linux/fs/dcache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
  38/*
  39 * Usage:
  40 * dcache->d_inode->i_lock protects:
  41 *   - i_dentry, d_u.d_alias, d_inode of aliases
  42 * dcache_hash_bucket lock protects:
  43 *   - the dcache hash table
  44 * s_roots bl list spinlock protects:
  45 *   - the s_roots list (see __d_drop)
  46 * dentry->d_sb->s_dentry_lru_lock protects:
  47 *   - the dcache lru lists and counters
  48 * d_lock protects:
  49 *   - d_flags
  50 *   - d_name
  51 *   - d_lru
  52 *   - d_count
  53 *   - d_unhashed()
  54 *   - d_parent and d_subdirs
  55 *   - childrens' d_child and d_parent
  56 *   - d_u.d_alias, d_inode
  57 *
  58 * Ordering:
  59 * dentry->d_inode->i_lock
  60 *   dentry->d_lock
  61 *     dentry->d_sb->s_dentry_lru_lock
  62 *     dcache_hash_bucket lock
  63 *     s_roots lock
  64 *
  65 * If there is an ancestor relationship:
  66 * dentry->d_parent->...->d_parent->d_lock
  67 *   ...
  68 *     dentry->d_parent->d_lock
  69 *       dentry->d_lock
  70 *
  71 * If no ancestor relationship:
  72 * arbitrary, since it's serialized on rename_lock
  73 */
  74int sysctl_vfs_cache_pressure __read_mostly = 100;
  75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  76
  77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  78
  79EXPORT_SYMBOL(rename_lock);
  80
  81static struct kmem_cache *dentry_cache __read_mostly;
  82
  83const struct qstr empty_name = QSTR_INIT("", 0);
  84EXPORT_SYMBOL(empty_name);
  85const struct qstr slash_name = QSTR_INIT("/", 1);
  86EXPORT_SYMBOL(slash_name);
  87
  88/*
  89 * This is the single most critical data structure when it comes
  90 * to the dcache: the hashtable for lookups. Somebody should try
  91 * to make this good - I've just made it work.
  92 *
  93 * This hash-function tries to avoid losing too many bits of hash
  94 * information, yet avoid using a prime hash-size or similar.
  95 */
  96
  97static unsigned int d_hash_shift __read_mostly;
  98
  99static struct hlist_bl_head *dentry_hashtable __read_mostly;
 100
 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
 102{
 103        return dentry_hashtable + (hash >> d_hash_shift);
 104}
 105
 106#define IN_LOOKUP_SHIFT 10
 107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 108
 109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 110                                        unsigned int hash)
 111{
 112        hash += (unsigned long) parent / L1_CACHE_BYTES;
 113        return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 114}
 115
 116
 117/* Statistics gathering. */
 118struct dentry_stat_t dentry_stat = {
 119        .age_limit = 45,
 120};
 121
 122static DEFINE_PER_CPU(long, nr_dentry);
 123static DEFINE_PER_CPU(long, nr_dentry_unused);
 124static DEFINE_PER_CPU(long, nr_dentry_negative);
 125
 126#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 127
 128/*
 129 * Here we resort to our own counters instead of using generic per-cpu counters
 130 * for consistency with what the vfs inode code does. We are expected to harvest
 131 * better code and performance by having our own specialized counters.
 132 *
 133 * Please note that the loop is done over all possible CPUs, not over all online
 134 * CPUs. The reason for this is that we don't want to play games with CPUs going
 135 * on and off. If one of them goes off, we will just keep their counters.
 136 *
 137 * glommer: See cffbc8a for details, and if you ever intend to change this,
 138 * please update all vfs counters to match.
 139 */
 140static long get_nr_dentry(void)
 141{
 142        int i;
 143        long sum = 0;
 144        for_each_possible_cpu(i)
 145                sum += per_cpu(nr_dentry, i);
 146        return sum < 0 ? 0 : sum;
 147}
 148
 149static long get_nr_dentry_unused(void)
 150{
 151        int i;
 152        long sum = 0;
 153        for_each_possible_cpu(i)
 154                sum += per_cpu(nr_dentry_unused, i);
 155        return sum < 0 ? 0 : sum;
 156}
 157
 158static long get_nr_dentry_negative(void)
 159{
 160        int i;
 161        long sum = 0;
 162
 163        for_each_possible_cpu(i)
 164                sum += per_cpu(nr_dentry_negative, i);
 165        return sum < 0 ? 0 : sum;
 166}
 167
 168int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
 169                   size_t *lenp, loff_t *ppos)
 170{
 171        dentry_stat.nr_dentry = get_nr_dentry();
 172        dentry_stat.nr_unused = get_nr_dentry_unused();
 173        dentry_stat.nr_negative = get_nr_dentry_negative();
 174        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 175}
 176#endif
 177
 178/*
 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 180 * The strings are both count bytes long, and count is non-zero.
 181 */
 182#ifdef CONFIG_DCACHE_WORD_ACCESS
 183
 184#include <asm/word-at-a-time.h>
 185/*
 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 187 * aligned allocation for this particular component. We don't
 188 * strictly need the load_unaligned_zeropad() safety, but it
 189 * doesn't hurt either.
 190 *
 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 192 * need the careful unaligned handling.
 193 */
 194static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 195{
 196        unsigned long a,b,mask;
 197
 198        for (;;) {
 199                a = read_word_at_a_time(cs);
 200                b = load_unaligned_zeropad(ct);
 201                if (tcount < sizeof(unsigned long))
 202                        break;
 203                if (unlikely(a != b))
 204                        return 1;
 205                cs += sizeof(unsigned long);
 206                ct += sizeof(unsigned long);
 207                tcount -= sizeof(unsigned long);
 208                if (!tcount)
 209                        return 0;
 210        }
 211        mask = bytemask_from_count(tcount);
 212        return unlikely(!!((a ^ b) & mask));
 213}
 214
 215#else
 216
 217static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 218{
 219        do {
 220                if (*cs != *ct)
 221                        return 1;
 222                cs++;
 223                ct++;
 224                tcount--;
 225        } while (tcount);
 226        return 0;
 227}
 228
 229#endif
 230
 231static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 232{
 233        /*
 234         * Be careful about RCU walk racing with rename:
 235         * use 'READ_ONCE' to fetch the name pointer.
 236         *
 237         * NOTE! Even if a rename will mean that the length
 238         * was not loaded atomically, we don't care. The
 239         * RCU walk will check the sequence count eventually,
 240         * and catch it. And we won't overrun the buffer,
 241         * because we're reading the name pointer atomically,
 242         * and a dentry name is guaranteed to be properly
 243         * terminated with a NUL byte.
 244         *
 245         * End result: even if 'len' is wrong, we'll exit
 246         * early because the data cannot match (there can
 247         * be no NUL in the ct/tcount data)
 248         */
 249        const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 250
 251        return dentry_string_cmp(cs, ct, tcount);
 252}
 253
 254struct external_name {
 255        union {
 256                atomic_t count;
 257                struct rcu_head head;
 258        } u;
 259        unsigned char name[];
 260};
 261
 262static inline struct external_name *external_name(struct dentry *dentry)
 263{
 264        return container_of(dentry->d_name.name, struct external_name, name[0]);
 265}
 266
 267static void __d_free(struct rcu_head *head)
 268{
 269        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 270
 271        kmem_cache_free(dentry_cache, dentry); 
 272}
 273
 274static void __d_free_external(struct rcu_head *head)
 275{
 276        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 277        kfree(external_name(dentry));
 278        kmem_cache_free(dentry_cache, dentry);
 279}
 280
 281static inline int dname_external(const struct dentry *dentry)
 282{
 283        return dentry->d_name.name != dentry->d_iname;
 284}
 285
 286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 287{
 288        spin_lock(&dentry->d_lock);
 289        name->name = dentry->d_name;
 290        if (unlikely(dname_external(dentry))) {
 291                atomic_inc(&external_name(dentry)->u.count);
 292        } else {
 293                memcpy(name->inline_name, dentry->d_iname,
 294                       dentry->d_name.len + 1);
 295                name->name.name = name->inline_name;
 296        }
 297        spin_unlock(&dentry->d_lock);
 298}
 299EXPORT_SYMBOL(take_dentry_name_snapshot);
 300
 301void release_dentry_name_snapshot(struct name_snapshot *name)
 302{
 303        if (unlikely(name->name.name != name->inline_name)) {
 304                struct external_name *p;
 305                p = container_of(name->name.name, struct external_name, name[0]);
 306                if (unlikely(atomic_dec_and_test(&p->u.count)))
 307                        kfree_rcu(p, u.head);
 308        }
 309}
 310EXPORT_SYMBOL(release_dentry_name_snapshot);
 311
 312static inline void __d_set_inode_and_type(struct dentry *dentry,
 313                                          struct inode *inode,
 314                                          unsigned type_flags)
 315{
 316        unsigned flags;
 317
 318        dentry->d_inode = inode;
 319        flags = READ_ONCE(dentry->d_flags);
 320        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 321        flags |= type_flags;
 322        WRITE_ONCE(dentry->d_flags, flags);
 323}
 324
 325static inline void __d_clear_type_and_inode(struct dentry *dentry)
 326{
 327        unsigned flags = READ_ONCE(dentry->d_flags);
 328
 329        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 330        WRITE_ONCE(dentry->d_flags, flags);
 331        dentry->d_inode = NULL;
 332        if (dentry->d_flags & DCACHE_LRU_LIST)
 333                this_cpu_inc(nr_dentry_negative);
 334}
 335
 336static void dentry_free(struct dentry *dentry)
 337{
 338        WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 339        if (unlikely(dname_external(dentry))) {
 340                struct external_name *p = external_name(dentry);
 341                if (likely(atomic_dec_and_test(&p->u.count))) {
 342                        call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 343                        return;
 344                }
 345        }
 346        /* if dentry was never visible to RCU, immediate free is OK */
 347        if (dentry->d_flags & DCACHE_NORCU)
 348                __d_free(&dentry->d_u.d_rcu);
 349        else
 350                call_rcu(&dentry->d_u.d_rcu, __d_free);
 351}
 352
 353/*
 354 * Release the dentry's inode, using the filesystem
 355 * d_iput() operation if defined.
 356 */
 357static void dentry_unlink_inode(struct dentry * dentry)
 358        __releases(dentry->d_lock)
 359        __releases(dentry->d_inode->i_lock)
 360{
 361        struct inode *inode = dentry->d_inode;
 362
 363        raw_write_seqcount_begin(&dentry->d_seq);
 364        __d_clear_type_and_inode(dentry);
 365        hlist_del_init(&dentry->d_u.d_alias);
 366        raw_write_seqcount_end(&dentry->d_seq);
 367        spin_unlock(&dentry->d_lock);
 368        spin_unlock(&inode->i_lock);
 369        if (!inode->i_nlink)
 370                fsnotify_inoderemove(inode);
 371        if (dentry->d_op && dentry->d_op->d_iput)
 372                dentry->d_op->d_iput(dentry, inode);
 373        else
 374                iput(inode);
 375}
 376
 377/*
 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 379 * is in use - which includes both the "real" per-superblock
 380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 381 *
 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 383 * on the shrink list (ie not on the superblock LRU list).
 384 *
 385 * The per-cpu "nr_dentry_unused" counters are updated with
 386 * the DCACHE_LRU_LIST bit.
 387 *
 388 * The per-cpu "nr_dentry_negative" counters are only updated
 389 * when deleted from or added to the per-superblock LRU list, not
 390 * from/to the shrink list. That is to avoid an unneeded dec/inc
 391 * pair when moving from LRU to shrink list in select_collect().
 392 *
 393 * These helper functions make sure we always follow the
 394 * rules. d_lock must be held by the caller.
 395 */
 396#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 397static void d_lru_add(struct dentry *dentry)
 398{
 399        D_FLAG_VERIFY(dentry, 0);
 400        dentry->d_flags |= DCACHE_LRU_LIST;
 401        this_cpu_inc(nr_dentry_unused);
 402        if (d_is_negative(dentry))
 403                this_cpu_inc(nr_dentry_negative);
 404        WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 405}
 406
 407static void d_lru_del(struct dentry *dentry)
 408{
 409        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 410        dentry->d_flags &= ~DCACHE_LRU_LIST;
 411        this_cpu_dec(nr_dentry_unused);
 412        if (d_is_negative(dentry))
 413                this_cpu_dec(nr_dentry_negative);
 414        WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 415}
 416
 417static void d_shrink_del(struct dentry *dentry)
 418{
 419        D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 420        list_del_init(&dentry->d_lru);
 421        dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 422        this_cpu_dec(nr_dentry_unused);
 423}
 424
 425static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 426{
 427        D_FLAG_VERIFY(dentry, 0);
 428        list_add(&dentry->d_lru, list);
 429        dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 430        this_cpu_inc(nr_dentry_unused);
 431}
 432
 433/*
 434 * These can only be called under the global LRU lock, ie during the
 435 * callback for freeing the LRU list. "isolate" removes it from the
 436 * LRU lists entirely, while shrink_move moves it to the indicated
 437 * private list.
