inode
2561 * is created as orphan.
2562 */
2563static int send_create_inode(struct send_ctx *sctx, u64 ino)
2564{
2565        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2566        int ret = 0;
2567        struct fs_path *p;
2568        int cmd;
2569        u64 gen;
2570        u64 mode;
2571        u64 rdev;
2572
2573        btrfs_debug(fs_info, "send_create_inode %llu", ino);
2574
2575        p = fs_path_alloc();
2576        if (!p)
2577                return -ENOMEM;
2578
2579        if (ino != sctx->cur_ino) {
2580                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2581                                     NULL, NULL, &rdev);
2582                if (ret < 0)
2583                        goto out;
2584        } else {
2585                gen = sctx->cur_inode_gen;
2586                mode = sctx->cur_inode_mode;
2587                rdev = sctx->cur_inode_rdev;
2588        }
2589
2590        if (S_ISREG(mode)) {
2591                cmd = BTRFS_SEND_C_MKFILE;
2592        } else if (S_ISDIR(mode)) {
2593                cmd = BTRFS_SEND_C_MKDIR;
2594        } else if (S_ISLNK(mode)) {
2595                cmd = BTRFS_SEND_C_SYMLINK;
2596        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2597                cmd = BTRFS_SEND_C_MKNOD;
2598        } else if (S_ISFIFO(mode)) {
2599                cmd = BTRFS_SEND_C_MKFIFO;
2600        } else if (S_ISSOCK(mode)) {
2601                cmd = BTRFS_SEND_C_MKSOCK;
2602        } else {
2603                btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2604                                (int)(mode & S_IFMT));
2605                ret = -EOPNOTSUPP;
2606                goto out;
2607        }
2608
2609        ret = begin_cmd(sctx, cmd);
2610        if (ret < 0)
2611                goto out;
2612
2613        ret = gen_unique_name(sctx, ino, gen, p);
2614        if (ret < 0)
2615                goto out;
2616
2617        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2618        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2619
2620        if (S_ISLNK(mode)) {
2621                fs_path_reset(p);
2622                ret = read_symlink(sctx->send_root, ino, p);
2623                if (ret < 0)
2624                        goto out;
2625                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2626        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2627                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2628                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2629                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2630        }
2631
2632        ret = send_cmd(sctx);
2633        if (ret < 0)
2634                goto out;
2635
2636
2637tlv_put_failure:
2638out:
2639        fs_path_free(p);
2640        return ret;
2641}
2642
2643/*
2644 * We need some special handling for inodes that get processed before the parent
2645 * directory got created. See process_recorded_refs for details.
2646 * This function does the check if we already created the dir out of order.
2647 */
2648static int did_create_dir(struct send_ctx *sctx, u64 dir)
2649{
2650        int ret = 0;
2651        struct btrfs_path *path = NULL;
2652        struct btrfs_key key;
2653        struct btrfs_key found_key;
2654        struct btrfs_key di_key;
2655        struct extent_buffer *eb;
2656        struct btrfs_dir_item *di;
2657        int slot;
2658
2659        path = alloc_path_for_send();
2660        if (!path) {
2661                ret = -ENOMEM;
2662                goto out;
2663        }
2664
2665        key.objectid = dir;
2666        key.type = BTRFS_DIR_INDEX_KEY;
2667        key.offset = 0;
2668        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2669        if (ret < 0)
2670                goto out;
2671
2672        while (1) {
2673                eb = path->nodes[0];
2674                slot = path->slots[0];
2675                if (slot >= btrfs_header_nritems(eb)) {
2676                        ret = btrfs_next_leaf(sctx->send_root, path);
2677                        if (ret < 0) {
2678                                goto out;
2679                        } else if (ret > 0) {
2680                                ret = 0;
2681                                break;
2682                        }
2683                        continue;
2684                }
2685
2686                btrfs_item_key_to_cpu(eb, &found_key, slot);
2687                if (found_key.objectid != key.objectid ||
2688                    found_key.type != key.type) {
2689                        ret = 0;
2690                        goto out;
2691                }
2692
2693                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2694                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2695
2696                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2697                    di_key.objectid < sctx->send_progress) {
2698                        ret = 1;
2699                        goto out;
2700                }
2701
2702                path->slots[0]++;
2703        }
2704
2705out:
2706        btrfs_free_path(path);
2707        return ret;
2708}
2709
2710/*
2711 * Only creates the inode if it is:
2712 * 1. Not a directory
2713 * 2. Or a directory which was not created already due to out of order
2714 *    directories. See did_create_dir and process_recorded_refs for details.
2715 */
2716static int send_create_inode_if_needed(struct send_ctx *sctx)
2717{
2718        int ret;
2719
2720        if (S_ISDIR(sctx->cur_inode_mode)) {
2721                ret = did_create_dir(sctx, sctx->cur_ino);
2722                if (ret < 0)
2723                        goto out;
2724                if (ret) {
2725                        ret = 0;
2726                        goto out;
2727                }
2728        }
2729
2730        ret = send_create_inode(sctx, sctx->cur_ino);
2731        if (ret < 0)
2732                goto out;
2733
2734out:
2735        return ret;
2736}
2737
2738struct recorded_ref {
2739        struct list_head list;
2740        char *name;
2741        struct fs_path *full_path;
2742        u64 dir;
2743        u64 dir_gen;
2744        int name_len;
2745};
2746
2747static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2748{
2749        ref->full_path = path;
2750        ref->name = (char *)kbasename(ref->full_path->start);
2751        ref->name_len = ref->full_path->end - ref->name;
2752}
2753
2754/*
2755 * We need to process new refs before deleted refs, but compare_tree gives us
2756 * everything mixed. So we first record all refs and later process them.
2757 * This function is a helper to record one ref.
2758 */
2759static int __record_ref(struct list_head *head, u64 dir,
2760                      u64 dir_gen, struct fs_path *path)
2761{
2762        struct recorded_ref *ref;
2763
2764        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2765        if (!ref)
2766                return -ENOMEM;
2767
2768        ref->dir = dir;
2769        ref->dir_gen = dir_gen;
2770        set_ref_path(ref, path);
2771        list_add_tail(&ref->list, head);
2772        return 0;
2773}
2774
2775static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2776{
2777        struct recorded_ref *new;
2778
2779        new = kmalloc(sizeof(*ref), GFP_KERNEL);
2780        if (!new)
2781                return -ENOMEM;
2782
2783        new->dir = ref->dir;
2784        new->dir_gen = ref->dir_gen;
2785        new->full_path = NULL;
2786        INIT_LIST_HEAD(&new->list);
2787        list_add_tail(&new->list, list);
2788        return 0;
2789}
2790
2791static void __free_recorded_refs(struct list_head *head)
2792{
2793        struct recorded_ref *cur;
2794
2795        while (!list_empty(head)) {
2796                cur = list_entry(head->next, struct recorded_ref, list);
2797                fs_path_free(cur->full_path);
2798                list_del(&cur->list);
2799                kfree(cur);
2800        }
2801}
2802
2803static void free_recorded_refs(struct send_ctx *sctx)
2804{
2805        __free_recorded_refs(&sctx->new_refs);
2806        __free_recorded_refs(&sctx->deleted_refs);
2807}
2808
2809/*
2810 * Renames/moves a file/dir to its orphan name. Used when the first
2811 * ref of an unprocessed inode gets overwritten and for all non empty
2812 * directories.
2813 */
2814static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2815                          struct fs_path *path)
2816{
2817        int ret;
2818        struct fs_path *orphan;
2819
2820        orphan = fs_path_alloc();
2821        if (!orphan)
2822                return -ENOMEM;
2823
2824        ret = gen_unique_name(sctx, ino, gen, orphan);
2825        if (ret < 0)
2826                goto out;
2827
2828        ret = send_rename(sctx, path, orphan);
2829
2830out:
2831        fs_path_free(orphan);
2832        return ret;
2833}
2834
2835static struct orphan_dir_info *
2836add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2837{
2838        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2839        struct rb_node *parent = NULL;
2840        struct orphan_dir_info *entry, *odi;
2841
2842        while (*p) {
2843                parent = *p;
2844                entry = rb_entry(parent, struct orphan_dir_info, node);
2845                if (dir_ino < entry->ino) {
2846                        p = &(*p)->rb_left;
2847                } else if (dir_ino > entry->ino) {
2848                        p = &(*p)->rb_right;
2849                } else {
2850                        return entry;
2851                }
2852        }
2853
2854        odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2855        if (!odi)
2856                return ERR_PTR(-ENOMEM);
2857        odi->ino = dir_ino;
2858        odi->gen = 0;
2859        odi->last_dir_index_offset = 0;
2860
2861        rb_link_node(&odi->node, parent, p);
2862        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2863        return odi;
2864}
2865
2866static struct orphan_dir_info *
2867get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2868{
2869        struct rb_node *n = sctx->orphan_dirs.rb_node;
2870        struct orphan_dir_info *entry;
2871
2872        while (n) {
2873                entry = rb_entry(n, struct orphan_dir_info, node);
2874                if (dir_ino < entry->ino)
2875                        n = n->rb_left;
2876                else if (dir_ino > entry->ino)
2877                        n = n->rb_right;
2878                else
2879                        return entry;
2880        }
2881        return NULL;
2882}
2883
2884static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2885{
2886        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2887
2888        return odi != NULL;
2889}
2890
2891static void free_orphan_dir_info(struct send_ctx *sctx,
2892                                 struct orphan_dir_info *odi)
2893{
2894        if (!odi)
2895                return;
2896        rb_erase(&odi->node, &sctx->orphan_dirs);
2897        kfree(odi);
2898}
2899
2900/*
2901 * Returns 1 if a directory can be removed at this point in time.
2902 * We check this by iterating all dir items and checking if the inode behind
2903 * the dir item was already processed.
2904 */
2905static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2906                     u64 send_progress)
2907{
2908        int ret = 0;
2909        struct btrfs_root *root = sctx->parent_root;
2910        struct btrfs_path *path;
2911        struct btrfs_key key;
2912        struct btrfs_key found_key;
2913        struct btrfs_key loc;
2914        struct btrfs_dir_item *di;
2915        struct orphan_dir_info *odi = NULL;
2916
2917        /*
2918         * Don't try to rmdir the top/root subvolume dir.
2919         */
2920        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2921                return 0;
2922
2923        path = alloc_path_for_send();
2924        if (!path)
2925                return -ENOMEM;
2926
2927        key.objectid = dir;
2928        key.type = BTRFS_DIR_INDEX_KEY;
2929        key.offset = 0;
2930
2931        odi = get_orphan_dir_info(sctx, dir);
2932        if (odi)
2933                key.offset = odi->last_dir_index_offset;
2934
2935        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2936        if (ret < 0)
2937                goto out;
2938
2939        while (1) {
2940                struct waiting_dir_move *dm;
2941
2942                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2943                        ret = btrfs_next_leaf(root, path);
2944                        if (ret < 0)
2945                                goto out;
2946                        else if (ret > 0)
2947                                break;
2948                        continue;
2949                }
2950                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2951                                      path->slots[0]);
2952                if (found_key.objectid != key.objectid ||
2953                    found_key.type != key.type)
2954                        break;
2955
2956                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2957                                struct btrfs_dir_item);
2958                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2959
2960                dm = get_waiting_dir_move(sctx, loc.objectid);
2961                if (dm) {
2962                        odi = add_orphan_dir_info(sctx, dir);
2963                        if (IS_ERR(odi)) {
2964                                ret = PTR_ERR(odi);
2965                                goto out;
2966                        }
2967                        odi->gen = dir_gen;
2968                        odi->last_dir_index_offset = found_key.offset;
2969                        dm->rmdir_ino = dir;
2970                        ret = 0;
2971                        goto out;
2972                }
2973
2974                if (loc.objectid > send_progress) {
2975                        odi = add_orphan_dir_info(sctx, dir);
2976                        if (IS_ERR(odi)) {
2977                                ret = PTR_ERR(odi);
2978                                goto out;
2979                        }
2980                        odi->gen = dir_gen;
2981                        odi->last_dir_index_offset = found_key.offset;
2982                        ret = 0;
2983                        goto out;
2984                }
2985
2986                path->slots[0]++;
2987        }
2988        free_orphan_dir_info(sctx, odi);
2989
2990        ret = 1;
2991
2992out:
2993        btrfs_free_path(path);
2994        return ret;
2995}
2996
2997static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2998{
2999        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3000
3001        return entry != NULL;
3002}
3003
3004static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3005{
3006        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3007        struct rb_node *parent = NULL;
3008        struct waiting_dir_move *entry, *dm;
3009
3010        dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3011        if (!dm)
3012                return -ENOMEM;
3013        dm->ino = ino;
3014        dm->rmdir_ino = 0;
3015        dm->orphanized = orphanized;
3016
3017        while (*p) {
3018                parent = *p;
3019                entry = rb_entry(parent, struct waiting_dir_move, node);
3020                if (ino < entry->ino) {
3021                        p = &(*p)->rb_left;
3022                } else if (ino > entry->ino) {
3023                        p = &(*p)->rb_right;
3024                } else {
3025                        kfree(dm);
3026                        return -EEXIST;
3027                }
3028        }
3029
3030        rb_link_node(&dm->node, parent, p);
3031        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3032        return 0;
3033}
3034
3035static struct waiting_dir_move *
3036get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3037{
3038        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3039        struct waiting_dir_move *entry;
3040
3041        while (n) {
3042                entry = rb_entry(n, struct waiting_dir_move, node);
3043                if (ino < entry->ino)
3044                        n = n->rb_left;
3045                else if (ino > entry->ino)
3046                        n = n->rb_right;
3047                else
3048                        return entry;
3049        }
3050        return NULL;
3051}
3052
3053static void free_waiting_dir_move(struct send_ctx *sctx,
3054                                  struct waiting_dir_move *dm)
3055{
3056        if (!dm)
3057                return;
3058        rb_erase(&dm->node, &sctx->waiting_dir_moves);
3059        kfree(dm);
3060}
3061
3062static int add_pending_dir_move(struct send_ctx *sctx,
3063                                u64 ino,
3064                                u64 ino_gen,
3065                                u64 parent_ino,
3066                                struct list_head *new_refs,
3067                                struct list_head *deleted_refs,
3068                                const bool is_orphan)
3069{
3070        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3071        struct rb_node *parent = NULL;
3072        struct pending_dir_move *entry = NULL, *pm;
3073        struct recorded_ref *cur;
3074        int exists = 0;
3075        int ret;
3076
3077        pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3078        if (!pm)
3079                return -ENOMEM;
3080        pm->parent_ino = parent_ino;
3081        pm->ino = ino;
3082        pm->gen = ino_gen;
3083        INIT_LIST_HEAD(&pm->list);
3084        INIT_LIST_HEAD(&pm->update_refs);
3085        RB_CLEAR_NODE(&pm->node);
3086
3087        while (*p) {
3088                parent = *p;
3089                entry = rb_entry(parent, struct pending_dir_move, node);
3090                if (parent_ino < entry->parent_ino) {
3091                        p = &(*p)->rb_left;
3092                } else if (parent_ino > entry->parent_ino) {
3093                        p = &(*p)->rb_right;
3094                } else {
3095                        exists = 1;
3096                        break;
3097                }
3098        }
3099
3100        list_for_each_entry(cur, deleted_refs, list) {
3101                ret = dup_ref(cur, &pm->update_refs);
3102                if (ret < 0)
3103                        goto out;
3104        }
3105        list_for_each_entry(cur, new_refs, list) {
3106                ret = dup_ref(cur, &pm->update_refs);
3107                if (ret < 0)
3108                        goto out;
3109        }
3110
3111        ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3112        if (ret)
3113                goto out;
3114
3115        if (exists) {
3116                list_add_tail(&pm->list, &entry->list);
3117        } else {
3118                rb_link_node(&pm->node, parent, p);
3119                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3120        }
3121        ret = 0;
3122out:
3123        if (ret) {
3124                __free_recorded_refs(&pm->update_refs);
3125                kfree(pm);
3126        }
3127        return ret;
3128}
3129
3130static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3131                                                      u64 parent_ino)
3132{
3133        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3134        struct pending_dir_move *entry;
3135
3136        while (n) {
3137                entry = rb_entry(n, struct pending_dir_move, node);
3138                if (parent_ino < entry->parent_ino)
3139                        n = n->rb_left;
3140                else if (parent_ino > entry->parent_ino)
3141                        n = n->rb_right;
3142                else
3143                        return entry;
3144        }
3145        return NULL;
3146}
3147
3148static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3149                     u64 ino, u64 gen, u64 *ancestor_ino)
3150{
3151        int ret = 0;
3152        u64 parent_inode = 0;
3153        u64 parent_gen = 0;
3154        u64 start_ino = ino;
3155
3156        *ancestor_ino = 0;
3157        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3158                fs_path_reset(name);
3159
3160                if (is_waiting_for_rm(sctx, ino))
3161                        break;
3162                if (is_waiting_for_move(sctx, ino)) {
3163                        if (*ancestor_ino == 0)
3164                                *ancestor_ino = ino;
3165                        ret = get_first_ref(sctx->parent_root, ino,
3166                                            &parent_inode, &parent_gen, name);
3167                } else {
3168                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3169                                                        &parent_inode,
3170                                                        &parent_gen, name);
3171                        if (ret > 0) {
3172                                ret = 0;
3173                                break;
3174                        }
3175                }
3176                if (ret < 0)
3177                        break;
3178                if (parent_inode == start_ino) {
3179                        ret = 1;
3180                        if (*ancestor_ino == 0)
3181                                *ancestor_ino = ino;
3182                        break;
3183                }
3184                ino = parent_inode;
3185                gen = parent_gen;
3186        }
3187        return ret;
3188}
3189
3190static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3191{
3192        struct fs_path *from_path = NULL;
3193        struct fs_path *to_path = NULL;
3194        struct fs_path *name = NULL;
3195        u64 orig_progress = sctx->send_progress;
3196        struct recorded_ref *cur;
3197        u64 parent_ino, parent_gen;
3198        struct waiting_dir_move *dm = NULL;
3199        u64 rmdir_ino = 0;
3200        u64 ancestor;
3201        bool is_orphan;
3202        int ret;
3203
3204        name = fs_path_alloc();
3205        from_path = fs_path_alloc();
3206        if (!name || !from_path) {
3207                ret = -ENOMEM;
3208                goto out;
3209        }
3210
3211        dm = get_waiting_dir_move(sctx, pm->ino);
3212        ASSERT(dm);
3213        rmdir_ino = dm->rmdir_ino;
3214        is_orphan = dm->orphanized;
3215        free_waiting_dir_move(sctx, dm);
3216
3217        if (is_orphan) {
3218                ret = gen_unique_name(sctx, pm->ino,
3219                                      pm->gen, from_path);
3220        } else {
3221                ret = get_first_ref(sctx->parent_root, pm->ino,
3222                                    &parent_ino, &parent_gen, name);
3223                if (ret < 0)
3224                        goto out;
3225                ret = get_cur_path(sctx, parent_ino, parent_gen,
3226                                   from_path);
3227                if (ret < 0)
3228                        goto out;
3229                ret = fs_path_add_path(from_path, name);
3230        }
3231        if (ret < 0)
3232                goto out;
3233
3234        sctx->send_progress = sctx->cur_ino + 1;
3235        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3236        if (ret < 0)
3237                goto out;
3238        if (ret) {
3239                LIST_HEAD(deleted_refs);
3240                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3241                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3242                                           &pm->update_refs, &deleted_refs,
3243                                           is_orphan);
3244                if (ret < 0)
3245                        goto out;
3246                if (rmdir_ino) {
3247                        dm = get_waiting_dir_move(sctx, pm->ino);
3248                        ASSERT(dm);
3249                        dm->rmdir_ino = rmdir_ino;
3250                }
3251                goto out;
3252        }
3253        fs_path_reset(name);
3254        to_path = name;
3255        name = NULL;
3256        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3257        if (ret < 0)
3258                goto out;
3259
3260        ret = send_rename(sctx, from_path, to_path);
3261        if (ret < 0)
3262                goto out;
3263
3264        if (rmdir_ino) {
3265                struct orphan_dir_info *odi;
3266                u64 gen;
3267
3268                odi = get_orphan_dir_info(sctx, rmdir_ino);
3269                if (!odi) {
3270                        /* already deleted */
3271                        goto finish;
3272                }
3273                gen = odi->gen;
3274
3275                ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3276                if (ret < 0)
3277                        goto out;
3278                if (!ret)
3279                        goto finish;
3280
3281                name = fs_path_alloc();
3282                if (!name) {
3283                        ret = -ENOMEM;
3284                        goto out;
3285                }
3286                ret = get_cur_path(sctx, rmdir_ino, gen, name);
3287                if (ret < 0)
3288                        goto out;
3289                ret = send_rmdir(sctx, name);
3290                if (ret < 0)
3291                        goto out;
3292        }
3293
3294finish:
3295        ret = send_utimes(sctx, pm->ino, pm->gen);
3296        if (ret < 0)
3297                goto out;
3298
3299        /*
3300         * After rename/move, need to update the utimes of both new parent(s)
3301         * and old parent(s).
