linux/fs/f2fs/segment.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *discard_cmd_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35        unsigned long tmp = 0;
  36        int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39        shift = 56;
  40#endif
  41        while (shift >= 0) {
  42                tmp |= (unsigned long)str[idx++] << shift;
  43                shift -= BITS_PER_BYTE;
  44        }
  45        return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54        int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57        if ((word & 0xffffffff00000000UL) == 0)
  58                num += 32;
  59        else
  60                word >>= 32;
  61#endif
  62        if ((word & 0xffff0000) == 0)
  63                num += 16;
  64        else
  65                word >>= 16;
  66
  67        if ((word & 0xff00) == 0)
  68                num += 8;
  69        else
  70                word >>= 8;
  71
  72        if ((word & 0xf0) == 0)
  73                num += 4;
  74        else
  75                word >>= 4;
  76
  77        if ((word & 0xc) == 0)
  78                num += 2;
  79        else
  80                word >>= 2;
  81
  82        if ((word & 0x2) == 0)
  83                num += 1;
  84        return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97                        unsigned long size, unsigned long offset)
  98{
  99        const unsigned long *p = addr + BIT_WORD(offset);
 100        unsigned long result = size;
 101        unsigned long tmp;
 102
 103        if (offset >= size)
 104                return size;
 105
 106        size -= (offset & ~(BITS_PER_LONG - 1));
 107        offset %= BITS_PER_LONG;
 108
 109        while (1) {
 110                if (*p == 0)
 111                        goto pass;
 112
 113                tmp = __reverse_ulong((unsigned char *)p);
 114
 115                tmp &= ~0UL >> offset;
 116                if (size < BITS_PER_LONG)
 117                        tmp &= (~0UL << (BITS_PER_LONG - size));
 118                if (tmp)
 119                        goto found;
 120pass:
 121                if (size <= BITS_PER_LONG)
 122                        break;
 123                size -= BITS_PER_LONG;
 124                offset = 0;
 125                p++;
 126        }
 127        return result;
 128found:
 129        return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133                        unsigned long size, unsigned long offset)
 134{
 135        const unsigned long *p = addr + BIT_WORD(offset);
 136        unsigned long result = size;
 137        unsigned long tmp;
 138
 139        if (offset >= size)
 140                return size;
 141
 142        size -= (offset & ~(BITS_PER_LONG - 1));
 143        offset %= BITS_PER_LONG;
 144
 145        while (1) {
 146                if (*p == ~0UL)
 147                        goto pass;
 148
 149                tmp = __reverse_ulong((unsigned char *)p);
 150
 151                if (offset)
 152                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 153                if (size < BITS_PER_LONG)
 154                        tmp |= ~0UL >> size;
 155                if (tmp != ~0UL)
 156                        goto found;
 157pass:
 158                if (size <= BITS_PER_LONG)
 159                        break;
 160                size -= BITS_PER_LONG;
 161                offset = 0;
 162                p++;
 163        }
 164        return result;
 165found:
 166        return result - size + __reverse_ffz(tmp);
 167}
 168
 169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 170{
 171        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 172        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 173        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 174
 175        if (test_opt(sbi, LFS))
 176                return false;
 177        if (sbi->gc_mode == GC_URGENT)
 178                return true;
 179        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 180                return true;
 181
 182        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 183                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 184}
 185
 186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 187{
 188        struct inmem_pages *new;
 189
 190        f2fs_trace_pid(page);
 191
 192        f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 193
 194        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 195
 196        /* add atomic page indices to the list */
 197        new->page = page;
 198        INIT_LIST_HEAD(&new->list);
 199
 200        /* increase reference count with clean state */
 201        get_page(page);
 202        mutex_lock(&F2FS_I(inode)->inmem_lock);
 203        list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 204        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 205        mutex_unlock(&F2FS_I(inode)->inmem_lock);
 206
 207        trace_f2fs_register_inmem_page(page, INMEM);
 208}
 209
 210static int __revoke_inmem_pages(struct inode *inode,
 211                                struct list_head *head, bool drop, bool recover,
 212                                bool trylock)
 213{
 214        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 215        struct inmem_pages *cur, *tmp;
 216        int err = 0;
 217
 218        list_for_each_entry_safe(cur, tmp, head, list) {
 219                struct page *page = cur->page;
 220
 221                if (drop)
 222                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 223
 224                if (trylock) {
 225                        /*
 226                         * to avoid deadlock in between page lock and
 227                         * inmem_lock.
 228                         */
 229                        if (!trylock_page(page))
 230                                continue;
 231                } else {
 232                        lock_page(page);
 233                }
 234
 235                f2fs_wait_on_page_writeback(page, DATA, true, true);
 236
 237                if (recover) {
 238                        struct dnode_of_data dn;
 239                        struct node_info ni;
 240
 241                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 242retry:
 243                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 244                        err = f2fs_get_dnode_of_data(&dn, page->index,
 245                                                                LOOKUP_NODE);
 246                        if (err) {
 247                                if (err == -ENOMEM) {
 248                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 249                                        cond_resched();
 250                                        goto retry;
 251                                }
 252                                err = -EAGAIN;
 253                                goto next;
 254                        }
 255
 256                        err = f2fs_get_node_info(sbi, dn.nid, &ni);
 257                        if (err) {
 258                                f2fs_put_dnode(&dn);
 259                                return err;
 260                        }
 261
 262                        if (cur->old_addr == NEW_ADDR) {
 263                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 264                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 265                        } else
 266                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 267                                        cur->old_addr, ni.version, true, true);
 268                        f2fs_put_dnode(&dn);
 269                }
 270next:
 271                /* we don't need to invalidate this in the sccessful status */
 272                if (drop || recover) {
 273                        ClearPageUptodate(page);
 274                        clear_cold_data(page);
 275                }
 276                f2fs_clear_page_private(page);
 277                f2fs_put_page(page, 1);
 278
 279                list_del(&cur->list);
 280                kmem_cache_free(inmem_entry_slab, cur);
 281                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 282        }
 283        return err;
 284}
 285
 286void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 287{
 288        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 289        struct inode *inode;
 290        struct f2fs_inode_info *fi;
 291next:
 292        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 293        if (list_empty(head)) {
 294                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 295                return;
 296        }
 297        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 298        inode = igrab(&fi->vfs_inode);
 299        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 300
 301        if (inode) {
 302                if (gc_failure) {
 303                        if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
 304                                goto drop;
 305                        goto skip;
 306                }
 307drop:
 308                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 309                f2fs_drop_inmem_pages(inode);
 310                iput(inode);
 311        }
 312skip:
 313        congestion_wait(BLK_RW_ASYNC, HZ/50);
 314        cond_resched();
 315        goto next;
 316}
 317
 318void f2fs_drop_inmem_pages(struct inode *inode)
 319{
 320        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 321        struct f2fs_inode_info *fi = F2FS_I(inode);
 322
 323        while (!list_empty(&fi->inmem_pages)) {
 324                mutex_lock(&fi->inmem_lock);
 325                __revoke_inmem_pages(inode, &fi->inmem_pages,
 326                                                true, false, true);
 327                mutex_unlock(&fi->inmem_lock);
 328        }
 329
 330        clear_inode_flag(inode, FI_ATOMIC_FILE);
 331        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 332        stat_dec_atomic_write(inode);
 333
 334        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 335        if (!list_empty(&fi->inmem_ilist))
 336                list_del_init(&fi->inmem_ilist);
 337        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 338}
 339
 340void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 341{
 342        struct f2fs_inode_info *fi = F2FS_I(inode);
 343        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 344        struct list_head *head = &fi->inmem_pages;
 345        struct inmem_pages *cur = NULL;
 346
 347        f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 348
 349        mutex_lock(&fi->inmem_lock);
 350        list_for_each_entry(cur, head, list) {
 351                if (cur->page == page)
 352                        break;
 353        }
 354
 355        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 356        list_del(&cur->list);
 357        mutex_unlock(&fi->inmem_lock);
 358
 359        dec_page_count(sbi, F2FS_INMEM_PAGES);
 360        kmem_cache_free(inmem_entry_slab, cur);
 361
 362        ClearPageUptodate(page);
 363        f2fs_clear_page_private(page);
 364        f2fs_put_page(page, 0);
 365
 366        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 367}
 368
 369static int __f2fs_commit_inmem_pages(struct inode *inode)
 370{
 371        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 372        struct f2fs_inode_info *fi = F2FS_I(inode);
 373        struct inmem_pages *cur, *tmp;
 374        struct f2fs_io_info fio = {
 375                .sbi = sbi,
 376                .ino = inode->i_ino,
 377                .type = DATA,
 378                .op = REQ_OP_WRITE,
 379                .op_flags = REQ_SYNC | REQ_PRIO,
 380                .io_type = FS_DATA_IO,
 381        };
 382        struct list_head revoke_list;
 383        bool submit_bio = false;
 384        int err = 0;
 385
 386        INIT_LIST_HEAD(&revoke_list);
 387
 388        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 389                struct page *page = cur->page;
 390
 391                lock_page(page);
 392                if (page->mapping == inode->i_mapping) {
 393                        trace_f2fs_commit_inmem_page(page, INMEM);
 394
 395                        f2fs_wait_on_page_writeback(page, DATA, true, true);
 396
 397                        set_page_dirty(page);
 398                        if (clear_page_dirty_for_io(page)) {
 399                                inode_dec_dirty_pages(inode);
 400                                f2fs_remove_dirty_inode(inode);
 401                        }
 402retry:
 403                        fio.page = page;
 404                        fio.old_blkaddr = NULL_ADDR;
 405                        fio.encrypted_page = NULL;
 406                        fio.need_lock = LOCK_DONE;
 407                        err = f2fs_do_write_data_page(&fio);
 408                        if (err) {
 409                                if (err == -ENOMEM) {
 410                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 411                                        cond_resched();
 412                                        goto retry;
 413                                }
 414                                unlock_page(page);
 415                                break;
 416                        }
 417                        /* record old blkaddr for revoking */
 418                        cur->old_addr = fio.old_blkaddr;
 419                        submit_bio = true;
 420                }
 421                unlock_page(page);
 422                list_move_tail(&cur->list, &revoke_list);
 423        }
 424
 425        if (submit_bio)
 426                f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 427
 428        if (err) {
 429                /*
 430                 * try to revoke all committed pages, but still we could fail
 431                 * due to no memory or other reason, if that happened, EAGAIN
 432                 * will be returned, which means in such case, transaction is
 433                 * already not integrity, caller should use journal to do the
 434                 * recovery or rewrite & commit last transaction. For other
 435                 * error number, revoking was done by filesystem itself.
 436                 */
 437                err = __revoke_inmem_pages(inode, &revoke_list,
 438                                                false, true, false);
 439
 440                /* drop all uncommitted pages */
 441                __revoke_inmem_pages(inode, &fi->inmem_pages,
 442                                                true, false, false);
 443        } else {
 444                __revoke_inmem_pages(inode, &revoke_list,
 445                                                false, false, false);
 446        }
 447
 448        return err;
 449}
 450
 451int f2fs_commit_inmem_pages(struct inode *inode)
 452{
 453        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 454        struct f2fs_inode_info *fi = F2FS_I(inode);
 455        int err;
 456
 457        f2fs_balance_fs(sbi, true);
 458
 459        down_write(&fi->i_gc_rwsem[WRITE]);
 460
 461        f2fs_lock_op(sbi);
 462        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 463
 464        mutex_lock(&fi->inmem_lock);
 465        err = __f2fs_commit_inmem_pages(inode);
 466        mutex_unlock(&fi->inmem_lock);
 467
 468        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 469
 470        f2fs_unlock_op(sbi);
 471        up_write(&fi->i_gc_rwsem[WRITE]);
 472
 473        return err;
 474}
 475
 476/*
 477 * This function balances dirty node and dentry pages.
 478 * In addition, it controls garbage collection.
 479 */
 480void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 481{
 482        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 483                f2fs_show_injection_info(FAULT_CHECKPOINT);
 484                f2fs_stop_checkpoint(sbi, false);
 485        }
 486
 487        /* balance_fs_bg is able to be pending */
 488        if (need && excess_cached_nats(sbi))
 489                f2fs_balance_fs_bg(sbi);
 490
 491        if (!f2fs_is_checkpoint_ready(sbi))
 492                return;
 493
 494        /*
 495         * We should do GC or end up with checkpoint, if there are so many dirty
 496         * dir/node pages without enough free segments.
