linux/fs/xfs/xfs_buf_item.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
  15#include "xfs_buf_item.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_trace.h"
  18#include "xfs_log.h"
  19
  20
  21kmem_zone_t     *xfs_buf_item_zone;
  22
  23static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  24{
  25        return container_of(lip, struct xfs_buf_log_item, bli_item);
  26}
  27
  28STATIC void     xfs_buf_do_callbacks(struct xfs_buf *bp);
  29
  30static inline int
  31xfs_buf_log_format_size(
  32        struct xfs_buf_log_format *blfp)
  33{
  34        return offsetof(struct xfs_buf_log_format, blf_data_map) +
  35                        (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  36}
  37
  38/*
  39 * This returns the number of log iovecs needed to log the
  40 * given buf log item.
  41 *
  42 * It calculates this as 1 iovec for the buf log format structure
  43 * and 1 for each stretch of non-contiguous chunks to be logged.
  44 * Contiguous chunks are logged in a single iovec.
  45 *
  46 * If the XFS_BLI_STALE flag has been set, then log nothing.
  47 */
  48STATIC void
  49xfs_buf_item_size_segment(
  50        struct xfs_buf_log_item         *bip,
  51        struct xfs_buf_log_format       *blfp,
  52        int                             *nvecs,
  53        int                             *nbytes)
  54{
  55        struct xfs_buf                  *bp = bip->bli_buf;
  56        int                             next_bit;
  57        int                             last_bit;
  58
  59        last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  60        if (last_bit == -1)
  61                return;
  62
  63        /*
  64         * initial count for a dirty buffer is 2 vectors - the format structure
  65         * and the first dirty region.
  66         */
  67        *nvecs += 2;
  68        *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
  69
  70        while (last_bit != -1) {
  71                /*
  72                 * This takes the bit number to start looking from and
  73                 * returns the next set bit from there.  It returns -1
  74                 * if there are no more bits set or the start bit is
  75                 * beyond the end of the bitmap.
  76                 */
  77                next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  78                                        last_bit + 1);
  79                /*
  80                 * If we run out of bits, leave the loop,
  81                 * else if we find a new set of bits bump the number of vecs,
  82                 * else keep scanning the current set of bits.
  83                 */
  84                if (next_bit == -1) {
  85                        break;
  86                } else if (next_bit != last_bit + 1) {
  87                        last_bit = next_bit;
  88                        (*nvecs)++;
  89                } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  90                           (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  91                            XFS_BLF_CHUNK)) {
  92                        last_bit = next_bit;
  93                        (*nvecs)++;
  94                } else {
  95                        last_bit++;
  96                }
  97                *nbytes += XFS_BLF_CHUNK;
  98        }
  99}
 100
 101/*
 102 * This returns the number of log iovecs needed to log the given buf log item.
 103 *
 104 * It calculates this as 1 iovec for the buf log format structure and 1 for each
 105 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 106 * in a single iovec.
 107 *
 108 * Discontiguous buffers need a format structure per region that that is being
 109 * logged. This makes the changes in the buffer appear to log recovery as though
 110 * they came from separate buffers, just like would occur if multiple buffers
 111 * were used instead of a single discontiguous buffer. This enables
 112 * discontiguous buffers to be in-memory constructs, completely transparent to
 113 * what ends up on disk.
 114 *
 115 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 116 * format structures.
 117 */
 118STATIC void
 119xfs_buf_item_size(
 120        struct xfs_log_item     *lip,
 121        int                     *nvecs,
 122        int                     *nbytes)
 123{
 124        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 125        int                     i;
 126
 127        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 128        if (bip->bli_flags & XFS_BLI_STALE) {
 129                /*
 130                 * The buffer is stale, so all we need to log
 131                 * is the buf log format structure with the
 132                 * cancel flag in it.
 133                 */
 134                trace_xfs_buf_item_size_stale(bip);
 135                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 136                *nvecs += bip->bli_format_count;
 137                for (i = 0; i < bip->bli_format_count; i++) {
 138                        *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
 139                }
 140                return;
 141        }
 142
 143        ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 144
 145        if (bip->bli_flags & XFS_BLI_ORDERED) {
 146                /*
 147                 * The buffer has been logged just to order it.
 148                 * It is not being included in the transaction
 149                 * commit, so no vectors are used at all.
 150                 */
 151                trace_xfs_buf_item_size_ordered(bip);
 152                *nvecs = XFS_LOG_VEC_ORDERED;
 153                return;
 154        }
 155
 156        /*
 157         * the vector count is based on the number of buffer vectors we have
 158         * dirty bits in. This will only be greater than one when we have a
 159         * compound buffer with more than one segment dirty. Hence for compound
 160         * buffers we need to track which segment the dirty bits correspond to,
 161         * and when we move from one segment to the next increment the vector
 162         * count for the extra buf log format structure that will need to be
 163         * written.