3302         */
3303        list_for_each_entry(cur, &pm->update_refs, list) {
3304                /*
3305                 * The parent inode might have been deleted in the send snapshot
3306                 */
3307                ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3308                                     NULL, NULL, NULL, NULL, NULL);
3309                if (ret == -ENOENT) {
3310                        ret = 0;
3311                        continue;
3312                }
3313                if (ret < 0)
3314                        goto out;
3315
3316                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3317                if (ret < 0)
3318                        goto out;
3319        }
3320
3321out:
3322        fs_path_free(name);
3323        fs_path_free(from_path);
3324        fs_path_free(to_path);
3325        sctx->send_progress = orig_progress;
3326
3327        return ret;
3328}
3329
3330static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3331{
3332        if (!list_empty(&m->list))
3333                list_del(&m->list);
3334        if (!RB_EMPTY_NODE(&m->node))
3335                rb_erase(&m->node, &sctx->pending_dir_moves);
3336        __free_recorded_refs(&m->update_refs);
3337        kfree(m);
3338}
3339
3340static void tail_append_pending_moves(struct send_ctx *sctx,
3341                                      struct pending_dir_move *moves,
3342                                      struct list_head *stack)
3343{
3344        if (list_empty(&moves->list)) {
3345                list_add_tail(&moves->list, stack);
3346        } else {
3347                LIST_HEAD(list);
3348                list_splice_init(&moves->list, &list);
3349                list_add_tail(&moves->list, stack);
3350                list_splice_tail(&list, stack);
3351        }
3352        if (!RB_EMPTY_NODE(&moves->node)) {
3353                rb_erase(&moves->node, &sctx->pending_dir_moves);
3354                RB_CLEAR_NODE(&moves->node);
3355        }
3356}
3357
3358static int apply_children_dir_moves(struct send_ctx *sctx)
3359{
3360        struct pending_dir_move *pm;
3361        struct list_head stack;
3362        u64 parent_ino = sctx->cur_ino;
3363        int ret = 0;
3364
3365        pm = get_pending_dir_moves(sctx, parent_ino);
3366        if (!pm)
3367                return 0;
3368
3369        INIT_LIST_HEAD(&stack);
3370        tail_append_pending_moves(sctx, pm, &stack);
3371
3372        while (!list_empty(&stack)) {
3373                pm = list_first_entry(&stack, struct pending_dir_move, list);
3374                parent_ino = pm->ino;
3375                ret = apply_dir_move(sctx, pm);
3376                free_pending_move(sctx, pm);
3377                if (ret)
3378                        goto out;
3379                pm = get_pending_dir_moves(sctx, parent_ino);
3380                if (pm)
3381                        tail_append_pending_moves(sctx, pm, &stack);
3382        }
3383        return 0;
3384
3385out:
3386        while (!list_empty(&stack)) {
3387                pm = list_first_entry(&stack, struct pending_dir_move, list);
3388                free_pending_move(sctx, pm);
3389        }
3390        return ret;
3391}
3392
3393/*
3394 * We might need to delay a directory rename even when no ancestor directory
3395 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3396 * renamed. This happens when we rename a directory to the old name (the name
3397 * in the parent root) of some other unrelated directory that got its rename
3398 * delayed due to some ancestor with higher number that got renamed.
3399 *
3400 * Example:
3401 *
3402 * Parent snapshot:
3403 * .                                       (ino 256)
3404 * |---- a/                                (ino 257)
3405 * |     |---- file                        (ino 260)
3406 * |
3407 * |---- b/                                (ino 258)
3408 * |---- c/                                (ino 259)
3409 *
3410 * Send snapshot:
3411 * .                                       (ino 256)
3412 * |---- a/                                (ino 258)
3413 * |---- x/                                (ino 259)
3414 *       |---- y/                          (ino 257)
3415 *             |----- file                 (ino 260)
3416 *
3417 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3418 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3419 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3420 * must issue is:
3421 *
3422 * 1 - rename 259 from 'c' to 'x'
3423 * 2 - rename 257 from 'a' to 'x/y'
3424 * 3 - rename 258 from 'b' to 'a'
3425 *
3426 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3427 * be done right away and < 0 on error.
3428 */
3429static int wait_for_dest_dir_move(struct send_ctx *sctx,
3430                                  struct recorded_ref *parent_ref,
3431                                  const bool is_orphan)
3432{
3433        struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3434        struct btrfs_path *path;
3435        struct btrfs_key key;
3436        struct btrfs_key di_key;
3437        struct btrfs_dir_item *di;
3438        u64 left_gen;
3439        u64 right_gen;
3440        int ret = 0;
3441        struct waiting_dir_move *wdm;
3442
3443        if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3444                return 0;
3445
3446        path = alloc_path_for_send();
3447        if (!path)
3448                return -ENOMEM;
3449
3450        key.objectid = parent_ref->dir;
3451        key.type = BTRFS_DIR_ITEM_KEY;
3452        key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3453
3454        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3455        if (ret < 0) {
3456                goto out;
3457        } else if (ret > 0) {
3458                ret = 0;
3459                goto out;
3460        }
3461
3462        di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3463                                       parent_ref->name_len);
3464        if (!di) {
3465                ret = 0;
3466                goto out;
3467        }
3468        /*
3469         * di_key.objectid has the number of the inode that has a dentry in the
3470         * parent directory with the same name that sctx->cur_ino is being
3471         * renamed to. We need to check if that inode is in the send root as
3472         * well and if it is currently marked as an inode with a pending rename,
3473         * if it is, we need to delay the rename of sctx->cur_ino as well, so
3474         * that it happens after that other inode is renamed.
3475         */
3476        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3477        if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3478                ret = 0;
3479                goto out;
3480        }
3481
3482        ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3483                             &left_gen, NULL, NULL, NULL, NULL);
3484        if (ret < 0)
3485                goto out;
3486        ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3487                             &right_gen, NULL, NULL, NULL, NULL);
3488        if (ret < 0) {
3489                if (ret == -ENOENT)
3490                        ret = 0;
3491                goto out;
3492        }
3493
3494        /* Different inode, no need to delay the rename of sctx->cur_ino */
3495        if (right_gen != left_gen) {
3496                ret = 0;
3497                goto out;
3498        }
3499
3500        wdm = get_waiting_dir_move(sctx, di_key.objectid);
3501        if (wdm && !wdm->orphanized) {
3502                ret = add_pending_dir_move(sctx,
3503                                           sctx->cur_ino,
3504                                           sctx->cur_inode_gen,
3505                                           di_key.objectid,
3506                                           &sctx->new_refs,
3507                                           &sctx->deleted_refs,
3508                                           is_orphan);
3509                if (!ret)
3510                        ret = 1;
3511        }
3512out:
3513        btrfs_free_path(path);
3514        return ret;
3515}
3516
3517/*
3518 * Check if inode ino2, or any of its ancestors, is inode ino1.
3519 * Return 1 if true, 0 if false and < 0 on error.
3520 */
3521static int check_ino_in_path(struct btrfs_root *root,
3522                             const u64 ino1,
3523                             const u64 ino1_gen,
3524                             const u64 ino2,
3525                             const u64 ino2_gen,
3526                             struct fs_path *fs_path)
3527{
3528        u64 ino = ino2;
3529
3530        if (ino1 == ino2)
3531                return ino1_gen == ino2_gen;
3532
3533        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3534                u64 parent;
3535                u64 parent_gen;
3536                int ret;
3537
3538                fs_path_reset(fs_path);
3539                ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3540                if (ret < 0)
3541                        return ret;
3542                if (parent == ino1)
3543                        return parent_gen == ino1_gen;
3544                ino = parent;
3545        }
3546        return 0;
3547}
3548
3549/*
3550 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3551 * possible path (in case ino2 is not a directory and has multiple hard links).
3552 * Return 1 if true, 0 if false and < 0 on error.
3553 */
3554static int is_ancestor(struct btrfs_root *root,
3555                       const u64 ino1,
3556                       const u64 ino1_gen,
3557                       const u64 ino2,
3558                       struct fs_path *fs_path)
3559{
3560        bool free_fs_path = false;
3561        int ret = 0;
3562        struct btrfs_path *path = NULL;
3563        struct btrfs_key key;
3564
3565        if (!fs_path) {
3566                fs_path = fs_path_alloc();
3567                if (!fs_path)
3568                        return -ENOMEM;
3569                free_fs_path = true;
3570        }
3571
3572        path = alloc_path_for_send();
3573        if (!path) {
3574                ret = -ENOMEM;
3575                goto out;
3576        }
3577
3578        key.objectid = ino2;
3579        key.type = BTRFS_INODE_REF_KEY;
3580        key.offset = 0;
3581
3582        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3583        if (ret < 0)
3584                goto out;
3585
3586        while (true) {
3587                struct extent_buffer *leaf = path->nodes[0];
3588                int slot = path->slots[0];
3589                u32 cur_offset = 0;
3590                u32 item_size;
3591
3592                if (slot >= btrfs_header_nritems(leaf)) {
3593                        ret = btrfs_next_leaf(root, path);
3594                        if (ret < 0)
3595                                goto out;
3596                        if (ret > 0)
3597                                break;
3598                        continue;
3599                }
3600
3601                btrfs_item_key_to_cpu(leaf, &key, slot);
3602                if (key.objectid != ino2)
3603                        break;
3604                if (key.type != BTRFS_INODE_REF_KEY &&
3605                    key.type != BTRFS_INODE_EXTREF_KEY)
3606                        break;
3607
3608                item_size = btrfs_item_size_nr(leaf, slot);
3609                while (cur_offset < item_size) {
3610                        u64 parent;
3611                        u64 parent_gen;
3612
3613                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
3614                                unsigned long ptr;
3615                                struct btrfs_inode_extref *extref;
3616
3617                                ptr = btrfs_item_ptr_offset(leaf, slot);
3618                                extref = (struct btrfs_inode_extref *)
3619                                        (ptr + cur_offset);
3620                                parent = btrfs_inode_extref_parent(leaf,
3621                                                                   extref);
3622                                cur_offset += sizeof(*extref);
3623                                cur_offset += btrfs_inode_extref_name_len(leaf,
3624                                                                  extref);
3625                        } else {
3626                                parent = key.offset;
3627                                cur_offset = item_size;
3628                        }
3629
3630                        ret = get_inode_info(root, parent, NULL, &parent_gen,
3631                                             NULL, NULL, NULL, NULL);
3632                        if (ret < 0)
3633                                goto out;
3634                        ret = check_ino_in_path(root, ino1, ino1_gen,
3635                                                parent, parent_gen, fs_path);
3636                        if (ret)
3637                                goto out;
3638                }
3639                path->slots[0]++;
3640        }
3641        ret = 0;
3642 out:
3643        btrfs_free_path(path);
3644        if (free_fs_path)
3645                fs_path_free(fs_path);
3646        return ret;
3647}
3648
3649static int wait_for_parent_move(struct send_ctx *sctx,
3650                                struct recorded_ref *parent_ref,
3651                                const bool is_orphan)
3652{
3653        int ret = 0;
3654        u64 ino = parent_ref->dir;
3655        u64 ino_gen = parent_ref->dir_gen;
3656        u64 parent_ino_before, parent_ino_after;
3657        struct fs_path *path_before = NULL;
3658        struct fs_path *path_after = NULL;
3659        int len1, len2;
3660
3661        path_after = fs_path_alloc();
3662        path_before = fs_path_alloc();
3663        if (!path_after || !path_before) {
3664                ret = -ENOMEM;
3665                goto out;
3666        }
3667
3668        /*
3669         * Our current directory inode may not yet be renamed/moved because some
3670         * ancestor (immediate or not) has to be renamed/moved first. So find if
3671         * such ancestor exists and make sure our own rename/move happens after
3672         * that ancestor is processed to avoid path build infinite loops (done
3673         * at get_cur_path()).
3674         */
3675        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3676                u64 parent_ino_after_gen;
3677
3678                if (is_waiting_for_move(sctx, ino)) {
3679                        /*
3680                         * If the current inode is an ancestor of ino in the
3681                         * parent root, we need to delay the rename of the
3682                         * current inode, otherwise don't delayed the rename
3683                         * because we can end up with a circular dependency
3684                         * of renames, resulting in some directories never
3685                         * getting the respective rename operations issued in
3686                         * the send stream or getting into infinite path build
3687                         * loops.
3688                         */
3689                        ret = is_ancestor(sctx->parent_root,
3690                                          sctx->cur_ino, sctx->cur_inode_gen,
3691                                          ino, path_before);
3692                        if (ret)
3693                                break;
3694                }
3695
3696                fs_path_reset(path_before);
3697                fs_path_reset(path_after);
3698
3699                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3700                                    &parent_ino_after_gen, path_after);
3701                if (ret < 0)
3702                        goto out;
3703                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3704                                    NULL, path_before);
3705                if (ret < 0 && ret != -ENOENT) {
3706                        goto out;
3707                } else if (ret == -ENOENT) {
3708                        ret = 0;
3709                        break;
3710                }
3711
3712                len1 = fs_path_len(path_before);
3713                len2 = fs_path_len(path_after);
3714                if (ino > sctx->cur_ino &&
3715                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3716                     memcmp(path_before->start, path_after->start, len1))) {
3717                        u64 parent_ino_gen;
3718
3719                        ret = get_inode_info(sctx->parent_root, ino, NULL,
3720                                             &parent_ino_gen, NULL, NULL, NULL,
3721                                             NULL);
3722                        if (ret < 0)
3723                                goto out;
3724                        if (ino_gen == parent_ino_gen) {
3725                                ret = 1;
3726                                break;
3727                        }
3728                }
3729                ino = parent_ino_after;
3730                ino_gen = parent_ino_after_gen;
3731        }
3732
3733out:
3734        fs_path_free(path_before);
3735        fs_path_free(path_after);
3736
3737        if (ret == 1) {
3738                ret = add_pending_dir_move(sctx,
3739                                           sctx->cur_ino,
3740                                           sctx->cur_inode_gen,
3741                                           ino,
3742                                           &sctx->new_refs,
3743                                           &sctx->deleted_refs,
3744                                           is_orphan);
3745                if (!ret)
3746                        ret = 1;
3747        }
3748
3749        return ret;
3750}
3751
3752static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3753{
3754        int ret;
3755        struct fs_path *new_path;
3756
3757        /*
3758         * Our reference's name member points to its full_path member string, so
3759         * we use here a new path.
3760         */
3761        new_path = fs_path_alloc();
3762        if (!new_path)
3763                return -ENOMEM;
3764
3765        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3766        if (ret < 0) {
3767                fs_path_free(new_path);
3768                return ret;
3769        }
3770        ret = fs_path_add(new_path, ref->name, ref->name_len);
3771        if (ret < 0) {
3772                fs_path_free(new_path);
3773                return ret;
3774        }
3775
3776        fs_path_free(ref->full_path);
3777        set_ref_path(ref, new_path);
3778
3779        return 0;
3780}
3781
3782/*
3783 * This does all the move/link/unlink/rmdir magic.
3784 */
3785static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3786{
3787        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3788        int ret = 0;
3789        struct recorded_ref *cur;
3790        struct recorded_ref *cur2;
3791        struct list_head check_dirs;
3792        struct fs_path *valid_path = NULL;
3793        u64 ow_inode = 0;
3794        u64 ow_gen;
3795        u64 ow_mode;
3796        int did_overwrite = 0;
3797        int is_orphan = 0;
3798        u64 last_dir_ino_rm = 0;
3799        bool can_rename = true;
3800        bool orphanized_dir = false;
3801        bool orphanized_ancestor = false;
3802
3803        btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3804
3805        /*
3806         * This should never happen as the root dir always has the same ref
3807         * which is always '..'
