linux/fs/libfs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      fs/libfs.c
   4 *      Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22
  23#include <linux/uaccess.h>
  24
  25#include "internal.h"
  26
  27int simple_getattr(const struct path *path, struct kstat *stat,
  28                   u32 request_mask, unsigned int query_flags)
  29{
  30        struct inode *inode = d_inode(path->dentry);
  31        generic_fillattr(inode, stat);
  32        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  33        return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39        buf->f_type = dentry->d_sb->s_magic;
  40        buf->f_bsize = PAGE_SIZE;
  41        buf->f_namelen = NAME_MAX;
  42        return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52        return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57        .d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67        if (dentry->d_name.len > NAME_MAX)
  68                return ERR_PTR(-ENAMETOOLONG);
  69        if (!dentry->d_sb->s_d_op)
  70                d_set_d_op(dentry, &simple_dentry_operations);
  71        d_add(dentry, NULL);
  72        return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78        file->private_data = d_alloc_cursor(file->f_path.dentry);
  79
  80        return file->private_data ? 0 : -ENOMEM;
  81}
  82EXPORT_SYMBOL(dcache_dir_open);
  83
  84int dcache_dir_close(struct inode *inode, struct file *file)
  85{
  86        dput(file->private_data);
  87        return 0;
  88}
  89EXPORT_SYMBOL(dcache_dir_close);
  90
  91/* parent is locked at least shared */
  92/*
  93 * Returns an element of siblings' list.
  94 * We are looking for <count>th positive after <p>; if
  95 * found, dentry is grabbed and returned to caller.
  96 * If no such element exists, NULL is returned.
  97 */
  98static struct dentry *scan_positives(struct dentry *cursor,
  99                                        struct list_head *p,
 100                                        loff_t count,
 101                                        struct dentry *last)
 102{
 103        struct dentry *dentry = cursor->d_parent, *found = NULL;
 104
 105        spin_lock(&dentry->d_lock);
 106        while ((p = p->next) != &dentry->d_subdirs) {
 107                struct dentry *d = list_entry(p, struct dentry, d_child);
 108                // we must at least skip cursors, to avoid livelocks
 109                if (d->d_flags & DCACHE_DENTRY_CURSOR)
 110                        continue;
 111                if (simple_positive(d) && !--count) {
 112                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 113                        if (simple_positive(d))
 114                                found = dget_dlock(d);
 115                        spin_unlock(&d->d_lock);
 116                        if (likely(found))
 117                                break;
 118                        count = 1;
 119                }
 120                if (need_resched()) {
 121                        list_move(&cursor->d_child, p);
 122                        p = &cursor->d_child;
 123                        spin_unlock(&dentry->d_lock);
 124                        cond_resched();
 125                        spin_lock(&dentry->d_lock);
 126                }
 127        }
 128        spin_unlock(&dentry->d_lock);
 129        dput(last);
 130        return found;
 131}
 132
 133loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 134{
 135        struct dentry *dentry = file->f_path.dentry;
 136        switch (whence) {
 137                case 1:
 138                        offset += file->f_pos;
 139                        /* fall through */
 140                case 0:
 141                        if (offset >= 0)
 142                                break;
 143                        /* fall through */
 144                default:
 145                        return -EINVAL;
 146        }
 147        if (offset != file->f_pos) {
 148                struct dentry *cursor = file->private_data;
 149                struct dentry *to = NULL;
 150
 151                inode_lock_shared(dentry->d_inode);
 152
 153                if (offset > 2)
 154                        to = scan_positives(cursor, &dentry->d_subdirs,
 155                                            offset - 2, NULL);
 156                spin_lock(&dentry->d_lock);
 157                if (to)
 158                        list_move(&cursor->d_child, &to->d_child);
 159                else
 160                        list_del_init(&cursor->d_child);
 161                spin_unlock(&dentry->d_lock);
 162                dput(to);
 163
 164                file->f_pos = offset;
 165
 166                inode_unlock_shared(dentry->d_inode);
 167        }
 168        return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175        return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186        struct dentry *dentry = file->f_path.dentry;
 187        struct dentry *cursor = file->private_data;
 188        struct list_head *anchor = &dentry->d_subdirs;
 189        struct dentry *next = NULL;
 190        struct list_head *p;
 191
 192        if (!dir_emit_dots(file, ctx))
 193                return 0;
 194
 195        if (ctx->pos == 2)
 196                p = anchor;
 197        else if (!list_empty(&cursor->d_child))
 198                p = &cursor->d_child;
 199        else
 200                return 0;
 201
 202        while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 203                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 204                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 205                        break;
 206                ctx->pos++;
 207                p = &next->d_child;
 208        }
 209        spin_lock(&dentry->d_lock);
 210        if (next)
 211                list_move_tail(&cursor->d_child, &next->d_child);
 212        else
 213                list_del_init(&cursor->d_child);
 214        spin_unlock(&dentry->d_lock);
 215        dput(next);
 216
 217        return 0;
 218}
 219EXPORT_SYMBOL(dcache_readdir);
 220
 221ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 222{