 164         */
 165        for (i = 0; i < bip->bli_format_count; i++) {
 166                xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
 167                                          nvecs, nbytes);
 168        }
 169        trace_xfs_buf_item_size(bip);
 170}
 171
 172static inline void
 173xfs_buf_item_copy_iovec(
 174        struct xfs_log_vec      *lv,
 175        struct xfs_log_iovec    **vecp,
 176        struct xfs_buf          *bp,
 177        uint                    offset,
 178        int                     first_bit,
 179        uint                    nbits)
 180{
 181        offset += first_bit * XFS_BLF_CHUNK;
 182        xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
 183                        xfs_buf_offset(bp, offset),
 184                        nbits * XFS_BLF_CHUNK);
 185}
 186
 187static inline bool
 188xfs_buf_item_straddle(
 189        struct xfs_buf          *bp,
 190        uint                    offset,
 191        int                     next_bit,
 192        int                     last_bit)
 193{
 194        return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
 195                (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
 196                 XFS_BLF_CHUNK);
 197}
 198
 199static void
 200xfs_buf_item_format_segment(
 201        struct xfs_buf_log_item *bip,
 202        struct xfs_log_vec      *lv,
 203        struct xfs_log_iovec    **vecp,
 204        uint                    offset,
 205        struct xfs_buf_log_format *blfp)
 206{
 207        struct xfs_buf          *bp = bip->bli_buf;
 208        uint                    base_size;
 209        int                     first_bit;
 210        int                     last_bit;
 211        int                     next_bit;
 212        uint                    nbits;
 213
 214        /* copy the flags across from the base format item */
 215        blfp->blf_flags = bip->__bli_format.blf_flags;
 216
 217        /*
 218         * Base size is the actual size of the ondisk structure - it reflects
 219         * the actual size of the dirty bitmap rather than the size of the in
 220         * memory structure.
 221         */
 222        base_size = xfs_buf_log_format_size(blfp);
 223
 224        first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 225        if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 226                /*
 227                 * If the map is not be dirty in the transaction, mark
 228                 * the size as zero and do not advance the vector pointer.
 229                 */
 230                return;
 231        }
 232
 233        blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
 234        blfp->blf_size = 1;
 235
 236        if (bip->bli_flags & XFS_BLI_STALE) {
 237                /*
 238                 * The buffer is stale, so all we need to log
 239                 * is the buf log format structure with the
 240                 * cancel flag in it.
 241                 */
 242                trace_xfs_buf_item_format_stale(bip);
 243                ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 244                return;
 245        }
 246
 247
 248        /*
 249         * Fill in an iovec for each set of contiguous chunks.
 250         */
 251        last_bit = first_bit;
 252        nbits = 1;
 253        for (;;) {
 254                /*
 255                 * This takes the bit number to start looking from and
 256                 * returns the next set bit from there.  It returns -1
 257                 * if there are no more bits set or the start bit is
 258                 * beyond the end of the bitmap.
 259                 */
 260                next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 261                                        (uint)last_bit + 1);
 262                /*
 263                 * If we run out of bits fill in the last iovec and get out of
 264                 * the loop.  Else if we start a new set of bits then fill in
 265                 * the iovec for the series we were looking at and start
 266                 * counting the bits in the new one.  Else we're still in the
 267                 * same set of bits so just keep counting and scanning.
 268                 */
 269                if (next_bit == -1) {
 270                        xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 271                                                first_bit, nbits);
 272                        blfp->blf_size++;
 273                        break;
 274                } else if (next_bit != last_bit + 1 ||
 275                           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
 276                        xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 277                                                first_bit, nbits);
 278                        blfp->blf_size++;
 279                        first_bit = next_bit;
 280                        last_bit = next_bit;
 281                        nbits = 1;
 282                } else {
 283                        last_bit++;
 284                        nbits++;
 285                }
 286        }
 287}
 288
 289/*
 290 * This is called to fill in the vector of log iovecs for the
 291 * given log buf item.  It fills the first entry with a buf log
 292 * format structure, and the rest point to contiguous chunks
 293 * within the buffer.
 294 */
 295STATIC void
 296xfs_buf_item_format(
 297        struct xfs_log_item     *lip,
 298        struct xfs_log_vec      *lv)
 299{
 300        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 301        struct xfs_buf          *bp = bip->bli_buf;
 302        struct xfs_log_iovec    *vecp = NULL;
 303        uint                    offset = 0;
 304        int                     i;
 305
 306        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 307        ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 308               (bip->bli_flags & XFS_BLI_STALE));
 309        ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
 310               (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
 311                && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
 312        ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
 313               (bip->bli_flags & XFS_BLI_STALE));
 314
 315
 316        /*
 317         * If it is an inode buffer, transfer the in-memory state to the
 318         * format flags and clear the in-memory state.
 319         *
 320         * For buffer based inode allocation, we do not transfer
 321         * this state if the inode buffer allocation has not yet been committed
 322         * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 323         * correct replay of the inode allocation.
 324         *
 325         * For icreate item based inode allocation, the buffers aren't written
 326         * to the journal during allocation, and hence we should always tag the
 327         * buffer as an inode buffer so that the correct unlinked list replay
 328         * occurs during recovery.
 329         */
 330        if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 331                if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
 332                    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 333                      xfs_log_item_in_current_chkpt(lip)))
 334                        bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 335                bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 336        }
 337
 338        for (i = 0; i < bip->bli_format_count; i++) {
 339                xfs_buf_item_format_segment(bip, lv, &vecp, offset,
 340                                            &bip->bli_formats[i]);
 341                offset += BBTOB(bp->b_maps[i].bm_len);
 342        }
 343
 344        /*
 345         * Check to make sure everything is consistent.
 346         */
 347        trace_xfs_buf_item_format(bip);
 348}
 349
 350/*
 351 * This is called to pin the buffer associated with the buf log item in memory
 352 * so it cannot be written out.