3808         */
3809        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3810        INIT_LIST_HEAD(&check_dirs);
3811
3812        valid_path = fs_path_alloc();
3813        if (!valid_path) {
3814                ret = -ENOMEM;
3815                goto out;
3816        }
3817
3818        /*
3819         * First, check if the first ref of the current inode was overwritten
3820         * before. If yes, we know that the current inode was already orphanized
3821         * and thus use the orphan name. If not, we can use get_cur_path to
3822         * get the path of the first ref as it would like while receiving at
3823         * this point in time.
3824         * New inodes are always orphan at the beginning, so force to use the
3825         * orphan name in this case.
3826         * The first ref is stored in valid_path and will be updated if it
3827         * gets moved around.
3828         */
3829        if (!sctx->cur_inode_new) {
3830                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3831                                sctx->cur_inode_gen);
3832                if (ret < 0)
3833                        goto out;
3834                if (ret)
3835                        did_overwrite = 1;
3836        }
3837        if (sctx->cur_inode_new || did_overwrite) {
3838                ret = gen_unique_name(sctx, sctx->cur_ino,
3839                                sctx->cur_inode_gen, valid_path);
3840                if (ret < 0)
3841                        goto out;
3842                is_orphan = 1;
3843        } else {
3844                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3845                                valid_path);
3846                if (ret < 0)
3847                        goto out;
3848        }
3849
3850        list_for_each_entry(cur, &sctx->new_refs, list) {
3851                /*
3852                 * We may have refs where the parent directory does not exist
3853                 * yet. This happens if the parent directories inum is higher
3854                 * than the current inum. To handle this case, we create the
3855                 * parent directory out of order. But we need to check if this
3856                 * did already happen before due to other refs in the same dir.
3857                 */
3858                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3859                if (ret < 0)
3860                        goto out;
3861                if (ret == inode_state_will_create) {
3862                        ret = 0;
3863                        /*
3864                         * First check if any of the current inodes refs did
3865                         * already create the dir.
3866                         */
3867                        list_for_each_entry(cur2, &sctx->new_refs, list) {
3868                                if (cur == cur2)
3869                                        break;
3870                                if (cur2->dir == cur->dir) {
3871                                        ret = 1;
3872                                        break;
3873                                }
3874                        }
3875
3876                        /*
3877                         * If that did not happen, check if a previous inode
3878                         * did already create the dir.
3879                         */
3880                        if (!ret)
3881                                ret = did_create_dir(sctx, cur->dir);
3882                        if (ret < 0)
3883                                goto out;
3884                        if (!ret) {
3885                                ret = send_create_inode(sctx, cur->dir);
3886                                if (ret < 0)
3887                                        goto out;
3888                        }
3889                }
3890
3891                /*
3892                 * Check if this new ref would overwrite the first ref of
3893                 * another unprocessed inode. If yes, orphanize the
3894                 * overwritten inode. If we find an overwritten ref that is
3895                 * not the first ref, simply unlink it.
3896                 */
3897                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3898                                cur->name, cur->name_len,
3899                                &ow_inode, &ow_gen, &ow_mode);
3900                if (ret < 0)
3901                        goto out;
3902                if (ret) {
3903                        ret = is_first_ref(sctx->parent_root,
3904                                           ow_inode, cur->dir, cur->name,
3905                                           cur->name_len);
3906                        if (ret < 0)
3907                                goto out;
3908                        if (ret) {
3909                                struct name_cache_entry *nce;
3910                                struct waiting_dir_move *wdm;
3911
3912                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
3913                                                cur->full_path);
3914                                if (ret < 0)
3915                                        goto out;
3916                                if (S_ISDIR(ow_mode))
3917                                        orphanized_dir = true;
3918
3919                                /*
3920                                 * If ow_inode has its rename operation delayed
3921                                 * make sure that its orphanized name is used in
3922                                 * the source path when performing its rename
3923                                 * operation.
3924                                 */
3925                                if (is_waiting_for_move(sctx, ow_inode)) {
3926                                        wdm = get_waiting_dir_move(sctx,
3927                                                                   ow_inode);
3928                                        ASSERT(wdm);
3929                                        wdm->orphanized = true;
3930                                }
3931
3932                                /*
3933                                 * Make sure we clear our orphanized inode's
3934                                 * name from the name cache. This is because the
3935                                 * inode ow_inode might be an ancestor of some
3936                                 * other inode that will be orphanized as well
3937                                 * later and has an inode number greater than
3938                                 * sctx->send_progress. We need to prevent
3939                                 * future name lookups from using the old name
3940                                 * and get instead the orphan name.
3941                                 */
3942                                nce = name_cache_search(sctx, ow_inode, ow_gen);
3943                                if (nce) {
3944                                        name_cache_delete(sctx, nce);
3945                                        kfree(nce);
3946                                }
3947
3948                                /*
3949                                 * ow_inode might currently be an ancestor of
3950                                 * cur_ino, therefore compute valid_path (the
3951                                 * current path of cur_ino) again because it
3952                                 * might contain the pre-orphanization name of
3953                                 * ow_inode, which is no longer valid.
3954                                 */
3955                                ret = is_ancestor(sctx->parent_root,
3956                                                  ow_inode, ow_gen,
3957                                                  sctx->cur_ino, NULL);
3958                                if (ret > 0) {
3959                                        orphanized_ancestor = true;
3960                                        fs_path_reset(valid_path);
3961                                        ret = get_cur_path(sctx, sctx->cur_ino,
3962                                                           sctx->cur_inode_gen,
3963                                                           valid_path);
3964                                }
3965                                if (ret < 0)
3966                                        goto out;
3967                        } else {
3968                                ret = send_unlink(sctx, cur->full_path);
3969                                if (ret < 0)
3970                                        goto out;
3971                        }
3972                }
3973
3974                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3975                        ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3976                        if (ret < 0)
3977                                goto out;
3978                        if (ret == 1) {
3979                                can_rename = false;
3980                                *pending_move = 1;
3981                        }
3982                }
3983
3984                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3985                    can_rename) {
3986                        ret = wait_for_parent_move(sctx, cur, is_orphan);
3987                        if (ret < 0)
3988                                goto out;
3989                        if (ret == 1) {
3990                                can_rename = false;
3991                                *pending_move = 1;
3992                        }
3993                }
3994
3995                /*
3996                 * link/move the ref to the new place. If we have an orphan
3997                 * inode, move it and update valid_path. If not, link or move
3998                 * it depending on the inode mode.
3999                 */
4000                if (is_orphan && can_rename) {
4001                        ret = send_rename(sctx, valid_path, cur->full_path);
4002                        if (ret < 0)
4003                                goto out;
4004                        is_orphan = 0;
4005                        ret = fs_path_copy(valid_path, cur->full_path);
4006                        if (ret < 0)
4007                                goto out;
4008                } else if (can_rename) {
4009                        if (S_ISDIR(sctx->cur_inode_mode)) {
4010                                /*
4011                                 * Dirs can't be linked, so move it. For moved
4012                                 * dirs, we always have one new and one deleted
4013                                 * ref. The deleted ref is ignored later.
4014                                 */
4015                                ret = send_rename(sctx, valid_path,
4016                                                  cur->full_path);
4017                                if (!ret)
4018                                        ret = fs_path_copy(valid_path,
4019                                                           cur->full_path);
4020                                if (ret < 0)
4021                                        goto out;
4022                        } else {
4023                                /*
4024                                 * We might have previously orphanized an inode
4025                                 * which is an ancestor of our current inode,
4026                                 * so our reference's full path, which was
4027                                 * computed before any such orphanizations, must
4028                                 * be updated.
4029                                 */
4030                                if (orphanized_dir) {
4031                                        ret = update_ref_path(sctx, cur);
4032                                        if (ret < 0)
4033                                                goto out;
4034                                }
4035                                ret = send_link(sctx, cur->full_path,
4036                                                valid_path);
4037                                if (ret < 0)
4038                                        goto out;
4039                        }
4040                }
4041                ret = dup_ref(cur, &check_dirs);
4042                if (ret < 0)
4043                        goto out;
4044        }
4045
4046        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4047                /*
4048                 * Check if we can already rmdir the directory. If not,
4049                 * orphanize it. For every dir item inside that gets deleted
4050                 * later, we do this check again and rmdir it then if possible.
4051                 * See the use of check_dirs for more details.
4052                 */
4053                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4054                                sctx->cur_ino);
4055                if (ret < 0)
4056                        goto out;
4057                if (ret) {
4058                        ret = send_rmdir(sctx, valid_path);
4059                        if (ret < 0)
4060                                goto out;
4061                } else if (!is_orphan) {
4062                        ret = orphanize_inode(sctx, sctx->cur_ino,
4063                                        sctx->cur_inode_gen, valid_path);
4064                        if (ret < 0)
4065                                goto out;
4066                        is_orphan = 1;
4067                }
4068
4069                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4070                        ret = dup_ref(cur, &check_dirs);
4071                        if (ret < 0)
4072                                goto out;
4073                }
4074        } else if (S_ISDIR(sctx->cur_inode_mode) &&
4075                   !list_empty(&sctx->deleted_refs)) {
4076                /*
4077                 * We have a moved dir. Add the old parent to check_dirs
4078                 */
4079                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4080                                list);
4081                ret = dup_ref(cur, &check_dirs);
4082                if (ret < 0)
4083                        goto out;
4084        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4085                /*
4086                 * We have a non dir inode. Go through all deleted refs and
4087                 * unlink them if they were not already overwritten by other
4088                 * inodes.
4089                 */
4090                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4091                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4092                                        sctx->cur_ino, sctx->cur_inode_gen,
4093                                        cur->name, cur->name_len);
4094                        if (ret < 0)
4095                                goto out;
4096                        if (!ret) {
4097                                /*
4098                                 * If we orphanized any ancestor before, we need
4099                                 * to recompute the full path for deleted names,
4100                                 * since any such path was computed before we
4101                                 * processed any references and orphanized any
4102                                 * ancestor inode.
4103                                 */
4104                                if (orphanized_ancestor) {
4105                                        ret = update_ref_path(sctx, cur);
4106                                        if (ret < 0)
4107                                                goto out;
4108                                }
4109                                ret = send_unlink(sctx, cur->full_path);
4110                                if (ret < 0)
4111                                        goto out;
4112                        }
4113                        ret = dup_ref(cur, &check_dirs);
4114                        if (ret < 0)
4115                                goto out;
4116                }
4117                /*
4118                 * If the inode is still orphan, unlink the orphan. This may
4119                 * happen when a previous inode did overwrite the first ref
4120                 * of this inode and no new refs were added for the current
4121                 * inode. Unlinking does not mean that the inode is deleted in
4122                 * all cases. There may still be links to this inode in other
4123                 * places.
4124                 */
4125                if (is_orphan) {
4126                        ret = send_unlink(sctx, valid_path);
4127                        if (ret < 0)
4128                                goto out;
4129                }
4130        }
4131
4132        /*
4133         * We did collect all parent dirs where cur_inode was once located. We
4134         * now go through all these dirs and check if they are pending for
4135         * deletion and if it's finally possible to perform the rmdir now.
4136         * We also update the inode stats of the parent dirs here.
4137         */
4138        list_for_each_entry(cur, &check_dirs, list) {
4139                /*
4140                 * In case we had refs into dirs that were not processed yet,
4141                 * we don't need to do the utime and rmdir logic for these dirs.
4142                 * The dir will be processed later.
4143                 */
4144                if (cur->dir > sctx->cur_ino)
4145                        continue;
4146
4147                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4148                if (ret < 0)
4149                        goto out;
4150
4151                if (ret == inode_state_did_create ||
4152                    ret == inode_state_no_change) {
4153                        /* TODO delayed utimes */
4154                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4155                        if (ret < 0)
4156                                goto out;
4157                } else if (ret == inode_state_did_delete &&
4158                           cur->dir != last_dir_ino_rm) {
4159                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4160                                        sctx->cur_ino);
4161                        if (ret < 0)
4162                                goto out;
4163                        if (ret) {
4164                                ret = get_cur_path(sctx, cur->dir,
4165                                                   cur->dir_gen, valid_path);
4166                                if (ret < 0)
4167                                        goto out;
4168                                ret = send_rmdir(sctx, valid_path);
4169                                if (ret < 0)
4170                                        goto out;
4171                                last_dir_ino_rm = cur->dir;
4172                        }
4173                }
4174        }
4175
4176        ret = 0;
4177
4178out:
4179        __free_recorded_refs(&check_dirs);
4180        free_recorded_refs(sctx);
4181        fs_path_free(valid_path);
4182        return ret;
4183}
4184
4185static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4186                      void *ctx, struct list_head *refs)
4187{
4188        int ret = 0;
4189        struct send_ctx *sctx = ctx;
4190        struct fs_path *p;
4191        u64 gen;
4192
4193        p = fs_path_alloc();
4194        if (!p)
4195                return -ENOMEM;
4196
4197        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4198                        NULL, NULL);
4199        if (ret < 0)
4200                goto out;
4201
4202        ret = get_cur_path(sctx, dir, gen, p);
4203        if (ret < 0)
4204                goto out;
4205        ret = fs_path_add_path(p, name);
4206        if (ret < 0)
4207                goto out;
4208
4209        ret = __record_ref(refs, dir, gen, p);
4210
4211out:
4212        if (ret)
4213                fs_path_free(p);
4214        return ret;
4215}
4216
4217static int __record_new_ref(int num, u64 dir, int index,
4218                            struct fs_path *name,
4219                            void *ctx)
4220{
4221        struct send_ctx *sctx = ctx;
4222        return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4223}
4224
4225
4226static int __record_deleted_ref(int num, u64 dir, int index,
4227                                struct fs_path *name,
4228                                void *ctx)
4229{
4230        struct send_ctx *sctx = ctx;
4231        return record_ref(sctx->parent_root, dir, name, ctx,
4232                          &sctx->deleted_refs);
4233}
4234
4235static int record_new_ref(struct send_ctx *sctx)
4236{
4237        int ret;
4238
4239        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4240                                sctx->cmp_key, 0, __record_new_ref, sctx);
4241        if (ret < 0)
4242                goto out;
4243        ret = 0;
4244
4245out:
4246        return ret;
4247}
4248
4249static int record_deleted_ref(struct send_ctx *sctx)
4250{
4251        int ret;
4252
4253        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4254                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
4255        if (ret < 0)
4256                goto out;
4257        ret = 0;
4258
4259out:
4260        return ret;
4261}
4262
4263struct find_ref_ctx {
4264        u64 dir;
4265        u64 dir_gen;
4266        struct btrfs_root *root;
4267        struct fs_path *name;
4268        int found_idx;
4269};
4270
4271static int __find_iref(int num, u64 dir, int index,
4272                       struct fs_path *name,
4273                       void *ctx_)
4274{
4275        struct find_ref_ctx *ctx = ctx_;
4276        u64 dir_gen;
4277        int ret;
4278
4279        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4280            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4281                /*
4282                 * To avoid doing extra lookups we'll only do this if everything
4283                 * else matches.
4284                 */
4285                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4286                                     NULL, NULL, NULL);
4287                if (ret)
4288                        return ret;
4289                if (dir_gen != ctx->dir_gen)
4290                        return 0;
4291                ctx->found_idx = num;
4292                return 1;
4293        }
4294        return 0;
4295}
4296
4297static int find_iref(struct btrfs_root *root,
4298                     struct btrfs_path *path,
4299                     struct btrfs_key *key,
4300                     u64 dir, u64 dir_gen, struct fs_path *name)
4301{
4302        int ret;
4303        struct find_ref_ctx ctx;
4304
4305        ctx.dir = dir;
4306        ctx.name = name;
4307        ctx.dir_gen = dir_gen;
4308        ctx.found_idx = -1;
4309        ctx.root = root;
4310
4311        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4312        if (ret < 0)
4313                return ret;
4314
4315        if (ctx.found_idx == -1)
4316                return -ENOENT;
4317
4318        return ctx.found_idx;
4319}
4320
4321static int __record_changed_new_ref(int num, u64 dir, int index,
4322                                    struct fs_path *name,
4323                                    void *ctx)
4324{
4325        u64 dir_gen;
4326        int ret;
4327        struct send_ctx *sctx = ctx;
4328
4329        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4330                             NULL, NULL, NULL);
4331        if (ret)
4332                return ret;
4333
4334        ret = find_iref(sctx->parent_root, sctx->right_path,
4335                        sctx->cmp_key, dir, dir_gen, name);
4336        if (ret == -ENOENT)
4337                ret = __record_new_ref(num, dir, index, name, sctx);
4338        else if (ret > 0)
4339                ret = 0;
4340
4341        return ret;
4342}
4343
4344static int __record_changed_deleted_ref(int num, u64 dir, int index,
4345                                        struct fs_path *name,
4346                                        void *ctx)
4347{
4348        u64 dir_gen;
4349        int ret;
4350        struct send_ctx *sctx = ctx;
4351
4352        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4353                             NULL, NULL, NULL);
4354        if (ret)
4355                return ret;
4356
4357        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4358                        dir, dir_gen, name);
4359        if (ret == -ENOENT)
4360                ret = __record_deleted_ref(num, dir, index, name, sctx);
4361        else if (ret > 0)
4362                ret = 0;
4363
4364        return ret;
4365}
4366
4367static int record_changed_ref(struct send_ctx *sctx)
4368{
4369        int ret = 0;
4370
4371        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4372                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4373        if (ret < 0)
4374                goto out;
4375        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4376                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4377        if (ret < 0)
4378                goto out;
4379        ret = 0;
4380
4381out:
4382        return ret;
4383}
4384
4385/*
4386 * Record and process all refs at once. Needed when an inode changes the
4387 * generation number, which means that it was deleted and recreated.