 223        return -EISDIR;
 224}
 225EXPORT_SYMBOL(generic_read_dir);
 226
 227const struct file_operations simple_dir_operations = {
 228        .open           = dcache_dir_open,
 229        .release        = dcache_dir_close,
 230        .llseek         = dcache_dir_lseek,
 231        .read           = generic_read_dir,
 232        .iterate_shared = dcache_readdir,
 233        .fsync          = noop_fsync,
 234};
 235EXPORT_SYMBOL(simple_dir_operations);
 236
 237const struct inode_operations simple_dir_inode_operations = {
 238        .lookup         = simple_lookup,
 239};
 240EXPORT_SYMBOL(simple_dir_inode_operations);
 241
 242static const struct super_operations simple_super_operations = {
 243        .statfs         = simple_statfs,
 244};
 245
 246static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 247{
 248        struct pseudo_fs_context *ctx = fc->fs_private;
 249        struct inode *root;
 250
 251        s->s_maxbytes = MAX_LFS_FILESIZE;
 252        s->s_blocksize = PAGE_SIZE;
 253        s->s_blocksize_bits = PAGE_SHIFT;
 254        s->s_magic = ctx->magic;
 255        s->s_op = ctx->ops ?: &simple_super_operations;
 256        s->s_xattr = ctx->xattr;
 257        s->s_time_gran = 1;
 258        root = new_inode(s);
 259        if (!root)
 260                return -ENOMEM;
 261
 262        /*
 263         * since this is the first inode, make it number 1. New inodes created
 264         * after this must take care not to collide with it (by passing
 265         * max_reserved of 1 to iunique).
 266         */
 267        root->i_ino = 1;
 268        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 269        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 270        s->s_root = d_make_root(root);
 271        if (!s->s_root)
 272                return -ENOMEM;
 273        s->s_d_op = ctx->dops;
 274        return 0;
 275}
 276
 277static int pseudo_fs_get_tree(struct fs_context *fc)
 278{
 279        return get_tree_nodev(fc, pseudo_fs_fill_super);
 280}
 281
 282static void pseudo_fs_free(struct fs_context *fc)
 283{
 284        kfree(fc->fs_private);
 285}
 286
 287static const struct fs_context_operations pseudo_fs_context_ops = {
 288        .free           = pseudo_fs_free,
 289        .get_tree       = pseudo_fs_get_tree,
 290};
 291
 292/*
 293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 294 * will never be mountable)
 295 */
 296struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 297                                        unsigned long magic)
 298{
 299        struct pseudo_fs_context *ctx;
 300
 301        ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 302        if (likely(ctx)) {
 303                ctx->magic = magic;
 304                fc->fs_private = ctx;
 305                fc->ops = &pseudo_fs_context_ops;
 306                fc->sb_flags |= SB_NOUSER;
 307                fc->global = true;
 308        }
 309        return ctx;
 310}
 311EXPORT_SYMBOL(init_pseudo);
 312
 313int simple_open(struct inode *inode, struct file *file)
 314{
 315        if (inode->i_private)
 316                file->private_data = inode->i_private;
 317        return 0;
 318}
 319EXPORT_SYMBOL(simple_open);
 320
 321int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 322{
 323        struct inode *inode = d_inode(old_dentry);
 324
 325        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 326        inc_nlink(inode);
 327        ihold(inode);
 328        dget(dentry);
 329        d_instantiate(dentry, inode);
 330        return 0;
 331}
 332EXPORT_SYMBOL(simple_link);
 333
 334int simple_empty(struct dentry *dentry)
 335{
 336        struct dentry *child;
 337        int ret = 0;
 338
 339        spin_lock(&dentry->d_lock);
 340        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 341                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 342                if (simple_positive(child)) {
 343                        spin_unlock(&child->d_lock);
 344                        goto out;
 345                }
 346                spin_unlock(&child->d_lock);
 347        }
 348        ret = 1;
 349out:
 350        spin_unlock(&dentry->d_lock);
 351        return ret;
 352}
 353EXPORT_SYMBOL(simple_empty);
 354
 355int simple_unlink(struct inode *dir, struct dentry *dentry)
 356{
 357        struct inode *inode = d_inode(dentry);
 358
 359        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 360        drop_nlink(inode);
 361        dput(dentry);
 362        return 0;
 363}
 364EXPORT_SYMBOL(simple_unlink);
 365
 366int simple_rmdir(struct inode *dir, struct dentry *dentry)
 367{
 368        if (!simple_empty(dentry))
 369                return -ENOTEMPTY;
 370
 371        drop_nlink(d_inode(dentry));
 372        simple_unlink(dir, dentry);
 373        drop_nlink(dir);
 374        return 0;
 375}
 376EXPORT_SYMBOL(simple_rmdir);
 377
 378int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 379                  struct inode *new_dir, struct dentry *new_dentry,
 380                  unsigned int flags)
 381{
 382        struct inode *inode = d_inode(old_dentry);
 383        int they_are_dirs = d_is_dir(old_dentry);
 384
 385        if (flags & ~RENAME_NOREPLACE)
 386                return -EINVAL;
 387
 388        if (!simple_empty(new_dentry))
 389                return -ENOTEMPTY;
 390
 391        if (d_really_is_positive(new_dentry)) {
 392                simple_unlink(new_dir, new_dentry);
 393                if (they_are_dirs) {
 394                        drop_nlink(d_inode(new_dentry));
 395                        drop_nlink(old_dir);
 396                }
 397        } else if (they_are_dirs) {
 398                drop_nlink(old_dir);
 399                inc_nlink(new_dir);
 400        }
 401
 402        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 403                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 404
 405        return 0;
 406}
 407EXPORT_SYMBOL(simple_rename);
 408
 409/**
 410 * simple_setattr - setattr for simple filesystem
 411 * @dentry: dentry
 412 * @iattr: iattr structure
 413 *
 414 * Returns 0 on success, -error on failure.