 438 */
 439static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 440{
 441        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 442        dentry->d_flags &= ~DCACHE_LRU_LIST;
 443        this_cpu_dec(nr_dentry_unused);
 444        if (d_is_negative(dentry))
 445                this_cpu_dec(nr_dentry_negative);
 446        list_lru_isolate(lru, &dentry->d_lru);
 447}
 448
 449static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 450                              struct list_head *list)
 451{
 452        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 453        dentry->d_flags |= DCACHE_SHRINK_LIST;
 454        if (d_is_negative(dentry))
 455                this_cpu_dec(nr_dentry_negative);
 456        list_lru_isolate_move(lru, &dentry->d_lru, list);
 457}
 458
 459/**
 460 * d_drop - drop a dentry
 461 * @dentry: dentry to drop
 462 *
 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 464 * be found through a VFS lookup any more. Note that this is different from
 465 * deleting the dentry - d_delete will try to mark the dentry negative if
 466 * possible, giving a successful _negative_ lookup, while d_drop will
 467 * just make the cache lookup fail.
 468 *
 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 470 * reason (NFS timeouts or autofs deletes).
 471 *
 472 * __d_drop requires dentry->d_lock
 473 * ___d_drop doesn't mark dentry as "unhashed"
 474 *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 475 */
 476static void ___d_drop(struct dentry *dentry)
 477{
 478        struct hlist_bl_head *b;
 479        /*
 480         * Hashed dentries are normally on the dentry hashtable,
 481         * with the exception of those newly allocated by
 482         * d_obtain_root, which are always IS_ROOT:
 483         */
 484        if (unlikely(IS_ROOT(dentry)))
 485                b = &dentry->d_sb->s_roots;
 486        else
 487                b = d_hash(dentry->d_name.hash);
 488
 489        hlist_bl_lock(b);
 490        __hlist_bl_del(&dentry->d_hash);
 491        hlist_bl_unlock(b);
 492}
 493
 494void __d_drop(struct dentry *dentry)
 495{
 496        if (!d_unhashed(dentry)) {
 497                ___d_drop(dentry);
 498                dentry->d_hash.pprev = NULL;
 499                write_seqcount_invalidate(&dentry->d_seq);
 500        }
 501}
 502EXPORT_SYMBOL(__d_drop);
 503
 504void d_drop(struct dentry *dentry)
 505{
 506        spin_lock(&dentry->d_lock);
 507        __d_drop(dentry);
 508        spin_unlock(&dentry->d_lock);
 509}
 510EXPORT_SYMBOL(d_drop);
 511
 512static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
 513{
 514        struct dentry *next;
 515        /*
 516         * Inform d_walk() and shrink_dentry_list() that we are no longer
 517         * attached to the dentry tree
 518         */
 519        dentry->d_flags |= DCACHE_DENTRY_KILLED;
 520        if (unlikely(list_empty(&dentry->d_child)))
 521                return;
 522        __list_del_entry(&dentry->d_child);
 523        /*
 524         * Cursors can move around the list of children.  While we'd been
 525         * a normal list member, it didn't matter - ->d_child.next would've
 526         * been updated.  However, from now on it won't be and for the
 527         * things like d_walk() it might end up with a nasty surprise.
 528         * Normally d_walk() doesn't care about cursors moving around -
 529         * ->d_lock on parent prevents that and since a cursor has no children
 530         * of its own, we get through it without ever unlocking the parent.
 531         * There is one exception, though - if we ascend from a child that
 532         * gets killed as soon as we unlock it, the next sibling is found
 533         * using the value left in its ->d_child.next.  And if _that_
 534         * pointed to a cursor, and cursor got moved (e.g. by lseek())
 535         * before d_walk() regains parent->d_lock, we'll end up skipping
 536         * everything the cursor had been moved past.
 537         *
 538         * Solution: make sure that the pointer left behind in ->d_child.next
 539         * points to something that won't be moving around.  I.e. skip the
 540         * cursors.
 541         */
 542        while (dentry->d_child.next != &parent->d_subdirs) {
 543                next = list_entry(dentry->d_child.next, struct dentry, d_child);
 544                if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 545                        break;
 546                dentry->d_child.next = next->d_child.next;
 547        }
 548}
 549
 550static void __dentry_kill(struct dentry *dentry)
 551{
 552        struct dentry *parent = NULL;
 553        bool can_free = true;
 554        if (!IS_ROOT(dentry))
 555                parent = dentry->d_parent;
 556
 557        /*
 558         * The dentry is now unrecoverably dead to the world.
 559         */
 560        lockref_mark_dead(&dentry->d_lockref);
 561
 562        /*
 563         * inform the fs via d_prune that this dentry is about to be
 564         * unhashed and destroyed.
 565         */
 566        if (dentry->d_flags & DCACHE_OP_PRUNE)
 567                dentry->d_op->d_prune(dentry);
 568
 569        if (dentry->d_flags & DCACHE_LRU_LIST) {
 570                if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 571                        d_lru_del(dentry);
 572        }
 573        /* if it was on the hash then remove it */
 574        __d_drop(dentry);
 575        dentry_unlist(dentry, parent);
 576        if (parent)
 577                spin_unlock(&parent->d_lock);
 578        if (dentry->d_inode)
 579                dentry_unlink_inode(dentry);
 580        else
 581                spin_unlock(&dentry->d_lock);
 582        this_cpu_dec(nr_dentry);
 583        if (dentry->d_op && dentry->d_op->d_release)
 584                dentry->d_op->d_release(dentry);
 585
 586        spin_lock(&dentry->d_lock);
 587        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 588                dentry->d_flags |= DCACHE_MAY_FREE;
 589                can_free = false;
 590        }
 591        spin_unlock(&dentry->d_lock);
 592        if (likely(can_free))
 593                dentry_free(dentry);
 594        cond_resched();
 595}
 596
 597static struct dentry *__lock_parent(struct dentry *dentry)
 598{
 599        struct dentry *parent;
 600        rcu_read_lock();
 601        spin_unlock(&dentry->d_lock);
 602again:
 603        parent = READ_ONCE(dentry->d_parent);
 604        spin_lock(&parent->d_lock);
 605        /*
 606         * We can't blindly lock dentry until we are sure
 607         * that we won't violate the locking order.
 608         * Any changes of dentry->d_parent must have
 609         * been done with parent->d_lock held, so
 610         * spin_lock() above is enough of a barrier
 611         * for checking if it's still our child.
 612         */
 613        if (unlikely(parent != dentry->d_parent)) {
 614                spin_unlock(&parent->d_lock);
 615                goto again;
 616        }
 617        rcu_read_unlock();
 618        if (parent != dentry)
 619                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 620        else
 621                parent = NULL;
 622        return parent;
 623}
 624
 625static inline struct dentry *lock_parent(struct dentry *dentry)
 626{
 627        struct dentry *parent = dentry->d_parent;
 628        if (IS_ROOT(dentry))
 629                return NULL;
 630        if (likely(spin_trylock(&parent->d_lock)))
 631                return parent;
 632        return __lock_parent(dentry);
 633}
 634
 635static inline bool retain_dentry(struct dentry *dentry)
 636{
 637        WARN_ON(d_in_lookup(dentry));
 638
 639        /* Unreachable? Get rid of it */
 640        if (unlikely(d_unhashed(dentry)))
 641                return false;
 642
 643        if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 644                return false;
 645
 646        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 647                if (dentry->d_op->d_delete(dentry))
 648                        return false;
 649        }
 650        /* retain; LRU fodder */
 651        dentry->d_lockref.count--;
 652        if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 653                d_lru_add(dentry);
 654        else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
 655                dentry->d_flags |= DCACHE_REFERENCED;
 656        return true;
 657}
 658
 659/*
 660 * Finish off a dentry we've decided to kill.
 661 * dentry->d_lock must be held, returns with it unlocked.
 662 * Returns dentry requiring refcount drop, or NULL if we're done.
 663 */
 664static struct dentry *dentry_kill(struct dentry *dentry)
 665        __releases(dentry->d_lock)
 666{
 667        struct inode *inode = dentry->d_inode;
 668        struct dentry *parent = NULL;
 669
 670        if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 671                goto slow_positive;
 672
 673        if (!IS_ROOT(dentry)) {
 674                parent = dentry->d_parent;
 675                if (unlikely(!spin_trylock(&parent->d_lock))) {
 676                        parent = __lock_parent(dentry);
 677                        if (likely(inode || !dentry->d_inode))
 678                                goto got_locks;
 679                        /* negative that became positive */
 680                        if (parent)
 681                                spin_unlock(&parent->d_lock);
 682                        inode = dentry->d_inode;
 683                        goto slow_positive;
 684                }
 685        }
 686        __dentry_kill(dentry);
 687        return parent;
 688
 689slow_positive:
 690        spin_unlock(&dentry->d_lock);
 691        spin_lock(&inode->i_lock);
 692        spin_lock(&dentry->d_lock);
 693        parent = lock_parent(dentry);
 694got_locks:
 695        if (unlikely(dentry->d_lockref.count != 1)) {
 696                dentry->d_lockref.count--;
 697        } else if (likely(!retain_dentry(dentry))) {
 698                __dentry_kill(dentry);
 699                return parent;
 700        }
 701        /* we are keeping it, after all */
 702        if (inode)
 703                spin_unlock(&inode->i_lock);
 704        if (parent)
 705                spin_unlock(&parent->d_lock);
 706        spin_unlock(&dentry->d_lock);
 707        return NULL;
 708}
 709
 710/*
 711 * Try to do a lockless dput(), and return whether that was successful.
 712 *
 713 * If unsuccessful, we return false, having already taken the dentry lock.
 714 *
 715 * The caller needs to hold the RCU read lock, so that the dentry is
 716 * guaranteed to stay around even if the refcount goes down to zero!
 717 */
 718static inline bool fast_dput(struct dentry *dentry)
 719{
 720        int ret;
 721        unsigned int d_flags;
 722
 723        /*
 724         * If we have a d_op->d_delete() operation, we sould not
 725         * let the dentry count go to zero, so use "put_or_lock".
 726         */
 727        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 728                return lockref_put_or_lock(&dentry->d_lockref);
 729
 730        /*
 731         * .. otherwise, we can try to just decrement the
 732         * lockref optimistically.
 733         */
 734        ret = lockref_put_return(&dentry->d_lockref);
 735
 736        /*
 737         * If the lockref_put_return() failed due to the lock being held
 738         * by somebody else, the fast path has failed. We will need to
 739         * get the lock, and then check the count again.
 740         */
 741        if (unlikely(ret < 0)) {
 742                spin_lock(&dentry->d_lock);
 743                if (dentry->d_lockref.count > 1) {
 744                        dentry->d_lockref.count--;
 745                        spin_unlock(&dentry->d_lock);
 746                        return true;
 747                }
 748                return false;
 749        }
 750
 751        /*
 752         * If we weren't the last ref, we're done.
 753         */
 754        if (ret)
 755                return true;
 756
 757        /*
 758         * Careful, careful. The reference count went down
 759         * to zero, but we don't hold the dentry lock, so
 760         * somebody else could get it again, and do another
 761         * dput(), and we need to not race with that.
 762         *
 763         * However, there is a very special and common case
 764         * where we don't care, because there is nothing to
 765         * do: the dentry is still hashed, it does not have
 766         * a 'delete' op, and it's referenced and already on
 767         * the LRU list.
 768         *
 769         * NOTE! Since we aren't locked, these values are
 770         * not "stable". However, it is sufficient that at
 771         * some point after we dropped the reference the
 772         * dentry was hashed and the flags had the proper
 773         * value. Other dentry users may have re-gotten
 774         * a reference to the dentry and change that, but
 775         * our work is done - we can leave the dentry
 776         * around with a zero refcount.
 777         */
 778        smp_rmb();
 779        d_flags = READ_ONCE(dentry->d_flags);
 780        d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
 781
 782        /* Nothing to do? Dropping the reference was all we needed? */
 783        if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 784                return true;
 785
 786        /*
 787         * Not the fast normal case? Get the lock. We've already decremented
 788         * the refcount, but we'll need to re-check the situation after
 789         * getting the lock.
 790         */
 791        spin_lock(&dentry->d_lock);
 792
 793        /*
 794         * Did somebody else grab a reference to it in the meantime, and
 795         * we're no longer the last user after all? Alternatively, somebody
 796         * else could have killed it and marked it dead. Either way, we
 797         * don't need to do anything else.
 798         */
 799        if (dentry->d_lockref.count) {
 800                spin_unlock(&dentry->d_lock);
 801                return true;
 802        }
 803
 804        /*
 805         * Re-get the reference we optimistically dropped. We hold the
 806         * lock, and we just tested that it was zero, so we can just
 807         * set it to 1.