4388 */
4389static int process_all_refs(struct send_ctx *sctx,
4390                            enum btrfs_compare_tree_result cmd)
4391{
4392        int ret;
4393        struct btrfs_root *root;
4394        struct btrfs_path *path;
4395        struct btrfs_key key;
4396        struct btrfs_key found_key;
4397        struct extent_buffer *eb;
4398        int slot;
4399        iterate_inode_ref_t cb;
4400        int pending_move = 0;
4401
4402        path = alloc_path_for_send();
4403        if (!path)
4404                return -ENOMEM;
4405
4406        if (cmd == BTRFS_COMPARE_TREE_NEW) {
4407                root = sctx->send_root;
4408                cb = __record_new_ref;
4409        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4410                root = sctx->parent_root;
4411                cb = __record_deleted_ref;
4412        } else {
4413                btrfs_err(sctx->send_root->fs_info,
4414                                "Wrong command %d in process_all_refs", cmd);
4415                ret = -EINVAL;
4416                goto out;
4417        }
4418
4419        key.objectid = sctx->cmp_key->objectid;
4420        key.type = BTRFS_INODE_REF_KEY;
4421        key.offset = 0;
4422        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4423        if (ret < 0)
4424                goto out;
4425
4426        while (1) {
4427                eb = path->nodes[0];
4428                slot = path->slots[0];
4429                if (slot >= btrfs_header_nritems(eb)) {
4430                        ret = btrfs_next_leaf(root, path);
4431                        if (ret < 0)
4432                                goto out;
4433                        else if (ret > 0)
4434                                break;
4435                        continue;
4436                }
4437
4438                btrfs_item_key_to_cpu(eb, &found_key, slot);
4439
4440                if (found_key.objectid != key.objectid ||
4441                    (found_key.type != BTRFS_INODE_REF_KEY &&
4442                     found_key.type != BTRFS_INODE_EXTREF_KEY))
4443                        break;
4444
4445                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4446                if (ret < 0)
4447                        goto out;
4448
4449                path->slots[0]++;
4450        }
4451        btrfs_release_path(path);
4452
4453        /*
4454         * We don't actually care about pending_move as we are simply
4455         * re-creating this inode and will be rename'ing it into place once we
4456         * rename the parent directory.
4457         */
4458        ret = process_recorded_refs(sctx, &pending_move);
4459out:
4460        btrfs_free_path(path);
4461        return ret;
4462}
4463
4464static int send_set_xattr(struct send_ctx *sctx,
4465                          struct fs_path *path,
4466                          const char *name, int name_len,
4467                          const char *data, int data_len)
4468{
4469        int ret = 0;
4470
4471        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4472        if (ret < 0)
4473                goto out;
4474
4475        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4476        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4477        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4478
4479        ret = send_cmd(sctx);
4480
4481tlv_put_failure:
4482out:
4483        return ret;
4484}
4485
4486static int send_remove_xattr(struct send_ctx *sctx,
4487                          struct fs_path *path,
4488                          const char *name, int name_len)
4489{
4490        int ret = 0;
4491
4492        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4493        if (ret < 0)
4494                goto out;
4495
4496        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4497        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4498
4499        ret = send_cmd(sctx);
4500
4501tlv_put_failure:
4502out:
4503        return ret;
4504}
4505
4506static int __process_new_xattr(int num, struct btrfs_key *di_key,
4507                               const char *name, int name_len,
4508                               const char *data, int data_len,
4509                               u8 type, void *ctx)
4510{
4511        int ret;
4512        struct send_ctx *sctx = ctx;
4513        struct fs_path *p;
4514        struct posix_acl_xattr_header dummy_acl;
4515
4516        p = fs_path_alloc();
4517        if (!p)
4518                return -ENOMEM;
4519
4520        /*
4521         * This hack is needed because empty acls are stored as zero byte
4522         * data in xattrs. Problem with that is, that receiving these zero byte
4523         * acls will fail later. To fix this, we send a dummy acl list that
4524         * only contains the version number and no entries.
4525         */
4526        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4527            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4528                if (data_len == 0) {
4529                        dummy_acl.a_version =
4530                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4531                        data = (char *)&dummy_acl;
4532                        data_len = sizeof(dummy_acl);
4533                }
4534        }
4535
4536        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4537        if (ret < 0)
4538                goto out;
4539
4540        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4541
4542out:
4543        fs_path_free(p);
4544        return ret;
4545}
4546
4547static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4548                                   const char *name, int name_len,
4549                                   const char *data, int data_len,
4550                                   u8 type, void *ctx)
4551{
4552        int ret;
4553        struct send_ctx *sctx = ctx;
4554        struct fs_path *p;
4555
4556        p = fs_path_alloc();
4557        if (!p)
4558                return -ENOMEM;
4559
4560        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4561        if (ret < 0)
4562                goto out;
4563
4564        ret = send_remove_xattr(sctx, p, name, name_len);
4565
4566out:
4567        fs_path_free(p);
4568        return ret;
4569}
4570
4571static int process_new_xattr(struct send_ctx *sctx)
4572{
4573        int ret = 0;
4574
4575        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4576                               __process_new_xattr, sctx);
4577
4578        return ret;
4579}
4580
4581static int process_deleted_xattr(struct send_ctx *sctx)
4582{
4583        return iterate_dir_item(sctx->parent_root, sctx->right_path,
4584                                __process_deleted_xattr, sctx);
4585}
4586
4587struct find_xattr_ctx {
4588        const char *name;
4589        int name_len;
4590        int found_idx;
4591        char *found_data;
4592        int found_data_len;
4593};
4594
4595static int __find_xattr(int num, struct btrfs_key *di_key,
4596                        const char *name, int name_len,
4597                        const char *data, int data_len,
4598                        u8 type, void *vctx)
4599{
4600        struct find_xattr_ctx *ctx = vctx;
4601
4602        if (name_len == ctx->name_len &&
4603            strncmp(name, ctx->name, name_len) == 0) {
4604                ctx->found_idx = num;
4605                ctx->found_data_len = data_len;
4606                ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4607                if (!ctx->found_data)
4608                        return -ENOMEM;
4609                return 1;
4610        }
4611        return 0;
4612}
4613
4614static int find_xattr(struct btrfs_root *root,
4615                      struct btrfs_path *path,
4616                      struct btrfs_key *key,
4617                      const char *name, int name_len,
4618                      char **data, int *data_len)
4619{
4620        int ret;
4621        struct find_xattr_ctx ctx;
4622
4623        ctx.name = name;
4624        ctx.name_len = name_len;
4625        ctx.found_idx = -1;
4626        ctx.found_data = NULL;
4627        ctx.found_data_len = 0;
4628
4629        ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4630        if (ret < 0)
4631                return ret;
4632
4633        if (ctx.found_idx == -1)
4634                return -ENOENT;
4635        if (data) {
4636                *data = ctx.found_data;
4637                *data_len = ctx.found_data_len;
4638        } else {
4639                kfree(ctx.found_data);
4640        }
4641        return ctx.found_idx;
4642}
4643
4644
4645static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4646                                       const char *name, int name_len,
4647                                       const char *data, int data_len,
4648                                       u8 type, void *ctx)
4649{
4650        int ret;
4651        struct send_ctx *sctx = ctx;
4652        char *found_data = NULL;
4653        int found_data_len  = 0;
4654
4655        ret = find_xattr(sctx->parent_root, sctx->right_path,
4656                         sctx->cmp_key, name, name_len, &found_data,
4657                         &found_data_len);
4658        if (ret == -ENOENT) {
4659                ret = __process_new_xattr(num, di_key, name, name_len, data,
4660                                data_len, type, ctx);
4661        } else if (ret >= 0) {
4662                if (data_len != found_data_len ||
4663                    memcmp(data, found_data, data_len)) {
4664                        ret = __process_new_xattr(num, di_key, name, name_len,
4665                                        data, data_len, type, ctx);
4666                } else {
4667                        ret = 0;
4668                }
4669        }
4670
4671        kfree(found_data);
4672        return ret;
4673}
4674
4675static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4676                                           const char *name, int name_len,
4677                                           const char *data, int data_len,
4678                                           u8 type, void *ctx)
4679{
4680        int ret;
4681        struct send_ctx *sctx = ctx;
4682
4683        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4684                         name, name_len, NULL, NULL);
4685        if (ret == -ENOENT)
4686                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4687                                data_len, type, ctx);
4688        else if (ret >= 0)
4689                ret = 0;
4690
4691        return ret;
4692}
4693
4694static int process_changed_xattr(struct send_ctx *sctx)
4695{
4696        int ret = 0;
4697
4698        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4699                        __process_changed_new_xattr, sctx);
4700        if (ret < 0)
4701                goto out;
4702        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4703                        __process_changed_deleted_xattr, sctx);
4704
4705out:
4706        return ret;
4707}
4708
4709static int process_all_new_xattrs(struct send_ctx *sctx)
4710{
4711        int ret;
4712        struct btrfs_root *root;
4713        struct btrfs_path *path;
4714        struct btrfs_key key;
4715        struct btrfs_key found_key;
4716        struct extent_buffer *eb;
4717        int slot;
4718
4719        path = alloc_path_for_send();
4720        if (!path)
4721                return -ENOMEM;
4722
4723        root = sctx->send_root;
4724
4725        key.objectid = sctx->cmp_key->objectid;
4726        key.type = BTRFS_XATTR_ITEM_KEY;
4727        key.offset = 0;
4728        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729        if (ret < 0)
4730                goto out;
4731
4732        while (1) {
4733                eb = path->nodes[0];
4734                slot = path->slots[0];
4735                if (slot >= btrfs_header_nritems(eb)) {
4736                        ret = btrfs_next_leaf(root, path);
4737                        if (ret < 0) {
4738                                goto out;
4739                        } else if (ret > 0) {
4740                                ret = 0;
4741                                break;
4742                        }
4743                        continue;
4744                }
4745
4746                btrfs_item_key_to_cpu(eb, &found_key, slot);
4747                if (found_key.objectid != key.objectid ||
4748                    found_key.type != key.type) {
4749                        ret = 0;
4750                        goto out;
4751                }
4752
4753                ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4754                if (ret < 0)
4755                        goto out;
4756
4757                path->slots[0]++;
4758        }
4759
4760out:
4761        btrfs_free_path(path);
4762        return ret;
4763}
4764
4765static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4766{
4767        struct btrfs_root *root = sctx->send_root;
4768        struct btrfs_fs_info *fs_info = root->fs_info;
4769        struct inode *inode;
4770        struct page *page;
4771        char *addr;
4772        struct btrfs_key key;
4773        pgoff_t index = offset >> PAGE_SHIFT;
4774        pgoff_t last_index;
4775        unsigned pg_offset = offset_in_page(offset);
4776        ssize_t ret = 0;
4777
4778        key.objectid = sctx->cur_ino;
4779        key.type = BTRFS_INODE_ITEM_KEY;
4780        key.offset = 0;
4781
4782        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4783        if (IS_ERR(inode))
4784                return PTR_ERR(inode);
4785
4786        if (offset + len > i_size_read(inode)) {
4787                if (offset > i_size_read(inode))
4788                        len = 0;
4789                else
4790                        len = offset - i_size_read(inode);
4791        }
4792        if (len == 0)
4793                goto out;
4794
4795        last_index = (offset + len - 1) >> PAGE_SHIFT;
4796
4797        /* initial readahead */
4798        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4799        file_ra_state_init(&sctx->ra, inode->i_mapping);
4800
4801        while (index <= last_index) {
4802                unsigned cur_len = min_t(unsigned, len,
4803                                         PAGE_SIZE - pg_offset);
4804
4805                page = find_lock_page(inode->i_mapping, index);
4806                if (!page) {
4807                        page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4808                                NULL, index, last_index + 1 - index);
4809
4810                        page = find_or_create_page(inode->i_mapping, index,
4811                                        GFP_KERNEL);
4812                        if (!page) {
4813                                ret = -ENOMEM;
4814                                break;
4815                        }
4816                }
4817
4818                if (PageReadahead(page)) {
4819                        page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4820                                NULL, page, index, last_index + 1 - index);
4821                }
4822
4823                if (!PageUptodate(page)) {
4824                        btrfs_readpage(NULL, page);
4825                        lock_page(page);
4826                        if (!PageUptodate(page)) {
4827                                unlock_page(page);
4828                                put_page(page);
4829                                ret = -EIO;
4830                                break;
4831                        }
4832                }
4833
4834                addr = kmap(page);
4835                memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4836                kunmap(page);
4837                unlock_page(page);
4838                put_page(page);
4839                index++;
4840                pg_offset = 0;
4841                len -= cur_len;
4842                ret += cur_len;
4843        }
4844out:
4845        iput(inode);
4846        return ret;
4847}
4848
4849/*
4850 * Read some bytes from the current inode/file and send a write command to
4851 * user space.
4852 */
4853static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4854{
4855        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4856        int ret = 0;
4857        struct fs_path *p;
4858        ssize_t num_read = 0;
4859
4860        p = fs_path_alloc();
4861        if (!p)
4862                return -ENOMEM;
4863
4864        btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4865
4866        num_read = fill_read_buf(sctx, offset, len);
4867        if (num_read <= 0) {
4868                if (num_read < 0)
4869                        ret = num_read;
4870                goto out;
4871        }
4872
4873        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4874        if (ret < 0)
4875                goto out;
4876
4877        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4878        if (ret < 0)
4879                goto out;
4880
4881        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4882        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4883        TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4884
4885        ret = send_cmd(sctx);
4886
4887tlv_put_failure:
4888out:
4889        fs_path_free(p);
4890        if (ret < 0)
4891                return ret;
4892        return num_read;
4893}
4894
4895/*
4896 * Send a clone command to user space.
4897 */
4898static int send_clone(struct send_ctx *sctx,
4899                      u64 offset, u32 len,
4900                      struct clone_root *clone_root)
4901{
4902        int ret = 0;
4903        struct fs_path *p;
4904        u64 gen;
4905
4906        btrfs_debug(sctx->send_root->fs_info,
4907                    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4908                    offset, len, clone_root->root->root_key.objectid,
4909                    clone_root->ino, clone_root->offset);
4910
4911        p = fs_path_alloc();
4912        if (!p)
4913                return -ENOMEM;
4914
4915        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4916        if (ret < 0)
4917                goto out;
4918
4919        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4920        if (ret < 0)
4921                goto out;
4922
4923        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4924        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4925        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4926
4927        if (clone_root->root == sctx->send_root) {
4928                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4929                                &gen, NULL, NULL, NULL, NULL);
4930                if (ret < 0)
4931                        goto out;
4932                ret = get_cur_path(sctx, clone_root->ino, gen, p);
4933        } else {
4934                ret = get_inode_path(clone_root->root, clone_root->ino, p);
4935        }
4936        if (ret < 0)
4937                goto out;
4938
4939        /*
4940         * If the parent we're using has a received_uuid set then use that as
4941         * our clone source as that is what we will look for when doing a
4942         * receive.
4943         *
4944         * This covers the case that we create a snapshot off of a received
4945         * subvolume and then use that as the parent and try to receive on a
4946         * different host.
4947         */
4948        if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4949                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4950                             clone_root->root->root_item.received_uuid);
4951        else
4952                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4953                             clone_root->root->root_item.uuid);
4954        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4955                    le64_to_cpu(clone_root->root->root_item.ctransid));
4956        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4957        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4958                        clone_root->offset);
4959
4960        ret = send_cmd(sctx);
4961
4962tlv_put_failure:
4963out:
4964        fs_path_free(p);
4965        return ret;
4966}
4967
4968/*
4969 * Send an update extent command to user space.
4970 */
4971static int send_update_extent(struct send_ctx *sctx,
4972                              u64 offset, u32 len)
4973{
4974        int ret = 0;
4975        struct fs_path *p;
4976
4977        p = fs_path_alloc();
4978        if (!p)
4979                return -ENOMEM;
4980
4981        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4982        if (ret < 0)
4983                goto out;
4984
4985        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4986        if (ret < 0)
4987                goto out;
4988
4989        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4990        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4991        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4992
4993        ret = send_cmd(sctx);
4994
4995tlv_put_failure:
4996out:
4997        fs_path_free(p);
4998        return ret;
4999}
5000
5001static int send_hole(struct send_ctx *sctx, u64 end)
5002{
5003        struct fs_path *p = NULL;
5004        u64 offset = sctx->cur_inode_last_extent;
5005        u64 len;
5006        int ret = 0;
5007
5008        /*
5009         * A hole that starts at EOF or beyond it. Since we do not yet support
5010         * fallocate (for extent preallocation and hole punching), sending a
5011         * write of zeroes starting at EOF or beyond would later require issuing
5012         * a truncate operation which would undo the write and achieve nothing.
5013         */
5014        if (offset >= sctx->cur_inode_size)
5015                return 0;
5016
5017        /*
5018         * Don't go beyond the inode's i_size due to prealloc extents that start
5019         * after the i_size.
5020         */
5021        end = min_t(u64, end, sctx->cur_inode_size);
5022
5023        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5024                return send_update_extent(sctx, offset, end - offset);
5025
5026        p = fs_path_alloc();
5027        if (!p)
5028                return -ENOMEM;
5029        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5030        if (ret < 0)
5031                goto tlv_put_failure;
5032        memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5033        while (offset < end) {
5034                len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5035
5036                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5037                if (ret < 0)
5038                        break;
5039                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5040                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5041                TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5042                ret = send_cmd(sctx);
5043                if (ret < 0)
5044                        break;
5045                offset += len;
5046        }
5047        sctx->cur_inode_next_write_offset = offset;
5048tlv_put_failure:
5049        fs_path_free(p);
5050        return ret;
5051}
5052
5053static int send_extent_data(struct send_ctx *sctx,
5054                            const u64 offset,
5055                            const u64 len)
5056{
5057        u64 sent = 0;
5058
5059        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5060                return send_update_extent(sctx, offset, len);
5061
5062        while (sent < len) {
5063                u64 size = len - sent;
5064                int ret;
5065
5066                if (size > BTRFS_SEND_READ_SIZE)
5067                        size = BTRFS_SEND_READ_SIZE;
5068                ret = send_write(sctx, offset + sent, size);
5069                if (ret < 0)
5070                        return ret;
5071                if (!ret)
5072                        break;
5073                sent += ret;
5074        }
5075        return 0;
5076}
5077
5078static int clone_range(struct send_ctx *sctx,
5079                       struct clone_root *clone_root,
5080                       const u64 disk_byte,
5081                       u64 data_offset,
5082                       u64 offset,
5083                       u64 len)
5084{
5085        struct btrfs_path *path;
5086        struct btrfs_key key;
5087        int ret;
5088        u64 clone_src_i_size = 0;
5089
5090        /*
5091         * Prevent cloning from a zero offset with a length matching the sector
5092         * size because in some scenarios this will make the receiver fail.
5093         *
5094         * For example, if in the source filesystem the extent at offset 0
5095         * has a length of sectorsize and it was written using direct IO, then
5096         * it can never be an inline extent (even if compression is enabled).