 415 *
 416 * simple_setattr is a simple ->setattr implementation without a proper
 417 * implementation of size changes.
 418 *
 419 * It can either be used for in-memory filesystems or special files
 420 * on simple regular filesystems.  Anything that needs to change on-disk
 421 * or wire state on size changes needs its own setattr method.
 422 */
 423int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 424{
 425        struct inode *inode = d_inode(dentry);
 426        int error;
 427
 428        error = setattr_prepare(dentry, iattr);
 429        if (error)
 430                return error;
 431
 432        if (iattr->ia_valid & ATTR_SIZE)
 433                truncate_setsize(inode, iattr->ia_size);
 434        setattr_copy(inode, iattr);
 435        mark_inode_dirty(inode);
 436        return 0;
 437}
 438EXPORT_SYMBOL(simple_setattr);
 439
 440int simple_readpage(struct file *file, struct page *page)
 441{
 442        clear_highpage(page);
 443        flush_dcache_page(page);
 444        SetPageUptodate(page);
 445        unlock_page(page);
 446        return 0;
 447}
 448EXPORT_SYMBOL(simple_readpage);
 449
 450int simple_write_begin(struct file *file, struct address_space *mapping,
 451                        loff_t pos, unsigned len, unsigned flags,
 452                        struct page **pagep, void **fsdata)
 453{
 454        struct page *page;
 455        pgoff_t index;
 456
 457        index = pos >> PAGE_SHIFT;
 458
 459        page = grab_cache_page_write_begin(mapping, index, flags);
 460        if (!page)
 461                return -ENOMEM;
 462
 463        *pagep = page;
 464
 465        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 466                unsigned from = pos & (PAGE_SIZE - 1);
 467
 468                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 469        }
 470        return 0;
 471}
 472EXPORT_SYMBOL(simple_write_begin);
 473
 474/**
 475 * simple_write_end - .write_end helper for non-block-device FSes
 476 * @file: See .write_end of address_space_operations
 477 * @mapping:            "
 478 * @pos:                "
 479 * @len:                "
 480 * @copied:             "
 481 * @page:               "
 482 * @fsdata:             "
 483 *
 484 * simple_write_end does the minimum needed for updating a page after writing is
 485 * done. It has the same API signature as the .write_end of
 486 * address_space_operations vector. So it can just be set onto .write_end for
 487 * FSes that don't need any other processing. i_mutex is assumed to be held.
 488 * Block based filesystems should use generic_write_end().
 489 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 490 * is not called, so a filesystem that actually does store data in .write_inode
 491 * should extend on what's done here with a call to mark_inode_dirty() in the
 492 * case that i_size has changed.
 493 *
 494 * Use *ONLY* with simple_readpage()
 495 */
 496int simple_write_end(struct file *file, struct address_space *mapping,
 497                        loff_t pos, unsigned len, unsigned copied,
 498                        struct page *page, void *fsdata)
 499{
 500        struct inode *inode = page->mapping->host;
 501        loff_t last_pos = pos + copied;
 502
 503        /* zero the stale part of the page if we did a short copy */
 504        if (!PageUptodate(page)) {
 505                if (copied < len) {
 506                        unsigned from = pos & (PAGE_SIZE - 1);
 507
 508                        zero_user(page, from + copied, len - copied);
 509                }
 510                SetPageUptodate(page);
 511        }
 512        /*
 513         * No need to use i_size_read() here, the i_size
 514         * cannot change under us because we hold the i_mutex.