 353 *
 354 * We also always take a reference to the buffer log item here so that the bli
 355 * is held while the item is pinned in memory. This means that we can
 356 * unconditionally drop the reference count a transaction holds when the
 357 * transaction is completed.
 358 */
 359STATIC void
 360xfs_buf_item_pin(
 361        struct xfs_log_item     *lip)
 362{
 363        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 364
 365        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 366        ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 367               (bip->bli_flags & XFS_BLI_ORDERED) ||
 368               (bip->bli_flags & XFS_BLI_STALE));
 369
 370        trace_xfs_buf_item_pin(bip);
 371
 372        atomic_inc(&bip->bli_refcount);
 373        atomic_inc(&bip->bli_buf->b_pin_count);
 374}
 375
 376/*
 377 * This is called to unpin the buffer associated with the buf log
 378 * item which was previously pinned with a call to xfs_buf_item_pin().
 379 *
 380 * Also drop the reference to the buf item for the current transaction.
 381 * If the XFS_BLI_STALE flag is set and we are the last reference,
 382 * then free up the buf log item and unlock the buffer.
 383 *
 384 * If the remove flag is set we are called from uncommit in the
 385 * forced-shutdown path.  If that is true and the reference count on
 386 * the log item is going to drop to zero we need to free the item's
 387 * descriptor in the transaction.
 388 */
 389STATIC void
 390xfs_buf_item_unpin(
 391        struct xfs_log_item     *lip,
 392        int                     remove)
 393{
 394        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 395        xfs_buf_t               *bp = bip->bli_buf;
 396        struct xfs_ail          *ailp = lip->li_ailp;
 397        int                     stale = bip->bli_flags & XFS_BLI_STALE;
 398        int                     freed;
 399
 400        ASSERT(bp->b_log_item == bip);
 401        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 402
 403        trace_xfs_buf_item_unpin(bip);
 404
 405        freed = atomic_dec_and_test(&bip->bli_refcount);
 406
 407        if (atomic_dec_and_test(&bp->b_pin_count))
 408                wake_up_all(&bp->b_waiters);
 409
 410        if (freed && stale) {
 411                ASSERT(bip->bli_flags & XFS_BLI_STALE);
 412                ASSERT(xfs_buf_islocked(bp));
 413                ASSERT(bp->b_flags & XBF_STALE);
 414                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 415
 416                trace_xfs_buf_item_unpin_stale(bip);
 417
 418                if (remove) {
 419                        /*
 420                         * If we are in a transaction context, we have to
 421                         * remove the log item from the transaction as we are
 422                         * about to release our reference to the buffer.  If we
 423                         * don't, the unlock that occurs later in
 424                         * xfs_trans_uncommit() will try to reference the
 425                         * buffer which we no longer have a hold on.
 426                         */
 427                        if (!list_empty(&lip->li_trans))
 428                                xfs_trans_del_item(lip);
 429
 430                        /*
 431                         * Since the transaction no longer refers to the buffer,
 432                         * the buffer should no longer refer to the transaction.
 433                         */
 434                        bp->b_transp = NULL;
 435                }
 436
 437                /*
 438                 * If we get called here because of an IO error, we may
 439                 * or may not have the item on the AIL. xfs_trans_ail_delete()
 440                 * will take care of that situation.
 441                 * xfs_trans_ail_delete() drops the AIL lock.
 442                 */
 443                if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 444                        xfs_buf_do_callbacks(bp);
 445                        bp->b_log_item = NULL;
 446                        list_del_init(&bp->b_li_list);
 447                        bp->b_iodone = NULL;
 448                } else {
 449                        spin_lock(&ailp->ail_lock);
 450                        xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
 451                        xfs_buf_item_relse(bp);
 452                        ASSERT(bp->b_log_item == NULL);
 453                }
 454                xfs_buf_relse(bp);
 455        } else if (freed && remove) {
 456                /*
 457                 * There are currently two references to the buffer - the active
 458                 * LRU reference and the buf log item. What we are about to do
 459                 * here - simulate a failed IO completion - requires 3
 460                 * references.
 461                 *
 462                 * The LRU reference is removed by the xfs_buf_stale() call. The
 463                 * buf item reference is removed by the xfs_buf_iodone()
 464                 * callback that is run by xfs_buf_do_callbacks() during ioend
 465                 * processing (via the bp->b_iodone callback), and then finally
 466                 * the ioend processing will drop the IO reference if the buffer
 467                 * is marked XBF_ASYNC.
 468                 *
 469                 * Hence we need to take an additional reference here so that IO
 470                 * completion processing doesn't free the buffer prematurely.
 471                 */
 472                xfs_buf_lock(bp);
 473                xfs_buf_hold(bp);
 474                bp->b_flags |= XBF_ASYNC;
 475                xfs_buf_ioerror(bp, -EIO);
 476                bp->b_flags &= ~XBF_DONE;
 477                xfs_buf_stale(bp);
 478                xfs_buf_ioend(bp);
 479        }
 480}
 481
 482/*
 483 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
 484 * seconds so as to not spam logs too much on repeated detection of the same
 485 * buffer being bad..