 497         */
 498        if (has_not_enough_free_secs(sbi, 0, 0)) {
 499                mutex_lock(&sbi->gc_mutex);
 500                f2fs_gc(sbi, false, false, NULL_SEGNO);
 501        }
 502}
 503
 504void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 505{
 506        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 507                return;
 508
 509        /* try to shrink extent cache when there is no enough memory */
 510        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 511                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 512
 513        /* check the # of cached NAT entries */
 514        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 515                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 516
 517        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 518                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 519        else
 520                f2fs_build_free_nids(sbi, false, false);
 521
 522        if (!is_idle(sbi, REQ_TIME) &&
 523                (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
 524                return;
 525
 526        /* checkpoint is the only way to shrink partial cached entries */
 527        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 528                        !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
 529                        excess_prefree_segs(sbi) ||
 530                        excess_dirty_nats(sbi) ||
 531                        excess_dirty_nodes(sbi) ||
 532                        f2fs_time_over(sbi, CP_TIME)) {
 533                if (test_opt(sbi, DATA_FLUSH)) {
 534                        struct blk_plug plug;
 535
 536                        mutex_lock(&sbi->flush_lock);
 537
 538                        blk_start_plug(&plug);
 539                        f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 540                        blk_finish_plug(&plug);
 541
 542                        mutex_unlock(&sbi->flush_lock);
 543                }
 544                f2fs_sync_fs(sbi->sb, true);
 545                stat_inc_bg_cp_count(sbi->stat_info);
 546        }
 547}
 548
 549static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 550                                struct block_device *bdev)
 551{
 552        struct bio *bio;
 553        int ret;
 554
 555        bio = f2fs_bio_alloc(sbi, 0, false);
 556        if (!bio)
 557                return -ENOMEM;
 558
 559        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
 560        bio_set_dev(bio, bdev);
 561        ret = submit_bio_wait(bio);
 562        bio_put(bio);
 563
 564        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 565                                test_opt(sbi, FLUSH_MERGE), ret);
 566        return ret;
 567}
 568
 569static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 570{
 571        int ret = 0;
 572        int i;
 573
 574        if (!f2fs_is_multi_device(sbi))
 575                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 576
 577        for (i = 0; i < sbi->s_ndevs; i++) {
 578                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 579                        continue;
 580                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 581                if (ret)
 582                        break;
 583        }
 584        return ret;
 585}
 586
 587static int issue_flush_thread(void *data)
 588{
 589        struct f2fs_sb_info *sbi = data;
 590        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 591        wait_queue_head_t *q = &fcc->flush_wait_queue;
 592repeat:
 593        if (kthread_should_stop())
 594                return 0;
 595
 596        sb_start_intwrite(sbi->sb);
 597
 598        if (!llist_empty(&fcc->issue_list)) {
 599                struct flush_cmd *cmd, *next;
 600                int ret;
 601
 602                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 603                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 604
 605                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 606
 607                ret = submit_flush_wait(sbi, cmd->ino);
 608                atomic_inc(&fcc->issued_flush);
 609
 610                llist_for_each_entry_safe(cmd, next,
 611                                          fcc->dispatch_list, llnode) {
 612                        cmd->ret = ret;
 613                        complete(&cmd->wait);
 614                }
 615                fcc->dispatch_list = NULL;
 616        }
 617
 618        sb_end_intwrite(sbi->sb);
 619
 620        wait_event_interruptible(*q,
 621                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 622        goto repeat;
 623}
 624
 625int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 626{
 627        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 628        struct flush_cmd cmd;
 629        int ret;
 630
 631        if (test_opt(sbi, NOBARRIER))
 632                return 0;
 633
 634        if (!test_opt(sbi, FLUSH_MERGE)) {
 635                atomic_inc(&fcc->queued_flush);
 636                ret = submit_flush_wait(sbi, ino);
 637                atomic_dec(&fcc->queued_flush);
 638                atomic_inc(&fcc->issued_flush);
 639                return ret;
 640        }
 641
 642        if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 643            f2fs_is_multi_device(sbi)) {
 644                ret = submit_flush_wait(sbi, ino);
 645                atomic_dec(&fcc->queued_flush);
 646
 647                atomic_inc(&fcc->issued_flush);
 648                return ret;
 649        }
 650
 651        cmd.ino = ino;
 652        init_completion(&cmd.wait);
 653
 654        llist_add(&cmd.llnode, &fcc->issue_list);
 655
 656        /* update issue_list before we wake up issue_flush thread */
 657        smp_mb();
 658
 659        if (waitqueue_active(&fcc->flush_wait_queue))
 660                wake_up(&fcc->flush_wait_queue);
 661
 662        if (fcc->f2fs_issue_flush) {
 663                wait_for_completion(&cmd.wait);
 664                atomic_dec(&fcc->queued_flush);
 665        } else {
 666                struct llist_node *list;
 667
 668                list = llist_del_all(&fcc->issue_list);
 669                if (!list) {
 670                        wait_for_completion(&cmd.wait);
 671                        atomic_dec(&fcc->queued_flush);
 672                } else {
 673                        struct flush_cmd *tmp, *next;
 674
 675                        ret = submit_flush_wait(sbi, ino);
 676
 677                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 678                                if (tmp == &cmd) {
 679                                        cmd.ret = ret;
 680                                        atomic_dec(&fcc->queued_flush);
 681                                        continue;
 682                                }
 683                                tmp->ret = ret;
 684                                complete(&tmp->wait);
 685                        }
 686                }
 687        }
 688
 689        return cmd.ret;
 690}
 691
 692int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 693{
 694        dev_t dev = sbi->sb->s_bdev->bd_dev;
 695        struct flush_cmd_control *fcc;
 696        int err = 0;
 697
 698        if (SM_I(sbi)->fcc_info) {
 699                fcc = SM_I(sbi)->fcc_info;
 700                if (fcc->f2fs_issue_flush)
 701                        return err;
 702                goto init_thread;
 703        }
 704
 705        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 706        if (!fcc)
 707                return -ENOMEM;
 708        atomic_set(&fcc->issued_flush, 0);
 709        atomic_set(&fcc->queued_flush, 0);
 710        init_waitqueue_head(&fcc->flush_wait_queue);
 711        init_llist_head(&fcc->issue_list);
 712        SM_I(sbi)->fcc_info = fcc;
 713        if (!test_opt(sbi, FLUSH_MERGE))
 714                return err;
 715
 716init_thread:
 717        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 718                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 719        if (IS_ERR(fcc->f2fs_issue_flush)) {
 720                err = PTR_ERR(fcc->f2fs_issue_flush);
 721                kvfree(fcc);
 722                SM_I(sbi)->fcc_info = NULL;
 723                return err;
 724        }
 725
 726        return err;
 727}
 728
 729void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 730{
 731        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 732
 733        if (fcc && fcc->f2fs_issue_flush) {
 734                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 735
 736                fcc->f2fs_issue_flush = NULL;
 737                kthread_stop(flush_thread);
 738        }
 739        if (free) {
 740                kvfree(fcc);
 741                SM_I(sbi)->fcc_info = NULL;
 742        }
 743}
 744
 745int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 746{
 747        int ret = 0, i;
 748
 749        if (!f2fs_is_multi_device(sbi))
 750                return 0;
 751
 752        for (i = 1; i < sbi->s_ndevs; i++) {
 753                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 754                        continue;
 755                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 756                if (ret)
 757                        break;
 758
 759                spin_lock(&sbi->dev_lock);
 760                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 761                spin_unlock(&sbi->dev_lock);
 762        }
 763
 764        return ret;
 765}
 766
 767static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 768                enum dirty_type dirty_type)
 769{
 770        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 771
 772        /* need not be added */
 773        if (IS_CURSEG(sbi, segno))
 774                return;
 775
 776        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 777                dirty_i->nr_dirty[dirty_type]++;
 778
 779        if (dirty_type == DIRTY) {
 780                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 781                enum dirty_type t = sentry->type;
 782
 783                if (unlikely(t >= DIRTY)) {
 784                        f2fs_bug_on(sbi, 1);
 785                        return;
 786                }
 787                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 788                        dirty_i->nr_dirty[t]++;
 789        }
 790}
 791
 792static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 793                enum dirty_type dirty_type)
 794{
 795        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 796
 797        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 798                dirty_i->nr_dirty[dirty_type]--;
 799
 800        if (dirty_type == DIRTY) {
 801                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 802                enum dirty_type t = sentry->type;
 803
 804                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 805                        dirty_i->nr_dirty[t]--;
 806
 807                if (get_valid_blocks(sbi, segno, true) == 0) {
 808                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 809                                                dirty_i->victim_secmap);
 810#ifdef CONFIG_F2FS_CHECK_FS
 811                        clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 812#endif
 813                }
 814        }
 815}
 816
 817/*
 818 * Should not occur error such as -ENOMEM.
 819 * Adding dirty entry into seglist is not critical operation.
 820 * If a given segment is one of current working segments, it won't be added.
 821 */
 822static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 823{
 824        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 825        unsigned short valid_blocks, ckpt_valid_blocks;
 826
 827        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 828                return;
 829
 830        mutex_lock(&dirty_i->seglist_lock);
 831
 832        valid_blocks = get_valid_blocks(sbi, segno, false);
 833        ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
 834
 835        if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 836                                ckpt_valid_blocks == sbi->blocks_per_seg)) {
 837                __locate_dirty_segment(sbi, segno, PRE);
 838                __remove_dirty_segment(sbi, segno, DIRTY);
 839        } else if (valid_blocks < sbi->blocks_per_seg) {
 840                __locate_dirty_segment(sbi, segno, DIRTY);
 841        } else {
 842                /* Recovery routine with SSR needs this */
 843                __remove_dirty_segment(sbi, segno, DIRTY);
 844        }
 845
 846        mutex_unlock(&dirty_i->seglist_lock);
 847}
 848
 849/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 850void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 851{
 852        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 853        unsigned int segno;
 854
 855        mutex_lock(&dirty_i->seglist_lock);
 856        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 857                if (get_valid_blocks(sbi, segno, false))
 858                        continue;
 859                if (IS_CURSEG(sbi, segno))
 860                        continue;
 861                __locate_dirty_segment(sbi, segno, PRE);
 862                __remove_dirty_segment(sbi, segno, DIRTY);
 863        }
 864        mutex_unlock(&dirty_i->seglist_lock);
 865}
 866
 867block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 868{
 869        int ovp_hole_segs =
 870                (overprovision_segments(sbi) - reserved_segments(sbi));
 871        block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 872        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 873        block_t holes[2] = {0, 0};      /* DATA and NODE */
 874        block_t unusable;
 875        struct seg_entry *se;
 876        unsigned int segno;
 877
 878        mutex_lock(&dirty_i->seglist_lock);
 879        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 880                se = get_seg_entry(sbi, segno);
 881                if (IS_NODESEG(se->type))
 882                        holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
 883                else
 884                        holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
 885        }
 886        mutex_unlock(&dirty_i->seglist_lock);
 887
 888        unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 889        if (unusable > ovp_holes)
 890                return unusable - ovp_holes;
 891        return 0;
 892}
 893
 894int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 895{
 896        int ovp_hole_segs =
 897                (overprovision_segments(sbi) - reserved_segments(sbi));
 898        if (unusable > F2FS_OPTION(sbi).unusable_cap)
 899                return -EAGAIN;
 900        if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 901                dirty_segments(sbi) > ovp_hole_segs)
 902                return -EAGAIN;
 903        return 0;
 904}
 905
 906/* This is only used by SBI_CP_DISABLED */
 907static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 908{
 909        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 910        unsigned int segno = 0;
 911
 912        mutex_lock(&dirty_i->seglist_lock);
 913        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 914                if (get_valid_blocks(sbi, segno, false))
 915                        continue;
 916                if (get_ckpt_valid_blocks(sbi, segno))
 917                        continue;
 918                mutex_unlock(&dirty_i->seglist_lock);
 919                return segno;
 920        }
 921        mutex_unlock(&dirty_i->seglist_lock);
 922        return NULL_SEGNO;
 923}
 924
 925static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 926                struct block_device *bdev, block_t lstart,
 927                block_t start, block_t len)
 928{
 929        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 930        struct list_head *pend_list;
 931        struct discard_cmd *dc;
 932
 933        f2fs_bug_on(sbi, !len);
 934
 935        pend_list = &dcc->pend_list[plist_idx(len)];
 936
 937        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 938        INIT_LIST_HEAD(&dc->list);
 939        dc->bdev = bdev;
 940        dc->lstart = lstart;
 941        dc->start = start;
 942        dc->len = len;
 943        dc->ref = 0;
 944        dc->state = D_PREP;
 945        dc->queued = 0;
 946        dc->error = 0;
 947        init_completion(&dc->wait);
 948        list_add_tail(&dc->list, pend_list);
 949        spin_lock_init(&dc->lock);
 950        dc->bio_ref = 0;
 951        atomic_inc(&dcc->discard_cmd_cnt);
 952        dcc->undiscard_blks += len;
 953
 954        return dc;
 955}
 956
 957static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 958                                struct block_device *bdev, block_t lstart,
 959                                block_t start, block_t len,
 960                                struct rb_node *parent, struct rb_node **p,
 961                                bool leftmost)
 962{
 963        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 964        struct discard_cmd *dc;
 965
 966        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 967
 968        rb_link_node(&dc->rb_node, parent, p);
 969        rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 970
 971        return dc;
 972}
 973
 974static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 975                                                        struct discard_cmd *dc)
 976{
 977        if (dc->state == D_DONE)
 978                atomic_sub(dc->queued, &dcc->queued_discard);
 979
 980        list_del(&dc->list);
 981        rb_erase_cached(&dc->rb_node, &dcc->root);
 982        dcc->undiscard_blks -= dc->len;
 983
 984        kmem_cache_free(discard_cmd_slab, dc);
 985
 986        atomic_dec(&dcc->discard_cmd_cnt);
 987}
 988
 989static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 990                                                        struct discard_cmd *dc)
 991{
 992        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 993        unsigned long flags;
 994
 995        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 996
 997        spin_lock_irqsave(&dc->lock, flags);
 998        if (dc->bio_ref) {
 999                spin_unlock_irqrestore(&dc->lock, flags);
1000                return;
1001        }
1002        spin_unlock_irqrestore(&dc->lock, flags);
1003
1004        f2fs_bug_on(sbi, dc->ref);
1005
1006        if (dc->error == -EOPNOTSUPP)
1007                dc->error = 0;
1008
1009        if (dc->error)
1010                printk_ratelimited(
1011                        "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1012                        KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1013        __detach_discard_cmd(dcc, dc);
1014}
1015
1016static void f2fs_submit_discard_endio(struct bio *bio)
1017{
1018        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1019        unsigned long flags;
1020
1021        dc->error = blk_status_to_errno(bio->bi_status);
1022
1023        spin_lock_irqsave(&dc->lock, flags);
1024        dc->bio_ref--;
1025        if (!dc->bio_ref && dc->state == D_SUBMIT) {
1026                dc->state = D_DONE;
1027                complete_all(&dc->wait);
1028        }
1029        spin_unlock_irqrestore(&dc->lock, flags);
1030        bio_put(bio);
1031}
1032
1033static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1034                                block_t start, block_t end)
1035{
1036#ifdef CONFIG_F2FS_CHECK_FS
1037        struct seg_entry *sentry;
1038        unsigned int segno;
1039        block_t blk = start;
1040        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1041        unsigned long *map;
1042
1043        while (blk < end) {
1044                segno = GET_SEGNO(sbi, blk);
1045                sentry = get_seg_entry(sbi, segno);
1046                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1047
1048                if (end < START_BLOCK(sbi, segno + 1))
1049                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
1050                else
1051                        size = max_blocks;
1052                map = (unsigned long *)(sentry->cur_valid_map);
1053                offset = __find_rev_next_bit(map, size, offset);
1054                f2fs_bug_on(sbi, offset != size);
1055                blk = START_BLOCK(sbi, segno + 1);
1056        }
1057#endif
1058}
1059
1060static void __init_discard_policy(struct f2fs_sb_info *sbi,
1061                                struct discard_policy *dpolicy,
1062                                int discard_type, unsigned int granularity)
1063{
1064        /* common policy */
1065        dpolicy->type = discard_type;
1066        dpolicy->sync = true;
1067        dpolicy->ordered = false;
1068        dpolicy->granularity = granularity;
1069
1070        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1071        dpolicy->io_aware_gran = MAX_PLIST_NUM;
1072        dpolicy->timeout = 0;
1073
1074        if (discard_type == DPOLICY_BG) {
1075                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1076                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1077                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1078                dpolicy->io_aware = true;
1079                dpolicy->sync = false;
1080                dpolicy->ordered = true;
1081                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1082                        dpolicy->granularity = 1;
1083                        dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1084                }
1085        } else if (discard_type == DPOLICY_FORCE) {
1086                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089                dpolicy->io_aware = false;
1090        } else if (discard_type == DPOLICY_FSTRIM) {
1091                dpolicy->io_aware = false;
1092        } else if (discard_type == DPOLICY_UMOUNT) {
1093                dpolicy->max_requests = UINT_MAX;
1094                dpolicy->io_aware = false;
1095                /* we need to issue all to keep CP_TRIMMED_FLAG */
1096                dpolicy->granularity = 1;
1097        }
1098}
1099
1100static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1101                                struct block_device *bdev, block_t lstart,
1102                                block_t start, block_t len);
1103/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1104static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1105                                                struct discard_policy *dpolicy,
1106                                                struct discard_cmd *dc,
1107                                                unsigned int *issued)
1108{
1109        struct block_device *bdev = dc->bdev;
1110        struct request_queue *q = bdev_get_queue(bdev);
1111        unsigned int max_discard_blocks =
1112                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1113        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1114        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1115                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1116        int flag = dpolicy->sync ? REQ_SYNC : 0;
1117        block_t lstart, start, len, total_len;
1118        int err = 0;
1119
1120        if (dc->state != D_PREP)
1121                return 0;
1122
1123        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1124                return 0;
1125
1126        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1127
1128        lstart = dc->lstart;
1129        start = dc->start;
1130        len = dc->len;
1131        total_len = len;
1132
1133        dc->len = 0;
1134
1135        while (total_len && *issued < dpolicy->max_requests && !err) {
1136                struct bio *bio = NULL;
1137                unsigned long flags;
1138                bool last = true;
1139
1140                if (len > max_discard_blocks) {
1141                        len = max_discard_blocks;
1142                        last = false;
1143                }
1144
1145                (*issued)++;
1146                if (*issued == dpolicy->max_requests)
1147                        last = true;
1148
1149                dc->len += len;
1150
1151                if (time_to_inject(sbi, FAULT_DISCARD)) {
1152                        f2fs_show_injection_info(FAULT_DISCARD);
1153                        err = -EIO;
1154                        goto submit;
1155                }
1156                err = __blkdev_issue_discard(bdev,
1157                                        SECTOR_FROM_BLOCK(start),
1158                                        SECTOR_FROM_BLOCK(len),
1159                                        GFP_NOFS, 0, &bio);
1160submit:
1161                if (err) {
1162                        spin_lock_irqsave(&dc->lock, flags);
1163                        if (dc->state == D_PARTIAL)
1164                                dc->state = D_SUBMIT;
1165                        spin_unlock_irqrestore(&dc->lock, flags);
1166
1167                        break;
1168                }
1169
1170                f2fs_bug_on(sbi, !bio);
1171
1172                /*