 515         */
 516        if (last_pos > inode->i_size)
 517                i_size_write(inode, last_pos);
 518
 519        set_page_dirty(page);
 520        unlock_page(page);
 521        put_page(page);
 522
 523        return copied;
 524}
 525EXPORT_SYMBOL(simple_write_end);
 526
 527/*
 528 * the inodes created here are not hashed. If you use iunique to generate
 529 * unique inode values later for this filesystem, then you must take care
 530 * to pass it an appropriate max_reserved value to avoid collisions.
 531 */
 532int simple_fill_super(struct super_block *s, unsigned long magic,
 533                      const struct tree_descr *files)
 534{
 535        struct inode *inode;
 536        struct dentry *root;
 537        struct dentry *dentry;
 538        int i;
 539
 540        s->s_blocksize = PAGE_SIZE;
 541        s->s_blocksize_bits = PAGE_SHIFT;
 542        s->s_magic = magic;
 543        s->s_op = &simple_super_operations;
 544        s->s_time_gran = 1;
 545
 546        inode = new_inode(s);
 547        if (!inode)
 548                return -ENOMEM;
 549        /*
 550         * because the root inode is 1, the files array must not contain an
 551         * entry at index 1
 552         */
 553        inode->i_ino = 1;
 554        inode->i_mode = S_IFDIR | 0755;
 555        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 556        inode->i_op = &simple_dir_inode_operations;
 557        inode->i_fop = &simple_dir_operations;
 558        set_nlink(inode, 2);
 559        root = d_make_root(inode);
 560        if (!root)
 561                return -ENOMEM;
 562        for (i = 0; !files->name || files->name[0]; i++, files++) {
 563                if (!files->name)
 564                        continue;
 565
 566                /* warn if it tries to conflict with the root inode */
 567                if (unlikely(i == 1))
 568                        printk(KERN_WARNING "%s: %s passed in a files array"
 569                                "with an index of 1!\n", __func__,
 570                                s->s_type->name);
 571
 572                dentry = d_alloc_name(root, files->name);
 573                if (!dentry)
 574                        goto out;
 575                inode = new_inode(s);
 576                if (!inode) {
 577                        dput(dentry);
 578                        goto out;
 579                }
 580                inode->i_mode = S_IFREG | files->mode;
 581                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 582                inode->i_fop = files->ops;
 583                inode->i_ino = i;
 584                d_add(dentry, inode);
 585        }
 586        s->s_root = root;
 587        return 0;
 588out:
 589        d_genocide(root);
 590        shrink_dcache_parent(root);
 591        dput(root);
 592        return -ENOMEM;
 593}
 594EXPORT_SYMBOL(simple_fill_super);
 595
 596static DEFINE_SPINLOCK(pin_fs_lock);
 597
 598int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 599{
 600        struct vfsmount *mnt = NULL;
 601        spin_lock(&pin_fs_lock);
 602        if (unlikely(!*mount)) {
 603                spin_unlock(&pin_fs_lock);
 604                mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 605                if (IS_ERR(mnt))
 606                        return PTR_ERR(mnt);
 607                spin_lock(&pin_fs_lock);
 608                if (!*mount)
 609                        *mount = mnt;
 610        }
 611        mntget(*mount);
 612        ++*count;
 613        spin_unlock(&pin_fs_lock);
 614        mntput(mnt);
 615        return 0;
 616}
 617EXPORT_SYMBOL(simple_pin_fs);
 618
 619void simple_release_fs(struct vfsmount **mount, int *count)
 620{
 621        struct vfsmount *mnt;
 622        spin_lock(&pin_fs_lock);
 623        mnt = *mount;
 624        if (!--*count)
 625                *mount = NULL;
 626        spin_unlock(&pin_fs_lock);
 627        mntput(mnt);
 628}
 629EXPORT_SYMBOL(simple_release_fs);
 630
 631/**
 632 * simple_read_from_buffer - copy data from the buffer to user space
 633 * @to: the user space buffer to read to
 634 * @count: the maximum number of bytes to read
 635 * @ppos: the current position in the buffer
 636 * @from: the buffer to read from
 637 * @available: the size of the buffer
 638 *
 639 * The simple_read_from_buffer() function reads up to @count bytes from the
 640 * buffer @from at offset @ppos into the user space address starting at @to.
 641 *
 642 * On success, the number of bytes read is returned and the offset @ppos is
 643 * advanced by this number, or negative value is returned on error.
 644 **/
 645ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 646                                const void *from, size_t available)
 647{
 648        loff_t pos = *ppos;
 649        size_t ret;
 650
 651        if (pos < 0)
 652                return -EINVAL;
 653        if (pos >= available || !count)
 654                return 0;
 655        if (count > available - pos)
 656                count = available - pos;
 657        ret = copy_to_user(to, from + pos, count);
 658        if (ret == count)
 659                return -EFAULT;
 660        count -= ret;
 661        *ppos = pos + count;
 662        return count;
 663}
 664EXPORT_SYMBOL(simple_read_from_buffer);
 665
 666/**
 667 * simple_write_to_buffer - copy data from user space to the buffer
 668 * @to: the buffer to write to
 669 * @available: the size of the buffer
 670 * @ppos: the current position in the buffer
 671 * @from: the user space buffer to read from
 672 * @count: the maximum number of bytes to read
 673 *
 674 * The simple_write_to_buffer() function reads up to @count bytes from the user
 675 * space address starting at @from into the buffer @to at offset @ppos.