 486 */
 487
 488static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
 489
 490STATIC uint
 491xfs_buf_item_push(
 492        struct xfs_log_item     *lip,
 493        struct list_head        *buffer_list)
 494{
 495        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 496        struct xfs_buf          *bp = bip->bli_buf;
 497        uint                    rval = XFS_ITEM_SUCCESS;
 498
 499        if (xfs_buf_ispinned(bp))
 500                return XFS_ITEM_PINNED;
 501        if (!xfs_buf_trylock(bp)) {
 502                /*
 503                 * If we have just raced with a buffer being pinned and it has
 504                 * been marked stale, we could end up stalling until someone else
 505                 * issues a log force to unpin the stale buffer. Check for the
 506                 * race condition here so xfsaild recognizes the buffer is pinned
 507                 * and queues a log force to move it along.
 508                 */
 509                if (xfs_buf_ispinned(bp))
 510                        return XFS_ITEM_PINNED;
 511                return XFS_ITEM_LOCKED;
 512        }
 513
 514        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 515
 516        trace_xfs_buf_item_push(bip);
 517
 518        /* has a previous flush failed due to IO errors? */
 519        if ((bp->b_flags & XBF_WRITE_FAIL) &&
 520            ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
 521                xfs_warn(bp->b_mount,
 522"Failing async write on buffer block 0x%llx. Retrying async write.",
 523                         (long long)bp->b_bn);
 524        }
 525
 526        if (!xfs_buf_delwri_queue(bp, buffer_list))
 527                rval = XFS_ITEM_FLUSHING;
 528        xfs_buf_unlock(bp);
 529        return rval;
 530}
 531
 532/*
 533 * Drop the buffer log item refcount and take appropriate action. This helper
 534 * determines whether the bli must be freed or not, since a decrement to zero
 535 * does not necessarily mean the bli is unused.
 536 *
 537 * Return true if the bli is freed, false otherwise.
 538 */
 539bool
 540xfs_buf_item_put(
 541        struct xfs_buf_log_item *bip)
 542{
 543        struct xfs_log_item     *lip = &bip->bli_item;
 544        bool                    aborted;
 545        bool                    dirty;
 546
 547        /* drop the bli ref and return if it wasn't the last one */
 548        if (!atomic_dec_and_test(&bip->bli_refcount))
 549                return false;
 550
 551        /*
 552         * We dropped the last ref and must free the item if clean or aborted.
 553         * If the bli is dirty and non-aborted, the buffer was clean in the
 554         * transaction but still awaiting writeback from previous changes. In
 555         * that case, the bli is freed on buffer writeback completion.
 556         */
 557        aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
 558                  XFS_FORCED_SHUTDOWN(lip->li_mountp);
 559        dirty = bip->bli_flags & XFS_BLI_DIRTY;
 560        if (dirty && !aborted)
 561                return false;
 562
 563        /*
 564         * The bli is aborted or clean. An aborted item may be in the AIL
 565         * regardless of dirty state.  For example, consider an aborted
 566         * transaction that invalidated a dirty bli and cleared the dirty
 567         * state.
 568         */
 569        if (aborted)
 570                xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
 571        xfs_buf_item_relse(bip->bli_buf);
 572        return true;
 573}
 574
 575/*
 576 * Release the buffer associated with the buf log item.  If there is no dirty
 577 * logged data associated with the buffer recorded in the buf log item, then
 578 * free the buf log item and remove the reference to it in the buffer.
 579 *
 580 * This call ignores the recursion count.  It is only called when the buffer
 581 * should REALLY be unlocked, regardless of the recursion count.
 582 *
 583 * We unconditionally drop the transaction's reference to the log item. If the
 584 * item was logged, then another reference was taken when it was pinned, so we
 585 * can safely drop the transaction reference now.  This also allows us to avoid
 586 * potential races with the unpin code freeing the bli by not referencing the
 587 * bli after we've dropped the reference count.
 588 *
 589 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 590 * if necessary but do not unlock the buffer.  This is for support of
 591 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 592 * free the item.
 593 */
 594STATIC void
 595xfs_buf_item_release(
 596        struct xfs_log_item     *lip)
 597{
 598        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 599        struct xfs_buf          *bp = bip->bli_buf;
 600        bool                    released;
 601        bool                    hold = bip->bli_flags & XFS_BLI_HOLD;
 602        bool                    stale = bip->bli_flags & XFS_BLI_STALE;
 603#if defined(DEBUG) || defined(XFS_WARN)
 604        bool                    ordered = bip->bli_flags & XFS_BLI_ORDERED;
 605        bool                    dirty = bip->bli_flags & XFS_BLI_DIRTY;
 606        bool                    aborted = test_bit(XFS_LI_ABORTED,
 607                                                   &lip->li_flags);
 608#endif
 609
 610        trace_xfs_buf_item_release(bip);
 611
 612        /*
 613         * The bli dirty state should match whether the blf has logged segments
 614         * except for ordered buffers, where only the bli should be dirty.
 615         */
 616        ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
 617               (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
 618        ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 619
 620        /*
 621         * Clear the buffer's association with this transaction and
 622         * per-transaction state from the bli, which has been copied above.
 623         */
 624        bp->b_transp = NULL;
 625        bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
 626
 627        /*
 628         * Unref the item and unlock the buffer unless held or stale. Stale
 629         * buffers remain locked until final unpin unless the bli is freed by
 630         * the unref call. The latter implies shutdown because buffer
 631         * invalidation dirties the bli and transaction.