1173                 * should keep before submission to avoid D_DONE
1174                 * right away
1175                 */
1176                spin_lock_irqsave(&dc->lock, flags);
1177                if (last)
1178                        dc->state = D_SUBMIT;
1179                else
1180                        dc->state = D_PARTIAL;
1181                dc->bio_ref++;
1182                spin_unlock_irqrestore(&dc->lock, flags);
1183
1184                atomic_inc(&dcc->queued_discard);
1185                dc->queued++;
1186                list_move_tail(&dc->list, wait_list);
1187
1188                /* sanity check on discard range */
1189                __check_sit_bitmap(sbi, lstart, lstart + len);
1190
1191                bio->bi_private = dc;
1192                bio->bi_end_io = f2fs_submit_discard_endio;
1193                bio->bi_opf |= flag;
1194                submit_bio(bio);
1195
1196                atomic_inc(&dcc->issued_discard);
1197
1198                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1199
1200                lstart += len;
1201                start += len;
1202                total_len -= len;
1203                len = total_len;
1204        }
1205
1206        if (!err && len)
1207                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1208        return err;
1209}
1210
1211static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1212                                struct block_device *bdev, block_t lstart,
1213                                block_t start, block_t len,
1214                                struct rb_node **insert_p,
1215                                struct rb_node *insert_parent)
1216{
1217        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218        struct rb_node **p;
1219        struct rb_node *parent = NULL;
1220        struct discard_cmd *dc = NULL;
1221        bool leftmost = true;
1222
1223        if (insert_p && insert_parent) {
1224                parent = insert_parent;
1225                p = insert_p;
1226                goto do_insert;
1227        }
1228
1229        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1230                                                        lstart, &leftmost);
1231do_insert:
1232        dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1233                                                                p, leftmost);
1234        if (!dc)
1235                return NULL;
1236
1237        return dc;
1238}
1239
1240static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1241                                                struct discard_cmd *dc)
1242{
1243        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1244}
1245
1246static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1247                                struct discard_cmd *dc, block_t blkaddr)
1248{
1249        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250        struct discard_info di = dc->di;
1251        bool modified = false;
1252
1253        if (dc->state == D_DONE || dc->len == 1) {
1254                __remove_discard_cmd(sbi, dc);
1255                return;
1256        }
1257
1258        dcc->undiscard_blks -= di.len;
1259
1260        if (blkaddr > di.lstart) {
1261                dc->len = blkaddr - dc->lstart;
1262                dcc->undiscard_blks += dc->len;
1263                __relocate_discard_cmd(dcc, dc);
1264                modified = true;
1265        }
1266
1267        if (blkaddr < di.lstart + di.len - 1) {
1268                if (modified) {
1269                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1270                                        di.start + blkaddr + 1 - di.lstart,
1271                                        di.lstart + di.len - 1 - blkaddr,
1272                                        NULL, NULL);
1273                } else {
1274                        dc->lstart++;
1275                        dc->len--;
1276                        dc->start++;
1277                        dcc->undiscard_blks += dc->len;
1278                        __relocate_discard_cmd(dcc, dc);
1279                }
1280        }
1281}
1282
1283static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1284                                struct block_device *bdev, block_t lstart,
1285                                block_t start, block_t len)
1286{
1287        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289        struct discard_cmd *dc;
1290        struct discard_info di = {0};
1291        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1292        struct request_queue *q = bdev_get_queue(bdev);
1293        unsigned int max_discard_blocks =
1294                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1295        block_t end = lstart + len;
1296
1297        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298                                        NULL, lstart,
1299                                        (struct rb_entry **)&prev_dc,
1300                                        (struct rb_entry **)&next_dc,
1301                                        &insert_p, &insert_parent, true, NULL);
1302        if (dc)
1303                prev_dc = dc;
1304
1305        if (!prev_dc) {
1306                di.lstart = lstart;
1307                di.len = next_dc ? next_dc->lstart - lstart : len;
1308                di.len = min(di.len, len);
1309                di.start = start;
1310        }
1311
1312        while (1) {
1313                struct rb_node *node;
1314                bool merged = false;
1315                struct discard_cmd *tdc = NULL;
1316
1317                if (prev_dc) {
1318                        di.lstart = prev_dc->lstart + prev_dc->len;
1319                        if (di.lstart < lstart)
1320                                di.lstart = lstart;
1321                        if (di.lstart >= end)
1322                                break;
1323
1324                        if (!next_dc || next_dc->lstart > end)
1325                                di.len = end - di.lstart;
1326                        else
1327                                di.len = next_dc->lstart - di.lstart;
1328                        di.start = start + di.lstart - lstart;
1329                }
1330
1331                if (!di.len)
1332                        goto next;
1333
1334                if (prev_dc && prev_dc->state == D_PREP &&
1335                        prev_dc->bdev == bdev &&
1336                        __is_discard_back_mergeable(&di, &prev_dc->di,
1337                                                        max_discard_blocks)) {
1338                        prev_dc->di.len += di.len;
1339                        dcc->undiscard_blks += di.len;
1340                        __relocate_discard_cmd(dcc, prev_dc);
1341                        di = prev_dc->di;
1342                        tdc = prev_dc;
1343                        merged = true;
1344                }
1345
1346                if (next_dc && next_dc->state == D_PREP &&
1347                        next_dc->bdev == bdev &&
1348                        __is_discard_front_mergeable(&di, &next_dc->di,
1349                                                        max_discard_blocks)) {
1350                        next_dc->di.lstart = di.lstart;
1351                        next_dc->di.len += di.len;
1352                        next_dc->di.start = di.start;
1353                        dcc->undiscard_blks += di.len;
1354                        __relocate_discard_cmd(dcc, next_dc);
1355                        if (tdc)
1356                                __remove_discard_cmd(sbi, tdc);
1357                        merged = true;
1358                }
1359
1360                if (!merged) {
1361                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1362                                                        di.len, NULL, NULL);
1363                }
1364 next:
1365                prev_dc = next_dc;
1366                if (!prev_dc)
1367                        break;
1368
1369                node = rb_next(&prev_dc->rb_node);
1370                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1371        }
1372}
1373
1374static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1375                struct block_device *bdev, block_t blkstart, block_t blklen)
1376{
1377        block_t lblkstart = blkstart;
1378
1379        if (!f2fs_bdev_support_discard(bdev))
1380                return 0;
1381
1382        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1383
1384        if (f2fs_is_multi_device(sbi)) {
1385                int devi = f2fs_target_device_index(sbi, blkstart);
1386
1387                blkstart -= FDEV(devi).start_blk;
1388        }
1389        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1390        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1391        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1392        return 0;
1393}
1394
1395static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1396                                        struct discard_policy *dpolicy)
1397{
1398        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1399        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1400        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1401        struct discard_cmd *dc;
1402        struct blk_plug plug;
1403        unsigned int pos = dcc->next_pos;
1404        unsigned int issued = 0;
1405        bool io_interrupted = false;
1406
1407        mutex_lock(&dcc->cmd_lock);
1408        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1409                                        NULL, pos,
1410                                        (struct rb_entry **)&prev_dc,
1411                                        (struct rb_entry **)&next_dc,
1412                                        &insert_p, &insert_parent, true, NULL);
1413        if (!dc)
1414                dc = next_dc;
1415
1416        blk_start_plug(&plug);
1417
1418        while (dc) {
1419                struct rb_node *node;
1420                int err = 0;
1421
1422                if (dc->state != D_PREP)
1423                        goto next;
1424
1425                if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1426                        io_interrupted = true;
1427                        break;
1428                }
1429
1430                dcc->next_pos = dc->lstart + dc->len;
1431                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1432
1433                if (issued >= dpolicy->max_requests)
1434                        break;
1435next:
1436                node = rb_next(&dc->rb_node);
1437                if (err)
1438                        __remove_discard_cmd(sbi, dc);
1439                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1440        }
1441
1442        blk_finish_plug(&plug);
1443
1444        if (!dc)
1445                dcc->next_pos = 0;
1446
1447        mutex_unlock(&dcc->cmd_lock);
1448
1449        if (!issued && io_interrupted)
1450                issued = -1;
1451
1452        return issued;
1453}
1454
1455static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1456                                        struct discard_policy *dpolicy)
1457{
1458        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459        struct list_head *pend_list;
1460        struct discard_cmd *dc, *tmp;
1461        struct blk_plug plug;
1462        int i, issued = 0;
1463        bool io_interrupted = false;
1464
1465        if (dpolicy->timeout != 0)
1466                f2fs_update_time(sbi, dpolicy->timeout);
1467
1468        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1469                if (dpolicy->timeout != 0 &&
1470                                f2fs_time_over(sbi, dpolicy->timeout))
1471                        break;
1472
1473                if (i + 1 < dpolicy->granularity)
1474                        break;
1475
1476                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1477                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1478
1479                pend_list = &dcc->pend_list[i];
1480
1481                mutex_lock(&dcc->cmd_lock);
1482                if (list_empty(pend_list))
1483                        goto next;
1484                if (unlikely(dcc->rbtree_check))
1485                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1486                                                                &dcc->root));
1487                blk_start_plug(&plug);
1488                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1489                        f2fs_bug_on(sbi, dc->state != D_PREP);
1490
1491                        if (dpolicy->timeout != 0 &&
1492                                f2fs_time_over(sbi, dpolicy->timeout))
1493                                break;
1494
1495                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1496                                                !is_idle(sbi, DISCARD_TIME)) {
1497                                io_interrupted = true;
1498                                break;
1499                        }
1500
1501                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1502
1503                        if (issued >= dpolicy->max_requests)
1504                                break;
1505                }
1506                blk_finish_plug(&plug);
1507next:
1508                mutex_unlock(&dcc->cmd_lock);
1509
1510                if (issued >= dpolicy->max_requests || io_interrupted)
1511                        break;
1512        }
1513
1514        if (!issued && io_interrupted)
1515                issued = -1;
1516
1517        return issued;
1518}
1519
1520static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1521{
1522        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523        struct list_head *pend_list;
1524        struct discard_cmd *dc, *tmp;
1525        int i;
1526        bool dropped = false;
1527
1528        mutex_lock(&dcc->cmd_lock);
1529        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530                pend_list = &dcc->pend_list[i];
1531                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1532                        f2fs_bug_on(sbi, dc->state != D_PREP);
1533                        __remove_discard_cmd(sbi, dc);
1534                        dropped = true;
1535                }
1536        }
1537        mutex_unlock(&dcc->cmd_lock);
1538
1539        return dropped;
1540}
1541
1542void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1543{
1544        __drop_discard_cmd(sbi);
1545}
1546
1547static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1548                                                        struct discard_cmd *dc)
1549{
1550        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1551        unsigned int len = 0;
1552
1553        wait_for_completion_io(&dc->wait);
1554        mutex_lock(&dcc->cmd_lock);
1555        f2fs_bug_on(sbi, dc->state != D_DONE);
1556        dc->ref--;
1557        if (!dc->ref) {
1558                if (!dc->error)
1559                        len = dc->len;
1560                __remove_discard_cmd(sbi, dc);
1561        }
1562        mutex_unlock(&dcc->cmd_lock);
1563
1564        return len;
1565}
1566
1567static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1568                                                struct discard_policy *dpolicy,
1569                                                block_t start, block_t end)
1570{
1571        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1572        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1573                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1574        struct discard_cmd *dc, *tmp;
1575        bool need_wait;
1576        unsigned int trimmed = 0;
1577
1578next:
1579        need_wait = false;
1580
1581        mutex_lock(&dcc->cmd_lock);
1582        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1583                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1584                        continue;
1585                if (dc->len < dpolicy->granularity)
1586                        continue;
1587                if (dc->state == D_DONE && !dc->ref) {
1588                        wait_for_completion_io(&dc->wait);
1589                        if (!dc->error)
1590                                trimmed += dc->len;
1591                        __remove_discard_cmd(sbi, dc);
1592                } else {
1593                        dc->ref++;
1594                        need_wait = true;
1595                        break;
1596                }
1597        }
1598        mutex_unlock(&dcc->cmd_lock);
1599
1600        if (need_wait) {
1601                trimmed += __wait_one_discard_bio(sbi, dc);
1602                goto next;
1603        }
1604
1605        return trimmed;
1606}
1607
1608static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1609                                                struct discard_policy *dpolicy)
1610{
1611        struct discard_policy dp;
1612        unsigned int discard_blks;
1613
1614        if (dpolicy)
1615                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1616
1617        /* wait all */
1618        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1619        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1620        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1621        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1622
1623        return discard_blks;
1624}
1625
1626/* This should be covered by global mutex, &sit_i->sentry_lock */
1627static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1628{
1629        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630        struct discard_cmd *dc;
1631        bool need_wait = false;
1632
1633        mutex_lock(&dcc->cmd_lock);
1634        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1635                                                        NULL, blkaddr);
1636        if (dc) {
1637                if (dc->state == D_PREP) {
1638                        __punch_discard_cmd(sbi, dc, blkaddr);
1639                } else {
1640                        dc->ref++;
1641                        need_wait = true;
1642                }
1643        }
1644        mutex_unlock(&dcc->cmd_lock);
1645
1646        if (need_wait)
1647                __wait_one_discard_bio(sbi, dc);
1648}
1649
1650void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1651{
1652        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1653
1654        if (dcc && dcc->f2fs_issue_discard) {
1655                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1656
1657                dcc->f2fs_issue_discard = NULL;
1658                kthread_stop(discard_thread);
1659        }
1660}
1661
1662/* This comes from f2fs_put_super */
1663bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1664{
1665        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1666        struct discard_policy dpolicy;
1667        bool dropped;
1668
1669        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1670                                        dcc->discard_granularity);
1671        dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1672        __issue_discard_cmd(sbi, &dpolicy);
1673        dropped = __drop_discard_cmd(sbi);
1674
1675        /* just to make sure there is no pending discard commands */
1676        __wait_all_discard_cmd(sbi, NULL);
1677
1678        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1679        return dropped;
1680}
1681
1682static int issue_discard_thread(void *data)
1683{
1684        struct f2fs_sb_info *sbi = data;
1685        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1686        wait_queue_head_t *q = &dcc->discard_wait_queue;
1687        struct discard_policy dpolicy;
1688        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1689        int issued;
1690
1691        set_freezable();
1692
1693        do {
1694                __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1695                                        dcc->discard_granularity);
1696
1697                wait_event_interruptible_timeout(*q,
1698                                kthread_should_stop() || freezing(current) ||
1699                                dcc->discard_wake,
1700                                msecs_to_jiffies(wait_ms));
1701
1702                if (dcc->discard_wake)
1703                        dcc->discard_wake = 0;
1704
1705                /* clean up pending candidates before going to sleep */
1706                if (atomic_read(&dcc->queued_discard))
1707                        __wait_all_discard_cmd(sbi, NULL);
1708
1709                if (try_to_freeze())
1710                        continue;
1711                if (f2fs_readonly(sbi->sb))
1712                        continue;
1713                if (kthread_should_stop())
1714                        return 0;
1715                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1716                        wait_ms = dpolicy.max_interval;
1717                        continue;
1718                }
1719
1720                if (sbi->gc_mode == GC_URGENT)
1721                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1722
1723                sb_start_intwrite(sbi->sb);
1724
1725                issued = __issue_discard_cmd(sbi, &dpolicy);
1726                if (issued > 0) {
1727                        __wait_all_discard_cmd(sbi, &dpolicy);
1728                        wait_ms = dpolicy.min_interval;
1729                } else if (issued == -1){
1730                        wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1731                        if (!wait_ms)
1732                                wait_ms = dpolicy.mid_interval;
1733                } else {
1734                        wait_ms = dpolicy.max_interval;
1735                }
1736
1737                sb_end_intwrite(sbi->sb);
1738
1739        } while (!kthread_should_stop());
1740        return 0;
1741}
1742
1743#ifdef CONFIG_BLK_DEV_ZONED
1744static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745                struct block_device *bdev, block_t blkstart, block_t blklen)
1746{
1747        sector_t sector, nr_sects;
1748        block_t lblkstart = blkstart;
1749        int devi = 0;
1750
1751        if (f2fs_is_multi_device(sbi)) {
1752                devi = f2fs_target_device_index(sbi, blkstart);
1753                if (blkstart < FDEV(devi).start_blk ||
1754                    blkstart > FDEV(devi).end_blk) {
1755                        f2fs_err(sbi, "Invalid block %x", blkstart);
1756                        return -EIO;
1757                }
1758                blkstart -= FDEV(devi).start_blk;
1759        }
1760
1761        /* For sequential zones, reset the zone write pointer */
1762        if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763                sector = SECTOR_FROM_BLOCK(blkstart);
1764                nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767                                nr_sects != bdev_zone_sectors(bdev)) {
1768                        f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769                                 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770                                 blkstart, blklen);
1771                        return -EIO;
1772                }
1773                trace_f2fs_issue_reset_zone(bdev, blkstart);
1774                return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1775        }
1776
1777        /* For conventional zones, use regular discard if supported */
1778        return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1779}
1780#endif
1781
1782static int __issue_discard_async(struct f2fs_sb_info *sbi,
1783                struct block_device *bdev, block_t blkstart, block_t blklen)
1784{
1785#ifdef CONFIG_BLK_DEV_ZONED
1786        if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1787                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1788#endif
1789        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1790}
1791
1792static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1793                                block_t blkstart, block_t blklen)
1794{
1795        sector_t start = blkstart, len = 0;
1796        struct block_device *bdev;
1797        struct seg_entry *se;
1798        unsigned int offset;
1799        block_t i;
1800        int err = 0;
1801
1802        bdev = f2fs_target_device(sbi, blkstart, NULL);
1803
1804        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1805                if (i != start) {
1806                        struct block_device *bdev2 =
1807                                f2fs_target_device(sbi, i, NULL);
1808
1809                        if (bdev2 != bdev) {
1810                                err = __issue_discard_async(sbi, bdev,
1811                                                start, len);
1812                                if (err)
1813                                        return err;
1814                                bdev = bdev2;
1815                                start = i;
1816                                len = 0;
1817                        }
1818                }
1819
1820                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1821                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1822
1823                if (!f2fs_test_and_set_bit(offset, se->discard_map))
1824                        sbi->discard_blks--;