 676 *
 677 * On success, the number of bytes written is returned and the offset @ppos is
 678 * advanced by this number, or negative value is returned on error.
 679 **/
 680ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 681                const void __user *from, size_t count)
 682{
 683        loff_t pos = *ppos;
 684        size_t res;
 685
 686        if (pos < 0)
 687                return -EINVAL;
 688        if (pos >= available || !count)
 689                return 0;
 690        if (count > available - pos)
 691                count = available - pos;
 692        res = copy_from_user(to + pos, from, count);
 693        if (res == count)
 694                return -EFAULT;
 695        count -= res;
 696        *ppos = pos + count;
 697        return count;
 698}
 699EXPORT_SYMBOL(simple_write_to_buffer);
 700
 701/**
 702 * memory_read_from_buffer - copy data from the buffer
 703 * @to: the kernel space buffer to read to
 704 * @count: the maximum number of bytes to read
 705 * @ppos: the current position in the buffer
 706 * @from: the buffer to read from
 707 * @available: the size of the buffer
 708 *
 709 * The memory_read_from_buffer() function reads up to @count bytes from the
 710 * buffer @from at offset @ppos into the kernel space address starting at @to.
 711 *
 712 * On success, the number of bytes read is returned and the offset @ppos is
 713 * advanced by this number, or negative value is returned on error.
 714 **/
 715ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 716                                const void *from, size_t available)
 717{
 718        loff_t pos = *ppos;
 719
 720        if (pos < 0)
 721                return -EINVAL;
 722        if (pos >= available)
 723                return 0;
 724        if (count > available - pos)
 725                count = available - pos;
 726        memcpy(to, from + pos, count);
 727        *ppos = pos + count;
 728
 729        return count;
 730}
 731EXPORT_SYMBOL(memory_read_from_buffer);
 732
 733/*
 734 * Transaction based IO.
 735 * The file expects a single write which triggers the transaction, and then
 736 * possibly a read which collects the result - which is stored in a
 737 * file-local buffer.
 738 */
 739
 740void simple_transaction_set(struct file *file, size_t n)
 741{
 742        struct simple_transaction_argresp *ar = file->private_data;
 743
 744        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 745
 746        /*
 747         * The barrier ensures that ar->size will really remain zero until
 748         * ar->data is ready for reading.
 749         */
 750        smp_mb();
 751        ar->size = n;
 752}
 753EXPORT_SYMBOL(simple_transaction_set);
 754
 755char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 756{
 757        struct simple_transaction_argresp *ar;
 758        static DEFINE_SPINLOCK(simple_transaction_lock);
 759
 760        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 761                return ERR_PTR(-EFBIG);
 762
 763        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 764        if (!ar)
 765                return ERR_PTR(-ENOMEM);
 766
 767        spin_lock(&simple_transaction_lock);
 768
 769        /* only one write allowed per open */
 770        if (file->private_data) {
 771                spin_unlock(&simple_transaction_lock);
 772                free_page((unsigned long)ar);
 773                return ERR_PTR(-EBUSY);
 774        }
 775
 776        file->private_data = ar;
 777
 778        spin_unlock(&simple_transaction_lock);
 779
 780        if (copy_from_user(ar->data, buf, size))
 781                return ERR_PTR(-EFAULT);
 782
 783        return ar->data;
 784}
 785EXPORT_SYMBOL(simple_transaction_get);
 786
 787ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 788{
 789        struct simple_transaction_argresp *ar = file->private_data;
 790
 791        if (!ar)
 792                return 0;
 793        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 794}
 795EXPORT_SYMBOL(simple_transaction_read);
 796
 797int simple_transaction_release(struct inode *inode, struct file *file)
 798{
 799        free_page((unsigned long)file->private_data);
 800        return 0;
 801}
 802EXPORT_SYMBOL(simple_transaction_release);
 803
 804/* Simple attribute files */
 805
 806struct simple_attr {
 807        int (*get)(void *, u64 *);
 808        int (*set)(void *, u64);
 809        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 810        char set_buf[24];
 811        void *data;
 812        const char *fmt;        /* format for read operation */
 813        struct mutex mutex;     /* protects access to these buffers */
 814};
 815
 816/* simple_attr_open is called by an actual attribute open file operation
 817 * to set the attribute specific access operations. */
 818int simple_attr_open(struct inode *inode, struct file *file,
 819                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 820                     const char *fmt)
 821{
 822        struct simple_attr *attr;
 823
 824        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 825        if (!attr)
 826                return -ENOMEM;
 827
 828        attr->get = get;
 829        attr->set = set;
 830        attr->data = inode->i_private;
 831        attr->fmt = fmt;
 832        mutex_init(&attr->mutex);
 833
 834        file->private_data = attr;
 835
 836        return nonseekable_open(inode, file);
 837}
 838EXPORT_SYMBOL_GPL(simple_attr_open);
 839