 808         */
 809        dentry->d_lockref.count = 1;
 810        return false;
 811}
 812
 813
 814/* 
 815 * This is dput
 816 *
 817 * This is complicated by the fact that we do not want to put
 818 * dentries that are no longer on any hash chain on the unused
 819 * list: we'd much rather just get rid of them immediately.
 820 *
 821 * However, that implies that we have to traverse the dentry
 822 * tree upwards to the parents which might _also_ now be
 823 * scheduled for deletion (it may have been only waiting for
 824 * its last child to go away).
 825 *
 826 * This tail recursion is done by hand as we don't want to depend
 827 * on the compiler to always get this right (gcc generally doesn't).
 828 * Real recursion would eat up our stack space.
 829 */
 830
 831/*
 832 * dput - release a dentry
 833 * @dentry: dentry to release 
 834 *
 835 * Release a dentry. This will drop the usage count and if appropriate
 836 * call the dentry unlink method as well as removing it from the queues and
 837 * releasing its resources. If the parent dentries were scheduled for release
 838 * they too may now get deleted.
 839 */
 840void dput(struct dentry *dentry)
 841{
 842        while (dentry) {
 843                might_sleep();
 844
 845                rcu_read_lock();
 846                if (likely(fast_dput(dentry))) {
 847                        rcu_read_unlock();
 848                        return;
 849                }
 850
 851                /* Slow case: now with the dentry lock held */
 852                rcu_read_unlock();
 853
 854                if (likely(retain_dentry(dentry))) {
 855                        spin_unlock(&dentry->d_lock);
 856                        return;
 857                }
 858
 859                dentry = dentry_kill(dentry);
 860        }
 861}
 862EXPORT_SYMBOL(dput);
 863
 864static void __dput_to_list(struct dentry *dentry, struct list_head *list)
 865__must_hold(&dentry->d_lock)
 866{
 867        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 868                /* let the owner of the list it's on deal with it */
 869                --dentry->d_lockref.count;
 870        } else {
 871                if (dentry->d_flags & DCACHE_LRU_LIST)
 872                        d_lru_del(dentry);
 873                if (!--dentry->d_lockref.count)
 874                        d_shrink_add(dentry, list);
 875        }
 876}
 877
 878void dput_to_list(struct dentry *dentry, struct list_head *list)
 879{
 880        rcu_read_lock();
 881        if (likely(fast_dput(dentry))) {
 882                rcu_read_unlock();
 883                return;
 884        }
 885        rcu_read_unlock();
 886        if (!retain_dentry(dentry))
 887                __dput_to_list(dentry, list);
 888        spin_unlock(&dentry->d_lock);
 889}
 890
 891/* This must be called with d_lock held */
 892static inline void __dget_dlock(struct dentry *dentry)
 893{
 894        dentry->d_lockref.count++;
 895}
 896
 897static inline void __dget(struct dentry *dentry)
 898{
 899        lockref_get(&dentry->d_lockref);
 900}
 901
 902struct dentry *dget_parent(struct dentry *dentry)
 903{
 904        int gotref;
 905        struct dentry *ret;
 906
 907        /*
 908         * Do optimistic parent lookup without any
 909         * locking.
 910         */
 911        rcu_read_lock();
 912        ret = READ_ONCE(dentry->d_parent);
 913        gotref = lockref_get_not_zero(&ret->d_lockref);
 914        rcu_read_unlock();
 915        if (likely(gotref)) {
 916                if (likely(ret == READ_ONCE(dentry->d_parent)))
 917                        return ret;
 918                dput(ret);
 919        }
 920
 921repeat:
 922        /*
 923         * Don't need rcu_dereference because we re-check it was correct under
 924         * the lock.
 925         */
 926        rcu_read_lock();
 927        ret = dentry->d_parent;
 928        spin_lock(&ret->d_lock);
 929        if (unlikely(ret != dentry->d_parent)) {
 930                spin_unlock(&ret->d_lock);
 931                rcu_read_unlock();
 932                goto repeat;
 933        }
 934        rcu_read_unlock();
 935        BUG_ON(!ret->d_lockref.count);
 936        ret->d_lockref.count++;
 937        spin_unlock(&ret->d_lock);
 938        return ret;
 939}
 940EXPORT_SYMBOL(dget_parent);
 941
 942static struct dentry * __d_find_any_alias(struct inode *inode)
 943{
 944        struct dentry *alias;
 945
 946        if (hlist_empty(&inode->i_dentry))
 947                return NULL;
 948        alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 949        __dget(alias);
 950        return alias;
 951}
 952
 953/**
 954 * d_find_any_alias - find any alias for a given inode
 955 * @inode: inode to find an alias for
 956 *
 957 * If any aliases exist for the given inode, take and return a
 958 * reference for one of them.  If no aliases exist, return %NULL.
 959 */
 960struct dentry *d_find_any_alias(struct inode *inode)
 961{
 962        struct dentry *de;
 963
 964        spin_lock(&inode->i_lock);
 965        de = __d_find_any_alias(inode);
 966        spin_unlock(&inode->i_lock);
 967        return de;
 968}
 969EXPORT_SYMBOL(d_find_any_alias);
 970
 971/**
 972 * d_find_alias - grab a hashed alias of inode
 973 * @inode: inode in question
 974 *
 975 * If inode has a hashed alias, or is a directory and has any alias,
 976 * acquire the reference to alias and return it. Otherwise return NULL.
 977 * Notice that if inode is a directory there can be only one alias and
 978 * it can be unhashed only if it has no children, or if it is the root
 979 * of a filesystem, or if the directory was renamed and d_revalidate
 980 * was the first vfs operation to notice.
 981 *
 982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 983 * any other hashed alias over that one.
 984 */
 985static struct dentry *__d_find_alias(struct inode *inode)
 986{
 987        struct dentry *alias;
 988
 989        if (S_ISDIR(inode->i_mode))
 990                return __d_find_any_alias(inode);
 991
 992        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 993                spin_lock(&alias->d_lock);
 994                if (!d_unhashed(alias)) {
 995                        __dget_dlock(alias);
 996                        spin_unlock(&alias->d_lock);
 997                        return alias;
 998                }
 999                spin_unlock(&alias->d_lock);
1000        }
1001        return NULL;
1002}
1003
1004struct dentry *d_find_alias(struct inode *inode)
1005{
1006        struct dentry *de = NULL;
1007
1008        if (!hlist_empty(&inode->i_dentry)) {
1009                spin_lock(&inode->i_lock);
1010                de = __d_find_alias(inode);
1011                spin_unlock(&inode->i_lock);
1012        }
1013        return de;
1014}
1015EXPORT_SYMBOL(d_find_alias);
1016
1017/*
1018 *      Try to kill dentries associated with this inode.
1019 * WARNING: you must own a reference to inode.
1020 */
1021void d_prune_aliases(struct inode *inode)
1022{
1023        struct dentry *dentry;
1024restart:
1025        spin_lock(&inode->i_lock);
1026        hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1027                spin_lock(&dentry->d_lock);
1028                if (!dentry->d_lockref.count) {
1029                        struct dentry *parent = lock_parent(dentry);
1030                        if (likely(!dentry->d_lockref.count)) {
1031                                __dentry_kill(dentry);
1032                                dput(parent);
1033                                goto restart;
1034                        }
1035                        if (parent)
1036                                spin_unlock(&parent->d_lock);
1037                }
1038                spin_unlock(&dentry->d_lock);
1039        }
1040        spin_unlock(&inode->i_lock);
1041}
1042EXPORT_SYMBOL(d_prune_aliases);
1043
1044/*
1045 * Lock a dentry from shrink list.
1046 * Called under rcu_read_lock() and dentry->d_lock; the former
1047 * guarantees that nothing we access will be freed under us.
1048 * Note that dentry is *not* protected from concurrent dentry_kill(),
1049 * d_delete(), etc.
1050 *
1051 * Return false if dentry has been disrupted or grabbed, leaving
1052 * the caller to kick it off-list.  Otherwise, return true and have
1053 * that dentry's inode and parent both locked.
1054 */
1055static bool shrink_lock_dentry(struct dentry *dentry)
1056{
1057        struct inode *inode;
1058        struct dentry *parent;
1059
1060        if (dentry->d_lockref.count)
1061                return false;
1062
1063        inode = dentry->d_inode;
1064        if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1065                spin_unlock(&dentry->d_lock);
1066                spin_lock(&inode->i_lock);
1067                spin_lock(&dentry->d_lock);
1068                if (unlikely(dentry->d_lockref.count))
1069                        goto out;
1070                /* changed inode means that somebody had grabbed it */
1071                if (unlikely(inode != dentry->d_inode))
1072                        goto out;
1073        }
1074
1075        parent = dentry->d_parent;
1076        if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1077                return true;
1078
1079        spin_unlock(&dentry->d_lock);
1080        spin_lock(&parent->d_lock);
1081        if (unlikely(parent != dentry->d_parent)) {
1082                spin_unlock(&parent->d_lock);
1083                spin_lock(&dentry->d_lock);
1084                goto out;
1085        }
1086        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1087        if (likely(!dentry->d_lockref.count))
1088                return true;
1089        spin_unlock(&parent->d_lock);
1090out:
1091        if (inode)
1092                spin_unlock(&inode->i_lock);
1093        return false;
1094}
1095
1096void shrink_dentry_list(struct list_head *list)
1097{
1098        while (!list_empty(list)) {
1099                struct dentry *dentry, *parent;
1100
1101                dentry = list_entry(list->prev, struct dentry, d_lru);
1102                spin_lock(&dentry->d_lock);
1103                rcu_read_lock();
1104                if (!shrink_lock_dentry(dentry)) {
1105                        bool can_free = false;
1106                        rcu_read_unlock();
1107                        d_shrink_del(dentry);
1108                        if (dentry->d_lockref.count < 0)
1109                                can_free = dentry->d_flags & DCACHE_MAY_FREE;
1110                        spin_unlock(&dentry->d_lock);
1111                        if (can_free)
1112                                dentry_free(dentry);
1113                        continue;
1114                }
1115                rcu_read_unlock();
1116                d_shrink_del(dentry);
1117                parent = dentry->d_parent;
1118                if (parent != dentry)
1119                        __dput_to_list(parent, list);
1120                __dentry_kill(dentry);
1121        }
1122}
1123
1124static enum lru_status dentry_lru_isolate(struct list_head *item,
1125                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1126{
1127        struct list_head *freeable = arg;
1128        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1129
1130
1131        /*
1132         * we are inverting the lru lock/dentry->d_lock here,
1133         * so use a trylock. If we fail to get the lock, just skip
1134         * it
1135         */
1136        if (!spin_trylock(&dentry->d_lock))
1137                return LRU_SKIP;
1138
1139        /*
1140         * Referenced dentries are still in use. If they have active
1141         * counts, just remove them from the LRU. Otherwise give them
1142         * another pass through the LRU.
1143         */
1144        if (dentry->d_lockref.count) {
1145                d_lru_isolate(lru, dentry);
1146                spin_unlock(&dentry->d_lock);
1147                return LRU_REMOVED;
1148        }
1149
1150        if (dentry->d_flags & DCACHE_REFERENCED) {
1151                dentry->d_flags &= ~DCACHE_REFERENCED;
1152                spin_unlock(&dentry->d_lock);
1153
1154                /*
1155                 * The list move itself will be made by the common LRU code. At
1156                 * this point, we've dropped the dentry->d_lock but keep the
1157                 * lru lock. This is safe to do, since every list movement is
1158                 * protected by the lru lock even if both locks are held.
1159                 *
1160                 * This is guaranteed by the fact that all LRU management
1161                 * functions are intermediated by the LRU API calls like
1162                 * list_lru_add and list_lru_del. List movement in this file
1163                 * only ever occur through this functions or through callbacks
1164                 * like this one, that are called from the LRU API.
1165                 *
1166                 * The only exceptions to this are functions like
1167                 * shrink_dentry_list, and code that first checks for the
1168                 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1169                 * operating only with stack provided lists after they are
1170                 * properly isolated from the main list.  It is thus, always a
1171                 * local access.
1172                 */
1173                return LRU_ROTATE;
1174        }
1175
1176        d_lru_shrink_move(lru, dentry, freeable);
1177        spin_unlock(&dentry->d_lock);
1178
1179        return LRU_REMOVED;
1180}
1181
1182/**
1183 * prune_dcache_sb - shrink the dcache
1184 * @sb: superblock
1185 * @sc: shrink control, passed to list_lru_shrink_walk()
1186 *
1187 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1188 * is done when we need more memory and called from the superblock shrinker
1189 * function.
1190 *
1191 * This function may fail to free any resources if all the dentries are in
1192 * use.