1825        }
1826
1827        if (len)
1828                err = __issue_discard_async(sbi, bdev, start, len);
1829        return err;
1830}
1831
1832static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1833                                                        bool check_only)
1834{
1835        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1836        int max_blocks = sbi->blocks_per_seg;
1837        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1838        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1839        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1840        unsigned long *discard_map = (unsigned long *)se->discard_map;
1841        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1842        unsigned int start = 0, end = -1;
1843        bool force = (cpc->reason & CP_DISCARD);
1844        struct discard_entry *de = NULL;
1845        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1846        int i;
1847
1848        if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1849                return false;
1850
1851        if (!force) {
1852                if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1853                        SM_I(sbi)->dcc_info->nr_discards >=
1854                                SM_I(sbi)->dcc_info->max_discards)
1855                        return false;
1856        }
1857
1858        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1859        for (i = 0; i < entries; i++)
1860                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1861                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1862
1863        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1864                                SM_I(sbi)->dcc_info->max_discards) {
1865                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1866                if (start >= max_blocks)
1867                        break;
1868
1869                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1870                if (force && start && end != max_blocks
1871                                        && (end - start) < cpc->trim_minlen)
1872                        continue;
1873
1874                if (check_only)
1875                        return true;
1876
1877                if (!de) {
1878                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1879                                                                GFP_F2FS_ZERO);
1880                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1881                        list_add_tail(&de->list, head);
1882                }
1883
1884                for (i = start; i < end; i++)
1885                        __set_bit_le(i, (void *)de->discard_map);
1886
1887                SM_I(sbi)->dcc_info->nr_discards += end - start;
1888        }
1889        return false;
1890}
1891
1892static void release_discard_addr(struct discard_entry *entry)
1893{
1894        list_del(&entry->list);
1895        kmem_cache_free(discard_entry_slab, entry);
1896}
1897
1898void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1899{
1900        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1901        struct discard_entry *entry, *this;
1902
1903        /* drop caches */
1904        list_for_each_entry_safe(entry, this, head, list)
1905                release_discard_addr(entry);
1906}
1907
1908/*
1909 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1910 */
1911static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1912{
1913        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1914        unsigned int segno;
1915
1916        mutex_lock(&dirty_i->seglist_lock);
1917        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1918                __set_test_and_free(sbi, segno);
1919        mutex_unlock(&dirty_i->seglist_lock);
1920}
1921
1922void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1923                                                struct cp_control *cpc)
1924{
1925        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1926        struct list_head *head = &dcc->entry_list;
1927        struct discard_entry *entry, *this;
1928        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1929        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1930        unsigned int start = 0, end = -1;
1931        unsigned int secno, start_segno;
1932        bool force = (cpc->reason & CP_DISCARD);
1933        bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1934
1935        mutex_lock(&dirty_i->seglist_lock);
1936
1937        while (1) {
1938                int i;
1939
1940                if (need_align && end != -1)
1941                        end--;
1942                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1943                if (start >= MAIN_SEGS(sbi))
1944                        break;
1945                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1946                                                                start + 1);
1947
1948                if (need_align) {
1949                        start = rounddown(start, sbi->segs_per_sec);
1950                        end = roundup(end, sbi->segs_per_sec);
1951                }
1952
1953                for (i = start; i < end; i++) {
1954                        if (test_and_clear_bit(i, prefree_map))
1955                                dirty_i->nr_dirty[PRE]--;
1956                }
1957
1958                if (!f2fs_realtime_discard_enable(sbi))
1959                        continue;
1960
1961                if (force && start >= cpc->trim_start &&
1962                                        (end - 1) <= cpc->trim_end)
1963                                continue;
1964
1965                if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1966                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1967                                (end - start) << sbi->log_blocks_per_seg);
1968                        continue;
1969                }
1970next:
1971                secno = GET_SEC_FROM_SEG(sbi, start);
1972                start_segno = GET_SEG_FROM_SEC(sbi, secno);
1973                if (!IS_CURSEC(sbi, secno) &&
1974                        !get_valid_blocks(sbi, start, true))
1975                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1976                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
1977
1978                start = start_segno + sbi->segs_per_sec;
1979                if (start < end)
1980                        goto next;
1981                else
1982                        end = start - 1;
1983        }
1984        mutex_unlock(&dirty_i->seglist_lock);
1985
1986        /* send small discards */
1987        list_for_each_entry_safe(entry, this, head, list) {
1988                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1989                bool is_valid = test_bit_le(0, entry->discard_map);
1990
1991find_next:
1992                if (is_valid) {
1993                        next_pos = find_next_zero_bit_le(entry->discard_map,
1994                                        sbi->blocks_per_seg, cur_pos);
1995                        len = next_pos - cur_pos;
1996
1997                        if (f2fs_sb_has_blkzoned(sbi) ||
1998                            (force && len < cpc->trim_minlen))
1999                                goto skip;
2000
2001                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2002                                                                        len);
2003                        total_len += len;
2004                } else {
2005                        next_pos = find_next_bit_le(entry->discard_map,
2006                                        sbi->blocks_per_seg, cur_pos);
2007                }
2008skip:
2009                cur_pos = next_pos;
2010                is_valid = !is_valid;
2011
2012                if (cur_pos < sbi->blocks_per_seg)
2013                        goto find_next;
2014
2015                release_discard_addr(entry);
2016                dcc->nr_discards -= total_len;
2017        }
2018
2019        wake_up_discard_thread(sbi, false);
2020}
2021
2022static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2023{
2024        dev_t dev = sbi->sb->s_bdev->bd_dev;
2025        struct discard_cmd_control *dcc;
2026        int err = 0, i;
2027
2028        if (SM_I(sbi)->dcc_info) {
2029                dcc = SM_I(sbi)->dcc_info;
2030                goto init_thread;
2031        }
2032
2033        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2034        if (!dcc)
2035                return -ENOMEM;
2036
2037        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2038        INIT_LIST_HEAD(&dcc->entry_list);
2039        for (i = 0; i < MAX_PLIST_NUM; i++)
2040                INIT_LIST_HEAD(&dcc->pend_list[i]);
2041        INIT_LIST_HEAD(&dcc->wait_list);
2042        INIT_LIST_HEAD(&dcc->fstrim_list);
2043        mutex_init(&dcc->cmd_lock);
2044        atomic_set(&dcc->issued_discard, 0);
2045        atomic_set(&dcc->queued_discard, 0);
2046        atomic_set(&dcc->discard_cmd_cnt, 0);
2047        dcc->nr_discards = 0;
2048        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2049        dcc->undiscard_blks = 0;
2050        dcc->next_pos = 0;
2051        dcc->root = RB_ROOT_CACHED;
2052        dcc->rbtree_check = false;
2053
2054        init_waitqueue_head(&dcc->discard_wait_queue);
2055        SM_I(sbi)->dcc_info = dcc;
2056init_thread:
2057        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2058                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2059        if (IS_ERR(dcc->f2fs_issue_discard)) {
2060                err = PTR_ERR(dcc->f2fs_issue_discard);
2061                kvfree(dcc);
2062                SM_I(sbi)->dcc_info = NULL;
2063                return err;
2064        }
2065
2066        return err;
2067}
2068
2069static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2070{
2071        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2072
2073        if (!dcc)
2074                return;
2075
2076        f2fs_stop_discard_thread(sbi);
2077
2078        /*
2079         * Recovery can cache discard commands, so in error path of
2080         * fill_super(), it needs to give a chance to handle them.
2081         */
2082        if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2083                f2fs_issue_discard_timeout(sbi);
2084
2085        kvfree(dcc);
2086        SM_I(sbi)->dcc_info = NULL;
2087}
2088
2089static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2090{
2091        struct sit_info *sit_i = SIT_I(sbi);
2092
2093        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2094                sit_i->dirty_sentries++;
2095                return false;
2096        }
2097
2098        return true;
2099}
2100
2101static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2102                                        unsigned int segno, int modified)
2103{
2104        struct seg_entry *se = get_seg_entry(sbi, segno);
2105        se->type = type;
2106        if (modified)
2107                __mark_sit_entry_dirty(sbi, segno);
2108}
2109
2110static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2111{
2112        struct seg_entry *se;
2113        unsigned int segno, offset;
2114        long int new_vblocks;
2115        bool exist;
2116#ifdef CONFIG_F2FS_CHECK_FS
2117        bool mir_exist;
2118#endif
2119
2120        segno = GET_SEGNO(sbi, blkaddr);
2121
2122        se = get_seg_entry(sbi, segno);
2123        new_vblocks = se->valid_blocks + del;
2124        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2125
2126        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2127                                (new_vblocks > sbi->blocks_per_seg)));
2128
2129        se->valid_blocks = new_vblocks;
2130        se->mtime = get_mtime(sbi, false);
2131        if (se->mtime > SIT_I(sbi)->max_mtime)
2132                SIT_I(sbi)->max_mtime = se->mtime;
2133
2134        /* Update valid block bitmap */
2135        if (del > 0) {
2136                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2137#ifdef CONFIG_F2FS_CHECK_FS
2138                mir_exist = f2fs_test_and_set_bit(offset,
2139                                                se->cur_valid_map_mir);
2140                if (unlikely(exist != mir_exist)) {
2141                        f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2142                                 blkaddr, exist);
2143                        f2fs_bug_on(sbi, 1);
2144                }
2145#endif
2146                if (unlikely(exist)) {
2147                        f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2148                                 blkaddr);
2149                        f2fs_bug_on(sbi, 1);
2150                        se->valid_blocks--;
2151                        del = 0;
2152                }
2153
2154                if (!f2fs_test_and_set_bit(offset, se->discard_map))
2155                        sbi->discard_blks--;
2156
2157                /*
2158                 * SSR should never reuse block which is checkpointed
2159                 * or newly invalidated.
2160                 */
2161                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163                                se->ckpt_valid_blocks++;
2164                }
2165        } else {
2166                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167#ifdef CONFIG_F2FS_CHECK_FS
2168                mir_exist = f2fs_test_and_clear_bit(offset,
2169                                                se->cur_valid_map_mir);
2170                if (unlikely(exist != mir_exist)) {
2171                        f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172                                 blkaddr, exist);
2173                        f2fs_bug_on(sbi, 1);
2174                }
2175#endif
2176                if (unlikely(!exist)) {
2177                        f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178                                 blkaddr);
2179                        f2fs_bug_on(sbi, 1);
2180                        se->valid_blocks++;
2181                        del = 0;
2182                } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183                        /*
2184                         * If checkpoints are off, we must not reuse data that
2185                         * was used in the previous checkpoint. If it was used
2186                         * before, we must track that to know how much space we
2187                         * really have.
2188                         */
2189                        if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190                                spin_lock(&sbi->stat_lock);
2191                                sbi->unusable_block_count++;
2192                                spin_unlock(&sbi->stat_lock);
2193                        }
2194                }
2195
2196                if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197                        sbi->discard_blks++;
2198        }
2199        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200                se->ckpt_valid_blocks += del;
2201
2202        __mark_sit_entry_dirty(sbi, segno);
2203
2204        /* update total number of valid blocks to be written in ckpt area */
2205        SIT_I(sbi)->written_valid_blocks += del;
2206
2207        if (__is_large_section(sbi))
2208                get_sec_entry(sbi, segno)->valid_blocks += del;
2209}
2210
2211void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212{
2213        unsigned int segno = GET_SEGNO(sbi, addr);
2214        struct sit_info *sit_i = SIT_I(sbi);
2215
2216        f2fs_bug_on(sbi, addr == NULL_ADDR);
2217        if (addr == NEW_ADDR)
2218                return;
2219
2220        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222        /* add it into sit main buffer */
2223        down_write(&sit_i->sentry_lock);
2224
2225        update_sit_entry(sbi, addr, -1);
2226
2227        /* add it into dirty seglist */
2228        locate_dirty_segment(sbi, segno);
2229
2230        up_write(&sit_i->sentry_lock);
2231}
2232
2233bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234{
2235        struct sit_info *sit_i = SIT_I(sbi);
2236        unsigned int segno, offset;
2237        struct seg_entry *se;
2238        bool is_cp = false;
2239
2240        if (!__is_valid_data_blkaddr(blkaddr))
2241                return true;
2242
2243        down_read(&sit_i->sentry_lock);
2244
2245        segno = GET_SEGNO(sbi, blkaddr);
2246        se = get_seg_entry(sbi, segno);
2247        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250                is_cp = true;
2251
2252        up_read(&sit_i->sentry_lock);
2253
2254        return is_cp;
2255}
2256
2257/*
2258 * This function should be resided under the curseg_mutex lock
2259 */
2260static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261                                        struct f2fs_summary *sum)
2262{
2263        struct curseg_info *curseg = CURSEG_I(sbi, type);
2264        void *addr = curseg->sum_blk;
2265        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266        memcpy(addr, sum, sizeof(struct f2fs_summary));
2267}
2268
2269/*
2270 * Calculate the number of current summary pages for writing
2271 */
2272int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273{
2274        int valid_sum_count = 0;
2275        int i, sum_in_page;
2276
2277        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278                if (sbi->ckpt->alloc_type[i] == SSR)
2279                        valid_sum_count += sbi->blocks_per_seg;
2280                else {
2281                        if (for_ra)
2282                                valid_sum_count += le16_to_cpu(
2283                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284                        else
2285                                valid_sum_count += curseg_blkoff(sbi, i);
2286                }
2287        }
2288
2289        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291        if (valid_sum_count <= sum_in_page)
2292                return 1;
2293        else if ((valid_sum_count - sum_in_page) <=
2294                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295                return 2;
2296        return 3;
2297}
2298
2299/*
2300 * Caller should put this summary page
2301 */
2302struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303{
2304        return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305}
2306
2307void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308                                        void *src, block_t blk_addr)
2309{
2310        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312        memcpy(page_address(page), src, PAGE_SIZE);
2313        set_page_dirty(page);
2314        f2fs_put_page(page, 1);
2315}
2316
2317static void write_sum_page(struct f2fs_sb_info *sbi,
2318                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319{
2320        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321}
2322
2323static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324                                                int type, block_t blk_addr)
2325{
2326        struct curseg_info *curseg = CURSEG_I(sbi, type);
2327        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328        struct f2fs_summary_block *src = curseg->sum_blk;
2329        struct f2fs_summary_block *dst;
2330
2331        dst = (struct f2fs_summary_block *)page_address(page);
2332        memset(dst, 0, PAGE_SIZE);
2333
2334        mutex_lock(&curseg->curseg_mutex);
2335
2336        down_read(&curseg->journal_rwsem);
2337        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338        up_read(&curseg->journal_rwsem);
2339
2340        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343        mutex_unlock(&curseg->curseg_mutex);
2344
2345        set_page_dirty(page);
2346        f2fs_put_page(page, 1);
2347}
2348
2349static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350{
2351        struct curseg_info *curseg = CURSEG_I(sbi, type);
2352        unsigned int segno = curseg->segno + 1;
2353        struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356                return !test_bit(segno, free_i->free_segmap);
2357        return 0;
2358}
2359
2360/*
2361 * Find a new segment from the free segments bitmap to right order
2362 * This function should be returned with success, otherwise BUG
2363 */
2364static void get_new_segment(struct f2fs_sb_info *sbi,
2365                        unsigned int *newseg, bool new_sec, int dir)
2366{
2367        struct free_segmap_info *free_i = FREE_I(sbi);
2368        unsigned int segno, secno, zoneno;
2369        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372        unsigned int left_start = hint;
2373        bool init = true;
2374        int go_left = 0;
2375        int i;
2376
2377        spin_lock(&free_i->segmap_lock);
2378
2379        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380                segno = find_next_zero_bit(free_i->free_segmap,
2381                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383                        goto got_it;
2384        }
2385find_other_zone:
2386        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387        if (secno >= MAIN_SECS(sbi)) {
2388                if (dir == ALLOC_RIGHT) {
2389                        secno = find_next_zero_bit(free_i->free_secmap,
2390                                                        MAIN_SECS(sbi), 0);
2391                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392                } else {
2393                        go_left = 1;
2394                        left_start = hint - 1;
2395                }
2396        }
2397        if (go_left == 0)
2398                goto skip_left;
2399
2400        while (test_bit(left_start, free_i->free_secmap)) {
2401                if (left_start > 0) {
2402                        left_start--;
2403                        continue;
2404                }
2405                left_start = find_next_zero_bit(free_i->free_secmap,
2406                                                        MAIN_SECS(sbi), 0);
2407                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408                break;
2409        }
2410        secno = left_start;
2411skip_left:
2412        segno = GET_SEG_FROM_SEC(sbi, secno);
2413        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415        /* give up on finding another zone */
2416        if (!init)
2417                goto got_it;
2418        if (sbi->secs_per_zone == 1)
2419                goto got_it;
2420        if (zoneno == old_zoneno)
2421                goto got_it;
2422        if (dir == ALLOC_LEFT) {
2423                if (!go_left && zoneno + 1 >= total_zones)
2424                        goto got_it;
2425                if (go_left && zoneno == 0)
2426                        goto got_it;
2427        }
2428        for (i = 0; i < NR_CURSEG_TYPE; i++)
2429                if (CURSEG_I(sbi, i)->zone == zoneno)
2430                        break;
2431
2432        if (i < NR_CURSEG_TYPE) {
2433                /* zone is in user, try another */
2434                if (go_left)
2435                        hint = zoneno * sbi->secs_per_zone - 1;
2436                else if (zoneno + 1 >= total_zones)
2437                        hint = 0;
2438                else
2439                        hint = (zoneno + 1) * sbi->secs_per_zone;
2440                init = false;
2441                goto find_other_zone;
2442        }
2443got_it:
2444        /* set it as dirty segment in free segmap */
2445        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446        __set_inuse(sbi, segno);
2447        *newseg = segno;
2448        spin_unlock(&free_i->segmap_lock);
2449}
2450
2451static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452{
2453        struct curseg_info *curseg = CURSEG_I(sbi, type);
2454        struct summary_footer *sum_footer;
2455
2456        curseg->segno = curseg->next_segno;
2457        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458        curseg->next_blkoff = 0;
2459        curseg->next_segno = NULL_SEGNO;
2460
2461        sum_footer = &(curseg->sum_blk->footer);
2462        memset(sum_footer, 0, sizeof(struct summary_footer));
2463        if (IS_DATASEG(type))
2464                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465        if (IS_NODESEG(type))
2466                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467        __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468}
2469
2470static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471{
2472        /* if segs_per_sec is large than 1, we need to keep original policy. */
2473        if (__is_large_section(sbi))
2474                return CURSEG_I(sbi, type)->segno;
2475
2476        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477                return 0;
2478
2479        if (test_opt(sbi, NOHEAP) &&
2480                (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481                return 0;
2482
2483        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486        /* find segments from 0 to reuse freed segments */
2487        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488                return 0;
2489
2490        return CURSEG_I(sbi, type)->segno;
2491}
2492
2493/*
2494 * Allocate a current working segment.