 840int simple_attr_release(struct inode *inode, struct file *file)
 841{
 842        kfree(file->private_data);
 843        return 0;
 844}
 845EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 846
 847/* read from the buffer that is filled with the get function */
 848ssize_t simple_attr_read(struct file *file, char __user *buf,
 849                         size_t len, loff_t *ppos)
 850{
 851        struct simple_attr *attr;
 852        size_t size;
 853        ssize_t ret;
 854
 855        attr = file->private_data;
 856
 857        if (!attr->get)
 858                return -EACCES;
 859
 860        ret = mutex_lock_interruptible(&attr->mutex);
 861        if (ret)
 862                return ret;
 863
 864        if (*ppos) {            /* continued read */
 865                size = strlen(attr->get_buf);
 866        } else {                /* first read */
 867                u64 val;
 868                ret = attr->get(attr->data, &val);
 869                if (ret)
 870                        goto out;
 871
 872                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 873                                 attr->fmt, (unsigned long long)val);
 874        }
 875
 876        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 877out:
 878        mutex_unlock(&attr->mutex);
 879        return ret;
 880}
 881EXPORT_SYMBOL_GPL(simple_attr_read);
 882
 883/* interpret the buffer as a number to call the set function with */
 884ssize_t simple_attr_write(struct file *file, const char __user *buf,
 885                          size_t len, loff_t *ppos)
 886{
 887        struct simple_attr *attr;
 888        u64 val;
 889        size_t size;
 890        ssize_t ret;
 891
 892        attr = file->private_data;
 893        if (!attr->set)
 894                return -EACCES;
 895
 896        ret = mutex_lock_interruptible(&attr->mutex);
 897        if (ret)
 898                return ret;
 899
 900        ret = -EFAULT;
 901        size = min(sizeof(attr->set_buf) - 1, len);
 902        if (copy_from_user(attr->set_buf, buf, size))
 903                goto out;
 904
 905        attr->set_buf[size] = '\0';
 906        val = simple_strtoll(attr->set_buf, NULL, 0);
 907        ret = attr->set(attr->data, val);
 908        if (ret == 0)
 909                ret = len; /* on success, claim we got the whole input */
 910out:
 911        mutex_unlock(&attr->mutex);
 912        return ret;
 913}
 914EXPORT_SYMBOL_GPL(simple_attr_write);
 915
 916/**
 917 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 918 * @sb:         filesystem to do the file handle conversion on
 919 * @fid:        file handle to convert
 920 * @fh_len:     length of the file handle in bytes
 921 * @fh_type:    type of file handle
 922 * @get_inode:  filesystem callback to retrieve inode
 923 *
 924 * This function decodes @fid as long as it has one of the well-known
 925 * Linux filehandle types and calls @get_inode on it to retrieve the
 926 * inode for the object specified in the file handle.
 927 */
 928struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 929                int fh_len, int fh_type, struct inode *(*get_inode)
 930                        (struct super_block *sb, u64 ino, u32 gen))
 931{
 932        struct inode *inode = NULL;
 933
 934        if (fh_len < 2)
 935                return NULL;
 936
 937        switch (fh_type) {
 938        case FILEID_INO32_GEN:
 939        case FILEID_INO32_GEN_PARENT:
 940                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 941                break;
 942        }
 943
 944        return d_obtain_alias(inode);
 945}
 946EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 947
 948/**
 949 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 950 * @sb:         filesystem to do the file handle conversion on
 951 * @fid:        file handle to convert
 952 * @fh_len:     length of the file handle in bytes
 953 * @fh_type:    type of file handle
 954 * @get_inode:  filesystem callback to retrieve inode
 955 *
 956 * This function decodes @fid as long as it has one of the well-known
 957 * Linux filehandle types and calls @get_inode on it to retrieve the
 958 * inode for the _parent_ object specified in the file handle if it
 959 * is specified in the file handle, or NULL otherwise.
 960 */
 961struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 962                int fh_len, int fh_type, struct inode *(*get_inode)
 963                        (struct super_block *sb, u64 ino, u32 gen))
 964{
 965        struct inode *inode = NULL;
 966
 967        if (fh_len <= 2)
 968                return NULL;
 969
 970        switch (fh_type) {
 971        case FILEID_INO32_GEN_PARENT:
 972                inode = get_inode(sb, fid->i32.parent_ino,
 973                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 974                break;
 975        }
 976
 977        return d_obtain_alias(inode);
 978}
 979EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 980
 981/**
 982 * __generic_file_fsync - generic fsync implementation for simple filesystems
 983 *
 984 * @file:       file to synchronize
 985 * @start:      start offset in bytes
 986 * @end:        end offset in bytes (inclusive)
 987 * @datasync:   only synchronize essential metadata if true
 988 *
 989 * This is a generic implementation of the fsync method for simple
 990 * filesystems which track all non-inode metadata in the buffers list
 991 * hanging off the address_space structure.