1193 */
1194long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1195{
1196        LIST_HEAD(dispose);
1197        long freed;
1198
1199        freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1200                                     dentry_lru_isolate, &dispose);
1201        shrink_dentry_list(&dispose);
1202        return freed;
1203}
1204
1205static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1206                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207{
1208        struct list_head *freeable = arg;
1209        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1210
1211        /*
1212         * we are inverting the lru lock/dentry->d_lock here,
1213         * so use a trylock. If we fail to get the lock, just skip
1214         * it
1215         */
1216        if (!spin_trylock(&dentry->d_lock))
1217                return LRU_SKIP;
1218
1219        d_lru_shrink_move(lru, dentry, freeable);
1220        spin_unlock(&dentry->d_lock);
1221
1222        return LRU_REMOVED;
1223}
1224
1225
1226/**
1227 * shrink_dcache_sb - shrink dcache for a superblock
1228 * @sb: superblock
1229 *
1230 * Shrink the dcache for the specified super block. This is used to free
1231 * the dcache before unmounting a file system.
1232 */
1233void shrink_dcache_sb(struct super_block *sb)
1234{
1235        do {
1236                LIST_HEAD(dispose);
1237
1238                list_lru_walk(&sb->s_dentry_lru,
1239                        dentry_lru_isolate_shrink, &dispose, 1024);
1240                shrink_dentry_list(&dispose);
1241        } while (list_lru_count(&sb->s_dentry_lru) > 0);
1242}
1243EXPORT_SYMBOL(shrink_dcache_sb);
1244
1245/**
1246 * enum d_walk_ret - action to talke during tree walk
1247 * @D_WALK_CONTINUE:    contrinue walk
1248 * @D_WALK_QUIT:        quit walk
1249 * @D_WALK_NORETRY:     quit when retry is needed
1250 * @D_WALK_SKIP:        skip this dentry and its children
1251 */
1252enum d_walk_ret {
1253        D_WALK_CONTINUE,
1254        D_WALK_QUIT,
1255        D_WALK_NORETRY,
1256        D_WALK_SKIP,
1257};
1258
1259/**
1260 * d_walk - walk the dentry tree
1261 * @parent:     start of walk
1262 * @data:       data passed to @enter() and @finish()
1263 * @enter:      callback when first entering the dentry
1264 *
1265 * The @enter() callbacks are called with d_lock held.
1266 */
1267static void d_walk(struct dentry *parent, void *data,
1268                   enum d_walk_ret (*enter)(void *, struct dentry *))
1269{
1270        struct dentry *this_parent;
1271        struct list_head *next;
1272        unsigned seq = 0;
1273        enum d_walk_ret ret;
1274        bool retry = true;
1275
1276again:
1277        read_seqbegin_or_lock(&rename_lock, &seq);
1278        this_parent = parent;
1279        spin_lock(&this_parent->d_lock);
1280
1281        ret = enter(data, this_parent);
1282        switch (ret) {
1283        case D_WALK_CONTINUE:
1284                break;
1285        case D_WALK_QUIT:
1286        case D_WALK_SKIP:
1287                goto out_unlock;
1288        case D_WALK_NORETRY:
1289                retry = false;
1290                break;
1291        }
1292repeat:
1293        next = this_parent->d_subdirs.next;
1294resume:
1295        while (next != &this_parent->d_subdirs) {
1296                struct list_head *tmp = next;
1297                struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1298                next = tmp->next;
1299
1300                if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1301                        continue;
1302
1303                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1304
1305                ret = enter(data, dentry);
1306                switch (ret) {
1307                case D_WALK_CONTINUE:
1308                        break;
1309                case D_WALK_QUIT:
1310                        spin_unlock(&dentry->d_lock);
1311                        goto out_unlock;
1312                case D_WALK_NORETRY:
1313                        retry = false;
1314                        break;
1315                case D_WALK_SKIP:
1316                        spin_unlock(&dentry->d_lock);
1317                        continue;
1318                }
1319
1320                if (!list_empty(&dentry->d_subdirs)) {
1321                        spin_unlock(&this_parent->d_lock);
1322                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1323                        this_parent = dentry;
1324                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1325                        goto repeat;
1326                }
1327                spin_unlock(&dentry->d_lock);
1328        }
1329        /*
1330         * All done at this level ... ascend and resume the search.
1331         */
1332        rcu_read_lock();
1333ascend:
1334        if (this_parent != parent) {
1335                struct dentry *child = this_parent;
1336                this_parent = child->d_parent;
1337
1338                spin_unlock(&child->d_lock);
1339                spin_lock(&this_parent->d_lock);
1340
1341                /* might go back up the wrong parent if we have had a rename. */
1342                if (need_seqretry(&rename_lock, seq))
1343                        goto rename_retry;
1344                /* go into the first sibling still alive */
1345                do {
1346                        next = child->d_child.next;
1347                        if (next == &this_parent->d_subdirs)
1348                                goto ascend;
1349                        child = list_entry(next, struct dentry, d_child);
1350                } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1351                rcu_read_unlock();
1352                goto resume;
1353        }
1354        if (need_seqretry(&rename_lock, seq))
1355                goto rename_retry;
1356        rcu_read_unlock();
1357
1358out_unlock:
1359        spin_unlock(&this_parent->d_lock);
1360        done_seqretry(&rename_lock, seq);
1361        return;
1362
1363rename_retry:
1364        spin_unlock(&this_parent->d_lock);
1365        rcu_read_unlock();
1366        BUG_ON(seq & 1);
1367        if (!retry)
1368                return;
1369        seq = 1;
1370        goto again;
1371}
1372
1373struct check_mount {
1374        struct vfsmount *mnt;
1375        unsigned int mounted;
1376};
1377
1378static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1379{
1380        struct check_mount *info = data;
1381        struct path path = { .mnt = info->mnt, .dentry = dentry };
1382
1383        if (likely(!d_mountpoint(dentry)))
1384                return D_WALK_CONTINUE;
1385        if (__path_is_mountpoint(&path)) {
1386                info->mounted = 1;
1387                return D_WALK_QUIT;
1388        }
1389        return D_WALK_CONTINUE;
1390}
1391
1392/**
1393 * path_has_submounts - check for mounts over a dentry in the
1394 *                      current namespace.
1395 * @parent: path to check.
1396 *
1397 * Return true if the parent or its subdirectories contain
1398 * a mount point in the current namespace.
1399 */
1400int path_has_submounts(const struct path *parent)
1401{
1402        struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1403
1404        read_seqlock_excl(&mount_lock);
1405        d_walk(parent->dentry, &data, path_check_mount);
1406        read_sequnlock_excl(&mount_lock);
1407
1408        return data.mounted;
1409}
1410EXPORT_SYMBOL(path_has_submounts);
1411
1412/*
1413 * Called by mount code to set a mountpoint and check if the mountpoint is
1414 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1415 * subtree can become unreachable).
1416 *
1417 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1418 * this reason take rename_lock and d_lock on dentry and ancestors.
1419 */
1420int d_set_mounted(struct dentry *dentry)
1421{
1422        struct dentry *p;
1423        int ret = -ENOENT;
1424        write_seqlock(&rename_lock);
1425        for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1426                /* Need exclusion wrt. d_invalidate() */
1427                spin_lock(&p->d_lock);
1428                if (unlikely(d_unhashed(p))) {
1429                        spin_unlock(&p->d_lock);
1430                        goto out;
1431                }
1432                spin_unlock(&p->d_lock);
1433        }
1434        spin_lock(&dentry->d_lock);
1435        if (!d_unlinked(dentry)) {
1436                ret = -EBUSY;
1437                if (!d_mountpoint(dentry)) {
1438                        dentry->d_flags |= DCACHE_MOUNTED;
1439                        ret = 0;
1440                }
1441        }
1442        spin_unlock(&dentry->d_lock);
1443out:
1444        write_sequnlock(&rename_lock);
1445        return ret;
1446}
1447
1448/*
1449 * Search the dentry child list of the specified parent,
1450 * and move any unused dentries to the end of the unused
1451 * list for prune_dcache(). We descend to the next level
1452 * whenever the d_subdirs list is non-empty and continue
1453 * searching.
1454 *
1455 * It returns zero iff there are no unused children,
1456 * otherwise  it returns the number of children moved to
1457 * the end of the unused list. This may not be the total
1458 * number of unused children, because select_parent can
1459 * drop the lock and return early due to latency
1460 * constraints.
1461 */
1462
1463struct select_data {
1464        struct dentry *start;
1465        union {
1466                long found;
1467                struct dentry *victim;
1468        };
1469        struct list_head dispose;
1470};
1471
1472static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1473{
1474        struct select_data *data = _data;
1475        enum d_walk_ret ret = D_WALK_CONTINUE;
1476
1477        if (data->start == dentry)
1478                goto out;
1479
1480        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1481                data->found++;
1482        } else {
1483                if (dentry->d_flags & DCACHE_LRU_LIST)
1484                        d_lru_del(dentry);
1485                if (!dentry->d_lockref.count) {
1486                        d_shrink_add(dentry, &data->dispose);
1487                        data->found++;
1488                }
1489        }
1490        /*
1491         * We can return to the caller if we have found some (this
1492         * ensures forward progress). We'll be coming back to find
1493         * the rest.
1494         */
1495        if (!list_empty(&data->dispose))
1496                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1497out:
1498        return ret;
1499}
1500
1501static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1502{
1503        struct select_data *data = _data;
1504        enum d_walk_ret ret = D_WALK_CONTINUE;
1505
1506        if (data->start == dentry)
1507                goto out;
1508
1509        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1510                if (!dentry->d_lockref.count) {
1511                        rcu_read_lock();
1512                        data->victim = dentry;
1513                        return D_WALK_QUIT;
1514                }
1515        } else {
1516                if (dentry->d_flags & DCACHE_LRU_LIST)
1517                        d_lru_del(dentry);
1518                if (!dentry->d_lockref.count)
1519                        d_shrink_add(dentry, &data->dispose);
1520        }
1521        /*
1522         * We can return to the caller if we have found some (this
1523         * ensures forward progress). We'll be coming back to find
1524         * the rest.
1525         */
1526        if (!list_empty(&data->dispose))
1527                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1528out:
1529        return ret;
1530}
1531
1532/**
1533 * shrink_dcache_parent - prune dcache
1534 * @parent: parent of entries to prune
1535 *
1536 * Prune the dcache to remove unused children of the parent dentry.
1537 */
1538void shrink_dcache_parent(struct dentry *parent)
1539{
1540        for (;;) {
1541                struct select_data data = {.start = parent};
1542
1543                INIT_LIST_HEAD(&data.dispose);
1544                d_walk(parent, &data, select_collect);
1545
1546                if (!list_empty(&data.dispose)) {
1547                        shrink_dentry_list(&data.dispose);
1548                        continue;
1549                }
1550
1551                cond_resched();
1552                if (!data.found)
1553                        break;
1554                data.victim = NULL;
1555                d_walk(parent, &data, select_collect2);
1556                if (data.victim) {
1557                        struct dentry *parent;
1558                        spin_lock(&data.victim->d_lock);
1559                        if (!shrink_lock_dentry(data.victim)) {
1560                                spin_unlock(&data.victim->d_lock);
1561                                rcu_read_unlock();
1562                        } else {
1563                                rcu_read_unlock();
1564                                parent = data.victim->d_parent;
1565                                if (parent != data.victim)
1566                                        __dput_to_list(parent, &data.dispose);
1567                                __dentry_kill(data.victim);
1568                        }
1569                }
1570                if (!list_empty(&data.dispose))
1571                        shrink_dentry_list(&data.dispose);
1572        }
1573}
1574EXPORT_SYMBOL(shrink_dcache_parent);
1575
1576static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1577{
1578        /* it has busy descendents; complain about those instead */
1579        if (!list_empty(&dentry->d_subdirs))
1580                return D_WALK_CONTINUE;
1581
1582        /* root with refcount 1 is fine */
1583        if (dentry == _data && dentry->d_lockref.count == 1)
1584                return D_WALK_CONTINUE;
1585
1586        printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1587                        " still in use (%d) [unmount of %s %s]\n",
1588                       dentry,
1589                       dentry->d_inode ?