5097         * Then this extent can be cloned in the original filesystem to a non
5098         * zero file offset, but it may not be possible to clone in the
5099         * destination filesystem because it can be inlined due to compression
5100         * on the destination filesystem (as the receiver's write operations are
5101         * always done using buffered IO). The same happens when the original
5102         * filesystem does not have compression enabled but the destination
5103         * filesystem has.
5104         */
5105        if (clone_root->offset == 0 &&
5106            len == sctx->send_root->fs_info->sectorsize)
5107                return send_extent_data(sctx, offset, len);
5108
5109        path = alloc_path_for_send();
5110        if (!path)
5111                return -ENOMEM;
5112
5113        /*
5114         * There are inodes that have extents that lie behind its i_size. Don't
5115         * accept clones from these extents.
5116         */
5117        ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5118                               &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5119        btrfs_release_path(path);
5120        if (ret < 0)
5121                goto out;
5122
5123        /*
5124         * We can't send a clone operation for the entire range if we find
5125         * extent items in the respective range in the source file that
5126         * refer to different extents or if we find holes.
5127         * So check for that and do a mix of clone and regular write/copy
5128         * operations if needed.
5129         *
5130         * Example:
5131         *
5132         * mkfs.btrfs -f /dev/sda
5133         * mount /dev/sda /mnt
5134         * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5135         * cp --reflink=always /mnt/foo /mnt/bar
5136         * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5137         * btrfs subvolume snapshot -r /mnt /mnt/snap
5138         *
5139         * If when we send the snapshot and we are processing file bar (which
5140         * has a higher inode number than foo) we blindly send a clone operation
5141         * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5142         * a file bar that matches the content of file foo - iow, doesn't match
5143         * the content from bar in the original filesystem.
5144         */
5145        key.objectid = clone_root->ino;
5146        key.type = BTRFS_EXTENT_DATA_KEY;
5147        key.offset = clone_root->offset;
5148        ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5149        if (ret < 0)
5150                goto out;
5151        if (ret > 0 && path->slots[0] > 0) {
5152                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5153                if (key.objectid == clone_root->ino &&
5154                    key.type == BTRFS_EXTENT_DATA_KEY)
5155                        path->slots[0]--;
5156        }
5157
5158        while (true) {
5159                struct extent_buffer *leaf = path->nodes[0];
5160                int slot = path->slots[0];
5161                struct btrfs_file_extent_item *ei;
5162                u8 type;
5163                u64 ext_len;
5164                u64 clone_len;
5165                u64 clone_data_offset;
5166
5167                if (slot >= btrfs_header_nritems(leaf)) {
5168                        ret = btrfs_next_leaf(clone_root->root, path);
5169                        if (ret < 0)
5170                                goto out;
5171                        else if (ret > 0)
5172                                break;
5173                        continue;
5174                }
5175
5176                btrfs_item_key_to_cpu(leaf, &key, slot);
5177
5178                /*
5179                 * We might have an implicit trailing hole (NO_HOLES feature
5180                 * enabled). We deal with it after leaving this loop.
5181                 */
5182                if (key.objectid != clone_root->ino ||
5183                    key.type != BTRFS_EXTENT_DATA_KEY)
5184                        break;
5185
5186                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5187                type = btrfs_file_extent_type(leaf, ei);
5188                if (type == BTRFS_FILE_EXTENT_INLINE) {
5189                        ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5190                        ext_len = PAGE_ALIGN(ext_len);
5191                } else {
5192                        ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5193                }
5194
5195                if (key.offset + ext_len <= clone_root->offset)
5196                        goto next;
5197
5198                if (key.offset > clone_root->offset) {
5199                        /* Implicit hole, NO_HOLES feature enabled. */
5200                        u64 hole_len = key.offset - clone_root->offset;
5201
5202                        if (hole_len > len)
5203                                hole_len = len;
5204                        ret = send_extent_data(sctx, offset, hole_len);
5205                        if (ret < 0)
5206                                goto out;
5207
5208                        len -= hole_len;
5209                        if (len == 0)
5210                                break;
5211                        offset += hole_len;
5212                        clone_root->offset += hole_len;
5213                        data_offset += hole_len;
5214                }
5215
5216                if (key.offset >= clone_root->offset + len)
5217                        break;
5218
5219                if (key.offset >= clone_src_i_size)
5220                        break;
5221
5222                if (key.offset + ext_len > clone_src_i_size)
5223                        ext_len = clone_src_i_size - key.offset;
5224
5225                clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5226                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5227                        clone_root->offset = key.offset;
5228                        if (clone_data_offset < data_offset &&
5229                                clone_data_offset + ext_len > data_offset) {
5230                                u64 extent_offset;
5231
5232                                extent_offset = data_offset - clone_data_offset;
5233                                ext_len -= extent_offset;
5234                                clone_data_offset += extent_offset;
5235                                clone_root->offset += extent_offset;
5236                        }
5237                }
5238
5239                clone_len = min_t(u64, ext_len, len);
5240
5241                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5242                    clone_data_offset == data_offset) {
5243                        const u64 src_end = clone_root->offset + clone_len;
5244                        const u64 sectorsize = SZ_64K;
5245
5246                        /*
5247                         * We can't clone the last block, when its size is not
5248                         * sector size aligned, into the middle of a file. If we
5249                         * do so, the receiver will get a failure (-EINVAL) when
5250                         * trying to clone or will silently corrupt the data in
5251                         * the destination file if it's on a kernel without the
5252                         * fix introduced by commit ac765f83f1397646
5253                         * ("Btrfs: fix data corruption due to cloning of eof
5254                         * block).
5255                         *
5256                         * So issue a clone of the aligned down range plus a
5257                         * regular write for the eof block, if we hit that case.
5258                         *
5259                         * Also, we use the maximum possible sector size, 64K,
5260                         * because we don't know what's the sector size of the
5261                         * filesystem that receives the stream, so we have to
5262                         * assume the largest possible sector size.
5263                         */
5264                        if (src_end == clone_src_i_size &&
5265                            !IS_ALIGNED(src_end, sectorsize) &&
5266                            offset + clone_len < sctx->cur_inode_size) {
5267                                u64 slen;
5268
5269                                slen = ALIGN_DOWN(src_end - clone_root->offset,
5270                                                  sectorsize);
5271                                if (slen > 0) {
5272                                        ret = send_clone(sctx, offset, slen,
5273                                                         clone_root);
5274                                        if (ret < 0)
5275                                                goto out;
5276                                }
5277                                ret = send_extent_data(sctx, offset + slen,
5278                                                       clone_len - slen);
5279                        } else {
5280                                ret = send_clone(sctx, offset, clone_len,
5281                                                 clone_root);
5282                        }
5283                } else {
5284                        ret = send_extent_data(sctx, offset, clone_len);
5285                }
5286
5287                if (ret < 0)
5288                        goto out;
5289
5290                len -= clone_len;
5291                if (len == 0)
5292                        break;
5293                offset += clone_len;
5294                clone_root->offset += clone_len;
5295                data_offset += clone_len;
5296next:
5297                path->slots[0]++;
5298        }
5299
5300        if (len > 0)
5301                ret = send_extent_data(sctx, offset, len);
5302        else
5303                ret = 0;
5304out:
5305        btrfs_free_path(path);
5306        return ret;
5307}
5308
5309static int send_write_or_clone(struct send_ctx *sctx,
5310                               struct btrfs_path *path,
5311                               struct btrfs_key *key,
5312                               struct clone_root *clone_root)
5313{
5314        int ret = 0;
5315        struct btrfs_file_extent_item *ei;
5316        u64 offset = key->offset;
5317        u64 len;
5318        u8 type;
5319        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5320
5321        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5322                        struct btrfs_file_extent_item);
5323        type = btrfs_file_extent_type(path->nodes[0], ei);
5324        if (type == BTRFS_FILE_EXTENT_INLINE) {
5325                len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5326                /*
5327                 * it is possible the inline item won't cover the whole page,
5328                 * but there may be items after this page.  Make
5329                 * sure to send the whole thing
5330                 */
5331                len = PAGE_ALIGN(len);
5332        } else {
5333                len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5334        }
5335
5336        if (offset >= sctx->cur_inode_size) {
5337                ret = 0;
5338                goto out;
5339        }
5340        if (offset + len > sctx->cur_inode_size)
5341                len = sctx->cur_inode_size - offset;
5342        if (len == 0) {
5343                ret = 0;
5344                goto out;
5345        }
5346
5347        if (clone_root && IS_ALIGNED(offset + len, bs)) {
5348                u64 disk_byte;
5349                u64 data_offset;
5350
5351                disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5352                data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5353                ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5354                                  offset, len);
5355        } else {
5356                ret = send_extent_data(sctx, offset, len);
5357        }
5358        sctx->cur_inode_next_write_offset = offset + len;
5359out:
5360        return ret;
5361}
5362
5363static int is_extent_unchanged(struct send_ctx *sctx,
5364                               struct btrfs_path *left_path,
5365                               struct btrfs_key *ekey)
5366{
5367        int ret = 0;
5368        struct btrfs_key key;
5369        struct btrfs_path *path = NULL;
5370        struct extent_buffer *eb;
5371        int slot;
5372        struct btrfs_key found_key;
5373        struct btrfs_file_extent_item *ei;
5374        u64 left_disknr;
5375        u64 right_disknr;
5376        u64 left_offset;
5377        u64 right_offset;
5378        u64 left_offset_fixed;
5379        u64 left_len;
5380        u64 right_len;
5381        u64 left_gen;
5382        u64 right_gen;
5383        u8 left_type;
5384        u8 right_type;
5385
5386        path = alloc_path_for_send();
5387        if (!path)
5388                return -ENOMEM;
5389
5390        eb = left_path->nodes[0];
5391        slot = left_path->slots[0];
5392        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5393        left_type = btrfs_file_extent_type(eb, ei);
5394
5395        if (left_type != BTRFS_FILE_EXTENT_REG) {
5396                ret = 0;
5397                goto out;
5398        }
5399        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5400        left_len = btrfs_file_extent_num_bytes(eb, ei);
5401        left_offset = btrfs_file_extent_offset(eb, ei);
5402        left_gen = btrfs_file_extent_generation(eb, ei);
5403
5404        /*
5405         * Following comments will refer to these graphics. L is the left
5406         * extents which we are checking at the moment. 1-8 are the right
5407         * extents that we iterate.
5408         *
5409         *       |-----L-----|
5410         * |-1-|-2a-|-3-|-4-|-5-|-6-|
5411         *
5412         *       |-----L-----|
5413         * |--1--|-2b-|...(same as above)
5414         *
5415         * Alternative situation. Happens on files where extents got split.
5416         *       |-----L-----|
5417         * |-----------7-----------|-6-|
5418         *
5419         * Alternative situation. Happens on files which got larger.
5420         *       |-----L-----|
5421         * |-8-|
5422         * Nothing follows after 8.
5423         */
5424
5425        key.objectid = ekey->objectid;
5426        key.type = BTRFS_EXTENT_DATA_KEY;
5427        key.offset = ekey->offset;
5428        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5429        if (ret < 0)
5430                goto out;
5431        if (ret) {
5432                ret = 0;
5433                goto out;
5434        }
5435
5436        /*
5437         * Handle special case where the right side has no extents at all.
5438         */
5439        eb = path->nodes[0];
5440        slot = path->slots[0];
5441        btrfs_item_key_to_cpu(eb, &found_key, slot);
5442        if (found_key.objectid != key.objectid ||
5443            found_key.type != key.type) {
5444                /* If we're a hole then just pretend nothing changed */
5445                ret = (left_disknr) ? 0 : 1;
5446                goto out;
5447        }
5448
5449        /*
5450         * We're now on 2a, 2b or 7.
5451         */
5452        key = found_key;
5453        while (key.offset < ekey->offset + left_len) {
5454                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5455                right_type = btrfs_file_extent_type(eb, ei);
5456                if (right_type != BTRFS_FILE_EXTENT_REG &&
5457                    right_type != BTRFS_FILE_EXTENT_INLINE) {
5458                        ret = 0;
5459                        goto out;
5460                }
5461
5462                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5463                        right_len = btrfs_file_extent_ram_bytes(eb, ei);
5464                        right_len = PAGE_ALIGN(right_len);
5465                } else {
5466                        right_len = btrfs_file_extent_num_bytes(eb, ei);
5467                }
5468
5469                /*
5470                 * Are we at extent 8? If yes, we know the extent is changed.
5471                 * This may only happen on the first iteration.
5472                 */
5473                if (found_key.offset + right_len <= ekey->offset) {
5474                        /* If we're a hole just pretend nothing changed */
5475                        ret = (left_disknr) ? 0 : 1;
5476                        goto out;
5477                }
5478
5479                /*
5480                 * We just wanted to see if when we have an inline extent, what
5481                 * follows it is a regular extent (wanted to check the above
5482                 * condition for inline extents too). This should normally not
5483                 * happen but it's possible for example when we have an inline
5484                 * compressed extent representing data with a size matching
5485                 * the page size (currently the same as sector size).
5486                 */
5487                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5488                        ret = 0;
5489                        goto out;
5490                }
5491
5492                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5493                right_offset = btrfs_file_extent_offset(eb, ei);
5494                right_gen = btrfs_file_extent_generation(eb, ei);
5495
5496                left_offset_fixed = left_offset;
5497                if (key.offset < ekey->offset) {
5498                        /* Fix the right offset for 2a and 7. */
5499                        right_offset += ekey->offset - key.offset;
5500                } else {
5501                        /* Fix the left offset for all behind 2a and 2b */
5502                        left_offset_fixed += key.offset - ekey->offset;
5503                }
5504
5505                /*
5506                 * Check if we have the same extent.
5507                 */
5508                if (left_disknr != right_disknr ||
5509                    left_offset_fixed != right_offset ||
5510                    left_gen != right_gen) {
5511                        ret = 0;
5512                        goto out;
5513                }
5514
5515                /*
5516                 * Go to the next extent.
5517                 */
5518                ret = btrfs_next_item(sctx->parent_root, path);
5519                if (ret < 0)
5520                        goto out;
5521                if (!ret) {
5522                        eb = path->nodes[0];
5523                        slot = path->slots[0];
5524                        btrfs_item_key_to_cpu(eb, &found_key, slot);
5525                }
5526                if (ret || found_key.objectid != key.objectid ||
5527                    found_key.type != key.type) {
5528                        key.offset += right_len;
5529                        break;
5530                }
5531                if (found_key.offset != key.offset + right_len) {
5532                        ret = 0;
5533                        goto out;
5534                }
5535                key = found_key;
5536        }
5537
5538        /*
5539         * We're now behind the left extent (treat as unchanged) or at the end
5540         * of the right side (treat as changed).
5541         */
5542        if (key.offset >= ekey->offset + left_len)
5543                ret = 1;
5544        else
5545                ret = 0;
5546
5547
5548out:
5549        btrfs_free_path(path);
5550        return ret;
5551}
5552
5553static int get_last_extent(struct send_ctx *sctx, u64 offset)
5554{
5555        struct btrfs_path *path;
5556        struct btrfs_root *root = sctx->send_root;
5557        struct btrfs_file_extent_item *fi;
5558        struct btrfs_key key;
5559        u64 extent_end;
5560        u8 type;
5561        int ret;
5562
5563        path = alloc_path_for_send();
5564        if (!path)
5565                return -ENOMEM;
5566
5567        sctx->cur_inode_last_extent = 0;
5568
5569        key.objectid = sctx->cur_ino;
5570        key.type = BTRFS_EXTENT_DATA_KEY;
5571        key.offset = offset;
5572        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5573        if (ret < 0)
5574                goto out;
5575        ret = 0;
5576        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5577        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5578                goto out;
5579
5580        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5581                            struct btrfs_file_extent_item);
5582        type = btrfs_file_extent_type(path->nodes[0], fi);
5583        if (type == BTRFS_FILE_EXTENT_INLINE) {
5584                u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5585                extent_end = ALIGN(key.offset + size,
5586                                   sctx->send_root->fs_info->sectorsize);
5587        } else {
5588                extent_end = key.offset +
5589                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5590        }
5591        sctx->cur_inode_last_extent = extent_end;
5592out:
5593        btrfs_free_path(path);
5594        return ret;
5595}
5596
5597static int range_is_hole_in_parent(struct send_ctx *sctx,
5598                                   const u64 start,
5599                                   const u64 end)
5600{
5601        struct btrfs_path *path;
5602        struct btrfs_key key;
5603        struct btrfs_root *root = sctx->parent_root;
5604        u64 search_start = start;
5605        int ret;
5606
5607        path = alloc_path_for_send();
5608        if (!path)
5609                return -ENOMEM;
5610
5611        key.objectid = sctx->cur_ino;
5612        key.type = BTRFS_EXTENT_DATA_KEY;
5613        key.offset = search_start;
5614        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5615        if (ret < 0)
5616                goto out;
5617        if (ret > 0 && path->slots[0] > 0)
5618                path->slots[0]--;
5619
5620        while (search_start < end) {
5621                struct extent_buffer *leaf = path->nodes[0];
5622                int slot = path->slots[0];
5623                struct btrfs_file_extent_item *fi;
5624                u64 extent_end;
5625
5626                if (slot >= btrfs_header_nritems(leaf)) {
5627                        ret = btrfs_next_leaf(root, path);
5628                        if (ret < 0)
5629                                goto out;
5630                        else if (ret > 0)
5631                                break;
5632                        continue;
5633                }
5634
5635                btrfs_item_key_to_cpu(leaf, &key, slot);
5636                if (key.objectid < sctx->cur_ino ||
5637                    key.type < BTRFS_EXTENT_DATA_KEY)
5638                        goto next;
5639                if (key.objectid > sctx->cur_ino ||
5640                    key.type > BTRFS_EXTENT_DATA_KEY ||
5641                    key.offset >= end)
5642                        break;
5643
5644                fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5645                if (btrfs_file_extent_type(leaf, fi) ==
5646                    BTRFS_FILE_EXTENT_INLINE) {
5647                        u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5648
5649                        extent_end = ALIGN(key.offset + size,
5650                                           root->fs_info->sectorsize);
5651                } else {
5652                        extent_end = key.offset +
5653                                btrfs_file_extent_num_bytes(leaf, fi);
5654                }
5655                if (extent_end <= start)
5656                        goto next;
5657                if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5658                        search_start = extent_end;
5659                        goto next;
5660                }
5661                ret = 0;
5662                goto out;
5663next:
5664                path->slots[0]++;
5665        }
5666        ret = 1;
5667out:
5668        btrfs_free_path(path);
5669        return ret;
5670}
5671
5672static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5673                           struct btrfs_key *key)
5674{
5675        struct btrfs_file_extent_item *fi;
5676        u64 extent_end;
5677        u8 type;
5678        int ret = 0;
5679
5680        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5681                return 0;
5682
5683        if (sctx->cur_inode_last_extent == (u64)-1) {
5684                ret = get_last_extent(sctx, key->offset - 1);
5685                if (ret)
5686                        return ret;
5687        }
5688
5689        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5690                            struct btrfs_file_extent_item);
5691        type = btrfs_file_extent_type(path->nodes[0], fi);
5692        if (type == BTRFS_FILE_EXTENT_INLINE) {
5693                u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5694                extent_end = ALIGN(key->offset + size,
5695                                   sctx->send_root->fs_info->sectorsize);
5696        } else {
5697                extent_end = key->offset +
5698                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5699        }
5700
5701        if (path->slots[0] == 0 &&
5702            sctx->cur_inode_last_extent < key->offset) {
5703                /*
5704                 * We might have skipped entire leafs that contained only
5705                 * file extent items for our current inode. These leafs have
5706                 * a generation number smaller (older) than the one in the
5707                 * current leaf and the leaf our last extent came from, and
5708                 * are located between these 2 leafs.