 992 */
 993int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 994                                 int datasync)
 995{
 996        struct inode *inode = file->f_mapping->host;
 997        int err;
 998        int ret;
 999
1000        err = file_write_and_wait_range(file, start, end);
1001        if (err)
1002                return err;
1003
1004        inode_lock(inode);
1005        ret = sync_mapping_buffers(inode->i_mapping);
1006        if (!(inode->i_state & I_DIRTY_ALL))
1007                goto out;
1008        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1009                goto out;
1010
1011        err = sync_inode_metadata(inode, 1);
1012        if (ret == 0)
1013                ret = err;
1014
1015out:
1016        inode_unlock(inode);
1017        /* check and advance again to catch errors after syncing out buffers */
1018        err = file_check_and_advance_wb_err(file);
1019        if (ret == 0)
1020                ret = err;
1021        return ret;
1022}
1023EXPORT_SYMBOL(__generic_file_fsync);
1024
1025/**
1026 * generic_file_fsync - generic fsync implementation for simple filesystems
1027 *                      with flush
1028 * @file:       file to synchronize
1029 * @start:      start offset in bytes
1030 * @end:        end offset in bytes (inclusive)
1031 * @datasync:   only synchronize essential metadata if true
1032 *
1033 */
1034
1035int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1036                       int datasync)
1037{
1038        struct inode *inode = file->f_mapping->host;
1039        int err;
1040
1041        err = __generic_file_fsync(file, start, end, datasync);
1042        if (err)
1043                return err;
1044        return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1045}
1046EXPORT_SYMBOL(generic_file_fsync);
1047
1048/**
1049 * generic_check_addressable - Check addressability of file system
1050 * @blocksize_bits:     log of file system block size
1051 * @num_blocks:         number of blocks in file system
1052 *
1053 * Determine whether a file system with @num_blocks blocks (and a
1054 * block size of 2**@blocksize_bits) is addressable by the sector_t
1055 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1056 */
1057int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1058{
1059        u64 last_fs_block = num_blocks - 1;
1060        u64 last_fs_page =
1061                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1062
1063        if (unlikely(num_blocks == 0))
1064                return 0;
1065
1066        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1067                return -EINVAL;
1068
1069        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1070            (last_fs_page > (pgoff_t)(~0ULL))) {
1071                return -EFBIG;
1072        }
1073        return 0;
1074}
1075EXPORT_SYMBOL(generic_check_addressable);
1076
1077/*
1078 * No-op implementation of ->fsync for in-memory filesystems.
1079 */
1080int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1081{
1082        return 0;
1083}
1084EXPORT_SYMBOL(noop_fsync);
1085
1086int noop_set_page_dirty(struct page *page)
1087{
1088        /*
1089         * Unlike __set_page_dirty_no_writeback that handles dirty page
1090         * tracking in the page object, dax does all dirty tracking in
1091         * the inode address_space in response to mkwrite faults. In the
1092         * dax case we only need to worry about potentially dirty CPU
1093         * caches, not dirty page cache pages to write back.
1094         *
1095         * This callback is defined to prevent fallback to
1096         * __set_page_dirty_buffers() in set_page_dirty().
1097         */
1098        return 0;
1099}
1100EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1101
1102void noop_invalidatepage(struct page *page, unsigned int offset,
1103                unsigned int length)
1104{
1105        /*
1106         * There is no page cache to invalidate in the dax case, however
1107         * we need this callback defined to prevent falling back to
1108         * block_invalidatepage() in do_invalidatepage().
1109         */
1110}
1111EXPORT_SYMBOL_GPL(noop_invalidatepage);
1112
1113ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115        /*
1116         * iomap based filesystems support direct I/O without need for
1117         * this callback. However, it still needs to be set in
1118         * inode->a_ops so that open/fcntl know that direct I/O is
1119         * generally supported.
1120         */
1121        return -EINVAL;
1122}
1123EXPORT_SYMBOL_GPL(noop_direct_IO);
1124
1125/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1126void kfree_link(void *p)
1127{
1128        kfree(p);
1129}
1130EXPORT_SYMBOL(kfree_link);
1131
1132/*
1133 * nop .set_page_dirty method so that people can use .page_mkwrite on
1134 * anon inodes.
1135 */
1136static int anon_set_page_dirty(struct page *page)
1137{
1138        return 0;
1139};
1140
1141/*
1142 * A single inode exists for all anon_inode files. Contrary to pipes,
1143 * anon_inode inodes have no associated per-instance data, so we need
1144 * only allocate one of them.