1590                       dentry->d_inode->i_ino : 0UL,
1591                       dentry,
1592                       dentry->d_lockref.count,
1593                       dentry->d_sb->s_type->name,
1594                       dentry->d_sb->s_id);
1595        WARN_ON(1);
1596        return D_WALK_CONTINUE;
1597}
1598
1599static void do_one_tree(struct dentry *dentry)
1600{
1601        shrink_dcache_parent(dentry);
1602        d_walk(dentry, dentry, umount_check);
1603        d_drop(dentry);
1604        dput(dentry);
1605}
1606
1607/*
1608 * destroy the dentries attached to a superblock on unmounting
1609 */
1610void shrink_dcache_for_umount(struct super_block *sb)
1611{
1612        struct dentry *dentry;
1613
1614        WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1615
1616        dentry = sb->s_root;
1617        sb->s_root = NULL;
1618        do_one_tree(dentry);
1619
1620        while (!hlist_bl_empty(&sb->s_roots)) {
1621                dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1622                do_one_tree(dentry);
1623        }
1624}
1625
1626static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1627{
1628        struct dentry **victim = _data;
1629        if (d_mountpoint(dentry)) {
1630                __dget_dlock(dentry);
1631                *victim = dentry;
1632                return D_WALK_QUIT;
1633        }
1634        return D_WALK_CONTINUE;
1635}
1636
1637/**
1638 * d_invalidate - detach submounts, prune dcache, and drop
1639 * @dentry: dentry to invalidate (aka detach, prune and drop)
1640 */
1641void d_invalidate(struct dentry *dentry)
1642{
1643        bool had_submounts = false;
1644        spin_lock(&dentry->d_lock);
1645        if (d_unhashed(dentry)) {
1646                spin_unlock(&dentry->d_lock);
1647                return;
1648        }
1649        __d_drop(dentry);
1650        spin_unlock(&dentry->d_lock);
1651
1652        /* Negative dentries can be dropped without further checks */
1653        if (!dentry->d_inode)
1654                return;
1655
1656        shrink_dcache_parent(dentry);
1657        for (;;) {
1658                struct dentry *victim = NULL;
1659                d_walk(dentry, &victim, find_submount);
1660                if (!victim) {
1661                        if (had_submounts)
1662                                shrink_dcache_parent(dentry);
1663                        return;
1664                }
1665                had_submounts = true;
1666                detach_mounts(victim);
1667                dput(victim);
1668        }
1669}
1670EXPORT_SYMBOL(d_invalidate);
1671
1672/**
1673 * __d_alloc    -       allocate a dcache entry
1674 * @sb: filesystem it will belong to
1675 * @name: qstr of the name
1676 *
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1680 */
1681 
1682struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1683{
1684        struct dentry *dentry;
1685        char *dname;
1686        int err;
1687
1688        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1689        if (!dentry)
1690                return NULL;
1691
1692        /*
1693         * We guarantee that the inline name is always NUL-terminated.
1694         * This way the memcpy() done by the name switching in rename
1695         * will still always have a NUL at the end, even if we might
1696         * be overwriting an internal NUL character
1697         */
1698        dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1699        if (unlikely(!name)) {
1700                name = &slash_name;
1701                dname = dentry->d_iname;
1702        } else if (name->len > DNAME_INLINE_LEN-1) {
1703                size_t size = offsetof(struct external_name, name[1]);
1704                struct external_name *p = kmalloc(size + name->len,
1705                                                  GFP_KERNEL_ACCOUNT |
1706                                                  __GFP_RECLAIMABLE);
1707                if (!p) {
1708                        kmem_cache_free(dentry_cache, dentry); 
1709                        return NULL;
1710                }
1711                atomic_set(&p->u.count, 1);
1712                dname = p->name;
1713        } else  {
1714                dname = dentry->d_iname;
1715        }       
1716
1717        dentry->d_name.len = name->len;
1718        dentry->d_name.hash = name->hash;
1719        memcpy(dname, name->name, name->len);
1720        dname[name->len] = 0;
1721
1722        /* Make sure we always see the terminating NUL character */
1723        smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1724
1725        dentry->d_lockref.count = 1;
1726        dentry->d_flags = 0;
1727        spin_lock_init(&dentry->d_lock);
1728        seqcount_init(&dentry->d_seq);
1729        dentry->d_inode = NULL;
1730        dentry->d_parent = dentry;
1731        dentry->d_sb = sb;
1732        dentry->d_op = NULL;
1733        dentry->d_fsdata = NULL;
1734        INIT_HLIST_BL_NODE(&dentry->d_hash);
1735        INIT_LIST_HEAD(&dentry->d_lru);
1736        INIT_LIST_HEAD(&dentry->d_subdirs);
1737        INIT_HLIST_NODE(&dentry->d_u.d_alias);
1738        INIT_LIST_HEAD(&dentry->d_child);
1739        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1740
1741        if (dentry->d_op && dentry->d_op->d_init) {
1742                err = dentry->d_op->d_init(dentry);
1743                if (err) {
1744                        if (dname_external(dentry))
1745                                kfree(external_name(dentry));
1746                        kmem_cache_free(dentry_cache, dentry);
1747                        return NULL;
1748                }
1749        }
1750
1751        this_cpu_inc(nr_dentry);
1752
1753        return dentry;
1754}
1755
1756/**
1757 * d_alloc      -       allocate a dcache entry
1758 * @parent: parent of entry to allocate
1759 * @name: qstr of the name
1760 *
1761 * Allocates a dentry. It returns %NULL if there is insufficient memory
1762 * available. On a success the dentry is returned. The name passed in is
1763 * copied and the copy passed in may be reused after this call.
1764 */
1765struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1766{
1767        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1768        if (!dentry)
1769                return NULL;
1770        spin_lock(&parent->d_lock);
1771        /*
1772         * don't need child lock because it is not subject
1773         * to concurrency here
1774         */
1775        __dget_dlock(parent);
1776        dentry->d_parent = parent;
1777        list_add(&dentry->d_child, &parent->d_subdirs);
1778        spin_unlock(&parent->d_lock);
1779
1780        return dentry;
1781}
1782EXPORT_SYMBOL(d_alloc);
1783
1784struct dentry *d_alloc_anon(struct super_block *sb)
1785{
1786        return __d_alloc(sb, NULL);
1787}
1788EXPORT_SYMBOL(d_alloc_anon);
1789
1790struct dentry *d_alloc_cursor(struct dentry * parent)
1791{
1792        struct dentry *dentry = d_alloc_anon(parent->d_sb);
1793        if (dentry) {
1794                dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1795                dentry->d_parent = dget(parent);
1796        }
1797        return dentry;
1798}
1799
1800/**
1801 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1802 * @sb: the superblock
1803 * @name: qstr of the name
1804 *
1805 * For a filesystem that just pins its dentries in memory and never
1806 * performs lookups at all, return an unhashed IS_ROOT dentry.
1807 * This is used for pipes, sockets et.al. - the stuff that should
1808 * never be anyone's children or parents.  Unlike all other
1809 * dentries, these will not have RCU delay between dropping the
1810 * last reference and freeing them.
1811 *
1812 * The only user is alloc_file_pseudo() and that's what should
1813 * be considered a public interface.  Don't use directly.
1814 */
1815struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1816{
1817        struct dentry *dentry = __d_alloc(sb, name);
1818        if (likely(dentry))
1819                dentry->d_flags |= DCACHE_NORCU;
1820        return dentry;
1821}
1822
1823struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1824{
1825        struct qstr q;
1826
1827        q.name = name;
1828        q.hash_len = hashlen_string(parent, name);
1829        return d_alloc(parent, &q);
1830}
1831EXPORT_SYMBOL(d_alloc_name);
1832
1833void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1834{
1835        WARN_ON_ONCE(dentry->d_op);
1836        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1837                                DCACHE_OP_COMPARE       |
1838                                DCACHE_OP_REVALIDATE    |
1839                                DCACHE_OP_WEAK_REVALIDATE       |
1840                                DCACHE_OP_DELETE        |
1841                                DCACHE_OP_REAL));
1842        dentry->d_op = op;
1843        if (!op)
1844                return;
1845        if (op->d_hash)
1846                dentry->d_flags |= DCACHE_OP_HASH;
1847        if (op->d_compare)
1848                dentry->d_flags |= DCACHE_OP_COMPARE;
1849        if (op->d_revalidate)
1850                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1851        if (op->d_weak_revalidate)
1852                dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1853        if (op->d_delete)
1854                dentry->d_flags |= DCACHE_OP_DELETE;
1855        if (op->d_prune)
1856                dentry->d_flags |= DCACHE_OP_PRUNE;
1857        if (op->d_real)
1858                dentry->d_flags |= DCACHE_OP_REAL;
1859
1860}
1861EXPORT_SYMBOL(d_set_d_op);
1862
1863
1864/*
1865 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1866 * @dentry - The dentry to mark
1867 *
1868 * Mark a dentry as falling through to the lower layer (as set with
1869 * d_pin_lower()).  This flag may be recorded on the medium.
1870 */
1871void d_set_fallthru(struct dentry *dentry)
1872{
1873        spin_lock(&dentry->d_lock);
1874        dentry->d_flags |= DCACHE_FALLTHRU;
1875        spin_unlock(&dentry->d_lock);
1876}
1877EXPORT_SYMBOL(d_set_fallthru);
1878
1879static unsigned d_flags_for_inode(struct inode *inode)
1880{
1881        unsigned add_flags = DCACHE_REGULAR_TYPE;
1882
1883        if (!inode)
1884                return DCACHE_MISS_TYPE;
1885
1886        if (S_ISDIR(inode->i_mode)) {
1887                add_flags = DCACHE_DIRECTORY_TYPE;
1888                if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1889                        if (unlikely(!inode->i_op->lookup))
1890                                add_flags = DCACHE_AUTODIR_TYPE;
1891                        else
1892                                inode->i_opflags |= IOP_LOOKUP;
1893                }
1894                goto type_determined;
1895        }
1896
1897        if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1898                if (unlikely(inode->i_op->get_link)) {
1899                        add_flags = DCACHE_SYMLINK_TYPE;
1900                        goto type_determined;
1901                }
1902                inode->i_opflags |= IOP_NOFOLLOW;
1903        }
1904
1905        if (unlikely(!S_ISREG(inode->i_mode)))
1906                add_flags = DCACHE_SPECIAL_TYPE;
1907
1908type_determined:
1909        if (unlikely(IS_AUTOMOUNT(inode)))
1910                add_flags |= DCACHE_NEED_AUTOMOUNT;
1911        return add_flags;
1912}
1913
1914static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1915{
1916        unsigned add_flags = d_flags_for_inode(inode);
1917        WARN_ON(d_in_lookup(dentry));
1918
1919        spin_lock(&dentry->d_lock);
1920        /*
1921         * Decrement negative dentry count if it was in the LRU list.
1922         */
1923        if (dentry->d_flags & DCACHE_LRU_LIST)
1924                this_cpu_dec(nr_dentry_negative);
1925        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1926        raw_write_seqcount_begin(&dentry->d_seq);
1927        __d_set_inode_and_type(dentry, inode, add_flags);
1928        raw_write_seqcount_end(&dentry->d_seq);
1929        fsnotify_update_flags(dentry);
1930        spin_unlock(&dentry->d_lock);
1931}
1932
1933/**
1934 * d_instantiate - fill in inode information for a dentry
1935 * @entry: dentry to complete
1936 * @inode: inode to attach to this dentry
1937 *
1938 * Fill in inode information in the entry.
1939 *
1940 * This turns negative dentries into productive full members
1941 * of society.
1942 *
1943 * NOTE! This assumes that the inode count has been incremented
1944 * (or otherwise set) by the caller to indicate that it is now
1945 * in use by the dcache.
1946 */
1947 
1948void d_instantiate(struct dentry *entry, struct inode * inode)
1949{
1950        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1951        if (inode) {
1952                security_d_instantiate(entry, inode);
1953                spin_lock(&inode->i_lock);
1954                __d_instantiate(entry, inode);
1955                spin_unlock(&inode->i_lock);
1956        }
1957}
1958EXPORT_SYMBOL(d_instantiate);
1959
1960/*
1961 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1962 * with lockdep-related part of unlock_new_inode() done before
1963 * anything else.  Use that instead of open-coding d_instantiate()/
1964 * unlock_new_inode() combinations.
1965 */
1966void d_instantiate_new(struct dentry *entry, struct inode *inode)
1967{
1968        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1969        BUG_ON(!inode);
1970        lockdep_annotate_inode_mutex_key(inode);
1971        security_d_instantiate(entry, inode);
1972        spin_lock(&inode->i_lock);
1973        __d_instantiate(entry, inode);
1974        WARN_ON(!(inode->i_state & I_NEW));
1975        inode->i_state &= ~I_NEW & ~I_CREATING;
1976        smp_mb();
1977        wake_up_bit(&inode->i_state, __I_NEW);
1978        spin_unlock(&inode->i_lock);
1979}
1980EXPORT_SYMBOL(d_instantiate_new);
1981
1982struct dentry *d_make_root(struct inode *root_inode)
1983{
1984        struct dentry *res = NULL;
1985
1986        if (root_inode) {
1987                res = d_alloc_anon(root_inode->i_sb);
1988                if (res)
1989                        d_instantiate(res, root_inode);
1990                else
1991                        iput(root_inode);
1992        }
1993        return res;
1994}
1995EXPORT_SYMBOL(d_make_root);
1996
1997static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1998                                           struct inode *inode,
1999                                           bool disconnected)
2000{
2001        struct dentry *res;
2002        unsigned add_flags;
2003
2004        security_d_instantiate(dentry, inode);
2005        spin_lock(&inode->i_lock);
2006        res = __d_find_any_alias(inode);
2007        if (res) {
2008                spin_unlock(&inode->i_lock);
2009                dput(dentry);
2010                goto out_iput;
2011        }
2012
2013        /* attach a disconnected dentry */
2014        add_flags = d_flags_for_inode(inode);
2015
2016        if (disconnected)
2017                add_flags |= DCACHE_DISCONNECTED;
2018
2019        spin_lock(&dentry->d_lock);
2020        __d_set_inode_and_type(dentry, inode, add_flags);
2021        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2022        if (!disconnected) {
2023                hlist_bl_lock(&dentry->d_sb->s_roots);
2024                hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2025                hlist_bl_unlock(&dentry->d_sb->s_roots);
2026        }
2027        spin_unlock(&dentry->d_lock);
2028        spin_unlock(&inode->i_lock);
2029
2030        return dentry;
2031
2032 out_iput:
2033        iput(inode);
2034        return res;
2035}
2036
2037struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2038{
2039        return __d_instantiate_anon(dentry, inode, true);
2040}
2041EXPORT_SYMBOL(d_instantiate_anon);
2042
2043static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2044{
2045        struct dentry *tmp;
2046        struct dentry *res;
2047
2048        if (!inode)
2049                return ERR_PTR(-ESTALE);
2050        if (IS_ERR(inode))
2051                return ERR_CAST(inode);
2052
2053        res = d_find_any_alias(inode);
2054        if (res)
2055                goto out_iput;
2056
2057        tmp = d_alloc_anon(inode->i_sb);
2058        if (!tmp) {
2059                res = ERR_PTR(-ENOMEM);
2060                goto out_iput;
2061        }
2062
2063        return __d_instantiate_anon(tmp, inode, disconnected);
2064
2065out_iput:
2066        iput(inode);
2067        return res;
2068}
2069
2070/**
2071 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2072 * @inode: inode to allocate the dentry for
2073 *
2074 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2075 * similar open by handle operations.  The returned dentry may be anonymous,
2076 * or may have a full name (if the inode was already in the cache).