 632         */
 633        released = xfs_buf_item_put(bip);
 634        if (hold || (stale && !released))
 635                return;
 636        ASSERT(!stale || aborted);
 637        xfs_buf_relse(bp);
 638}
 639
 640STATIC void
 641xfs_buf_item_committing(
 642        struct xfs_log_item     *lip,
 643        xfs_lsn_t               commit_lsn)
 644{
 645        return xfs_buf_item_release(lip);
 646}
 647
 648/*
 649 * This is called to find out where the oldest active copy of the
 650 * buf log item in the on disk log resides now that the last log
 651 * write of it completed at the given lsn.
 652 * We always re-log all the dirty data in a buffer, so usually the
 653 * latest copy in the on disk log is the only one that matters.  For
 654 * those cases we simply return the given lsn.
 655 *
 656 * The one exception to this is for buffers full of newly allocated
 657 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 658 * flag set, indicating that only the di_next_unlinked fields from the
 659 * inodes in the buffers will be replayed during recovery.  If the
 660 * original newly allocated inode images have not yet been flushed
 661 * when the buffer is so relogged, then we need to make sure that we
 662 * keep the old images in the 'active' portion of the log.  We do this
 663 * by returning the original lsn of that transaction here rather than
 664 * the current one.
 665 */
 666STATIC xfs_lsn_t
 667xfs_buf_item_committed(
 668        struct xfs_log_item     *lip,
 669        xfs_lsn_t               lsn)
 670{
 671        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 672
 673        trace_xfs_buf_item_committed(bip);
 674
 675        if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 676                return lip->li_lsn;
 677        return lsn;
 678}
 679
 680static const struct xfs_item_ops xfs_buf_item_ops = {
 681        .iop_size       = xfs_buf_item_size,
 682        .iop_format     = xfs_buf_item_format,
 683        .iop_pin        = xfs_buf_item_pin,
 684        .iop_unpin      = xfs_buf_item_unpin,
 685        .iop_release    = xfs_buf_item_release,
 686        .iop_committing = xfs_buf_item_committing,
 687        .iop_committed  = xfs_buf_item_committed,
 688        .iop_push       = xfs_buf_item_push,
 689};
 690
 691STATIC int
 692xfs_buf_item_get_format(
 693        struct xfs_buf_log_item *bip,
 694        int                     count)
 695{
 696        ASSERT(bip->bli_formats == NULL);
 697        bip->bli_format_count = count;
 698
 699        if (count == 1) {
 700                bip->bli_formats = &bip->__bli_format;
 701                return 0;
 702        }
 703
 704        bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
 705                                0);
 706        if (!bip->bli_formats)
 707                return -ENOMEM;
 708        return 0;
 709}
 710
 711STATIC void
 712xfs_buf_item_free_format(
 713        struct xfs_buf_log_item *bip)
 714{
 715        if (bip->bli_formats != &bip->__bli_format) {
 716                kmem_free(bip->bli_formats);
 717                bip->bli_formats = NULL;
 718        }
 719}
 720
 721/*
 722 * Allocate a new buf log item to go with the given buffer.
 723 * Set the buffer's b_log_item field to point to the new
 724 * buf log item.
 725 */
 726int
 727xfs_buf_item_init(
 728        struct xfs_buf  *bp,
 729        struct xfs_mount *mp)
 730{
 731        struct xfs_buf_log_item *bip = bp->b_log_item;
 732        int                     chunks;
 733        int                     map_size;
 734        int                     error;
 735        int                     i;
 736
 737        /*
 738         * Check to see if there is already a buf log item for
 739         * this buffer. If we do already have one, there is
 740         * nothing to do here so return.
 741         */
 742        ASSERT(bp->b_mount == mp);
 743        if (bip) {
 744                ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 745                ASSERT(!bp->b_transp);
 746                ASSERT(bip->bli_buf == bp);
 747                return 0;
 748        }
 749
 750        bip = kmem_zone_zalloc(xfs_buf_item_zone, 0);
 751        xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 752        bip->bli_buf = bp;
 753
 754        /*
 755         * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 756         * can be divided into. Make sure not to truncate any pieces.
 757         * map_size is the size of the bitmap needed to describe the
 758         * chunks of the buffer.
 759         *
 760         * Discontiguous buffer support follows the layout of the underlying
 761         * buffer. This makes the implementation as simple as possible.
 762         */
 763        error = xfs_buf_item_get_format(bip, bp->b_map_count);
 764        ASSERT(error == 0);
 765        if (error) {    /* to stop gcc throwing set-but-unused warnings */
 766                kmem_zone_free(xfs_buf_item_zone, bip);
 767                return error;
 768        }
 769
 770
 771        for (i = 0; i < bip->bli_format_count; i++) {
 772                chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 773                                      XFS_BLF_CHUNK);
 774                map_size = DIV_ROUND_UP(chunks, NBWORD);
 775
 776                bip->bli_formats[i].blf_type = XFS_LI_BUF;
 777                bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 778                bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 779                bip->bli_formats[i].blf_map_size = map_size;
 780        }
 781
 782        bp->b_log_item = bip;
 783        xfs_buf_hold(bp);
 784        return 0;
 785}
 786
 787
 788/*
 789 * Mark bytes first through last inclusive as dirty in the buf
 790 * item's bitmap.