5709                 */
5710                ret = get_last_extent(sctx, key->offset - 1);
5711                if (ret)
5712                        return ret;
5713        }
5714
5715        if (sctx->cur_inode_last_extent < key->offset) {
5716                ret = range_is_hole_in_parent(sctx,
5717                                              sctx->cur_inode_last_extent,
5718                                              key->offset);
5719                if (ret < 0)
5720                        return ret;
5721                else if (ret == 0)
5722                        ret = send_hole(sctx, key->offset);
5723                else
5724                        ret = 0;
5725        }
5726        sctx->cur_inode_last_extent = extent_end;
5727        return ret;
5728}
5729
5730static int process_extent(struct send_ctx *sctx,
5731                          struct btrfs_path *path,
5732                          struct btrfs_key *key)
5733{
5734        struct clone_root *found_clone = NULL;
5735        int ret = 0;
5736
5737        if (S_ISLNK(sctx->cur_inode_mode))
5738                return 0;
5739
5740        if (sctx->parent_root && !sctx->cur_inode_new) {
5741                ret = is_extent_unchanged(sctx, path, key);
5742                if (ret < 0)
5743                        goto out;
5744                if (ret) {
5745                        ret = 0;
5746                        goto out_hole;
5747                }
5748        } else {
5749                struct btrfs_file_extent_item *ei;
5750                u8 type;
5751
5752                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5753                                    struct btrfs_file_extent_item);
5754                type = btrfs_file_extent_type(path->nodes[0], ei);
5755                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5756                    type == BTRFS_FILE_EXTENT_REG) {
5757                        /*
5758                         * The send spec does not have a prealloc command yet,
5759                         * so just leave a hole for prealloc'ed extents until
5760                         * we have enough commands queued up to justify rev'ing
5761                         * the send spec.
5762                         */
5763                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5764                                ret = 0;
5765                                goto out;
5766                        }
5767
5768                        /* Have a hole, just skip it. */
5769                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5770                                ret = 0;
5771                                goto out;
5772                        }
5773                }
5774        }
5775
5776        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5777                        sctx->cur_inode_size, &found_clone);
5778        if (ret != -ENOENT && ret < 0)
5779                goto out;
5780
5781        ret = send_write_or_clone(sctx, path, key, found_clone);
5782        if (ret)
5783                goto out;
5784out_hole:
5785        ret = maybe_send_hole(sctx, path, key);
5786out:
5787        return ret;
5788}
5789
5790static int process_all_extents(struct send_ctx *sctx)
5791{
5792        int ret;
5793        struct btrfs_root *root;
5794        struct btrfs_path *path;
5795        struct btrfs_key key;
5796        struct btrfs_key found_key;
5797        struct extent_buffer *eb;
5798        int slot;
5799
5800        root = sctx->send_root;
5801        path = alloc_path_for_send();
5802        if (!path)
5803                return -ENOMEM;
5804
5805        key.objectid = sctx->cmp_key->objectid;
5806        key.type = BTRFS_EXTENT_DATA_KEY;
5807        key.offset = 0;
5808        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5809        if (ret < 0)
5810                goto out;
5811
5812        while (1) {
5813                eb = path->nodes[0];
5814                slot = path->slots[0];
5815
5816                if (slot >= btrfs_header_nritems(eb)) {
5817                        ret = btrfs_next_leaf(root, path);
5818                        if (ret < 0) {
5819                                goto out;
5820                        } else if (ret > 0) {
5821                                ret = 0;
5822                                break;
5823                        }
5824                        continue;
5825                }
5826
5827                btrfs_item_key_to_cpu(eb, &found_key, slot);
5828
5829                if (found_key.objectid != key.objectid ||
5830                    found_key.type != key.type) {
5831                        ret = 0;
5832                        goto out;
5833                }
5834
5835                ret = process_extent(sctx, path, &found_key);
5836                if (ret < 0)
5837                        goto out;
5838
5839                path->slots[0]++;
5840        }
5841
5842out:
5843        btrfs_free_path(path);
5844        return ret;
5845}
5846
5847static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5848                                           int *pending_move,
5849                                           int *refs_processed)
5850{
5851        int ret = 0;
5852
5853        if (sctx->cur_ino == 0)
5854                goto out;
5855        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5856            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5857                goto out;
5858        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5859                goto out;
5860
5861        ret = process_recorded_refs(sctx, pending_move);
5862        if (ret < 0)
5863                goto out;
5864
5865        *refs_processed = 1;
5866out:
5867        return ret;
5868}
5869
5870static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5871{
5872        int ret = 0;
5873        u64 left_mode;
5874        u64 left_uid;
5875        u64 left_gid;
5876        u64 right_mode;
5877        u64 right_uid;
5878        u64 right_gid;
5879        int need_chmod = 0;
5880        int need_chown = 0;
5881        int need_truncate = 1;
5882        int pending_move = 0;
5883        int refs_processed = 0;
5884
5885        if (sctx->ignore_cur_inode)
5886                return 0;
5887
5888        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5889                                              &refs_processed);
5890        if (ret < 0)
5891                goto out;
5892
5893        /*
5894         * We have processed the refs and thus need to advance send_progress.
5895         * Now, calls to get_cur_xxx will take the updated refs of the current
5896         * inode into account.
5897         *
5898         * On the other hand, if our current inode is a directory and couldn't
5899         * be moved/renamed because its parent was renamed/moved too and it has
5900         * a higher inode number, we can only move/rename our current inode
5901         * after we moved/renamed its parent. Therefore in this case operate on
5902         * the old path (pre move/rename) of our current inode, and the
5903         * move/rename will be performed later.
5904         */
5905        if (refs_processed && !pending_move)
5906                sctx->send_progress = sctx->cur_ino + 1;
5907
5908        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5909                goto out;
5910        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5911                goto out;
5912
5913        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5914                        &left_mode, &left_uid, &left_gid, NULL);
5915        if (ret < 0)
5916                goto out;
5917
5918        if (!sctx->parent_root || sctx->cur_inode_new) {
5919                need_chown = 1;
5920                if (!S_ISLNK(sctx->cur_inode_mode))
5921                        need_chmod = 1;
5922                if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5923                        need_truncate = 0;
5924        } else {
5925                u64 old_size;
5926
5927                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5928                                &old_size, NULL, &right_mode, &right_uid,
5929                                &right_gid, NULL);
5930                if (ret < 0)
5931                        goto out;
5932
5933                if (left_uid != right_uid || left_gid != right_gid)
5934                        need_chown = 1;
5935                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5936                        need_chmod = 1;
5937                if ((old_size == sctx->cur_inode_size) ||
5938                    (sctx->cur_inode_size > old_size &&
5939                     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5940                        need_truncate = 0;
5941        }
5942
5943        if (S_ISREG(sctx->cur_inode_mode)) {
5944                if (need_send_hole(sctx)) {
5945                        if (sctx->cur_inode_last_extent == (u64)-1 ||
5946                            sctx->cur_inode_last_extent <
5947                            sctx->cur_inode_size) {
5948                                ret = get_last_extent(sctx, (u64)-1);
5949                                if (ret)
5950                                        goto out;
5951                        }
5952                        if (sctx->cur_inode_last_extent <
5953                            sctx->cur_inode_size) {
5954                                ret = send_hole(sctx, sctx->cur_inode_size);
5955                                if (ret)
5956                                        goto out;
5957                        }
5958                }
5959                if (need_truncate) {
5960                        ret = send_truncate(sctx, sctx->cur_ino,
5961                                            sctx->cur_inode_gen,
5962                                            sctx->cur_inode_size);
5963                        if (ret < 0)
5964                                goto out;
5965                }
5966        }
5967
5968        if (need_chown) {
5969                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5970                                left_uid, left_gid);
5971                if (ret < 0)
5972                        goto out;
5973        }
5974        if (need_chmod) {
5975                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5976                                left_mode);
5977                if (ret < 0)
5978                        goto out;
5979        }
5980
5981        /*
5982         * If other directory inodes depended on our current directory
5983         * inode's move/rename, now do their move/rename operations.
5984         */
5985        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5986                ret = apply_children_dir_moves(sctx);
5987                if (ret)
5988                        goto out;
5989                /*
5990                 * Need to send that every time, no matter if it actually
5991                 * changed between the two trees as we have done changes to
5992                 * the inode before. If our inode is a directory and it's
5993                 * waiting to be moved/renamed, we will send its utimes when
5994                 * it's moved/renamed, therefore we don't need to do it here.
5995                 */
5996                sctx->send_progress = sctx->cur_ino + 1;
5997                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5998                if (ret < 0)
5999                        goto out;
6000        }
6001
6002out:
6003        return ret;
6004}
6005
6006struct parent_paths_ctx {
6007        struct list_head *refs;
6008        struct send_ctx *sctx;
6009};
6010
6011static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6012                             void *ctx)
6013{
6014        struct parent_paths_ctx *ppctx = ctx;
6015
6016        return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6017                          ppctx->refs);
6018}
6019
6020/*
6021 * Issue unlink operations for all paths of the current inode found in the
6022 * parent snapshot.
6023 */
6024static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6025{
6026        LIST_HEAD(deleted_refs);
6027        struct btrfs_path *path;
6028        struct btrfs_key key;
6029        struct parent_paths_ctx ctx;
6030        int ret;
6031
6032        path = alloc_path_for_send();
6033        if (!path)
6034                return -ENOMEM;
6035
6036        key.objectid = sctx->cur_ino;
6037        key.type = BTRFS_INODE_REF_KEY;
6038        key.offset = 0;
6039        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6040        if (ret < 0)
6041                goto out;
6042
6043        ctx.refs = &deleted_refs;
6044        ctx.sctx = sctx;
6045
6046        while (true) {
6047                struct extent_buffer *eb = path->nodes[0];
6048                int slot = path->slots[0];
6049
6050                if (slot >= btrfs_header_nritems(eb)) {
6051                        ret = btrfs_next_leaf(sctx->parent_root, path);
6052                        if (ret < 0)
6053                                goto out;
6054                        else if (ret > 0)
6055                                break;
6056                        continue;
6057                }
6058
6059                btrfs_item_key_to_cpu(eb, &key, slot);
6060                if (key.objectid != sctx->cur_ino)
6061                        break;
6062                if (key.type != BTRFS_INODE_REF_KEY &&
6063                    key.type != BTRFS_INODE_EXTREF_KEY)
6064                        break;
6065
6066                ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6067                                        record_parent_ref, &ctx);
6068                if (ret < 0)
6069                        goto out;
6070
6071                path->slots[0]++;
6072        }
6073
6074        while (!list_empty(&deleted_refs)) {
6075                struct recorded_ref *ref;
6076
6077                ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6078                ret = send_unlink(sctx, ref->full_path);
6079                if (ret < 0)
6080                        goto out;
6081                fs_path_free(ref->full_path);
6082                list_del(&ref->list);
6083                kfree(ref);
6084        }
6085        ret = 0;
6086out:
6087        btrfs_free_path(path);
6088        if (ret)
6089                __free_recorded_refs(&deleted_refs);
6090        return ret;
6091}
6092
6093static int changed_inode(struct send_ctx *sctx,
6094                         enum btrfs_compare_tree_result result)
6095{
6096        int ret = 0;
6097        struct btrfs_key *key = sctx->cmp_key;
6098        struct btrfs_inode_item *left_ii = NULL;
6099        struct btrfs_inode_item *right_ii = NULL;
6100        u64 left_gen = 0;
6101        u64 right_gen = 0;
6102
6103        sctx->cur_ino = key->objectid;
6104        sctx->cur_inode_new_gen = 0;
6105        sctx->cur_inode_last_extent = (u64)-1;
6106        sctx->cur_inode_next_write_offset = 0;
6107        sctx->ignore_cur_inode = false;
6108
6109        /*
6110         * Set send_progress to current inode. This will tell all get_cur_xxx
6111         * functions that the current inode's refs are not updated yet. Later,
6112         * when process_recorded_refs is finished, it is set to cur_ino + 1.
6113         */
6114        sctx->send_progress = sctx->cur_ino;
6115
6116        if (result == BTRFS_COMPARE_TREE_NEW ||
6117            result == BTRFS_COMPARE_TREE_CHANGED) {
6118                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6119                                sctx->left_path->slots[0],
6120                                struct btrfs_inode_item);
6121                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6122                                left_ii);
6123        } else {
6124                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6125                                sctx->right_path->slots[0],
6126                                struct btrfs_inode_item);
6127                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6128                                right_ii);
6129        }
6130        if (result == BTRFS_COMPARE_TREE_CHANGED) {
6131                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6132                                sctx->right_path->slots[0],
6133                                struct btrfs_inode_item);
6134
6135                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6136                                right_ii);
6137
6138                /*
6139                 * The cur_ino = root dir case is special here. We can't treat
6140                 * the inode as deleted+reused because it would generate a
6141                 * stream that tries to delete/mkdir the root dir.
6142                 */
6143                if (left_gen != right_gen &&
6144                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6145                        sctx->cur_inode_new_gen = 1;
6146        }
6147
6148        /*
6149         * Normally we do not find inodes with a link count of zero (orphans)
6150         * because the most common case is to create a snapshot and use it
6151         * for a send operation. However other less common use cases involve
6152         * using a subvolume and send it after turning it to RO mode just
6153         * after deleting all hard links of a file while holding an open
6154         * file descriptor against it or turning a RO snapshot into RW mode,
6155         * keep an open file descriptor against a file, delete it and then
6156         * turn the snapshot back to RO mode before using it for a send
6157         * operation. So if we find such cases, ignore the inode and all its
6158         * items completely if it's a new inode, or if it's a changed inode
6159         * make sure all its previous paths (from the parent snapshot) are all
6160         * unlinked and all other the inode items are ignored.
6161         */
6162        if (result == BTRFS_COMPARE_TREE_NEW ||
6163            result == BTRFS_COMPARE_TREE_CHANGED) {
6164                u32 nlinks;
6165
6166                nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6167                if (nlinks == 0) {
6168                        sctx->ignore_cur_inode = true;
6169                        if (result == BTRFS_COMPARE_TREE_CHANGED)
6170                                ret = btrfs_unlink_all_paths(sctx);
6171                        goto out;
6172                }
6173        }
6174
6175        if (result == BTRFS_COMPARE_TREE_NEW) {
6176                sctx->cur_inode_gen = left_gen;
6177                sctx->cur_inode_new = 1;
6178                sctx->cur_inode_deleted = 0;
6179                sctx->cur_inode_size = btrfs_inode_size(
6180                                sctx->left_path->nodes[0], left_ii);
6181                sctx->cur_inode_mode = btrfs_inode_mode(
6182                                sctx->left_path->nodes[0], left_ii);
6183                sctx->cur_inode_rdev = btrfs_inode_rdev(
6184                                sctx->left_path->nodes[0], left_ii);
6185                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6186                        ret = send_create_inode_if_needed(sctx);
6187        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6188                sctx->cur_inode_gen = right_gen;
6189                sctx->cur_inode_new = 0;
6190                sctx->cur_inode_deleted = 1;
6191                sctx->cur_inode_size = btrfs_inode_size(
6192                                sctx->right_path->nodes[0], right_ii);
6193                sctx->cur_inode_mode = btrfs_inode_mode(
6194                                sctx->right_path->nodes[0], right_ii);
6195        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6196                /*
6197                 * We need to do some special handling in case the inode was
6198                 * reported as changed with a changed generation number. This
6199                 * means that the original inode was deleted and new inode
6200                 * reused the same inum. So we have to treat the old inode as
6201                 * deleted and the new one as new.
6202                 */
6203                if (sctx->cur_inode_new_gen) {
6204                        /*
6205                         * First, process the inode as if it was deleted.
6206                         */
6207                        sctx->cur_inode_gen = right_gen;
6208                        sctx->cur_inode_new = 0;
6209                        sctx->cur_inode_deleted = 1;
6210                        sctx->cur_inode_size = btrfs_inode_size(
6211                                        sctx->right_path->nodes[0], right_ii);
6212                        sctx->cur_inode_mode = btrfs_inode_mode(
6213                                        sctx->right_path->nodes[0], right_ii);
6214                        ret = process_all_refs(sctx,
6215                                        BTRFS_COMPARE_TREE_DELETED);
6216                        if (ret < 0)
6217                                goto out;
6218
6219                        /*
6220                         * Now process the inode as if it was new.
6221                         */
6222                        sctx->cur_inode_gen = left_gen;
6223                        sctx->cur_inode_new = 1;
6224                        sctx->cur_inode_deleted = 0;
6225                        sctx->cur_inode_size = btrfs_inode_size(
6226                                        sctx->left_path->nodes[0], left_ii);
6227                        sctx->cur_inode_mode = btrfs_inode_mode(
6228                                        sctx->left_path->nodes[0], left_ii);
6229                        sctx->cur_inode_rdev = btrfs_inode_rdev(
6230                                        sctx->left_path->nodes[0], left_ii);
6231                        ret = send_create_inode_if_needed(sctx);
6232                        if (ret < 0)
6233                                goto out;
6234
6235                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6236                        if (ret < 0)
6237                                goto out;
6238                        /*
6239                         * Advance send_progress now as we did not get into
6240                         * process_recorded_refs_if_needed in the new_gen case.