2077 *
2078 * When called on a directory inode, we must ensure that the inode only ever
2079 * has one dentry.  If a dentry is found, that is returned instead of
2080 * allocating a new one.
2081 *
2082 * On successful return, the reference to the inode has been transferred
2083 * to the dentry.  In case of an error the reference on the inode is released.
2084 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2085 * be passed in and the error will be propagated to the return value,
2086 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2087 */
2088struct dentry *d_obtain_alias(struct inode *inode)
2089{
2090        return __d_obtain_alias(inode, true);
2091}
2092EXPORT_SYMBOL(d_obtain_alias);
2093
2094/**
2095 * d_obtain_root - find or allocate a dentry for a given inode
2096 * @inode: inode to allocate the dentry for
2097 *
2098 * Obtain an IS_ROOT dentry for the root of a filesystem.
2099 *
2100 * We must ensure that directory inodes only ever have one dentry.  If a
2101 * dentry is found, that is returned instead of allocating a new one.
2102 *
2103 * On successful return, the reference to the inode has been transferred
2104 * to the dentry.  In case of an error the reference on the inode is
2105 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2106 * error will be propagate to the return value, with a %NULL @inode
2107 * replaced by ERR_PTR(-ESTALE).
2108 */
2109struct dentry *d_obtain_root(struct inode *inode)
2110{
2111        return __d_obtain_alias(inode, false);
2112}
2113EXPORT_SYMBOL(d_obtain_root);
2114
2115/**
2116 * d_add_ci - lookup or allocate new dentry with case-exact name
2117 * @inode:  the inode case-insensitive lookup has found
2118 * @dentry: the negative dentry that was passed to the parent's lookup func
2119 * @name:   the case-exact name to be associated with the returned dentry
2120 *
2121 * This is to avoid filling the dcache with case-insensitive names to the
2122 * same inode, only the actual correct case is stored in the dcache for
2123 * case-insensitive filesystems.
2124 *
2125 * For a case-insensitive lookup match and if the the case-exact dentry
2126 * already exists in in the dcache, use it and return it.
2127 *
2128 * If no entry exists with the exact case name, allocate new dentry with
2129 * the exact case, and return the spliced entry.
2130 */
2131struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2132                        struct qstr *name)
2133{
2134        struct dentry *found, *res;
2135
2136        /*
2137         * First check if a dentry matching the name already exists,
2138         * if not go ahead and create it now.
2139         */
2140        found = d_hash_and_lookup(dentry->d_parent, name);
2141        if (found) {
2142                iput(inode);
2143                return found;
2144        }
2145        if (d_in_lookup(dentry)) {
2146                found = d_alloc_parallel(dentry->d_parent, name,
2147                                        dentry->d_wait);
2148                if (IS_ERR(found) || !d_in_lookup(found)) {
2149                        iput(inode);
2150                        return found;
2151                }
2152        } else {
2153                found = d_alloc(dentry->d_parent, name);
2154                if (!found) {
2155                        iput(inode);
2156                        return ERR_PTR(-ENOMEM);
2157                } 
2158        }
2159        res = d_splice_alias(inode, found);
2160        if (res) {
2161                dput(found);
2162                return res;
2163        }
2164        return found;
2165}
2166EXPORT_SYMBOL(d_add_ci);
2167
2168
2169static inline bool d_same_name(const struct dentry *dentry,
2170                                const struct dentry *parent,
2171                                const struct qstr *name)
2172{
2173        if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2174                if (dentry->d_name.len != name->len)
2175                        return false;
2176                return dentry_cmp(dentry, name->name, name->len) == 0;
2177        }
2178        return parent->d_op->d_compare(dentry,
2179                                       dentry->d_name.len, dentry->d_name.name,
2180                                       name) == 0;
2181}
2182
2183/**
2184 * __d_lookup_rcu - search for a dentry (racy, store-free)
2185 * @parent: parent dentry
2186 * @name: qstr of name we wish to find
2187 * @seqp: returns d_seq value at the point where the dentry was found
2188 * Returns: dentry, or NULL
2189 *
2190 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2191 * resolution (store-free path walking) design described in
2192 * Documentation/filesystems/path-lookup.txt.
2193 *
2194 * This is not to be used outside core vfs.
2195 *
2196 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2197 * held, and rcu_read_lock held. The returned dentry must not be stored into
2198 * without taking d_lock and checking d_seq sequence count against @seq
2199 * returned here.
2200 *
2201 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2202 * function.
2203 *
2204 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2205 * the returned dentry, so long as its parent's seqlock is checked after the
2206 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2207 * is formed, giving integrity down the path walk.
2208 *
2209 * NOTE! The caller *has* to check the resulting dentry against the sequence
2210 * number we've returned before using any of the resulting dentry state!
2211 */
2212struct dentry *__d_lookup_rcu(const struct dentry *parent,
2213                                const struct qstr *name,
2214                                unsigned *seqp)
2215{
2216        u64 hashlen = name->hash_len;
2217        const unsigned char *str = name->name;
2218        struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2219        struct hlist_bl_node *node;
2220        struct dentry *dentry;
2221
2222        /*
2223         * Note: There is significant duplication with __d_lookup_rcu which is
2224         * required to prevent single threaded performance regressions
2225         * especially on architectures where smp_rmb (in seqcounts) are costly.
2226         * Keep the two functions in sync.
2227         */
2228
2229        /*
2230         * The hash list is protected using RCU.
2231         *
2232         * Carefully use d_seq when comparing a candidate dentry, to avoid
2233         * races with d_move().
2234         *
2235         * It is possible that concurrent renames can mess up our list
2236         * walk here and result in missing our dentry, resulting in the
2237         * false-negative result. d_lookup() protects against concurrent
2238         * renames using rename_lock seqlock.
2239         *
2240         * See Documentation/filesystems/path-lookup.txt for more details.
2241         */
2242        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2243                unsigned seq;
2244
2245seqretry:
2246                /*
2247                 * The dentry sequence count protects us from concurrent
2248                 * renames, and thus protects parent and name fields.
2249                 *
2250                 * The caller must perform a seqcount check in order
2251                 * to do anything useful with the returned dentry.
2252                 *
2253                 * NOTE! We do a "raw" seqcount_begin here. That means that
2254                 * we don't wait for the sequence count to stabilize if it
2255                 * is in the middle of a sequence change. If we do the slow
2256                 * dentry compare, we will do seqretries until it is stable,
2257                 * and if we end up with a successful lookup, we actually
2258                 * want to exit RCU lookup anyway.
2259                 *
2260                 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2261                 * we are still guaranteed NUL-termination of ->d_name.name.
2262                 */
2263                seq = raw_seqcount_begin(&dentry->d_seq);
2264                if (dentry->d_parent != parent)
2265                        continue;
2266                if (d_unhashed(dentry))
2267                        continue;
2268
2269                if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2270                        int tlen;
2271                        const char *tname;
2272                        if (dentry->d_name.hash != hashlen_hash(hashlen))
2273                                continue;
2274                        tlen = dentry->d_name.len;
2275                        tname = dentry->d_name.name;
2276                        /* we want a consistent (name,len) pair */
2277                        if (read_seqcount_retry(&dentry->d_seq, seq)) {
2278                                cpu_relax();
2279                                goto seqretry;
2280                        }
2281                        if (parent->d_op->d_compare(dentry,
2282                                                    tlen, tname, name) != 0)
2283                                continue;
2284                } else {
2285                        if (dentry->d_name.hash_len != hashlen)
2286                                continue;
2287                        if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2288                                continue;
2289                }
2290                *seqp = seq;
2291                return dentry;
2292        }
2293        return NULL;
2294}
2295
2296/**
2297 * d_lookup - search for a dentry
2298 * @parent: parent dentry
2299 * @name: qstr of name we wish to find
2300 * Returns: dentry, or NULL
2301 *
2302 * d_lookup searches the children of the parent dentry for the name in
2303 * question. If the dentry is found its reference count is incremented and the
2304 * dentry is returned. The caller must use dput to free the entry when it has
2305 * finished using it. %NULL is returned if the dentry does not exist.
2306 */
2307struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2308{
2309        struct dentry *dentry;
2310        unsigned seq;
2311
2312        do {
2313                seq = read_seqbegin(&rename_lock);
2314                dentry = __d_lookup(parent, name);
2315                if (dentry)
2316                        break;
2317        } while (read_seqretry(&rename_lock, seq));
2318        return dentry;
2319}
2320EXPORT_SYMBOL(d_lookup);
2321
2322/**
2323 * __d_lookup - search for a dentry (racy)
2324 * @parent: parent dentry
2325 * @name: qstr of name we wish to find
2326 * Returns: dentry, or NULL
2327 *
2328 * __d_lookup is like d_lookup, however it may (rarely) return a
2329 * false-negative result due to unrelated rename activity.
2330 *
2331 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2332 * however it must be used carefully, eg. with a following d_lookup in
2333 * the case of failure.
2334 *
2335 * __d_lookup callers must be commented.
2336 */
2337struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2338{
2339        unsigned int hash = name->hash;
2340        struct hlist_bl_head *b = d_hash(hash);
2341        struct hlist_bl_node *node;
2342        struct dentry *found = NULL;
2343        struct dentry *dentry;
2344
2345        /*
2346         * Note: There is significant duplication with __d_lookup_rcu which is
2347         * required to prevent single threaded performance regressions
2348         * especially on architectures where smp_rmb (in seqcounts) are costly.
2349         * Keep the two functions in sync.
2350         */
2351
2352        /*
2353         * The hash list is protected using RCU.
2354         *
2355         * Take d_lock when comparing a candidate dentry, to avoid races
2356         * with d_move().
2357         *
2358         * It is possible that concurrent renames can mess up our list
2359         * walk here and result in missing our dentry, resulting in the
2360         * false-negative result. d_lookup() protects against concurrent
2361         * renames using rename_lock seqlock.
2362         *
2363         * See Documentation/filesystems/path-lookup.txt for more details.
2364         */
2365        rcu_read_lock();
2366        
2367        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2368
2369                if (dentry->d_name.hash != hash)
2370                        continue;
2371
2372                spin_lock(&dentry->d_lock);
2373                if (dentry->d_parent != parent)
2374                        goto next;
2375                if (d_unhashed(dentry))
2376                        goto next;
2377
2378                if (!d_same_name(dentry, parent, name))
2379                        goto next;
2380
2381                dentry->d_lockref.count++;
2382                found = dentry;
2383                spin_unlock(&dentry->d_lock);
2384                break;
2385next:
2386                spin_unlock(&dentry->d_lock);
2387        }
2388        rcu_read_unlock();
2389
2390        return found;
2391}
2392
2393/**
2394 * d_hash_and_lookup - hash the qstr then search for a dentry
2395 * @dir: Directory to search in
2396 * @name: qstr of name we wish to find
2397 *
2398 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2399 */
2400struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2401{
2402        /*
2403         * Check for a fs-specific hash function. Note that we must
2404         * calculate the standard hash first, as the d_op->d_hash()
2405         * routine may choose to leave the hash value unchanged.
2406         */
2407        name->hash = full_name_hash(dir, name->name, name->len);
2408        if (dir->d_flags & DCACHE_OP_HASH) {
2409                int err = dir->d_op->d_hash(dir, name);
2410                if (unlikely(err < 0))
2411                        return ERR_PTR(err);
2412        }
2413        return d_lookup(dir, name);
2414}
2415EXPORT_SYMBOL(d_hash_and_lookup);
2416
2417/*
2418 * When a file is deleted, we have two options:
2419 * - turn this dentry into a negative dentry
2420 * - unhash this dentry and free it.