 791 */
 792static void
 793xfs_buf_item_log_segment(
 794        uint                    first,
 795        uint                    last,
 796        uint                    *map)
 797{
 798        uint            first_bit;
 799        uint            last_bit;
 800        uint            bits_to_set;
 801        uint            bits_set;
 802        uint            word_num;
 803        uint            *wordp;
 804        uint            bit;
 805        uint            end_bit;
 806        uint            mask;
 807
 808        /*
 809         * Convert byte offsets to bit numbers.
 810         */
 811        first_bit = first >> XFS_BLF_SHIFT;
 812        last_bit = last >> XFS_BLF_SHIFT;
 813
 814        /*
 815         * Calculate the total number of bits to be set.
 816         */
 817        bits_to_set = last_bit - first_bit + 1;
 818
 819        /*
 820         * Get a pointer to the first word in the bitmap
 821         * to set a bit in.
 822         */
 823        word_num = first_bit >> BIT_TO_WORD_SHIFT;
 824        wordp = &map[word_num];
 825
 826        /*
 827         * Calculate the starting bit in the first word.
 828         */
 829        bit = first_bit & (uint)(NBWORD - 1);
 830
 831        /*
 832         * First set any bits in the first word of our range.
 833         * If it starts at bit 0 of the word, it will be
 834         * set below rather than here.  That is what the variable
 835         * bit tells us. The variable bits_set tracks the number
 836         * of bits that have been set so far.  End_bit is the number
 837         * of the last bit to be set in this word plus one.
 838         */
 839        if (bit) {
 840                end_bit = min(bit + bits_to_set, (uint)NBWORD);
 841                mask = ((1U << (end_bit - bit)) - 1) << bit;
 842                *wordp |= mask;
 843                wordp++;
 844                bits_set = end_bit - bit;
 845        } else {
 846                bits_set = 0;
 847        }
 848
 849        /*
 850         * Now set bits a whole word at a time that are between
 851         * first_bit and last_bit.
 852         */
 853        while ((bits_to_set - bits_set) >= NBWORD) {
 854                *wordp |= 0xffffffff;
 855                bits_set += NBWORD;
 856                wordp++;
 857        }
 858
 859        /*
 860         * Finally, set any bits left to be set in one last partial word.
 861         */
 862        end_bit = bits_to_set - bits_set;
 863        if (end_bit) {
 864                mask = (1U << end_bit) - 1;
 865                *wordp |= mask;
 866        }
 867}
 868
 869/*
 870 * Mark bytes first through last inclusive as dirty in the buf
 871 * item's bitmap.
 872 */
 873void
 874xfs_buf_item_log(
 875        struct xfs_buf_log_item *bip,
 876        uint                    first,
 877        uint                    last)
 878{
 879        int                     i;
 880        uint                    start;
 881        uint                    end;
 882        struct xfs_buf          *bp = bip->bli_buf;
 883
 884        /*
 885         * walk each buffer segment and mark them dirty appropriately.
 886         */
 887        start = 0;
 888        for (i = 0; i < bip->bli_format_count; i++) {
 889                if (start > last)
 890                        break;
 891                end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
 892
 893                /* skip to the map that includes the first byte to log */
 894                if (first > end) {
 895                        start += BBTOB(bp->b_maps[i].bm_len);
 896                        continue;
 897                }
 898
 899                /*
 900                 * Trim the range to this segment and mark it in the bitmap.
 901                 * Note that we must convert buffer offsets to segment relative
 902                 * offsets (e.g., the first byte of each segment is byte 0 of
 903                 * that segment).
 904                 */
 905                if (first < start)
 906                        first = start;
 907                if (end > last)
 908                        end = last;
 909                xfs_buf_item_log_segment(first - start, end - start,
 910                                         &bip->bli_formats[i].blf_data_map[0]);
 911
 912                start += BBTOB(bp->b_maps[i].bm_len);
 913        }
 914}
 915
 916
 917/*
 918 * Return true if the buffer has any ranges logged/dirtied by a transaction,
 919 * false otherwise.
 920 */
 921bool
 922xfs_buf_item_dirty_format(
 923        struct xfs_buf_log_item *bip)
 924{
 925        int                     i;
 926
 927        for (i = 0; i < bip->bli_format_count; i++) {
 928                if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
 929                             bip->bli_formats[i].blf_map_size))
 930                        return true;
 931        }
 932
 933        return false;
 934}
 935
 936STATIC void
 937xfs_buf_item_free(
 938        struct xfs_buf_log_item *bip)
 939{
 940        xfs_buf_item_free_format(bip);
 941        kmem_free(bip->bli_item.li_lv_shadow);
 942        kmem_zone_free(xfs_buf_item_zone, bip);
 943}
 944
 945/*
 946 * This is called when the buf log item is no longer needed.  It should
 947 * free the buf log item associated with the given buffer and clear
 948 * the buffer's pointer to the buf log item.  If there are no more
 949 * items in the list, clear the b_iodone field of the buffer (see
 950 * xfs_buf_attach_iodone() below).