2495 * This function always allocates a free segment in LFS manner.
2496 */
2497static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498{
2499        struct curseg_info *curseg = CURSEG_I(sbi, type);
2500        unsigned int segno = curseg->segno;
2501        int dir = ALLOC_LEFT;
2502
2503        write_sum_page(sbi, curseg->sum_blk,
2504                                GET_SUM_BLOCK(sbi, segno));
2505        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506                dir = ALLOC_RIGHT;
2507
2508        if (test_opt(sbi, NOHEAP))
2509                dir = ALLOC_RIGHT;
2510
2511        segno = __get_next_segno(sbi, type);
2512        get_new_segment(sbi, &segno, new_sec, dir);
2513        curseg->next_segno = segno;
2514        reset_curseg(sbi, type, 1);
2515        curseg->alloc_type = LFS;
2516}
2517
2518static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519                        struct curseg_info *seg, block_t start)
2520{
2521        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526        int i, pos;
2527
2528        for (i = 0; i < entries; i++)
2529                target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533        seg->next_blkoff = pos;
2534}
2535
2536/*
2537 * If a segment is written by LFS manner, next block offset is just obtained
2538 * by increasing the current block offset. However, if a segment is written by
2539 * SSR manner, next block offset obtained by calling __next_free_blkoff
2540 */
2541static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542                                struct curseg_info *seg)
2543{
2544        if (seg->alloc_type == SSR)
2545                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546        else
2547                seg->next_blkoff++;
2548}
2549
2550/*
2551 * This function always allocates a used segment(from dirty seglist) by SSR
2552 * manner, so it should recover the existing segment information of valid blocks
2553 */
2554static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555{
2556        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557        struct curseg_info *curseg = CURSEG_I(sbi, type);
2558        unsigned int new_segno = curseg->next_segno;
2559        struct f2fs_summary_block *sum_node;
2560        struct page *sum_page;
2561
2562        write_sum_page(sbi, curseg->sum_blk,
2563                                GET_SUM_BLOCK(sbi, curseg->segno));
2564        __set_test_and_inuse(sbi, new_segno);
2565
2566        mutex_lock(&dirty_i->seglist_lock);
2567        __remove_dirty_segment(sbi, new_segno, PRE);
2568        __remove_dirty_segment(sbi, new_segno, DIRTY);
2569        mutex_unlock(&dirty_i->seglist_lock);
2570
2571        reset_curseg(sbi, type, 1);
2572        curseg->alloc_type = SSR;
2573        __next_free_blkoff(sbi, curseg, 0);
2574
2575        sum_page = f2fs_get_sum_page(sbi, new_segno);
2576        f2fs_bug_on(sbi, IS_ERR(sum_page));
2577        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579        f2fs_put_page(sum_page, 1);
2580}
2581
2582static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583{
2584        struct curseg_info *curseg = CURSEG_I(sbi, type);
2585        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586        unsigned segno = NULL_SEGNO;
2587        int i, cnt;
2588        bool reversed = false;
2589
2590        /* f2fs_need_SSR() already forces to do this */
2591        if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592                curseg->next_segno = segno;
2593                return 1;
2594        }
2595
2596        /* For node segments, let's do SSR more intensively */
2597        if (IS_NODESEG(type)) {
2598                if (type >= CURSEG_WARM_NODE) {
2599                        reversed = true;
2600                        i = CURSEG_COLD_NODE;
2601                } else {
2602                        i = CURSEG_HOT_NODE;
2603                }
2604                cnt = NR_CURSEG_NODE_TYPE;
2605        } else {
2606                if (type >= CURSEG_WARM_DATA) {
2607                        reversed = true;
2608                        i = CURSEG_COLD_DATA;
2609                } else {
2610                        i = CURSEG_HOT_DATA;
2611                }
2612                cnt = NR_CURSEG_DATA_TYPE;
2613        }
2614
2615        for (; cnt-- > 0; reversed ? i-- : i++) {
2616                if (i == type)
2617                        continue;
2618                if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619                        curseg->next_segno = segno;
2620                        return 1;
2621                }
2622        }
2623
2624        /* find valid_blocks=0 in dirty list */
2625        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626                segno = get_free_segment(sbi);
2627                if (segno != NULL_SEGNO) {
2628                        curseg->next_segno = segno;
2629                        return 1;
2630                }
2631        }
2632        return 0;
2633}
2634
2635/*
2636 * flush out current segment and replace it with new segment
2637 * This function should be returned with success, otherwise BUG
2638 */
2639static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640                                                int type, bool force)
2641{
2642        struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644        if (force)
2645                new_curseg(sbi, type, true);
2646        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647                                        type == CURSEG_WARM_NODE)
2648                new_curseg(sbi, type, false);
2649        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650                        likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651                new_curseg(sbi, type, false);
2652        else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653                change_curseg(sbi, type);
2654        else
2655                new_curseg(sbi, type, false);
2656
2657        stat_inc_seg_type(sbi, curseg);
2658}
2659
2660void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661                                        unsigned int start, unsigned int end)
2662{
2663        struct curseg_info *curseg = CURSEG_I(sbi, type);
2664        unsigned int segno;
2665
2666        down_read(&SM_I(sbi)->curseg_lock);
2667        mutex_lock(&curseg->curseg_mutex);
2668        down_write(&SIT_I(sbi)->sentry_lock);
2669
2670        segno = CURSEG_I(sbi, type)->segno;
2671        if (segno < start || segno > end)
2672                goto unlock;
2673
2674        if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675                change_curseg(sbi, type);
2676        else
2677                new_curseg(sbi, type, true);
2678
2679        stat_inc_seg_type(sbi, curseg);
2680
2681        locate_dirty_segment(sbi, segno);
2682unlock:
2683        up_write(&SIT_I(sbi)->sentry_lock);
2684
2685        if (segno != curseg->segno)
2686                f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687                            type, segno, curseg->segno);
2688
2689        mutex_unlock(&curseg->curseg_mutex);
2690        up_read(&SM_I(sbi)->curseg_lock);
2691}
2692
2693void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694{
2695        struct curseg_info *curseg;
2696        unsigned int old_segno;
2697        int i;
2698
2699        down_write(&SIT_I(sbi)->sentry_lock);
2700
2701        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702                curseg = CURSEG_I(sbi, i);
2703                old_segno = curseg->segno;
2704                SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705                locate_dirty_segment(sbi, old_segno);
2706        }
2707
2708        up_write(&SIT_I(sbi)->sentry_lock);
2709}
2710
2711static const struct segment_allocation default_salloc_ops = {
2712        .allocate_segment = allocate_segment_by_default,
2713};
2714
2715bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716                                                struct cp_control *cpc)
2717{
2718        __u64 trim_start = cpc->trim_start;
2719        bool has_candidate = false;
2720
2721        down_write(&SIT_I(sbi)->sentry_lock);
2722        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723                if (add_discard_addrs(sbi, cpc, true)) {
2724                        has_candidate = true;
2725                        break;
2726                }
2727        }
2728        up_write(&SIT_I(sbi)->sentry_lock);
2729
2730        cpc->trim_start = trim_start;
2731        return has_candidate;
2732}
2733
2734static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735                                        struct discard_policy *dpolicy,
2736                                        unsigned int start, unsigned int end)
2737{
2738        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740        struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741        struct discard_cmd *dc;
2742        struct blk_plug plug;
2743        int issued;
2744        unsigned int trimmed = 0;
2745
2746next:
2747        issued = 0;
2748
2749        mutex_lock(&dcc->cmd_lock);
2750        if (unlikely(dcc->rbtree_check))
2751                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752                                                                &dcc->root));
2753
2754        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755                                        NULL, start,
2756                                        (struct rb_entry **)&prev_dc,
2757                                        (struct rb_entry **)&next_dc,
2758                                        &insert_p, &insert_parent, true, NULL);
2759        if (!dc)
2760                dc = next_dc;
2761
2762        blk_start_plug(&plug);
2763
2764        while (dc && dc->lstart <= end) {
2765                struct rb_node *node;
2766                int err = 0;
2767
2768                if (dc->len < dpolicy->granularity)
2769                        goto skip;
2770
2771                if (dc->state != D_PREP) {
2772                        list_move_tail(&dc->list, &dcc->fstrim_list);
2773                        goto skip;
2774                }
2775
2776                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778                if (issued >= dpolicy->max_requests) {
2779                        start = dc->lstart + dc->len;
2780
2781                        if (err)
2782                                __remove_discard_cmd(sbi, dc);
2783
2784                        blk_finish_plug(&plug);
2785                        mutex_unlock(&dcc->cmd_lock);
2786                        trimmed += __wait_all_discard_cmd(sbi, NULL);
2787                        congestion_wait(BLK_RW_ASYNC, HZ/50);
2788                        goto next;
2789                }
2790skip:
2791                node = rb_next(&dc->rb_node);
2792                if (err)
2793                        __remove_discard_cmd(sbi, dc);
2794                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796                if (fatal_signal_pending(current))
2797                        break;
2798        }
2799
2800        blk_finish_plug(&plug);
2801        mutex_unlock(&dcc->cmd_lock);
2802
2803        return trimmed;
2804}
2805
2806int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807{
2808        __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810        unsigned int start_segno, end_segno;
2811        block_t start_block, end_block;
2812        struct cp_control cpc;
2813        struct discard_policy dpolicy;
2814        unsigned long long trimmed = 0;
2815        int err = 0;
2816        bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819                return -EINVAL;
2820
2821        if (end < MAIN_BLKADDR(sbi))
2822                goto out;
2823
2824        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825                f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826                return -EFSCORRUPTED;
2827        }
2828
2829        /* start/end segment number in main_area */
2830        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832                                                GET_SEGNO(sbi, end);
2833        if (need_align) {
2834                start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836        }
2837
2838        cpc.reason = CP_DISCARD;
2839        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840        cpc.trim_start = start_segno;
2841        cpc.trim_end = end_segno;
2842
2843        if (sbi->discard_blks == 0)
2844                goto out;
2845
2846        mutex_lock(&sbi->gc_mutex);
2847        err = f2fs_write_checkpoint(sbi, &cpc);
2848        mutex_unlock(&sbi->gc_mutex);
2849        if (err)
2850                goto out;
2851
2852        /*
2853         * We filed discard candidates, but actually we don't need to wait for
2854         * all of them, since they'll be issued in idle time along with runtime
2855         * discard option. User configuration looks like using runtime discard
2856         * or periodic fstrim instead of it.
2857         */
2858        if (f2fs_realtime_discard_enable(sbi))
2859                goto out;
2860
2861        start_block = START_BLOCK(sbi, start_segno);
2862        end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866                                        start_block, end_block);
2867
2868        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869                                        start_block, end_block);
2870out:
2871        if (!err)
2872                range->len = F2FS_BLK_TO_BYTES(trimmed);
2873        return err;
2874}
2875
2876static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877{
2878        struct curseg_info *curseg = CURSEG_I(sbi, type);
2879        if (curseg->next_blkoff < sbi->blocks_per_seg)
2880                return true;
2881        return false;
2882}
2883
2884int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885{
2886        switch (hint) {
2887        case WRITE_LIFE_SHORT:
2888                return CURSEG_HOT_DATA;
2889        case WRITE_LIFE_EXTREME:
2890                return CURSEG_COLD_DATA;
2891        default:
2892                return CURSEG_WARM_DATA;
2893        }
2894}
2895
2896/* This returns write hints for each segment type. This hints will be
2897 * passed down to block layer. There are mapping tables which depend on
2898 * the mount option 'whint_mode'.