2421 *
2422 * Usually, we want to just turn this into
2423 * a negative dentry, but if anybody else is
2424 * currently using the dentry or the inode
2425 * we can't do that and we fall back on removing
2426 * it from the hash queues and waiting for
2427 * it to be deleted later when it has no users
2428 */
2429 
2430/**
2431 * d_delete - delete a dentry
2432 * @dentry: The dentry to delete
2433 *
2434 * Turn the dentry into a negative dentry if possible, otherwise
2435 * remove it from the hash queues so it can be deleted later
2436 */
2437 
2438void d_delete(struct dentry * dentry)
2439{
2440        struct inode *inode = dentry->d_inode;
2441
2442        spin_lock(&inode->i_lock);
2443        spin_lock(&dentry->d_lock);
2444        /*
2445         * Are we the only user?
2446         */
2447        if (dentry->d_lockref.count == 1) {
2448                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2449                dentry_unlink_inode(dentry);
2450        } else {
2451                __d_drop(dentry);
2452                spin_unlock(&dentry->d_lock);
2453                spin_unlock(&inode->i_lock);
2454        }
2455}
2456EXPORT_SYMBOL(d_delete);
2457
2458static void __d_rehash(struct dentry *entry)
2459{
2460        struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2461
2462        hlist_bl_lock(b);
2463        hlist_bl_add_head_rcu(&entry->d_hash, b);
2464        hlist_bl_unlock(b);
2465}
2466
2467/**
2468 * d_rehash     - add an entry back to the hash
2469 * @entry: dentry to add to the hash
2470 *
2471 * Adds a dentry to the hash according to its name.
2472 */
2473 
2474void d_rehash(struct dentry * entry)
2475{
2476        spin_lock(&entry->d_lock);
2477        __d_rehash(entry);
2478        spin_unlock(&entry->d_lock);
2479}
2480EXPORT_SYMBOL(d_rehash);
2481
2482static inline unsigned start_dir_add(struct inode *dir)
2483{
2484
2485        for (;;) {
2486                unsigned n = dir->i_dir_seq;
2487                if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488                        return n;
2489                cpu_relax();
2490        }
2491}
2492
2493static inline void end_dir_add(struct inode *dir, unsigned n)
2494{
2495        smp_store_release(&dir->i_dir_seq, n + 2);
2496}
2497
2498static void d_wait_lookup(struct dentry *dentry)
2499{
2500        if (d_in_lookup(dentry)) {
2501                DECLARE_WAITQUEUE(wait, current);
2502                add_wait_queue(dentry->d_wait, &wait);
2503                do {
2504                        set_current_state(TASK_UNINTERRUPTIBLE);
2505                        spin_unlock(&dentry->d_lock);
2506                        schedule();
2507                        spin_lock(&dentry->d_lock);
2508                } while (d_in_lookup(dentry));
2509        }
2510}
2511
2512struct dentry *d_alloc_parallel(struct dentry *parent,
2513                                const struct qstr *name,
2514                                wait_queue_head_t *wq)
2515{
2516        unsigned int hash = name->hash;
2517        struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518        struct hlist_bl_node *node;
2519        struct dentry *new = d_alloc(parent, name);
2520        struct dentry *dentry;
2521        unsigned seq, r_seq, d_seq;
2522
2523        if (unlikely(!new))
2524                return ERR_PTR(-ENOMEM);
2525
2526retry:
2527        rcu_read_lock();
2528        seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2529        r_seq = read_seqbegin(&rename_lock);
2530        dentry = __d_lookup_rcu(parent, name, &d_seq);
2531        if (unlikely(dentry)) {
2532                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533                        rcu_read_unlock();
2534                        goto retry;
2535                }
2536                if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537                        rcu_read_unlock();
2538                        dput(dentry);
2539                        goto retry;
2540                }
2541                rcu_read_unlock();
2542                dput(new);
2543                return dentry;
2544        }
2545        if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546                rcu_read_unlock();
2547                goto retry;
2548        }
2549
2550        if (unlikely(seq & 1)) {
2551                rcu_read_unlock();
2552                goto retry;
2553        }
2554
2555        hlist_bl_lock(b);
2556        if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2557                hlist_bl_unlock(b);
2558                rcu_read_unlock();
2559                goto retry;
2560        }
2561        /*
2562         * No changes for the parent since the beginning of d_lookup().
2563         * Since all removals from the chain happen with hlist_bl_lock(),
2564         * any potential in-lookup matches are going to stay here until
2565         * we unlock the chain.  All fields are stable in everything
2566         * we encounter.
2567         */
2568        hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569                if (dentry->d_name.hash != hash)
2570                        continue;
2571                if (dentry->d_parent != parent)
2572                        continue;
2573                if (!d_same_name(dentry, parent, name))
2574                        continue;
2575                hlist_bl_unlock(b);
2576                /* now we can try to grab a reference */
2577                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578                        rcu_read_unlock();
2579                        goto retry;
2580                }
2581
2582                rcu_read_unlock();
2583                /*
2584                 * somebody is likely to be still doing lookup for it;
2585                 * wait for them to finish
2586                 */
2587                spin_lock(&dentry->d_lock);
2588                d_wait_lookup(dentry);
2589                /*
2590                 * it's not in-lookup anymore; in principle we should repeat
2591                 * everything from dcache lookup, but it's likely to be what
2592                 * d_lookup() would've found anyway.  If it is, just return it;
2593                 * otherwise we really have to repeat the whole thing.
2594                 */
2595                if (unlikely(dentry->d_name.hash != hash))
2596                        goto mismatch;
2597                if (unlikely(dentry->d_parent != parent))
2598                        goto mismatch;
2599                if (unlikely(d_unhashed(dentry)))
2600                        goto mismatch;
2601                if (unlikely(!d_same_name(dentry, parent, name)))
2602                        goto mismatch;
2603                /* OK, it *is* a hashed match; return it */
2604                spin_unlock(&dentry->d_lock);
2605                dput(new);
2606                return dentry;
2607        }
2608        rcu_read_unlock();
2609        /* we can't take ->d_lock here; it's OK, though. */
2610        new->d_flags |= DCACHE_PAR_LOOKUP;
2611        new->d_wait = wq;
2612        hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613        hlist_bl_unlock(b);
2614        return new;
2615mismatch:
2616        spin_unlock(&dentry->d_lock);
2617        dput(dentry);
2618        goto retry;
2619}
2620EXPORT_SYMBOL(d_alloc_parallel);
2621
2622void __d_lookup_done(struct dentry *dentry)
2623{
2624        struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625                                                 dentry->d_name.hash);
2626        hlist_bl_lock(b);
2627        dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2628        __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2629        wake_up_all(dentry->d_wait);
2630        dentry->d_wait = NULL;
2631        hlist_bl_unlock(b);
2632        INIT_HLIST_NODE(&dentry->d_u.d_alias);
2633        INIT_LIST_HEAD(&dentry->d_lru);
2634}
2635EXPORT_SYMBOL(__d_lookup_done);
2636
2637/* inode->i_lock held if inode is non-NULL */
2638
2639static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640{
2641        struct inode *dir = NULL;
2642        unsigned n;
2643        spin_lock(&dentry->d_lock);
2644        if (unlikely(d_in_lookup(dentry))) {
2645                dir = dentry->d_parent->d_inode;
2646                n = start_dir_add(dir);
2647                __d_lookup_done(dentry);
2648        }
2649        if (inode) {
2650                unsigned add_flags = d_flags_for_inode(inode);
2651                hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652                raw_write_seqcount_begin(&dentry->d_seq);
2653                __d_set_inode_and_type(dentry, inode, add_flags);
2654                raw_write_seqcount_end(&dentry->d_seq);
2655                fsnotify_update_flags(dentry);
2656        }
2657        __d_rehash(dentry);
2658        if (dir)
2659                end_dir_add(dir, n);
2660        spin_unlock(&dentry->d_lock);
2661        if (inode)
2662                spin_unlock(&inode->i_lock);
2663}
2664
2665/**
2666 * d_add - add dentry to hash queues
2667 * @entry: dentry to add
2668 * @inode: The inode to attach to this dentry
2669 *
2670 * This adds the entry to the hash queues and initializes @inode.
2671 * The entry was actually filled in earlier during d_alloc().
2672 */
2673
2674void d_add(struct dentry *entry, struct inode *inode)
2675{
2676        if (inode) {
2677                security_d_instantiate(entry, inode);
2678                spin_lock(&inode->i_lock);
2679        }
2680        __d_add(entry, inode);
2681}
2682EXPORT_SYMBOL(d_add);
2683
2684/**
2685 * d_exact_alias - find and hash an exact unhashed alias
2686 * @entry: dentry to add
2687 * @inode: The inode to go with this dentry
2688 *
2689 * If an unhashed dentry with the same name/parent and desired
2690 * inode already exists, hash and return it.  Otherwise, return
2691 * NULL.
2692 *
2693 * Parent directory should be locked.
2694 */
2695struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696{
2697        struct dentry *alias;
2698        unsigned int hash = entry->d_name.hash;
2699
2700        spin_lock(&inode->i_lock);
2701        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702                /*
2703                 * Don't need alias->d_lock here, because aliases with
2704                 * d_parent == entry->d_parent are not subject to name or
2705                 * parent changes, because the parent inode i_mutex is held.
2706                 */
2707                if (alias->d_name.hash != hash)
2708                        continue;
2709                if (alias->d_parent != entry->d_parent)
2710                        continue;
2711                if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2712                        continue;
2713                spin_lock(&alias->d_lock);
2714                if (!d_unhashed(alias)) {
2715                        spin_unlock(&alias->d_lock);
2716                        alias = NULL;
2717                } else {
2718                        __dget_dlock(alias);
2719                        __d_rehash(alias);
2720                        spin_unlock(&alias->d_lock);
2721                }
2722                spin_unlock(&inode->i_lock);
2723                return alias;
2724        }
2725        spin_unlock(&inode->i_lock);
2726        return NULL;
2727}
2728EXPORT_SYMBOL(d_exact_alias);
2729
2730static void swap_names(struct dentry *dentry, struct dentry *target)
2731{
2732        if (unlikely(dname_external(target))) {
2733                if (unlikely(dname_external(dentry))) {
2734                        /*
2735                         * Both external: swap the pointers
2736                         */
2737                        swap(target->d_name.name, dentry->d_name.name);
2738                } else {
2739                        /*
2740                         * dentry:internal, target:external.  Steal target's
2741                         * storage and make target internal.
2742                         */
2743                        memcpy(target->d_iname, dentry->d_name.name,
2744                                        dentry->d_name.len + 1);
2745                        dentry->d_name.name = target->d_name.name;
2746                        target->d_name.name = target->d_iname;
2747                }
2748        } else {
2749                if (unlikely(dname_external(dentry))) {
2750                        /*
2751                         * dentry:external, target:internal.  Give dentry's
2752                         * storage to target and make dentry internal
2753                         */
2754                        memcpy(dentry->d_iname, target->d_name.name,
2755                                        target->d_name.len + 1);
2756                        target->d_name.name = dentry->d_name.name;
2757                        dentry->d_name.name = dentry->d_iname;
2758                } else {
2759                        /*
2760                         * Both are internal.