6241                         */
6242                        sctx->send_progress = sctx->cur_ino + 1;
6243
6244                        /*
6245                         * Now process all extents and xattrs of the inode as if
6246                         * they were all new.
6247                         */
6248                        ret = process_all_extents(sctx);
6249                        if (ret < 0)
6250                                goto out;
6251                        ret = process_all_new_xattrs(sctx);
6252                        if (ret < 0)
6253                                goto out;
6254                } else {
6255                        sctx->cur_inode_gen = left_gen;
6256                        sctx->cur_inode_new = 0;
6257                        sctx->cur_inode_new_gen = 0;
6258                        sctx->cur_inode_deleted = 0;
6259                        sctx->cur_inode_size = btrfs_inode_size(
6260                                        sctx->left_path->nodes[0], left_ii);
6261                        sctx->cur_inode_mode = btrfs_inode_mode(
6262                                        sctx->left_path->nodes[0], left_ii);
6263                }
6264        }
6265
6266out:
6267        return ret;
6268}
6269
6270/*
6271 * We have to process new refs before deleted refs, but compare_trees gives us
6272 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6273 * first and later process them in process_recorded_refs.
6274 * For the cur_inode_new_gen case, we skip recording completely because
6275 * changed_inode did already initiate processing of refs. The reason for this is
6276 * that in this case, compare_tree actually compares the refs of 2 different
6277 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6278 * refs of the right tree as deleted and all refs of the left tree as new.
6279 */
6280static int changed_ref(struct send_ctx *sctx,
6281                       enum btrfs_compare_tree_result result)
6282{
6283        int ret = 0;
6284
6285        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6286                inconsistent_snapshot_error(sctx, result, "reference");
6287                return -EIO;
6288        }
6289
6290        if (!sctx->cur_inode_new_gen &&
6291            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6292                if (result == BTRFS_COMPARE_TREE_NEW)
6293                        ret = record_new_ref(sctx);
6294                else if (result == BTRFS_COMPARE_TREE_DELETED)
6295                        ret = record_deleted_ref(sctx);
6296                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6297                        ret = record_changed_ref(sctx);
6298        }
6299
6300        return ret;
6301}
6302
6303/*
6304 * Process new/deleted/changed xattrs. We skip processing in the
6305 * cur_inode_new_gen case because changed_inode did already initiate processing
6306 * of xattrs. The reason is the same as in changed_ref
6307 */
6308static int changed_xattr(struct send_ctx *sctx,
6309                         enum btrfs_compare_tree_result result)
6310{
6311        int ret = 0;
6312
6313        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6314                inconsistent_snapshot_error(sctx, result, "xattr");
6315                return -EIO;
6316        }
6317
6318        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6319                if (result == BTRFS_COMPARE_TREE_NEW)
6320                        ret = process_new_xattr(sctx);
6321                else if (result == BTRFS_COMPARE_TREE_DELETED)
6322                        ret = process_deleted_xattr(sctx);
6323                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6324                        ret = process_changed_xattr(sctx);
6325        }
6326
6327        return ret;
6328}
6329
6330/*
6331 * Process new/deleted/changed extents. We skip processing in the
6332 * cur_inode_new_gen case because changed_inode did already initiate processing
6333 * of extents. The reason is the same as in changed_ref
6334 */
6335static int changed_extent(struct send_ctx *sctx,
6336                          enum btrfs_compare_tree_result result)
6337{
6338        int ret = 0;
6339
6340        /*
6341         * We have found an extent item that changed without the inode item
6342         * having changed. This can happen either after relocation (where the
6343         * disk_bytenr of an extent item is replaced at
6344         * relocation.c:replace_file_extents()) or after deduplication into a
6345         * file in both the parent and send snapshots (where an extent item can
6346         * get modified or replaced with a new one). Note that deduplication
6347         * updates the inode item, but it only changes the iversion (sequence
6348         * field in the inode item) of the inode, so if a file is deduplicated
6349         * the same amount of times in both the parent and send snapshots, its
6350         * iversion becames the same in both snapshots, whence the inode item is
6351         * the same on both snapshots.
6352         */
6353        if (sctx->cur_ino != sctx->cmp_key->objectid)
6354                return 0;
6355
6356        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6357                if (result != BTRFS_COMPARE_TREE_DELETED)
6358                        ret = process_extent(sctx, sctx->left_path,
6359                                        sctx->cmp_key);
6360        }
6361
6362        return ret;
6363}
6364
6365static int dir_changed(struct send_ctx *sctx, u64 dir)
6366{
6367        u64 orig_gen, new_gen;
6368        int ret;
6369
6370        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6371                             NULL, NULL);
6372        if (ret)
6373                return ret;
6374
6375        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6376                             NULL, NULL, NULL);
6377        if (ret)
6378                return ret;
6379
6380        return (orig_gen != new_gen) ? 1 : 0;
6381}
6382
6383static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6384                        struct btrfs_key *key)
6385{
6386        struct btrfs_inode_extref *extref;
6387        struct extent_buffer *leaf;
6388        u64 dirid = 0, last_dirid = 0;
6389        unsigned long ptr;
6390        u32 item_size;
6391        u32 cur_offset = 0;
6392        int ref_name_len;
6393        int ret = 0;
6394
6395        /* Easy case, just check this one dirid */
6396        if (key->type == BTRFS_INODE_REF_KEY) {
6397                dirid = key->offset;
6398
6399                ret = dir_changed(sctx, dirid);
6400                goto out;
6401        }
6402
6403        leaf = path->nodes[0];
6404        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6405        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6406        while (cur_offset < item_size) {
6407                extref = (struct btrfs_inode_extref *)(ptr +
6408                                                       cur_offset);
6409                dirid = btrfs_inode_extref_parent(leaf, extref);
6410                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6411                cur_offset += ref_name_len + sizeof(*extref);
6412                if (dirid == last_dirid)
6413                        continue;
6414                ret = dir_changed(sctx, dirid);
6415                if (ret)
6416                        break;
6417                last_dirid = dirid;
6418        }
6419out:
6420        return ret;
6421}
6422
6423/*
6424 * Updates compare related fields in sctx and simply forwards to the actual
6425 * changed_xxx functions.
6426 */
6427static int changed_cb(struct btrfs_path *left_path,
6428                      struct btrfs_path *right_path,
6429                      struct btrfs_key *key,
6430                      enum btrfs_compare_tree_result result,
6431                      void *ctx)
6432{
6433        int ret = 0;
6434        struct send_ctx *sctx = ctx;
6435
6436        if (result == BTRFS_COMPARE_TREE_SAME) {
6437                if (key->type == BTRFS_INODE_REF_KEY ||
6438                    key->type == BTRFS_INODE_EXTREF_KEY) {
6439                        ret = compare_refs(sctx, left_path, key);
6440                        if (!ret)
6441                                return 0;
6442                        if (ret < 0)
6443                                return ret;
6444                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6445                        return maybe_send_hole(sctx, left_path, key);
6446                } else {
6447                        return 0;
6448                }
6449                result = BTRFS_COMPARE_TREE_CHANGED;
6450                ret = 0;
6451        }
6452
6453        sctx->left_path = left_path;
6454        sctx->right_path = right_path;
6455        sctx->cmp_key = key;
6456
6457        ret = finish_inode_if_needed(sctx, 0);
6458        if (ret < 0)
6459                goto out;
6460
6461        /* Ignore non-FS objects */
6462        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6463            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6464                goto out;
6465
6466        if (key->type == BTRFS_INODE_ITEM_KEY) {
6467                ret = changed_inode(sctx, result);
6468        } else if (!sctx->ignore_cur_inode) {
6469                if (key->type == BTRFS_INODE_REF_KEY ||
6470                    key->type == BTRFS_INODE_EXTREF_KEY)
6471                        ret = changed_ref(sctx, result);
6472                else if (key->type == BTRFS_XATTR_ITEM_KEY)
6473                        ret = changed_xattr(sctx, result);
6474                else if (key->type == BTRFS_EXTENT_DATA_KEY)
6475                        ret = changed_extent(sctx, result);
6476        }
6477
6478out:
6479        return ret;
6480}
6481
6482static int full_send_tree(struct send_ctx *sctx)
6483{
6484        int ret;
6485        struct btrfs_root *send_root = sctx->send_root;
6486        struct btrfs_key key;
6487        struct btrfs_path *path;
6488        struct extent_buffer *eb;
6489        int slot;
6490
6491        path = alloc_path_for_send();
6492        if (!path)
6493                return -ENOMEM;
6494
6495        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6496        key.type = BTRFS_INODE_ITEM_KEY;
6497        key.offset = 0;
6498
6499        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6500        if (ret < 0)
6501                goto out;
6502        if (ret)
6503                goto out_finish;
6504
6505        while (1) {
6506                eb = path->nodes[0];
6507                slot = path->slots[0];
6508                btrfs_item_key_to_cpu(eb, &key, slot);
6509
6510                ret = changed_cb(path, NULL, &key,
6511                                 BTRFS_COMPARE_TREE_NEW, sctx);
6512                if (ret < 0)
6513                        goto out;
6514
6515                ret = btrfs_next_item(send_root, path);
6516                if (ret < 0)
6517                        goto out;
6518                if (ret) {
6519                        ret  = 0;
6520                        break;
6521                }
6522        }
6523
6524out_finish:
6525        ret = finish_inode_if_needed(sctx, 1);
6526
6527out:
6528        btrfs_free_path(path);
6529        return ret;
6530}
6531
6532static int tree_move_down(struct btrfs_path *path, int *level)
6533{
6534        struct extent_buffer *eb;
6535
6536        BUG_ON(*level == 0);
6537        eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6538        if (IS_ERR(eb))
6539                return PTR_ERR(eb);
6540
6541        path->nodes[*level - 1] = eb;
6542        path->slots[*level - 1] = 0;
6543        (*level)--;
6544        return 0;
6545}
6546
6547static int tree_move_next_or_upnext(struct btrfs_path *path,
6548                                    int *level, int root_level)
6549{
6550        int ret = 0;
6551        int nritems;
6552        nritems = btrfs_header_nritems(path->nodes[*level]);
6553
6554        path->slots[*level]++;
6555
6556        while (path->slots[*level] >= nritems) {
6557                if (*level == root_level)
6558                        return -1;
6559
6560                /* move upnext */
6561                path->slots[*level] = 0;
6562                free_extent_buffer(path->nodes[*level]);
6563                path->nodes[*level] = NULL;
6564                (*level)++;
6565                path->slots[*level]++;
6566
6567                nritems = btrfs_header_nritems(path->nodes[*level]);
6568                ret = 1;
6569        }
6570        return ret;
6571}
6572
6573/*
6574 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6575 * or down.
6576 */
6577static int tree_advance(struct btrfs_path *path,
6578                        int *level, int root_level,
6579                        int allow_down,
6580                        struct btrfs_key *key)
6581{
6582        int ret;
6583
6584        if (*level == 0 || !allow_down) {
6585                ret = tree_move_next_or_upnext(path, level, root_level);
6586        } else {
6587                ret = tree_move_down(path, level);
6588        }
6589        if (ret >= 0) {
6590                if (*level == 0)
6591                        btrfs_item_key_to_cpu(path->nodes[*level], key,
6592                                        path->slots[*level]);
6593                else
6594                        btrfs_node_key_to_cpu(path->nodes[*level], key,
6595                                        path->slots[*level]);
6596        }
6597        return ret;
6598}
6599
6600static int tree_compare_item(struct btrfs_path *left_path,
6601                             struct btrfs_path *right_path,
6602                             char *tmp_buf)
6603{
6604        int cmp;
6605        int len1, len2;
6606        unsigned long off1, off2;
6607
6608        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6609        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6610        if (len1 != len2)
6611                return 1;
6612
6613        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6614        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6615                                right_path->slots[0]);
6616
6617        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6618
6619        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6620        if (cmp)
6621                return 1;
6622        return 0;
6623}
6624
6625/*
6626 * This function compares two trees and calls the provided callback for
6627 * every changed/new/deleted item it finds.
6628 * If shared tree blocks are encountered, whole subtrees are skipped, making
6629 * the compare pretty fast on snapshotted subvolumes.
6630 *
6631 * This currently works on commit roots only. As commit roots are read only,
6632 * we don't do any locking. The commit roots are protected with transactions.
6633 * Transactions are ended and rejoined when a commit is tried in between.
6634 *
6635 * This function checks for modifications done to the trees while comparing.
6636 * If it detects a change, it aborts immediately.
6637 */
6638static int btrfs_compare_trees(struct btrfs_root *left_root,
6639                        struct btrfs_root *right_root,
6640                        btrfs_changed_cb_t changed_cb, void *ctx)
6641{
6642        struct btrfs_fs_info *fs_info = left_root->fs_info;
6643        int ret;
6644        int cmp;
6645        struct btrfs_path *left_path = NULL;
6646        struct btrfs_path *right_path = NULL;
6647        struct btrfs_key left_key;
6648        struct btrfs_key right_key;
6649        char *tmp_buf = NULL;
6650        int left_root_level;
6651        int right_root_level;
6652        int left_level;
6653        int right_level;
6654        int left_end_reached;
6655        int right_end_reached;
6656        int advance_left;
6657        int advance_right;
6658        u64 left_blockptr;
6659        u64 right_blockptr;
6660        u64 left_gen;
6661        u64 right_gen;
6662
6663        left_path = btrfs_alloc_path();
6664        if (!left_path) {
6665                ret = -ENOMEM;
6666                goto out;
6667        }
6668        right_path = btrfs_alloc_path();
6669        if (!right_path) {
6670                ret = -ENOMEM;
6671                goto out;
6672        }
6673
6674        tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6675        if (!tmp_buf) {
6676                ret = -ENOMEM;
6677                goto out;
6678        }
6679
6680        left_path->search_commit_root = 1;
6681        left_path->skip_locking = 1;
6682        right_path->search_commit_root = 1;
6683        right_path->skip_locking = 1;
6684
6685        /*
6686         * Strategy: Go to the first items of both trees. Then do
6687         *
6688         * If both trees are at level 0
6689         *   Compare keys of current items
6690         *     If left < right treat left item as new, advance left tree
6691         *       and repeat
6692         *     If left > right treat right item as deleted, advance right tree
6693         *       and repeat
6694         *     If left == right do deep compare of items, treat as changed if
6695         *       needed, advance both trees and repeat
6696         * If both trees are at the same level but not at level 0
6697         *   Compare keys of current nodes/leafs
6698         *     If left < right advance left tree and repeat
6699         *     If left > right advance right tree and repeat
6700         *     If left == right compare blockptrs of the next nodes/leafs
6701         *       If they match advance both trees but stay at the same level
6702         *         and repeat
6703         *       If they don't match advance both trees while allowing to go
6704         *         deeper and repeat
6705         * If tree levels are different
6706         *   Advance the tree that needs it and repeat
6707         *
6708         * Advancing a tree means:
6709         *   If we are at level 0, try to go to the next slot. If that's not
6710         *   possible, go one level up and repeat. Stop when we found a level
6711         *   where we could go to the next slot. We may at this point be on a
6712         *   node or a leaf.
6713         *
6714         *   If we are not at level 0 and not on shared tree blocks, go one
6715         *   level deeper.
6716         *
6717         *   If we are not at level 0 and on shared tree blocks, go one slot to
6718         *   the right if possible or go up and right.
6719         */
6720
6721        down_read(&fs_info->commit_root_sem);
6722        left_level = btrfs_header_level(left_root->commit_root);
6723        left_root_level = left_level;
6724        left_path->nodes[left_level] =
6725                        btrfs_clone_extent_buffer(left_root->commit_root);
6726        if (!left_path->nodes[left_level]) {
6727                up_read(&fs_info->commit_root_sem);
6728                ret = -ENOMEM;
6729                goto out;
6730        }
6731
6732        right_level = btrfs_header_level(right_root->commit_root);
6733        right_root_level = right_level;
6734        right_path->nodes[right_level] =
6735                        btrfs_clone_extent_buffer(right_root->commit_root);
6736        if (!right_path->nodes[right_level]) {
6737                up_read(&fs_info->commit_root_sem);
6738                ret = -ENOMEM;
6739                goto out;
6740        }
6741        up_read(&fs_info->commit_root_sem);
6742
6743        if (left_level == 0)
6744                btrfs_item_key_to_cpu(left_path->nodes[left_level],
6745                                &left_key, left_path->slots[left_level]);
6746        else
6747                btrfs_node_key_to_cpu(left_path->nodes[left_level],
6748                                &left_key, left_path->slots[left_level]);
6749        if (right_level == 0)
6750                btrfs_item_key_to_cpu(right_path->nodes[right_level],
6751                                &right_key, right_path->slots[right_level]);
6752        else
6753                btrfs_node_key_to_cpu(right_path->nodes[right_level],
6754                                &right_key, right_path->slots[right_level]);
6755
6756        left_end_reached = right_end_reached = 0;
6757        advance_left = advance_right = 0;
6758
6759        while (1) {
6760                cond_resched();
6761                if (advance_left && !left_end_reached) {
6762                        ret = tree_advance(left_path, &left_level,
6763                                        left_root_level,
6764                                        advance_left != ADVANCE_ONLY_NEXT,
6765                                        &left_key);
6766                        if (ret == -1)
6767                                left_end_reached = ADVANCE;
6768                        else if (ret < 0)
6769                                goto out;
6770                        advance_left = 0;
6771                }
6772                if (advance_right && !right_end_reached) {
6773                        ret = tree_advance(right_path, &right_level,
6774                                        right_root_level,
6775                                        advance_right != ADVANCE_ONLY_NEXT,
6776                                        &right_key);
6777                        if (ret == -1)
6778                                right_end_reached = ADVANCE;
6779                        else if (ret < 0)
6780                                goto out;
6781                        advance_right = 0;
6782                }
6783
6784                if (left_end_reached && right_end_reached) {
6785                        ret = 0;
6786                        goto out;
6787                } else if (left_end_reached) {
6788                        if (right_level == 0) {
6789                                ret = changed_cb(left_path, right_path,
6790                                                &right_key,
6791                                                BTRFS_COMPARE_TREE_DELETED,
6792                                                ctx);
6793                                if (ret < 0)
6794                                        goto out;
6795                        }
6796                        advance_right = ADVANCE;
6797                        continue;
6798                } else if (right_end_reached) {
6799                        if (left_level == 0) {
6800                                ret = changed_cb(left_path, right_path,
6801                                                &left_key,
6802                                                BTRFS_COMPARE_TREE_NEW,
6803                                                ctx);
6804                                if (ret < 0)
6805                                        goto out;
6806                        }
6807                        advance_left = ADVANCE;
6808                        continue;
6809                }
6810
6811                if (left_level == 0 && right_level == 0) {
6812                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6813                        if (cmp < 0) {
6814                                ret = changed_cb(left_path, right_path,
6815                                                &left_key,
6816                                                BTRFS_COMPARE_TREE_NEW,
6817                                                ctx);
6818                                if (ret < 0)
6819                                        goto out;
6820                                advance_left = ADVANCE;
6821                        } else if (cmp > 0) {
6822                                ret = changed_cb(left_path, right_path,
6823                                                &right_key,
6824                                                BTRFS_COMPARE_TREE_DELETED,
6825                                                ctx);
6826                                if (ret < 0)
6827                                        goto out;
6828                                advance_right = ADVANCE;
6829                        } else {
6830                                enum btrfs_compare_tree_result result;
6831
6832                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6833                                ret = tree_compare_item(left_path, right_path,
6834                                                        tmp_buf);
6835                                if (ret)
6836                                        result = BTRFS_COMPARE_TREE_CHANGED;
6837                                else
6838                                        result = BTRFS_COMPARE_TREE_SAME;
6839                                ret = changed_cb(left_path, right_path,
6840                                                 &left_key, result, ctx);
6841                                if (ret < 0)
6842                                        goto out;
6843                                advance_left = ADVANCE;
6844                                advance_right = ADVANCE;
6845                        }
6846                } else if (left_level == right_level) {
6847                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6848                        if (cmp < 0) {
6849                                advance_left = ADVANCE;
6850                        } else if (cmp > 0) {
6851                                advance_right = ADVANCE;
6852                        } else {
6853                                left_blockptr = btrfs_node_blockptr(
6854                                                left_path->nodes[left_level],
6855                                                left_path->slots[left_level]);
6856                                right_blockptr = btrfs_node_blockptr(
6857                                                right_path->nodes[right_level],
6858                                                right_path->slots[right_level]);
6859                                left_gen = btrfs_node_ptr_generation(
6860                                                left_path->nodes[left_level],
6861                                                left_path->slots[left_level]);
6862                                right_gen = btrfs_node_ptr_generation(
6863                                                right_path->nodes[right_level],
6864                                                right_path->slots[right_level]);
6865                                if (left_blockptr == right_blockptr &&
6866                                    left_gen == right_gen) {
6867                                        /*
6868                                         * As we're on a shared block, don't
6869                                         * allow to go deeper.