2899 *
2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901 *
2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903 *
2904 * User                  F2FS                     Block
2905 * ----                  ----                     -----
2906 *                       META                     WRITE_LIFE_NOT_SET
2907 *                       HOT_NODE                 "
2908 *                       WARM_NODE                "
2909 *                       COLD_NODE                "
2910 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2911 * extension list        "                        "
2912 *
2913 * -- buffered io
2914 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2915 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2916 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2917 * WRITE_LIFE_NONE       "                        "
2918 * WRITE_LIFE_MEDIUM     "                        "
2919 * WRITE_LIFE_LONG       "                        "
2920 *
2921 * -- direct io
2922 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2923 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2924 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2925 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2926 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2927 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2928 *
2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930 *
2931 * User                  F2FS                     Block
2932 * ----                  ----                     -----
2933 *                       META                     WRITE_LIFE_MEDIUM;
2934 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2935 *                       WARM_NODE                "
2936 *                       COLD_NODE                WRITE_LIFE_NONE
2937 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2938 * extension list        "                        "
2939 *
2940 * -- buffered io
2941 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2944 * WRITE_LIFE_NONE       "                        "
2945 * WRITE_LIFE_MEDIUM     "                        "
2946 * WRITE_LIFE_LONG       "                        "
2947 *
2948 * -- direct io
2949 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2950 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2951 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2952 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2953 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2954 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2955 */
2956
2957enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958                                enum page_type type, enum temp_type temp)
2959{
2960        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961                if (type == DATA) {
2962                        if (temp == WARM)
2963                                return WRITE_LIFE_NOT_SET;
2964                        else if (temp == HOT)
2965                                return WRITE_LIFE_SHORT;
2966                        else if (temp == COLD)
2967                                return WRITE_LIFE_EXTREME;
2968                } else {
2969                        return WRITE_LIFE_NOT_SET;
2970                }
2971        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972                if (type == DATA) {
2973                        if (temp == WARM)
2974                                return WRITE_LIFE_LONG;
2975                        else if (temp == HOT)
2976                                return WRITE_LIFE_SHORT;
2977                        else if (temp == COLD)
2978                                return WRITE_LIFE_EXTREME;
2979                } else if (type == NODE) {
2980                        if (temp == WARM || temp == HOT)
2981                                return WRITE_LIFE_NOT_SET;
2982                        else if (temp == COLD)
2983                                return WRITE_LIFE_NONE;
2984                } else if (type == META) {
2985                        return WRITE_LIFE_MEDIUM;
2986                }
2987        }
2988        return WRITE_LIFE_NOT_SET;
2989}
2990
2991static int __get_segment_type_2(struct f2fs_io_info *fio)
2992{
2993        if (fio->type == DATA)
2994                return CURSEG_HOT_DATA;
2995        else
2996                return CURSEG_HOT_NODE;
2997}
2998
2999static int __get_segment_type_4(struct f2fs_io_info *fio)
3000{
3001        if (fio->type == DATA) {
3002                struct inode *inode = fio->page->mapping->host;
3003
3004                if (S_ISDIR(inode->i_mode))
3005                        return CURSEG_HOT_DATA;
3006                else
3007                        return CURSEG_COLD_DATA;
3008        } else {
3009                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010                        return CURSEG_WARM_NODE;
3011                else
3012                        return CURSEG_COLD_NODE;
3013        }
3014}
3015
3016static int __get_segment_type_6(struct f2fs_io_info *fio)
3017{
3018        if (fio->type == DATA) {
3019                struct inode *inode = fio->page->mapping->host;
3020
3021                if (is_cold_data(fio->page) || file_is_cold(inode))
3022                        return CURSEG_COLD_DATA;
3023                if (file_is_hot(inode) ||
3024                                is_inode_flag_set(inode, FI_HOT_DATA) ||
3025                                f2fs_is_atomic_file(inode) ||
3026                                f2fs_is_volatile_file(inode))
3027                        return CURSEG_HOT_DATA;
3028                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029        } else {
3030                if (IS_DNODE(fio->page))
3031                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032                                                CURSEG_HOT_NODE;
3033                return CURSEG_COLD_NODE;
3034        }
3035}
3036
3037static int __get_segment_type(struct f2fs_io_info *fio)
3038{
3039        int type = 0;
3040
3041        switch (F2FS_OPTION(fio->sbi).active_logs) {
3042        case 2:
3043                type = __get_segment_type_2(fio);
3044                break;
3045        case 4:
3046                type = __get_segment_type_4(fio);
3047                break;
3048        case 6:
3049                type = __get_segment_type_6(fio);
3050                break;
3051        default:
3052                f2fs_bug_on(fio->sbi, true);
3053        }
3054
3055        if (IS_HOT(type))
3056                fio->temp = HOT;
3057        else if (IS_WARM(type))
3058                fio->temp = WARM;
3059        else
3060                fio->temp = COLD;
3061        return type;
3062}
3063
3064void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065                block_t old_blkaddr, block_t *new_blkaddr,
3066                struct f2fs_summary *sum, int type,
3067                struct f2fs_io_info *fio, bool add_list)
3068{
3069        struct sit_info *sit_i = SIT_I(sbi);
3070        struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072        down_read(&SM_I(sbi)->curseg_lock);
3073
3074        mutex_lock(&curseg->curseg_mutex);
3075        down_write(&sit_i->sentry_lock);
3076
3077        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079        f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081        /*
3082         * __add_sum_entry should be resided under the curseg_mutex
3083         * because, this function updates a summary entry in the
3084         * current summary block.
3085         */
3086        __add_sum_entry(sbi, type, sum);
3087
3088        __refresh_next_blkoff(sbi, curseg);
3089
3090        stat_inc_block_count(sbi, curseg);
3091
3092        /*
3093         * SIT information should be updated before segment allocation,
3094         * since SSR needs latest valid block information.
3095         */
3096        update_sit_entry(sbi, *new_blkaddr, 1);
3097        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098                update_sit_entry(sbi, old_blkaddr, -1);
3099
3100        if (!__has_curseg_space(sbi, type))
3101                sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103        /*
3104         * segment dirty status should be updated after segment allocation,
3105         * so we just need to update status only one time after previous
3106         * segment being closed.
3107         */
3108        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111        up_write(&sit_i->sentry_lock);
3112
3113        if (page && IS_NODESEG(type)) {
3114                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116                f2fs_inode_chksum_set(sbi, page);
3117        }
3118
3119        if (F2FS_IO_ALIGNED(sbi))
3120                fio->retry = false;
3121
3122        if (add_list) {
3123                struct f2fs_bio_info *io;
3124
3125                INIT_LIST_HEAD(&fio->list);
3126                fio->in_list = true;
3127                io = sbi->write_io[fio->type] + fio->temp;
3128                spin_lock(&io->io_lock);
3129                list_add_tail(&fio->list, &io->io_list);
3130                spin_unlock(&io->io_lock);
3131        }
3132
3133        mutex_unlock(&curseg->curseg_mutex);
3134
3135        up_read(&SM_I(sbi)->curseg_lock);
3136}
3137
3138static void update_device_state(struct f2fs_io_info *fio)
3139{
3140        struct f2fs_sb_info *sbi = fio->sbi;
3141        unsigned int devidx;
3142
3143        if (!f2fs_is_multi_device(sbi))
3144                return;
3145
3146        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3147
3148        /* update device state for fsync */
3149        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3150
3151        /* update device state for checkpoint */
3152        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3153                spin_lock(&sbi->dev_lock);
3154                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3155                spin_unlock(&sbi->dev_lock);
3156        }
3157}
3158
3159static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3160{
3161        int type = __get_segment_type(fio);
3162        bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3163
3164        if (keep_order)
3165                down_read(&fio->sbi->io_order_lock);
3166reallocate:
3167        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3168                        &fio->new_blkaddr, sum, type, fio, true);
3169        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3170                invalidate_mapping_pages(META_MAPPING(fio->sbi),
3171                                        fio->old_blkaddr, fio->old_blkaddr);
3172
3173        /* writeout dirty page into bdev */
3174        f2fs_submit_page_write(fio);
3175        if (fio->retry) {
3176                fio->old_blkaddr = fio->new_blkaddr;
3177                goto reallocate;
3178        }
3179
3180        update_device_state(fio);
3181
3182        if (keep_order)
3183                up_read(&fio->sbi->io_order_lock);
3184}
3185
3186void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3187                                        enum iostat_type io_type)
3188{
3189        struct f2fs_io_info fio = {
3190                .sbi = sbi,
3191                .type = META,
3192                .temp = HOT,
3193                .op = REQ_OP_WRITE,
3194                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3195                .old_blkaddr = page->index,
3196                .new_blkaddr = page->index,
3197                .page = page,
3198                .encrypted_page = NULL,
3199                .in_list = false,
3200        };
3201
3202        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3203                fio.op_flags &= ~REQ_META;
3204
3205        set_page_writeback(page);
3206        ClearPageError(page);
3207        f2fs_submit_page_write(&fio);
3208
3209        stat_inc_meta_count(sbi, page->index);
3210        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3211}
3212
3213void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3214{
3215        struct f2fs_summary sum;
3216
3217        set_summary(&sum, nid, 0, 0);
3218        do_write_page(&sum, fio);
3219
3220        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3221}
3222
3223void f2fs_outplace_write_data(struct dnode_of_data *dn,
3224                                        struct f2fs_io_info *fio)
3225{
3226        struct f2fs_sb_info *sbi = fio->sbi;
3227        struct f2fs_summary sum;
3228
3229        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3230        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3231        do_write_page(&sum, fio);
3232        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3233
3234        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3235}
3236
3237int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3238{
3239        int err;
3240        struct f2fs_sb_info *sbi = fio->sbi;
3241        unsigned int segno;
3242
3243        fio->new_blkaddr = fio->old_blkaddr;
3244        /* i/o temperature is needed for passing down write hints */
3245        __get_segment_type(fio);
3246
3247        segno = GET_SEGNO(sbi, fio->new_blkaddr);
3248
3249        if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3250                set_sbi_flag(sbi, SBI_NEED_FSCK);
3251                f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3252                          __func__, segno);
3253                return -EFSCORRUPTED;
3254        }
3255
3256        stat_inc_inplace_blocks(fio->sbi);
3257
3258        if (fio->bio)
3259                err = f2fs_merge_page_bio(fio);
3260        else
3261                err = f2fs_submit_page_bio(fio);
3262        if (!err) {
3263                update_device_state(fio);
3264                f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3265        }
3266
3267        return err;
3268}
3269
3270static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3271                                                unsigned int segno)
3272{
3273        int i;
3274
3275        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3276                if (CURSEG_I(sbi, i)->segno == segno)
3277                        break;
3278        }
3279        return i;
3280}
3281
3282void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3283                                block_t old_blkaddr, block_t new_blkaddr,
3284                                bool recover_curseg, bool recover_newaddr)
3285{
3286        struct sit_info *sit_i = SIT_I(sbi);
3287        struct curseg_info *curseg;
3288        unsigned int segno, old_cursegno;
3289        struct seg_entry *se;
3290        int type;
3291        unsigned short old_blkoff;
3292
3293        segno = GET_SEGNO(sbi, new_blkaddr);
3294        se = get_seg_entry(sbi, segno);
3295        type = se->type;
3296
3297        down_write(&SM_I(sbi)->curseg_lock);
3298
3299        if (!recover_curseg) {
3300                /* for recovery flow */
3301                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3302                        if (old_blkaddr == NULL_ADDR)
3303                                type = CURSEG_COLD_DATA;
3304                        else
3305                                type = CURSEG_WARM_DATA;
3306                }
3307        } else {
3308                if (IS_CURSEG(sbi, segno)) {
3309                        /* se->type is volatile as SSR allocation */
3310                        type = __f2fs_get_curseg(sbi, segno);
3311                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3312                } else {
3313                        type = CURSEG_WARM_DATA;
3314                }
3315        }
3316
3317        f2fs_bug_on(sbi, !IS_DATASEG(type));
3318        curseg = CURSEG_I(sbi, type);
3319
3320        mutex_lock(&curseg->curseg_mutex);
3321        down_write(&sit_i->sentry_lock);
3322
3323        old_cursegno = curseg->segno;
3324        old_blkoff = curseg->next_blkoff;
3325
3326        /* change the current segment */
3327        if (segno != curseg->segno) {
3328                curseg->next_segno = segno;
3329                change_curseg(sbi, type);
3330        }
3331
3332        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3333        __add_sum_entry(sbi, type, sum);
3334
3335        if (!recover_curseg || recover_newaddr)
3336                update_sit_entry(sbi, new_blkaddr, 1);
3337        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3338                invalidate_mapping_pages(META_MAPPING(sbi),
3339                                        old_blkaddr, old_blkaddr);
3340                update_sit_entry(sbi, old_blkaddr, -1);
3341        }
3342
3343        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3344        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3345
3346        locate_dirty_segment(sbi, old_cursegno);
3347
3348        if (recover_curseg) {
3349                if (old_cursegno != curseg->segno) {
3350                        curseg->next_segno = old_cursegno;
3351                        change_curseg(sbi, type);
3352                }
3353                curseg->next_blkoff = old_blkoff;
3354        }
3355
3356        up_write(&sit_i->sentry_lock);
3357        mutex_unlock(&curseg->curseg_mutex);
3358        up_write(&SM_I(sbi)->curseg_lock);
3359}
3360
3361void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3362                                block_t old_addr, block_t new_addr,
3363                                unsigned char version, bool recover_curseg,
3364                                bool recover_newaddr)
3365{
3366        struct f2fs_summary sum;
3367
3368        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3369
3370        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3371                                        recover_curseg, recover_newaddr);
3372
3373        f2fs_update_data_blkaddr(dn, new_addr);
3374}
3375
3376void f2fs_wait_on_page_writeback(struct page *page,
3377                                enum page_type type, bool ordered, bool locked)
3378{
3379        if (PageWriteback(page)) {
3380                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3381
3382                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3383                if (ordered) {
3384                        wait_on_page_writeback(page);
3385                        f2fs_bug_on(sbi, locked && PageWriteback(page));
3386                } else {
3387                        wait_for_stable_page(page);
3388                }
3389        }
3390}
3391
3392void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3393{
3394        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3395        struct page *cpage;
3396
3397        if (!f2fs_post_read_required(inode))
3398                return;
3399
3400        if (!__is_valid_data_blkaddr(blkaddr))
3401                return;
3402
3403        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3404        if (cpage) {
3405                f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3406                f2fs_put_page(cpage, 1);
3407        }
3408}
3409
3410void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3411                                                                block_t len)
3412{
3413        block_t i;
3414
3415        for (i = 0; i < len; i++)
3416                f2fs_wait_on_block_writeback(inode, blkaddr + i);
3417}
3418
3419static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3420{
3421        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3422        struct curseg_info *seg_i;
3423        unsigned char *kaddr;
3424        struct page *page;
3425        block_t start;
3426        int i, j, offset;
3427
3428        start = start_sum_block(sbi);
3429
3430        page = f2fs_get_meta_page(sbi, start++);
3431        if (IS_ERR(page))
3432                return PTR_ERR(page);
3433        kaddr = (unsigned char *)page_address(page);
3434
3435        /* Step 1: restore nat cache */
3436        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3437        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3438
3439        /* Step 2: restore sit cache */
3440        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3441        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3442        offset = 2 * SUM_JOURNAL_SIZE;
3443
3444        /* Step 3: restore summary entries */
3445        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3446                unsigned short blk_off;
3447                unsigned int segno;
3448
3449                seg_i = CURSEG_I(sbi, i);
3450                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3451                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3452                seg_i->next_segno = segno;
3453                reset_curseg(sbi, i, 0);
3454                seg_i->alloc_type = ckpt->alloc_type[i];
3455                seg_i->next_blkoff = blk_off;
3456
3457                if (seg_i->alloc_type == SSR)
3458                        blk_off = sbi->blocks_per_seg;
3459
3460                for (j = 0; j < blk_off; j++) {
3461                        struct f2fs_summary *s;
3462                        s = (struct f2fs_summary *)(kaddr + offset);
3463                        seg_i->sum_blk->entries[j] = *s;
3464                        offset += SUMMARY_SIZE;
3465                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3466                                                SUM_FOOTER_SIZE)
3467                                continue;
3468
3469                        f2fs_put_page(page, 1);
3470                        page = NULL;