 951 */
 952void
 953xfs_buf_item_relse(
 954        xfs_buf_t       *bp)
 955{
 956        struct xfs_buf_log_item *bip = bp->b_log_item;
 957
 958        trace_xfs_buf_item_relse(bp, _RET_IP_);
 959        ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
 960
 961        bp->b_log_item = NULL;
 962        if (list_empty(&bp->b_li_list))
 963                bp->b_iodone = NULL;
 964
 965        xfs_buf_rele(bp);
 966        xfs_buf_item_free(bip);
 967}
 968
 969
 970/*
 971 * Add the given log item with its callback to the list of callbacks
 972 * to be called when the buffer's I/O completes.  If it is not set
 973 * already, set the buffer's b_iodone() routine to be
 974 * xfs_buf_iodone_callbacks() and link the log item into the list of
 975 * items rooted at b_li_list.
 976 */
 977void
 978xfs_buf_attach_iodone(
 979        struct xfs_buf          *bp,
 980        void                    (*cb)(struct xfs_buf *, struct xfs_log_item *),
 981        struct xfs_log_item     *lip)
 982{
 983        ASSERT(xfs_buf_islocked(bp));
 984
 985        lip->li_cb = cb;
 986        list_add_tail(&lip->li_bio_list, &bp->b_li_list);
 987
 988        ASSERT(bp->b_iodone == NULL ||
 989               bp->b_iodone == xfs_buf_iodone_callbacks);
 990        bp->b_iodone = xfs_buf_iodone_callbacks;
 991}
 992
 993/*
 994 * We can have many callbacks on a buffer. Running the callbacks individually
 995 * can cause a lot of contention on the AIL lock, so we allow for a single
 996 * callback to be able to scan the remaining items in bp->b_li_list for other
 997 * items of the same type and callback to be processed in the first call.
 998 *
 999 * As a result, the loop walking the callback list below will also modify the
1000 * list. it removes the first item from the list and then runs the callback.
1001 * The loop then restarts from the new first item int the list. This allows the
1002 * callback to scan and modify the list attached to the buffer and we don't
1003 * have to care about maintaining a next item pointer.
1004 */
1005STATIC void
1006xfs_buf_do_callbacks(
1007        struct xfs_buf          *bp)
1008{
1009        struct xfs_buf_log_item *blip = bp->b_log_item;
1010        struct xfs_log_item     *lip;
1011
1012        /* If there is a buf_log_item attached, run its callback */
1013        if (blip) {
1014                lip = &blip->bli_item;
1015                lip->li_cb(bp, lip);
1016        }
1017
1018        while (!list_empty(&bp->b_li_list)) {
1019                lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1020                                       li_bio_list);
1021
1022                /*
1023                 * Remove the item from the list, so we don't have any
1024                 * confusion if the item is added to another buf.
1025                 * Don't touch the log item after calling its
1026                 * callback, because it could have freed itself.
1027                 */
1028                list_del_init(&lip->li_bio_list);
1029                lip->li_cb(bp, lip);
1030        }
1031}
1032
1033/*
1034 * Invoke the error state callback for each log item affected by the failed I/O.
1035 *
1036 * If a metadata buffer write fails with a non-permanent error, the buffer is
1037 * eventually resubmitted and so the completion callbacks are not run. The error
1038 * state may need to be propagated to the log items attached to the buffer,
1039 * however, so the next AIL push of the item knows hot to handle it correctly.
1040 */
1041STATIC void
1042xfs_buf_do_callbacks_fail(
1043        struct xfs_buf          *bp)
1044{
1045        struct xfs_log_item     *lip;
1046        struct xfs_ail          *ailp;
1047
1048        /*
1049         * Buffer log item errors are handled directly by xfs_buf_item_push()
1050         * and xfs_buf_iodone_callback_error, and they have no IO error
1051         * callbacks. Check only for items in b_li_list.
1052         */
1053        if (list_empty(&bp->b_li_list))
1054                return;
1055
1056        lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1057                        li_bio_list);
1058        ailp = lip->li_ailp;
1059        spin_lock(&ailp->ail_lock);
1060        list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1061                if (lip->li_ops->iop_error)
1062                        lip->li_ops->iop_error(lip, bp);
1063        }
1064        spin_unlock(&ailp->ail_lock);
1065}
1066
1067static bool
1068xfs_buf_iodone_callback_error(
1069        struct xfs_buf          *bp)
1070{
1071        struct xfs_buf_log_item *bip = bp->b_log_item;
1072        struct xfs_log_item     *lip;
1073        struct xfs_mount        *mp;
1074        static ulong            lasttime;
1075        static xfs_buftarg_t    *lasttarg;
1076        struct xfs_error_cfg    *cfg;
1077
1078        /*
1079         * The failed buffer might not have a buf_log_item attached or the
1080         * log_item list might be empty. Get the mp from the available
1081         * xfs_log_item
1082         */
1083        lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1084                                       li_bio_list);
1085        mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1086
1087        /*
1088         * If we've already decided to shutdown the filesystem because of
1089         * I/O errors, there's no point in giving this a retry.
1090         */
1091        if (XFS_FORCED_SHUTDOWN(mp))
1092                goto out_stale;
1093
1094        if (bp->b_target != lasttarg ||
1095            time_after(jiffies, (lasttime + 5*HZ))) {
1096                lasttime = jiffies;
1097                xfs_buf_ioerror_alert(bp, __func__);
1098        }
1099        lasttarg = bp->b_target;
1100
1101        /* synchronous writes will have callers process the error */
1102        if (!(bp->b_flags & XBF_ASYNC))
1103                goto out_stale;
1104
1105        trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1106        ASSERT(bp->b_iodone != NULL);
1107
1108        cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1109
1110        /*
1111         * If the write was asynchronous then no one will be looking for the
1112         * error.  If this is the first failure of this type, clear the error
1113         * state and write the buffer out again. This means we always retry an
1114         * async write failure at least once, but we also need to set the buffer
1115         * up to behave correctly now for repeated failures.