6870                                         */
6871                                        advance_left = ADVANCE_ONLY_NEXT;
6872                                        advance_right = ADVANCE_ONLY_NEXT;
6873                                } else {
6874                                        advance_left = ADVANCE;
6875                                        advance_right = ADVANCE;
6876                                }
6877                        }
6878                } else if (left_level < right_level) {
6879                        advance_right = ADVANCE;
6880                } else {
6881                        advance_left = ADVANCE;
6882                }
6883        }
6884
6885out:
6886        btrfs_free_path(left_path);
6887        btrfs_free_path(right_path);
6888        kvfree(tmp_buf);
6889        return ret;
6890}
6891
6892static int send_subvol(struct send_ctx *sctx)
6893{
6894        int ret;
6895
6896        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6897                ret = send_header(sctx);
6898                if (ret < 0)
6899                        goto out;
6900        }
6901
6902        ret = send_subvol_begin(sctx);
6903        if (ret < 0)
6904                goto out;
6905
6906        if (sctx->parent_root) {
6907                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6908                                changed_cb, sctx);
6909                if (ret < 0)
6910                        goto out;
6911                ret = finish_inode_if_needed(sctx, 1);
6912                if (ret < 0)
6913                        goto out;
6914        } else {
6915                ret = full_send_tree(sctx);
6916                if (ret < 0)
6917                        goto out;
6918        }
6919
6920out:
6921        free_recorded_refs(sctx);
6922        return ret;
6923}
6924
6925/*
6926 * If orphan cleanup did remove any orphans from a root, it means the tree
6927 * was modified and therefore the commit root is not the same as the current
6928 * root anymore. This is a problem, because send uses the commit root and
6929 * therefore can see inode items that don't exist in the current root anymore,
6930 * and for example make calls to btrfs_iget, which will do tree lookups based
6931 * on the current root and not on the commit root. Those lookups will fail,
6932 * returning a -ESTALE error, and making send fail with that error. So make
6933 * sure a send does not see any orphans we have just removed, and that it will
6934 * see the same inodes regardless of whether a transaction commit happened
6935 * before it started (meaning that the commit root will be the same as the
6936 * current root) or not.
6937 */
6938static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6939{
6940        int i;
6941        struct btrfs_trans_handle *trans = NULL;
6942
6943again:
6944        if (sctx->parent_root &&
6945            sctx->parent_root->node != sctx->parent_root->commit_root)
6946                goto commit_trans;
6947
6948        for (i = 0; i < sctx->clone_roots_cnt; i++)
6949                if (sctx->clone_roots[i].root->node !=
6950                    sctx->clone_roots[i].root->commit_root)
6951                        goto commit_trans;
6952
6953        if (trans)
6954                return btrfs_end_transaction(trans);
6955
6956        return 0;
6957
6958commit_trans:
6959        /* Use any root, all fs roots will get their commit roots updated. */
6960        if (!trans) {
6961                trans = btrfs_join_transaction(sctx->send_root);
6962                if (IS_ERR(trans))
6963                        return PTR_ERR(trans);
6964                goto again;
6965        }
6966
6967        return btrfs_commit_transaction(trans);
6968}
6969
6970/*
6971 * Make sure any existing dellaloc is flushed for any root used by a send
6972 * operation so that we do not miss any data and we do not race with writeback
6973 * finishing and changing a tree while send is using the tree. This could
6974 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
6975 * a send operation then uses the subvolume.
6976 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
6977 */
6978static int flush_delalloc_roots(struct send_ctx *sctx)
6979{
6980        struct btrfs_root *root = sctx->parent_root;
6981        int ret;
6982        int i;
6983
6984        if (root) {
6985                ret = btrfs_start_delalloc_snapshot(root);
6986                if (ret)
6987                        return ret;
6988                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6989        }
6990
6991        for (i = 0; i < sctx->clone_roots_cnt; i++) {
6992                root = sctx->clone_roots[i].root;
6993                ret = btrfs_start_delalloc_snapshot(root);
6994                if (ret)
6995                        return ret;
6996                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6997        }
6998
6999        return 0;
7000}
7001
7002static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7003{
7004        spin_lock(&root->root_item_lock);
7005        root->send_in_progress--;
7006        /*
7007         * Not much left to do, we don't know why it's unbalanced and
7008         * can't blindly reset it to 0.
7009         */
7010        if (root->send_in_progress < 0)
7011                btrfs_err(root->fs_info,
7012                          "send_in_progress unbalanced %d root %llu",
7013                          root->send_in_progress, root->root_key.objectid);
7014        spin_unlock(&root->root_item_lock);
7015}
7016
7017static void dedupe_in_progress_warn(const struct btrfs_root *root)
7018{
7019        btrfs_warn_rl(root->fs_info,
7020"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7021                      root->root_key.objectid, root->dedupe_in_progress);
7022}
7023
7024long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7025{
7026        int ret = 0;
7027        struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7028        struct btrfs_fs_info *fs_info = send_root->fs_info;
7029        struct btrfs_root *clone_root;
7030        struct btrfs_key key;
7031        struct send_ctx *sctx = NULL;
7032        u32 i;
7033        u64 *clone_sources_tmp = NULL;
7034        int clone_sources_to_rollback = 0;
7035        unsigned alloc_size;
7036        int sort_clone_roots = 0;
7037        int index;
7038
7039        if (!capable(CAP_SYS_ADMIN))
7040                return -EPERM;
7041
7042        /*
7043         * The subvolume must remain read-only during send, protect against
7044         * making it RW. This also protects against deletion.
7045         */
7046        spin_lock(&send_root->root_item_lock);
7047        if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7048                dedupe_in_progress_warn(send_root);
7049                spin_unlock(&send_root->root_item_lock);
7050                return -EAGAIN;
7051        }
7052        send_root->send_in_progress++;
7053        spin_unlock(&send_root->root_item_lock);
7054
7055        /*
7056         * This is done when we lookup the root, it should already be complete
7057         * by the time we get here.
7058         */
7059        WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
7060
7061        /*
7062         * Userspace tools do the checks and warn the user if it's
7063         * not RO.
7064         */
7065        if (!btrfs_root_readonly(send_root)) {
7066                ret = -EPERM;
7067                goto out;
7068        }
7069
7070        /*
7071         * Check that we don't overflow at later allocations, we request
7072         * clone_sources_count + 1 items, and compare to unsigned long inside
7073         * access_ok.
7074         */
7075        if (arg->clone_sources_count >
7076            ULONG_MAX / sizeof(struct clone_root) - 1) {
7077                ret = -EINVAL;
7078                goto out;
7079        }
7080
7081        if (!access_ok(arg->clone_sources,
7082                        sizeof(*arg->clone_sources) *
7083                        arg->clone_sources_count)) {
7084                ret = -EFAULT;
7085                goto out;
7086        }
7087
7088        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7089                ret = -EINVAL;
7090                goto out;
7091        }
7092
7093        sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7094        if (!sctx) {
7095                ret = -ENOMEM;
7096                goto out;
7097        }
7098
7099        INIT_LIST_HEAD(&sctx->new_refs);
7100        INIT_LIST_HEAD(&sctx->deleted_refs);
7101        INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7102        INIT_LIST_HEAD(&sctx->name_cache_list);
7103
7104        sctx->flags = arg->flags;
7105
7106        sctx->send_filp = fget(arg->send_fd);
7107        if (!sctx->send_filp) {
7108                ret = -EBADF;
7109                goto out;
7110        }
7111
7112        sctx->send_root = send_root;
7113        /*
7114         * Unlikely but possible, if the subvolume is marked for deletion but
7115         * is slow to remove the directory entry, send can still be started
7116         */
7117        if (btrfs_root_dead(sctx->send_root)) {
7118                ret = -EPERM;
7119                goto out;
7120        }
7121
7122        sctx->clone_roots_cnt = arg->clone_sources_count;
7123
7124        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7125        sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7126        if (!sctx->send_buf) {
7127                ret = -ENOMEM;
7128                goto out;
7129        }
7130
7131        sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7132        if (!sctx->read_buf) {
7133                ret = -ENOMEM;
7134                goto out;
7135        }
7136
7137        sctx->pending_dir_moves = RB_ROOT;
7138        sctx->waiting_dir_moves = RB_ROOT;
7139        sctx->orphan_dirs = RB_ROOT;
7140
7141        alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7142
7143        sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7144        if (!sctx->clone_roots) {
7145                ret = -ENOMEM;
7146                goto out;
7147        }
7148
7149        alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7150
7151        if (arg->clone_sources_count) {
7152                clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7153                if (!clone_sources_tmp) {
7154                        ret = -ENOMEM;
7155                        goto out;
7156                }
7157
7158                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7159                                alloc_size);
7160                if (ret) {
7161                        ret = -EFAULT;
7162                        goto out;
7163                }
7164
7165                for (i = 0; i < arg->clone_sources_count; i++) {
7166                        key.objectid = clone_sources_tmp[i];
7167                        key.type = BTRFS_ROOT_ITEM_KEY;
7168                        key.offset = (u64)-1;
7169
7170                        index = srcu_read_lock(&fs_info->subvol_srcu);
7171
7172                        clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7173                        if (IS_ERR(clone_root)) {
7174                                srcu_read_unlock(&fs_info->subvol_srcu, index);
7175                                ret = PTR_ERR(clone_root);
7176                                goto out;
7177                        }
7178                        spin_lock(&clone_root->root_item_lock);
7179                        if (!btrfs_root_readonly(clone_root) ||
7180                            btrfs_root_dead(clone_root)) {
7181                                spin_unlock(&clone_root->root_item_lock);
7182                                srcu_read_unlock(&fs_info->subvol_srcu, index);
7183                                ret = -EPERM;
7184                                goto out;
7185                        }
7186                        if (clone_root->dedupe_in_progress) {
7187                                dedupe_in_progress_warn(clone_root);
7188                                spin_unlock(&clone_root->root_item_lock);
7189                                srcu_read_unlock(&fs_info->subvol_srcu, index);
7190                                ret = -EAGAIN;
7191                                goto out;
7192                        }
7193                        clone_root->send_in_progress++;
7194                        spin_unlock(&clone_root->root_item_lock);
7195                        srcu_read_unlock(&fs_info->subvol_srcu, index);
7196
7197                        sctx->clone_roots[i].root = clone_root;
7198                        clone_sources_to_rollback = i + 1;
7199                }
7200                kvfree(clone_sources_tmp);
7201                clone_sources_tmp = NULL;
7202        }
7203
7204        if (arg->parent_root) {
7205                key.objectid = arg->parent_root;
7206                key.type = BTRFS_ROOT_ITEM_KEY;
7207                key.offset = (u64)-1;
7208
7209                index = srcu_read_lock(&fs_info->subvol_srcu);
7210
7211                sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7212                if (IS_ERR(sctx->parent_root)) {
7213                        srcu_read_unlock(&fs_info->subvol_srcu, index);
7214                        ret = PTR_ERR(sctx->parent_root);
7215                        goto out;
7216                }
7217
7218                spin_lock(&sctx->parent_root->root_item_lock);
7219                sctx->parent_root->send_in_progress++;
7220                if (!btrfs_root_readonly(sctx->parent_root) ||
7221                                btrfs_root_dead(sctx->parent_root)) {
7222                        spin_unlock(&sctx->parent_root->root_item_lock);
7223                        srcu_read_unlock(&fs_info->subvol_srcu, index);
7224                        ret = -EPERM;
7225                        goto out;
7226                }
7227                if (sctx->parent_root->dedupe_in_progress) {
7228                        dedupe_in_progress_warn(sctx->parent_root);
7229                        spin_unlock(&sctx->parent_root->root_item_lock);
7230                        srcu_read_unlock(&fs_info->subvol_srcu, index);
7231                        ret = -EAGAIN;
7232                        goto out;
7233                }
7234                spin_unlock(&sctx->parent_root->root_item_lock);
7235
7236                srcu_read_unlock(&fs_info->subvol_srcu, index);
7237        }
7238
7239        /*
7240         * Clones from send_root are allowed, but only if the clone source
7241         * is behind the current send position. This is checked while searching
7242         * for possible clone sources.
7243         */
7244        sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7245
7246        /* We do a bsearch later */
7247        sort(sctx->clone_roots, sctx->clone_roots_cnt,
7248                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7249                        NULL);
7250        sort_clone_roots = 1;
7251
7252        ret = flush_delalloc_roots(sctx);
7253        if (ret)
7254                goto out;
7255
7256        ret = ensure_commit_roots_uptodate(sctx);
7257        if (ret)
7258                goto out;
7259
7260        mutex_lock(&fs_info->balance_mutex);
7261        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7262                mutex_unlock(&fs_info->balance_mutex);
7263                btrfs_warn_rl(fs_info,
7264                "cannot run send because a balance operation is in progress");
7265                ret = -EAGAIN;
7266                goto out;
7267        }
7268        fs_info->send_in_progress++;
7269        mutex_unlock(&fs_info->balance_mutex);
7270
7271        current->journal_info = BTRFS_SEND_TRANS_STUB;
7272        ret = send_subvol(sctx);
7273        current->journal_info = NULL;
7274        mutex_lock(&fs_info->balance_mutex);
7275        fs_info->send_in_progress--;
7276        mutex_unlock(&fs_info->balance_mutex);
7277        if (ret < 0)
7278                goto out;
7279
7280        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7281                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7282                if (ret < 0)
7283                        goto out;
7284                ret = send_cmd(sctx);
7285                if (ret < 0)
7286                        goto out;
7287        }
7288
7289out:
7290        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7291        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7292                struct rb_node *n;
7293                struct pending_dir_move *pm;
7294
7295                n = rb_first(&sctx->pending_dir_moves);
7296                pm = rb_entry(n, struct pending_dir_move, node);
7297                while (!list_empty(&pm->list)) {
7298                        struct pending_dir_move *pm2;
7299
7300                        pm2 = list_first_entry(&pm->list,
7301                                               struct pending_dir_move, list);
7302                        free_pending_move(sctx, pm2);
7303                }
7304                free_pending_move(sctx, pm);
7305        }
7306
7307        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7308        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7309                struct rb_node *n;
7310                struct waiting_dir_move *dm;
7311
7312                n = rb_first(&sctx->waiting_dir_moves);
7313                dm = rb_entry(n, struct waiting_dir_move, node);
7314                rb_erase(&dm->node, &sctx->waiting_dir_moves);
7315                kfree(dm);
7316        }
7317
7318        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7319        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7320                struct rb_node *n;
7321                struct orphan_dir_info *odi;
7322
7323                n = rb_first(&sctx->orphan_dirs);
7324                odi = rb_entry(n, struct orphan_dir_info, node);
7325                free_orphan_dir_info(sctx, odi);
7326        }
7327
7328        if (sort_clone_roots) {
7329                for (i = 0; i < sctx->clone_roots_cnt; i++)
7330                        btrfs_root_dec_send_in_progress(
7331                                        sctx->clone_roots[i].root);
7332        } else {
7333                for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7334                        btrfs_root_dec_send_in_progress(
7335                                        sctx->clone_roots[i].root);
7336
7337                btrfs_root_dec_send_in_progress(send_root);
7338        }
7339        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7340                btrfs_root_dec_send_in_progress(sctx->parent_root);
7341
7342        kvfree(clone_sources_tmp);
7343
7344        if (sctx) {
7345                if (sctx->send_filp)
7346                        fput(sctx->send_filp);
7347
7348                kvfree(sctx->clone_roots);
7349                kvfree(sctx->send_buf);
7350                kvfree(sctx->read_buf);
7351
7352                name_cache_free(sctx);
7353
7354                kfree(sctx);
7355        }
7356
7357        return ret;
7358}
7359