2761                         */
2762                        unsigned int i;
2763                        BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2764                        for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2765                                swap(((long *) &dentry->d_iname)[i],
2766                                     ((long *) &target->d_iname)[i]);
2767                        }
2768                }
2769        }
2770        swap(dentry->d_name.hash_len, target->d_name.hash_len);
2771}
2772
2773static void copy_name(struct dentry *dentry, struct dentry *target)
2774{
2775        struct external_name *old_name = NULL;
2776        if (unlikely(dname_external(dentry)))
2777                old_name = external_name(dentry);
2778        if (unlikely(dname_external(target))) {
2779                atomic_inc(&external_name(target)->u.count);
2780                dentry->d_name = target->d_name;
2781        } else {
2782                memcpy(dentry->d_iname, target->d_name.name,
2783                                target->d_name.len + 1);
2784                dentry->d_name.name = dentry->d_iname;
2785                dentry->d_name.hash_len = target->d_name.hash_len;
2786        }
2787        if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2788                kfree_rcu(old_name, u.head);
2789}
2790
2791/*
2792 * __d_move - move a dentry
2793 * @dentry: entry to move
2794 * @target: new dentry
2795 * @exchange: exchange the two dentries
2796 *
2797 * Update the dcache to reflect the move of a file name. Negative
2798 * dcache entries should not be moved in this way. Caller must hold
2799 * rename_lock, the i_mutex of the source and target directories,
2800 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2801 */
2802static void __d_move(struct dentry *dentry, struct dentry *target,
2803                     bool exchange)
2804{
2805        struct dentry *old_parent, *p;
2806        struct inode *dir = NULL;
2807        unsigned n;
2808
2809        WARN_ON(!dentry->d_inode);
2810        if (WARN_ON(dentry == target))
2811                return;
2812
2813        BUG_ON(d_ancestor(target, dentry));
2814        old_parent = dentry->d_parent;
2815        p = d_ancestor(old_parent, target);
2816        if (IS_ROOT(dentry)) {
2817                BUG_ON(p);
2818                spin_lock(&target->d_parent->d_lock);
2819        } else if (!p) {
2820                /* target is not a descendent of dentry->d_parent */
2821                spin_lock(&target->d_parent->d_lock);
2822                spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2823        } else {
2824                BUG_ON(p == dentry);
2825                spin_lock(&old_parent->d_lock);
2826                if (p != target)
2827                        spin_lock_nested(&target->d_parent->d_lock,
2828                                        DENTRY_D_LOCK_NESTED);
2829        }
2830        spin_lock_nested(&dentry->d_lock, 2);
2831        spin_lock_nested(&target->d_lock, 3);
2832
2833        if (unlikely(d_in_lookup(target))) {
2834                dir = target->d_parent->d_inode;
2835                n = start_dir_add(dir);
2836                __d_lookup_done(target);
2837        }
2838
2839        write_seqcount_begin(&dentry->d_seq);
2840        write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2841
2842        /* unhash both */
2843        if (!d_unhashed(dentry))
2844                ___d_drop(dentry);
2845        if (!d_unhashed(target))
2846                ___d_drop(target);
2847
2848        /* ... and switch them in the tree */
2849        dentry->d_parent = target->d_parent;
2850        if (!exchange) {
2851                copy_name(dentry, target);
2852                target->d_hash.pprev = NULL;
2853                dentry->d_parent->d_lockref.count++;
2854                if (dentry != old_parent) /* wasn't IS_ROOT */
2855                        WARN_ON(!--old_parent->d_lockref.count);
2856        } else {
2857                target->d_parent = old_parent;
2858                swap_names(dentry, target);
2859                list_move(&target->d_child, &target->d_parent->d_subdirs);
2860                __d_rehash(target);
2861                fsnotify_update_flags(target);
2862        }
2863        list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2864        __d_rehash(dentry);
2865        fsnotify_update_flags(dentry);
2866        fscrypt_handle_d_move(dentry);
2867
2868        write_seqcount_end(&target->d_seq);
2869        write_seqcount_end(&dentry->d_seq);
2870
2871        if (dir)
2872                end_dir_add(dir, n);
2873
2874        if (dentry->d_parent != old_parent)
2875                spin_unlock(&dentry->d_parent->d_lock);
2876        if (dentry != old_parent)
2877                spin_unlock(&old_parent->d_lock);
2878        spin_unlock(&target->d_lock);
2879        spin_unlock(&dentry->d_lock);
2880}
2881
2882/*
2883 * d_move - move a dentry
2884 * @dentry: entry to move
2885 * @target: new dentry
2886 *
2887 * Update the dcache to reflect the move of a file name. Negative
2888 * dcache entries should not be moved in this way. See the locking
2889 * requirements for __d_move.
2890 */
2891void d_move(struct dentry *dentry, struct dentry *target)
2892{
2893        write_seqlock(&rename_lock);
2894        __d_move(dentry, target, false);
2895        write_sequnlock(&rename_lock);
2896}
2897EXPORT_SYMBOL(d_move);
2898
2899/*
2900 * d_exchange - exchange two dentries
2901 * @dentry1: first dentry
2902 * @dentry2: second dentry
2903 */
2904void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2905{
2906        write_seqlock(&rename_lock);
2907
2908        WARN_ON(!dentry1->d_inode);
2909        WARN_ON(!dentry2->d_inode);
2910        WARN_ON(IS_ROOT(dentry1));
2911        WARN_ON(IS_ROOT(dentry2));
2912
2913        __d_move(dentry1, dentry2, true);
2914
2915        write_sequnlock(&rename_lock);
2916}
2917
2918/**
2919 * d_ancestor - search for an ancestor
2920 * @p1: ancestor dentry
2921 * @p2: child dentry
2922 *
2923 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2924 * an ancestor of p2, else NULL.
2925 */
2926struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2927{
2928        struct dentry *p;
2929
2930        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2931                if (p->d_parent == p1)
2932                        return p;
2933        }
2934        return NULL;
2935}
2936
2937/*
2938 * This helper attempts to cope with remotely renamed directories
2939 *
2940 * It assumes that the caller is already holding
2941 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2942 *
2943 * Note: If ever the locking in lock_rename() changes, then please
2944 * remember to update this too...
2945 */
2946static int __d_unalias(struct inode *inode,
2947                struct dentry *dentry, struct dentry *alias)
2948{
2949        struct mutex *m1 = NULL;
2950        struct rw_semaphore *m2 = NULL;
2951        int ret = -ESTALE;
2952
2953        /* If alias and dentry share a parent, then no extra locks required */
2954        if (alias->d_parent == dentry->d_parent)
2955                goto out_unalias;
2956
2957        /* See lock_rename() */
2958        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2959                goto out_err;
2960        m1 = &dentry->d_sb->s_vfs_rename_mutex;
2961        if (!inode_trylock_shared(alias->d_parent->d_inode))
2962                goto out_err;
2963        m2 = &alias->d_parent->d_inode->i_rwsem;
2964out_unalias:
2965        __d_move(alias, dentry, false);
2966        ret = 0;
2967out_err:
2968        if (m2)
2969                up_read(m2);
2970        if (m1)
2971                mutex_unlock(m1);
2972        return ret;
2973}
2974
2975/**
2976 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2977 * @inode:  the inode which may have a disconnected dentry
2978 * @dentry: a negative dentry which we want to point to the inode.
2979 *
2980 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2981 * place of the given dentry and return it, else simply d_add the inode
2982 * to the dentry and return NULL.
2983 *
2984 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2985 * we should error out: directories can't have multiple aliases.
2986 *
2987 * This is needed in the lookup routine of any filesystem that is exportable
2988 * (via knfsd) so that we can build dcache paths to directories effectively.
2989 *
2990 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2991 * is returned.  This matches the expected return value of ->lookup.
2992 *
2993 * Cluster filesystems may call this function with a negative, hashed dentry.
2994 * In that case, we know that the inode will be a regular file, and also this
2995 * will only occur during atomic_open. So we need to check for the dentry
2996 * being already hashed only in the final case.
2997 */
2998struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2999{
3000        if (IS_ERR(inode))
3001                return ERR_CAST(inode);
3002
3003        BUG_ON(!d_unhashed(dentry));
3004
3005        if (!inode)
3006                goto out;
3007
3008        security_d_instantiate(dentry, inode);
3009        spin_lock(&inode->i_lock);
3010        if (S_ISDIR(inode->i_mode)) {
3011                struct dentry *new = __d_find_any_alias(inode);
3012                if (unlikely(new)) {
3013                        /* The reference to new ensures it remains an alias */
3014                        spin_unlock(&inode->i_lock);
3015                        write_seqlock(&rename_lock);
3016                        if (unlikely(d_ancestor(new, dentry))) {
3017                                write_sequnlock(&rename_lock);
3018                                dput(new);
3019                                new = ERR_PTR(-ELOOP);
3020                                pr_warn_ratelimited(
3021                                        "VFS: Lookup of '%s' in %s %s"
3022                                        " would have caused loop\n",
3023                                        dentry->d_name.name,
3024                                        inode->i_sb->s_type->name,
3025                                        inode->i_sb->s_id);
3026                        } else if (!IS_ROOT(new)) {
3027                                struct dentry *old_parent = dget(new->d_parent);
3028                                int err = __d_unalias(inode, dentry, new);
3029                                write_sequnlock(&rename_lock);
3030                                if (err) {
3031                                        dput(new);
3032                                        new = ERR_PTR(err);
3033                                }
3034                                dput(old_parent);
3035                        } else {
3036                                __d_move(new, dentry, false);
3037                                write_sequnlock(&rename_lock);
3038                        }
3039                        iput(inode);
3040                        return new;
3041                }
3042        }
3043out:
3044        __d_add(dentry, inode);
3045        return NULL;
3046}
3047EXPORT_SYMBOL(d_splice_alias);
3048
3049/*
3050 * Test whether new_dentry is a subdirectory of old_dentry.
3051 *
3052 * Trivially implemented using the dcache structure
3053 */
3054
3055/**
3056 * is_subdir - is new dentry a subdirectory of old_dentry
3057 * @new_dentry: new dentry
3058 * @old_dentry: old dentry
3059 *
3060 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3061 * Returns false otherwise.
3062 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3063 */
3064  
3065bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3066{
3067        bool result;
3068        unsigned seq;
3069
3070        if (new_dentry == old_dentry)
3071                return true;
3072
3073        do {
3074                /* for restarting inner loop in case of seq retry */
3075                seq = read_seqbegin(&rename_lock);
3076                /*
3077                 * Need rcu_readlock to protect against the d_parent trashing
3078                 * due to d_move
3079                 */
3080                rcu_read_lock();
3081                if (d_ancestor(old_dentry, new_dentry))
3082                        result = true;
3083                else
3084                        result = false;
3085                rcu_read_unlock();
3086        } while (read_seqretry(&rename_lock, seq));
3087
3088        return result;
3089}
3090EXPORT_SYMBOL(is_subdir);
3091
3092static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3093{
3094        struct dentry *root = data;
3095        if (dentry != root) {
3096                if (d_unhashed(dentry) || !dentry->d_inode)
3097                        return D_WALK_SKIP;
3098
3099                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3100                        dentry->d_flags |= DCACHE_GENOCIDE;
3101                        dentry->d_lockref.count--;
3102                }
3103        }
3104        return D_WALK_CONTINUE;
3105}
3106
3107void d_genocide(struct dentry *parent)
3108{
3109        d_walk(parent, parent, d_genocide_kill);
3110}
3111
3112EXPORT_SYMBOL(d_genocide);
3113
3114void d_tmpfile(struct dentry *dentry, struct inode *inode)
3115{
3116        inode_dec_link_count(inode);
3117        BUG_ON(dentry->d_name.name != dentry->d_iname ||
3118                !hlist_unhashed(&dentry->d_u.d_alias) ||
3119                !d_unlinked(dentry));
3120        spin_lock(&dentry->d_parent->d_lock);
3121        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3122        dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3123                                (unsigned long long)inode->i_ino);
3124        spin_unlock(&dentry->d_lock);
3125        spin_unlock(&dentry->d_parent->d_lock);
3126        d_instantiate(dentry, inode);
3127}
3128EXPORT_SYMBOL(d_tmpfile);
3129
3130static __initdata unsigned long dhash_entries;
3131static int __init set_dhash_entries(char *str)
3132{
3133        if (!str)
3134                return 0;
3135        dhash_entries = simple_strtoul(str, &str, 0);
3136        return 1;
3137}
3138__setup("dhash_entries=", set_dhash_entries);
3139
3140static void __init dcache_init_early(void)
3141{
3142        /* If hashes are distributed across NUMA nodes, defer
3143         * hash allocation until vmalloc space is available.
3144         */
3145        if (hashdist)
3146                return;
3147
3148        dentry_hashtable =
3149                alloc_large_system_hash("Dentry cache",
3150                                        sizeof(struct hlist_bl_head),
3151                                        dhash_entries,
3152                                        13,
3153                                        HASH_EARLY | HASH_ZERO,
3154                                        &d_hash_shift,
3155                                        NULL,
3156                                        0,
3157                                        0);
3158        d_hash_shift = 32 - d_hash_shift;
3159}
3160
3161static void __init dcache_init(void)
3162{
3163        /*
3164         * A constructor could be added for stable state like the lists,
3165         * but it is probably not worth it because of the cache nature
3166         * of the dcache.
3167         */
3168        dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3169                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3170                d_iname);
3171
3172        /* Hash may have been set up in dcache_init_early */
3173        if (!hashdist)
3174                return;
3175
3176        dentry_hashtable =
3177                alloc_large_system_hash("Dentry cache",
3178                                        sizeof(struct hlist_bl_head),
3179                                        dhash_entries,
3180                                        13,
3181                                        HASH_ZERO,
3182                                        &d_hash_shift,
3183                                        NULL,
3184                                        0,
3185                                        0);
3186        d_hash_shift = 32 - d_hash_shift;
3187}
3188
3189/* SLAB cache for __getname() consumers */
3190struct kmem_cache *names_cachep __read_mostly;
3191EXPORT_SYMBOL(names_cachep);
3192
3193void __init vfs_caches_init_early(void)
3194{
3195        int i;
3196
3197        for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3198                INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3199
3200        dcache_init_early();
3201        inode_init_early();
3202}
3203
3204void __init vfs_caches_init(void)
3205{
3206        names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3207                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3208
3209        dcache_init();
3210        inode_init();
3211        files_init();
3212        files_maxfiles_init();
3213        mnt_init();
3214        bdev_cache_init();
3215        chrdev_init();
3216}
3217