3471
3472                        page = f2fs_get_meta_page(sbi, start++);
3473                        if (IS_ERR(page))
3474                                return PTR_ERR(page);
3475                        kaddr = (unsigned char *)page_address(page);
3476                        offset = 0;
3477                }
3478        }
3479        f2fs_put_page(page, 1);
3480        return 0;
3481}
3482
3483static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3484{
3485        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3486        struct f2fs_summary_block *sum;
3487        struct curseg_info *curseg;
3488        struct page *new;
3489        unsigned short blk_off;
3490        unsigned int segno = 0;
3491        block_t blk_addr = 0;
3492        int err = 0;
3493
3494        /* get segment number and block addr */
3495        if (IS_DATASEG(type)) {
3496                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3497                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3498                                                        CURSEG_HOT_DATA]);
3499                if (__exist_node_summaries(sbi))
3500                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3501                else
3502                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3503        } else {
3504                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3505                                                        CURSEG_HOT_NODE]);
3506                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3507                                                        CURSEG_HOT_NODE]);
3508                if (__exist_node_summaries(sbi))
3509                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3510                                                        type - CURSEG_HOT_NODE);
3511                else
3512                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3513        }
3514
3515        new = f2fs_get_meta_page(sbi, blk_addr);
3516        if (IS_ERR(new))
3517                return PTR_ERR(new);
3518        sum = (struct f2fs_summary_block *)page_address(new);
3519
3520        if (IS_NODESEG(type)) {
3521                if (__exist_node_summaries(sbi)) {
3522                        struct f2fs_summary *ns = &sum->entries[0];
3523                        int i;
3524                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3525                                ns->version = 0;
3526                                ns->ofs_in_node = 0;
3527                        }
3528                } else {
3529                        err = f2fs_restore_node_summary(sbi, segno, sum);
3530                        if (err)
3531                                goto out;
3532                }
3533        }
3534
3535        /* set uncompleted segment to curseg */
3536        curseg = CURSEG_I(sbi, type);
3537        mutex_lock(&curseg->curseg_mutex);
3538
3539        /* update journal info */
3540        down_write(&curseg->journal_rwsem);
3541        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3542        up_write(&curseg->journal_rwsem);
3543
3544        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3545        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3546        curseg->next_segno = segno;
3547        reset_curseg(sbi, type, 0);
3548        curseg->alloc_type = ckpt->alloc_type[type];
3549        curseg->next_blkoff = blk_off;
3550        mutex_unlock(&curseg->curseg_mutex);
3551out:
3552        f2fs_put_page(new, 1);
3553        return err;
3554}
3555
3556static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3557{
3558        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3559        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3560        int type = CURSEG_HOT_DATA;
3561        int err;
3562
3563        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3564                int npages = f2fs_npages_for_summary_flush(sbi, true);
3565
3566                if (npages >= 2)
3567                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3568                                                        META_CP, true);
3569
3570                /* restore for compacted data summary */
3571                err = read_compacted_summaries(sbi);
3572                if (err)
3573                        return err;
3574                type = CURSEG_HOT_NODE;
3575        }
3576
3577        if (__exist_node_summaries(sbi))
3578                f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3579                                        NR_CURSEG_TYPE - type, META_CP, true);
3580
3581        for (; type <= CURSEG_COLD_NODE; type++) {
3582                err = read_normal_summaries(sbi, type);
3583                if (err)
3584                        return err;
3585        }
3586
3587        /* sanity check for summary blocks */
3588        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3589                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3590                f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3591                         nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3592                return -EINVAL;
3593        }
3594
3595        return 0;
3596}
3597
3598static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3599{
3600        struct page *page;
3601        unsigned char *kaddr;
3602        struct f2fs_summary *summary;
3603        struct curseg_info *seg_i;
3604        int written_size = 0;
3605        int i, j;
3606
3607        page = f2fs_grab_meta_page(sbi, blkaddr++);
3608        kaddr = (unsigned char *)page_address(page);
3609        memset(kaddr, 0, PAGE_SIZE);
3610
3611        /* Step 1: write nat cache */
3612        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3613        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3614        written_size += SUM_JOURNAL_SIZE;
3615
3616        /* Step 2: write sit cache */
3617        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3618        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3619        written_size += SUM_JOURNAL_SIZE;
3620
3621        /* Step 3: write summary entries */
3622        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3623                unsigned short blkoff;
3624                seg_i = CURSEG_I(sbi, i);
3625                if (sbi->ckpt->alloc_type[i] == SSR)
3626                        blkoff = sbi->blocks_per_seg;
3627                else
3628                        blkoff = curseg_blkoff(sbi, i);
3629
3630                for (j = 0; j < blkoff; j++) {
3631                        if (!page) {
3632                                page = f2fs_grab_meta_page(sbi, blkaddr++);
3633                                kaddr = (unsigned char *)page_address(page);
3634                                memset(kaddr, 0, PAGE_SIZE);
3635                                written_size = 0;
3636                        }
3637                        summary = (struct f2fs_summary *)(kaddr + written_size);
3638                        *summary = seg_i->sum_blk->entries[j];
3639                        written_size += SUMMARY_SIZE;
3640
3641                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3642                                                        SUM_FOOTER_SIZE)
3643                                continue;
3644
3645                        set_page_dirty(page);
3646                        f2fs_put_page(page, 1);
3647                        page = NULL;
3648                }
3649        }
3650        if (page) {
3651                set_page_dirty(page);
3652                f2fs_put_page(page, 1);
3653        }
3654}
3655
3656static void write_normal_summaries(struct f2fs_sb_info *sbi,
3657                                        block_t blkaddr, int type)
3658{
3659        int i, end;
3660        if (IS_DATASEG(type))
3661                end = type + NR_CURSEG_DATA_TYPE;
3662        else
3663                end = type + NR_CURSEG_NODE_TYPE;
3664
3665        for (i = type; i < end; i++)
3666                write_current_sum_page(sbi, i, blkaddr + (i - type));
3667}
3668
3669void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3670{
3671        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3672                write_compacted_summaries(sbi, start_blk);
3673        else
3674                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3675}
3676
3677void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3678{
3679        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3680}
3681
3682int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3683                                        unsigned int val, int alloc)
3684{
3685        int i;
3686
3687        if (type == NAT_JOURNAL) {
3688                for (i = 0; i < nats_in_cursum(journal); i++) {
3689                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3690                                return i;
3691                }
3692                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3693                        return update_nats_in_cursum(journal, 1);
3694        } else if (type == SIT_JOURNAL) {
3695                for (i = 0; i < sits_in_cursum(journal); i++)
3696                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3697                                return i;
3698                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3699                        return update_sits_in_cursum(journal, 1);
3700        }
3701        return -1;
3702}
3703
3704static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3705                                        unsigned int segno)
3706{
3707        return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3708}
3709
3710static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3711                                        unsigned int start)
3712{
3713        struct sit_info *sit_i = SIT_I(sbi);
3714        struct page *page;
3715        pgoff_t src_off, dst_off;
3716
3717        src_off = current_sit_addr(sbi, start);
3718        dst_off = next_sit_addr(sbi, src_off);
3719
3720        page = f2fs_grab_meta_page(sbi, dst_off);
3721        seg_info_to_sit_page(sbi, page, start);
3722
3723        set_page_dirty(page);
3724        set_to_next_sit(sit_i, start);
3725
3726        return page;
3727}
3728
3729static struct sit_entry_set *grab_sit_entry_set(void)
3730{
3731        struct sit_entry_set *ses =
3732                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3733
3734        ses->entry_cnt = 0;
3735        INIT_LIST_HEAD(&ses->set_list);
3736        return ses;
3737}
3738
3739static void release_sit_entry_set(struct sit_entry_set *ses)
3740{
3741        list_del(&ses->set_list);
3742        kmem_cache_free(sit_entry_set_slab, ses);
3743}
3744
3745static void adjust_sit_entry_set(struct sit_entry_set *ses,
3746                                                struct list_head *head)
3747{
3748        struct sit_entry_set *next = ses;
3749
3750        if (list_is_last(&ses->set_list, head))
3751                return;
3752
3753        list_for_each_entry_continue(next, head, set_list)
3754                if (ses->entry_cnt <= next->entry_cnt)
3755                        break;
3756
3757        list_move_tail(&ses->set_list, &next->set_list);
3758}
3759
3760static void add_sit_entry(unsigned int segno, struct list_head *head)
3761{
3762        struct sit_entry_set *ses;
3763        unsigned int start_segno = START_SEGNO(segno);
3764
3765        list_for_each_entry(ses, head, set_list) {
3766                if (ses->start_segno == start_segno) {
3767                        ses->entry_cnt++;
3768                        adjust_sit_entry_set(ses, head);
3769                        return;
3770                }
3771        }
3772
3773        ses = grab_sit_entry_set();
3774
3775        ses->start_segno = start_segno;
3776        ses->entry_cnt++;
3777        list_add(&ses->set_list, head);
3778}
3779
3780static void add_sits_in_set(struct f2fs_sb_info *sbi)
3781{
3782        struct f2fs_sm_info *sm_info = SM_I(sbi);
3783        struct list_head *set_list = &sm_info->sit_entry_set;
3784        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3785        unsigned int segno;
3786
3787        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3788                add_sit_entry(segno, set_list);
3789}
3790
3791static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3792{
3793        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3794        struct f2fs_journal *journal = curseg->journal;
3795        int i;
3796
3797        down_write(&curseg->journal_rwsem);
3798        for (i = 0; i < sits_in_cursum(journal); i++) {
3799                unsigned int segno;
3800                bool dirtied;
3801
3802                segno = le32_to_cpu(segno_in_journal(journal, i));
3803                dirtied = __mark_sit_entry_dirty(sbi, segno);
3804
3805                if (!dirtied)
3806                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3807        }
3808        update_sits_in_cursum(journal, -i);
3809        up_write(&curseg->journal_rwsem);
3810}
3811
3812/*
3813 * CP calls this function, which flushes SIT entries including sit_journal,
3814 * and moves prefree segs to free segs.
3815 */
3816void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3817{
3818        struct sit_info *sit_i = SIT_I(sbi);
3819        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3820        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3821        struct f2fs_journal *journal = curseg->journal;
3822        struct sit_entry_set *ses, *tmp;
3823        struct list_head *head = &SM_I(sbi)->sit_entry_set;
3824        bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3825        struct seg_entry *se;
3826
3827        down_write(&sit_i->sentry_lock);
3828
3829        if (!sit_i->dirty_sentries)
3830                goto out;
3831
3832        /*
3833         * add and account sit entries of dirty bitmap in sit entry
3834         * set temporarily
3835         */
3836        add_sits_in_set(sbi);
3837
3838        /*
3839         * if there are no enough space in journal to store dirty sit
3840         * entries, remove all entries from journal and add and account
3841         * them in sit entry set.
3842         */
3843        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3844                                                                !to_journal)
3845                remove_sits_in_journal(sbi);
3846
3847        /*
3848         * there are two steps to flush sit entries:
3849         * #1, flush sit entries to journal in current cold data summary block.
3850         * #2, flush sit entries to sit page.
3851         */
3852        list_for_each_entry_safe(ses, tmp, head, set_list) {
3853                struct page *page = NULL;
3854                struct f2fs_sit_block *raw_sit = NULL;
3855                unsigned int start_segno = ses->start_segno;
3856                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3857                                                (unsigned long)MAIN_SEGS(sbi));
3858                unsigned int segno = start_segno;
3859
3860                if (to_journal &&
3861                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3862                        to_journal = false;
3863
3864                if (to_journal) {
3865                        down_write(&curseg->journal_rwsem);
3866                } else {
3867                        page = get_next_sit_page(sbi, start_segno);
3868                        raw_sit = page_address(page);
3869                }
3870
3871                /* flush dirty sit entries in region of current sit set */
3872                for_each_set_bit_from(segno, bitmap, end) {
3873                        int offset, sit_offset;
3874
3875                        se = get_seg_entry(sbi, segno);
3876#ifdef CONFIG_F2FS_CHECK_FS
3877                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3878                                                SIT_VBLOCK_MAP_SIZE))
3879                                f2fs_bug_on(sbi, 1);
3880#endif
3881
3882                        /* add discard candidates */
3883                        if (!(cpc->reason & CP_DISCARD)) {
3884                                cpc->trim_start = segno;
3885                                add_discard_addrs(sbi, cpc, false);
3886                        }
3887
3888                        if (to_journal) {
3889                                offset = f2fs_lookup_journal_in_cursum(journal,
3890                                                        SIT_JOURNAL, segno, 1);
3891                                f2fs_bug_on(sbi, offset < 0);
3892                                segno_in_journal(journal, offset) =
3893                                                        cpu_to_le32(segno);
3894                                seg_info_to_raw_sit(se,
3895                                        &sit_in_journal(journal, offset));
3896                                check_block_count(sbi, segno,
3897                                        &sit_in_journal(journal, offset));
3898                        } else {
3899                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3900                                seg_info_to_raw_sit(se,
3901                                                &raw_sit->entries[sit_offset]);
3902                                check_block_count(sbi, segno,
3903                                                &raw_sit->entries[sit_offset]);
3904                        }
3905
3906                        __clear_bit(segno, bitmap);
3907                        sit_i->dirty_sentries--;
3908                        ses->entry_cnt--;
3909                }
3910
3911                if (to_journal)
3912                        up_write(&curseg->journal_rwsem);
3913                else
3914                        f2fs_put_page(page, 1);
3915
3916                f2fs_bug_on(sbi, ses->entry_cnt);
3917                release_sit_entry_set(ses);
3918        }
3919
3920        f2fs_bug_on(sbi, !list_empty(head));
3921        f2fs_bug_on(sbi, sit_i->dirty_sentries);
3922out:
3923        if (cpc->reason & CP_DISCARD) {
3924                __u64 trim_start = cpc->trim_start;
3925
3926                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3927                        add_discard_addrs(sbi, cpc, false);
3928
3929                cpc->trim_start = trim_start;
3930        }
3931        up_write(&sit_i->sentry_lock);
3932
3933        set_prefree_as_free_segments(sbi);
3934}
3935
3936static int build_sit_info(struct f2fs_sb_info *sbi)
3937{
3938        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3939        struct sit_info *sit_i;
3940        unsigned int sit_segs, start;
3941        char *src_bitmap, *bitmap;
3942        unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3943
3944        /* allocate memory for SIT information */
3945        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3946        if (!sit_i)
3947                return -ENOMEM;
3948
3949        SM_I(sbi)->sit_info = sit_i;
3950
3951        sit_i->sentries =
3952                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3953                                              MAIN_SEGS(sbi)),
3954                              GFP_KERNEL);
3955        if (!sit_i->sentries)
3956                return -ENOMEM;
3957
3958        main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3959        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3960                                                                GFP_KERNEL);
3961        if (!sit_i->dirty_sentries_bitmap)
3962                return -ENOMEM;
3963
3964#ifdef CONFIG_F2FS_CHECK_FS
3965        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
3966#else
3967        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
3968#endif
3969        sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3970        if (!sit_i->bitmap)
3971                return -ENOMEM;
3972
3973        bitmap = sit_i->bitmap;
3974
3975        for (start = 0; start < MAIN_SEGS(sbi); start++) {
3976                sit_i->sentries[start].cur_valid_map = bitmap;
3977                bitmap += SIT_VBLOCK_MAP_SIZE;
3978
3979                sit_i->sentries[start].ckpt_valid_map = bitmap;
3980                bitmap += SIT_VBLOCK_MAP_SIZE;
3981
3982#ifdef CONFIG_F2FS_CHECK_FS
3983                sit_i->sentries[start].cur_valid_map_mir = bitmap;
3984                bitmap += SIT_VBLOCK_MAP_SIZE;
3985#endif
3986
3987                sit_i->sentries[start].discard_map = bitmap;
3988                bitmap += SIT_VBLOCK_MAP_SIZE;
3989        }
3990
3991        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3992        if (!sit_i->tmp_map)
3993                return -ENOMEM;
3994
3995        if (__is_large_section(sbi)) {
3996                sit_i->sec_entries =
3997                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3998                                                      MAIN_SECS(sbi)),
3999                                      GFP_KERNEL);
4000                if (!sit_i->sec_entries)
4001                        return -ENOMEM;
4002        }
4003
4004        /* get information related with SIT */
4005        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4006
4007        /* setup SIT bitmap from ckeckpoint pack */
4008        sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4009        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4010