1145 */
1146struct inode *alloc_anon_inode(struct super_block *s)
1147{
1148        static const struct address_space_operations anon_aops = {
1149                .set_page_dirty = anon_set_page_dirty,
1150        };
1151        struct inode *inode = new_inode_pseudo(s);
1152
1153        if (!inode)
1154                return ERR_PTR(-ENOMEM);
1155
1156        inode->i_ino = get_next_ino();
1157        inode->i_mapping->a_ops = &anon_aops;
1158
1159        /*
1160         * Mark the inode dirty from the very beginning,
1161         * that way it will never be moved to the dirty
1162         * list because mark_inode_dirty() will think
1163         * that it already _is_ on the dirty list.
1164         */
1165        inode->i_state = I_DIRTY;
1166        inode->i_mode = S_IRUSR | S_IWUSR;
1167        inode->i_uid = current_fsuid();
1168        inode->i_gid = current_fsgid();
1169        inode->i_flags |= S_PRIVATE;
1170        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1171        return inode;
1172}
1173EXPORT_SYMBOL(alloc_anon_inode);
1174
1175/**
1176 * simple_nosetlease - generic helper for prohibiting leases
1177 * @filp: file pointer
1178 * @arg: type of lease to obtain
1179 * @flp: new lease supplied for insertion
1180 * @priv: private data for lm_setup operation
1181 *
1182 * Generic helper for filesystems that do not wish to allow leases to be set.
1183 * All arguments are ignored and it just returns -EINVAL.
1184 */
1185int
1186simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1187                  void **priv)
1188{
1189        return -EINVAL;
1190}
1191EXPORT_SYMBOL(simple_nosetlease);
1192
1193/**
1194 * simple_get_link - generic helper to get the target of "fast" symlinks
1195 * @dentry: not used here
1196 * @inode: the symlink inode
1197 * @done: not used here
1198 *
1199 * Generic helper for filesystems to use for symlink inodes where a pointer to
1200 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1201 * since as an optimization the path lookup code uses any non-NULL ->i_link
1202 * directly, without calling ->get_link().  But ->get_link() still must be set,
1203 * to mark the inode_operations as being for a symlink.
1204 *
1205 * Return: the symlink target
1206 */
1207const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1208                            struct delayed_call *done)
1209{
1210        return inode->i_link;
1211}
1212EXPORT_SYMBOL(simple_get_link);
1213
1214const struct inode_operations simple_symlink_inode_operations = {
1215        .get_link = simple_get_link,
1216};
1217EXPORT_SYMBOL(simple_symlink_inode_operations);
1218
1219/*
1220 * Operations for a permanently empty directory.
1221 */
1222static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1223{
1224        return ERR_PTR(-ENOENT);
1225}
1226
1227static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1228                             u32 request_mask, unsigned int query_flags)
1229{
1230        struct inode *inode = d_inode(path->dentry);
1231        generic_fillattr(inode, stat);
1232        return 0;
1233}
1234
1235static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1236{
1237        return -EPERM;
1238}
1239
1240static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1241{
1242        return -EOPNOTSUPP;
1243}
1244
1245static const struct inode_operations empty_dir_inode_operations = {
1246        .lookup         = empty_dir_lookup,
1247        .permission     = generic_permission,
1248        .setattr        = empty_dir_setattr,
1249        .getattr        = empty_dir_getattr,
1250        .listxattr      = empty_dir_listxattr,
1251};
1252
1253static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1254{
1255        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1256        return generic_file_llseek_size(file, offset, whence, 2, 2);
1257}
1258
1259static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1260{
1261        dir_emit_dots(file, ctx);
1262        return 0;
1263}
1264
1265static const struct file_operations empty_dir_operations = {
1266        .llseek         = empty_dir_llseek,
1267        .read           = generic_read_dir,
1268        .iterate_shared = empty_dir_readdir,
1269        .fsync          = noop_fsync,
1270};
1271
1272
1273void make_empty_dir_inode(struct inode *inode)
1274{
1275        set_nlink(inode, 2);
1276        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1277        inode->i_uid = GLOBAL_ROOT_UID;
1278        inode->i_gid = GLOBAL_ROOT_GID;
1279        inode->i_rdev = 0;
1280        inode->i_size = 0;
1281        inode->i_blkbits = PAGE_SHIFT;
1282        inode->i_blocks = 0;
1283
1284        inode->i_op = &empty_dir_inode_operations;
1285        inode->i_opflags &= ~IOP_XATTR;
1286        inode->i_fop = &empty_dir_operations;
1287}
1288
1289bool is_empty_dir_inode(struct inode *inode)
1290{
1291        return (inode->i_fop == &empty_dir_operations) &&
1292                (inode->i_op == &empty_dir_inode_operations);
1293}
1294