1116         */
1117        if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1118             bp->b_last_error != bp->b_error) {
1119                bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1120                bp->b_last_error = bp->b_error;
1121                if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1122                    !bp->b_first_retry_time)
1123                        bp->b_first_retry_time = jiffies;
1124
1125                xfs_buf_ioerror(bp, 0);
1126                xfs_buf_submit(bp);
1127                return true;
1128        }
1129
1130        /*
1131         * Repeated failure on an async write. Take action according to the
1132         * error configuration we have been set up to use.
1133         */
1134
1135        if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1136            ++bp->b_retries > cfg->max_retries)
1137                        goto permanent_error;
1138        if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1139            time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1140                        goto permanent_error;
1141
1142        /* At unmount we may treat errors differently */
1143        if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1144                goto permanent_error;
1145
1146        /*
1147         * Still a transient error, run IO completion failure callbacks and let
1148         * the higher layers retry the buffer.
1149         */
1150        xfs_buf_do_callbacks_fail(bp);
1151        xfs_buf_ioerror(bp, 0);
1152        xfs_buf_relse(bp);
1153        return true;
1154
1155        /*
1156         * Permanent error - we need to trigger a shutdown if we haven't already
1157         * to indicate that inconsistency will result from this action.
1158         */
1159permanent_error:
1160        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1161out_stale:
1162        xfs_buf_stale(bp);
1163        bp->b_flags |= XBF_DONE;
1164        trace_xfs_buf_error_relse(bp, _RET_IP_);
1165        return false;
1166}
1167
1168/*
1169 * This is the iodone() function for buffers which have had callbacks attached
1170 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1171 * callback list, mark the buffer as having no more callbacks and then push the
1172 * buffer through IO completion processing.
1173 */
1174void
1175xfs_buf_iodone_callbacks(
1176        struct xfs_buf          *bp)
1177{
1178        /*
1179         * If there is an error, process it. Some errors require us
1180         * to run callbacks after failure processing is done so we
1181         * detect that and take appropriate action.
1182         */
1183        if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1184                return;
1185
1186        /*
1187         * Successful IO or permanent error. Either way, we can clear the
1188         * retry state here in preparation for the next error that may occur.
1189         */
1190        bp->b_last_error = 0;
1191        bp->b_retries = 0;
1192        bp->b_first_retry_time = 0;
1193
1194        xfs_buf_do_callbacks(bp);
1195        bp->b_log_item = NULL;
1196        list_del_init(&bp->b_li_list);
1197        bp->b_iodone = NULL;
1198        xfs_buf_ioend(bp);
1199}
1200
1201/*
1202 * This is the iodone() function for buffers which have been
1203 * logged.  It is called when they are eventually flushed out.
1204 * It should remove the buf item from the AIL, and free the buf item.
1205 * It is called by xfs_buf_iodone_callbacks() above which will take
1206 * care of cleaning up the buffer itself.
1207 */
1208void
1209xfs_buf_iodone(
1210        struct xfs_buf          *bp,
1211        struct xfs_log_item     *lip)
1212{
1213        struct xfs_ail          *ailp = lip->li_ailp;
1214
1215        ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1216
1217        xfs_buf_rele(bp);
1218
1219        /*
1220         * If we are forcibly shutting down, this may well be
1221         * off the AIL already. That's because we simulate the
1222         * log-committed callbacks to unpin these buffers. Or we may never
1223         * have put this item on AIL because of the transaction was
1224         * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1225         *
1226         * Either way, AIL is useless if we're forcing a shutdown.
1227         */
1228        spin_lock(&ailp->ail_lock);
1229        xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1230        xfs_buf_item_free(BUF_ITEM(lip));
1231}
1232
1233/*
1234 * Requeue a failed buffer for writeback.
1235 *
1236 * We clear the log item failed state here as well, but we have to be careful
1237 * about reference counts because the only active reference counts on the buffer
1238 * may be the failed log items. Hence if we clear the log item failed state
1239 * before queuing the buffer for IO we can release all active references to
1240 * the buffer and free it, leading to use after free problems in
1241 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1242 * order we process them in - the buffer is locked, and we own the buffer list
1243 * so nothing on them is going to change while we are performing this action.
1244 *
1245 * Hence we can safely queue the buffer for IO before we clear the failed log
1246 * item state, therefore  always having an active reference to the buffer and
1247 * avoiding the transient zero-reference state that leads to use-after-free.
1248 *
1249 * Return true if the buffer was added to the buffer list, false if it was
1250 * already on the buffer list.
1251 */
1252bool
1253xfs_buf_resubmit_failed_buffers(
1254        struct xfs_buf          *bp,
1255        struct list_head        *buffer_list)
1256{
1257        struct xfs_log_item     *lip;
1258        bool                    ret;
1259
1260        ret = xfs_buf_delwri_queue(bp, buffer_list);
1261
1262        /*
1263         * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
1264         * function already have it acquired
1265         */
1266        list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1267                xfs_clear_li_failed(lip);
1268
1269        return ret;
1270}
1271