4011        sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4012        if (!sit_i->sit_bitmap)
4013                return -ENOMEM;
4014
4015#ifdef CONFIG_F2FS_CHECK_FS
4016        sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4017                                        sit_bitmap_size, GFP_KERNEL);
4018        if (!sit_i->sit_bitmap_mir)
4019                return -ENOMEM;
4020
4021        sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4022                                        main_bitmap_size, GFP_KERNEL);
4023        if (!sit_i->invalid_segmap)
4024                return -ENOMEM;
4025#endif
4026
4027        /* init SIT information */
4028        sit_i->s_ops = &default_salloc_ops;
4029
4030        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4031        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4032        sit_i->written_valid_blocks = 0;
4033        sit_i->bitmap_size = sit_bitmap_size;
4034        sit_i->dirty_sentries = 0;
4035        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4036        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4037        sit_i->mounted_time = ktime_get_real_seconds();
4038        init_rwsem(&sit_i->sentry_lock);
4039        return 0;
4040}
4041
4042static int build_free_segmap(struct f2fs_sb_info *sbi)
4043{
4044        struct free_segmap_info *free_i;
4045        unsigned int bitmap_size, sec_bitmap_size;
4046
4047        /* allocate memory for free segmap information */
4048        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4049        if (!free_i)
4050                return -ENOMEM;
4051
4052        SM_I(sbi)->free_info = free_i;
4053
4054        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4055        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4056        if (!free_i->free_segmap)
4057                return -ENOMEM;
4058
4059        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4060        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4061        if (!free_i->free_secmap)
4062                return -ENOMEM;
4063
4064        /* set all segments as dirty temporarily */
4065        memset(free_i->free_segmap, 0xff, bitmap_size);
4066        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4067
4068        /* init free segmap information */
4069        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4070        free_i->free_segments = 0;
4071        free_i->free_sections = 0;
4072        spin_lock_init(&free_i->segmap_lock);
4073        return 0;
4074}
4075
4076static int build_curseg(struct f2fs_sb_info *sbi)
4077{
4078        struct curseg_info *array;
4079        int i;
4080
4081        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4082                             GFP_KERNEL);
4083        if (!array)
4084                return -ENOMEM;
4085
4086        SM_I(sbi)->curseg_array = array;
4087
4088        for (i = 0; i < NR_CURSEG_TYPE; i++) {
4089                mutex_init(&array[i].curseg_mutex);
4090                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4091                if (!array[i].sum_blk)
4092                        return -ENOMEM;
4093                init_rwsem(&array[i].journal_rwsem);
4094                array[i].journal = f2fs_kzalloc(sbi,
4095                                sizeof(struct f2fs_journal), GFP_KERNEL);
4096                if (!array[i].journal)
4097                        return -ENOMEM;
4098                array[i].segno = NULL_SEGNO;
4099                array[i].next_blkoff = 0;
4100        }
4101        return restore_curseg_summaries(sbi);
4102}
4103
4104static int build_sit_entries(struct f2fs_sb_info *sbi)
4105{
4106        struct sit_info *sit_i = SIT_I(sbi);
4107        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4108        struct f2fs_journal *journal = curseg->journal;
4109        struct seg_entry *se;
4110        struct f2fs_sit_entry sit;
4111        int sit_blk_cnt = SIT_BLK_CNT(sbi);
4112        unsigned int i, start, end;
4113        unsigned int readed, start_blk = 0;
4114        int err = 0;
4115        block_t total_node_blocks = 0;
4116
4117        do {
4118                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4119                                                        META_SIT, true);
4120
4121                start = start_blk * sit_i->sents_per_block;
4122                end = (start_blk + readed) * sit_i->sents_per_block;
4123
4124                for (; start < end && start < MAIN_SEGS(sbi); start++) {
4125                        struct f2fs_sit_block *sit_blk;
4126                        struct page *page;
4127
4128                        se = &sit_i->sentries[start];
4129                        page = get_current_sit_page(sbi, start);
4130                        if (IS_ERR(page))
4131                                return PTR_ERR(page);
4132                        sit_blk = (struct f2fs_sit_block *)page_address(page);
4133                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4134                        f2fs_put_page(page, 1);
4135
4136                        err = check_block_count(sbi, start, &sit);
4137                        if (err)
4138                                return err;
4139                        seg_info_from_raw_sit(se, &sit);
4140                        if (IS_NODESEG(se->type))
4141                                total_node_blocks += se->valid_blocks;
4142
4143                        /* build discard map only one time */
4144                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4145                                memset(se->discard_map, 0xff,
4146                                        SIT_VBLOCK_MAP_SIZE);
4147                        } else {
4148                                memcpy(se->discard_map,
4149                                        se->cur_valid_map,
4150                                        SIT_VBLOCK_MAP_SIZE);
4151                                sbi->discard_blks +=
4152                                        sbi->blocks_per_seg -
4153                                        se->valid_blocks;
4154                        }
4155
4156                        if (__is_large_section(sbi))
4157                                get_sec_entry(sbi, start)->valid_blocks +=
4158                                                        se->valid_blocks;
4159                }
4160                start_blk += readed;
4161        } while (start_blk < sit_blk_cnt);
4162
4163        down_read(&curseg->journal_rwsem);
4164        for (i = 0; i < sits_in_cursum(journal); i++) {
4165                unsigned int old_valid_blocks;
4166
4167                start = le32_to_cpu(segno_in_journal(journal, i));
4168                if (start >= MAIN_SEGS(sbi)) {
4169                        f2fs_err(sbi, "Wrong journal entry on segno %u",
4170                                 start);
4171                        err = -EFSCORRUPTED;
4172                        break;
4173                }
4174
4175                se = &sit_i->sentries[start];
4176                sit = sit_in_journal(journal, i);
4177
4178                old_valid_blocks = se->valid_blocks;
4179                if (IS_NODESEG(se->type))
4180                        total_node_blocks -= old_valid_blocks;
4181
4182                err = check_block_count(sbi, start, &sit);
4183                if (err)
4184                        break;
4185                seg_info_from_raw_sit(se, &sit);
4186                if (IS_NODESEG(se->type))
4187                        total_node_blocks += se->valid_blocks;
4188
4189                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4190                        memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4191                } else {
4192                        memcpy(se->discard_map, se->cur_valid_map,
4193                                                SIT_VBLOCK_MAP_SIZE);
4194                        sbi->discard_blks += old_valid_blocks;
4195                        sbi->discard_blks -= se->valid_blocks;
4196                }
4197
4198                if (__is_large_section(sbi)) {
4199                        get_sec_entry(sbi, start)->valid_blocks +=
4200                                                        se->valid_blocks;
4201                        get_sec_entry(sbi, start)->valid_blocks -=
4202                                                        old_valid_blocks;
4203                }
4204        }
4205        up_read(&curseg->journal_rwsem);
4206
4207        if (!err && total_node_blocks != valid_node_count(sbi)) {
4208                f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4209                         total_node_blocks, valid_node_count(sbi));
4210                err = -EFSCORRUPTED;
4211        }
4212
4213        return err;
4214}
4215
4216static void init_free_segmap(struct f2fs_sb_info *sbi)
4217{
4218        unsigned int start;
4219        int type;
4220
4221        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4222                struct seg_entry *sentry = get_seg_entry(sbi, start);
4223                if (!sentry->valid_blocks)
4224                        __set_free(sbi, start);
4225                else
4226                        SIT_I(sbi)->written_valid_blocks +=
4227                                                sentry->valid_blocks;
4228        }
4229
4230        /* set use the current segments */
4231        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4232                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4233                __set_test_and_inuse(sbi, curseg_t->segno);
4234        }
4235}
4236
4237static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4238{
4239        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4240        struct free_segmap_info *free_i = FREE_I(sbi);
4241        unsigned int segno = 0, offset = 0;
4242        unsigned short valid_blocks;
4243
4244        while (1) {
4245                /* find dirty segment based on free segmap */
4246                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4247                if (segno >= MAIN_SEGS(sbi))
4248                        break;
4249                offset = segno + 1;
4250                valid_blocks = get_valid_blocks(sbi, segno, false);
4251                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4252                        continue;
4253                if (valid_blocks > sbi->blocks_per_seg) {
4254                        f2fs_bug_on(sbi, 1);
4255                        continue;
4256                }
4257                mutex_lock(&dirty_i->seglist_lock);
4258                __locate_dirty_segment(sbi, segno, DIRTY);
4259                mutex_unlock(&dirty_i->seglist_lock);
4260        }
4261}
4262
4263static int init_victim_secmap(struct f2fs_sb_info *sbi)
4264{
4265        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4266        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4267
4268        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4269        if (!dirty_i->victim_secmap)
4270                return -ENOMEM;
4271        return 0;
4272}
4273
4274static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4275{
4276        struct dirty_seglist_info *dirty_i;
4277        unsigned int bitmap_size, i;
4278
4279        /* allocate memory for dirty segments list information */
4280        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4281                                                                GFP_KERNEL);
4282        if (!dirty_i)
4283                return -ENOMEM;
4284
4285        SM_I(sbi)->dirty_info = dirty_i;
4286        mutex_init(&dirty_i->seglist_lock);
4287
4288        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4289
4290        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4291                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4292                                                                GFP_KERNEL);
4293                if (!dirty_i->dirty_segmap[i])
4294                        return -ENOMEM;
4295        }
4296
4297        init_dirty_segmap(sbi);
4298        return init_victim_secmap(sbi);
4299}
4300
4301static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4302{
4303        int i;
4304
4305        /*
4306         * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4307         * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4308         */
4309        for (i = 0; i < NO_CHECK_TYPE; i++) {
4310                struct curseg_info *curseg = CURSEG_I(sbi, i);
4311                struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4312                unsigned int blkofs = curseg->next_blkoff;
4313
4314                if (f2fs_test_bit(blkofs, se->cur_valid_map))
4315                        goto out;
4316
4317                if (curseg->alloc_type == SSR)
4318                        continue;
4319
4320                for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4321                        if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4322                                continue;
4323out:
4324                        f2fs_err(sbi,
4325                                 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4326                                 i, curseg->segno, curseg->alloc_type,
4327                                 curseg->next_blkoff, blkofs);
4328                        return -EFSCORRUPTED;
4329                }
4330        }
4331        return 0;
4332}
4333
4334/*
4335 * Update min, max modified time for cost-benefit GC algorithm
4336 */
4337static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4338{
4339        struct sit_info *sit_i = SIT_I(sbi);
4340        unsigned int segno;
4341
4342        down_write(&sit_i->sentry_lock);
4343
4344        sit_i->min_mtime = ULLONG_MAX;
4345
4346        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4347                unsigned int i;
4348                unsigned long long mtime = 0;
4349
4350                for (i = 0; i < sbi->segs_per_sec; i++)
4351                        mtime += get_seg_entry(sbi, segno + i)->mtime;
4352
4353                mtime = div_u64(mtime, sbi->segs_per_sec);
4354
4355                if (sit_i->min_mtime > mtime)
4356                        sit_i->min_mtime = mtime;
4357        }
4358        sit_i->max_mtime = get_mtime(sbi, false);
4359        up_write(&sit_i->sentry_lock);
4360}
4361
4362int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4363{
4364        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4365        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4366        struct f2fs_sm_info *sm_info;
4367        int err;
4368
4369        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4370        if (!sm_info)
4371                return -ENOMEM;
4372
4373        /* init sm info */
4374        sbi->sm_info = sm_info;
4375        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4376        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4377        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4378        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4379        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4380        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4381        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4382        sm_info->rec_prefree_segments = sm_info->main_segments *
4383                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4384        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4385                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4386
4387        if (!test_opt(sbi, LFS))
4388                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4389        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4390        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4391        sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4392        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4393        sm_info->min_ssr_sections = reserved_sections(sbi);
4394
4395        INIT_LIST_HEAD(&sm_info->sit_entry_set);
4396
4397        init_rwsem(&sm_info->curseg_lock);
4398
4399        if (!f2fs_readonly(sbi->sb)) {
4400                err = f2fs_create_flush_cmd_control(sbi);
4401                if (err)
4402                        return err;
4403        }
4404
4405        err = create_discard_cmd_control(sbi);
4406        if (err)
4407                return err;
4408
4409        err = build_sit_info(sbi);
4410        if (err)
4411                return err;
4412        err = build_free_segmap(sbi);
4413        if (err)
4414                return err;
4415        err = build_curseg(sbi);
4416        if (err)
4417                return err;
4418
4419        /* reinit free segmap based on SIT */
4420        err = build_sit_entries(sbi);
4421        if (err)
4422                return err;
4423
4424        init_free_segmap(sbi);
4425        err = build_dirty_segmap(sbi);
4426        if (err)
4427                return err;
4428
4429        err = sanity_check_curseg(sbi);
4430        if (err)
4431                return err;
4432
4433        init_min_max_mtime(sbi);
4434        return 0;
4435}
4436
4437static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4438                enum dirty_type dirty_type)
4439{
4440        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4441
4442        mutex_lock(&dirty_i->seglist_lock);
4443        kvfree(dirty_i->dirty_segmap[dirty_type]);
4444        dirty_i->nr_dirty[dirty_type] = 0;
4445        mutex_unlock(&dirty_i->seglist_lock);
4446}
4447
4448static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4449{
4450        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4451        kvfree(dirty_i->victim_secmap);
4452}
4453
4454static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4455{
4456        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4457        int i;
4458
4459        if (!dirty_i)
4460                return;
4461
4462        /* discard pre-free/dirty segments list */
4463        for (i = 0; i < NR_DIRTY_TYPE; i++)
4464                discard_dirty_segmap(sbi, i);
4465
4466        destroy_victim_secmap(sbi);
4467        SM_I(sbi)->dirty_info = NULL;
4468        kvfree(dirty_i);
4469}
4470
4471static void destroy_curseg(struct f2fs_sb_info *sbi)
4472{
4473        struct curseg_info *array = SM_I(sbi)->curseg_array;
4474        int i;
4475
4476        if (!array)
4477                return;
4478        SM_I(sbi)->curseg_array = NULL;
4479        for (i = 0; i < NR_CURSEG_TYPE; i++) {
4480                kvfree(array[i].sum_blk);
4481                kvfree(array[i].journal);
4482        }
4483        kvfree(array);
4484}
4485
4486static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4487{
4488        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4489        if (!free_i)
4490                return;
4491        SM_I(sbi)->free_info = NULL;
4492        kvfree(free_i->free_segmap);
4493        kvfree(free_i->free_secmap);
4494        kvfree(free_i);
4495}
4496
4497static void destroy_sit_info(struct f2fs_sb_info *sbi)
4498{
4499        struct sit_info *sit_i = SIT_I(sbi);
4500
4501        if (!sit_i)
4502                return;
4503
4504        if (sit_i->sentries)
4505                kvfree(sit_i->bitmap);
4506        kvfree(sit_i->tmp_map);
4507
4508        kvfree(sit_i->sentries);
4509        kvfree(sit_i->sec_entries);
4510        kvfree(sit_i->dirty_sentries_bitmap);
4511
4512        SM_I(sbi)->sit_info = NULL;
4513        kvfree(sit_i->sit_bitmap);
4514#ifdef CONFIG_F2FS_CHECK_FS
4515        kvfree(sit_i->sit_bitmap_mir);
4516        kvfree(sit_i->invalid_segmap);
4517#endif
4518        kvfree(sit_i);
4519}
4520
4521void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4522{
4523        struct f2fs_sm_info *sm_info = SM_I(sbi);
4524
4525        if (!sm_info)
4526                return;
4527        f2fs_destroy_flush_cmd_control(sbi, true);
4528        destroy_discard_cmd_control(sbi);
4529        destroy_dirty_segmap(sbi);
4530        destroy_curseg(sbi);
4531        destroy_free_segmap(sbi);
4532        destroy_sit_info(sbi);
4533        sbi->sm_info = NULL;
4534        kvfree(sm_info);
4535}
4536
4537int __init f2fs_create_segment_manager_caches(void)
4538{
4539        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4540                        sizeof(struct discard_entry));
4541        if (!discard_entry_slab)
4542                goto fail;
4543
4544        discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4545                        sizeof(struct discard_cmd));
4546        if (!discard_cmd_slab)
4547                goto destroy_discard_entry;
4548
4549        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4550                        sizeof(struct sit_entry_set));
4551        if (!sit_entry_set_slab)
4552                goto destroy_discard_cmd;
4553
4554        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4555                        sizeof(struct inmem_pages));
4556        if (!inmem_entry_slab)
4557                goto destroy_sit_entry_set;
4558        return 0;
4559
4560destroy_sit_entry_set:
4561        kmem_cache_destroy(sit_entry_set_slab);
4562destroy_discard_cmd:
4563        kmem_cache_destroy(discard_cmd_slab);
4564destroy_discard_entry:
4565        kmem_cache_destroy(discard_entry_slab);
4566fail:
4567        return -ENOMEM;
4568}
4569
4570void f2fs_destroy_segment_manager_caches(void)
4571{
4572        kmem_cache_destroy(sit_entry_set_slab);
4573        kmem_cache_destroy(discard_cmd_slab);
4574        kmem_cache_destroy(discard_entry_slab);
4575        kmem_cache_destroy(inmem_entry_slab);
4576}
4577